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Abstract

We propose the dynamic network effect (DNE) model for the study of high-dimensional
multivariate time series data. Cross-sectional dependencies between units are captured via
one or multiple observed networks and a low-dimensional vector of latent stochastic network
effects. The parameter-driven, nonlinear state-space model requires simulation-based filtering
and estimation, for which we suggest to use the smooth marginalized particle filter (SMPF).
In a Monte Carlo simulation study, we demonstrate the SMPF’s good performance relative to
benchmarks, particularly when the cross-section dimension is large and the network is dense.
An empirical application on the spread of the COVID-19 pandemic through international travel
networks illustrates the usefulness of our method.
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1 Introduction

Multivariate time series models are important tools for studying and predicting the dynamic
interactions between key variables and/or investigation units. Depending on the dimensionality
of the data, simplifying assumptions often need to be imposed to make estimation feasible. For
example, if the cross-section is large while the time series is short, dynamic panel-type approaches
are typically employed, in which outcomes of units at time ¢ are functions of their own lags, but
independent from contemporaneous and lagged observations of other units. This simplification,
however, can be too restrictive in many empirical settings. On the other end of the spectrum,
we have (structural) vector autoregression (VAR) models, which take into account the dynamic
dependence structure between the constituents, but rely on identification restrictions in order
to capture cross-sectional shock spillovers, and are only feasible for a small number of units.
Classic dynamic factor models (DFM) strike a balance by decomposing the multivariate dynamics
into a constant cross-sectional part, the factor loadings, and a small number of time-varying
factors. However, they have the drawback that interpretation of both loadings and factors is often
ambiguous.

This paper discusses a class of dynamic network effect (DNE) models, which allow us to incor-
porate contemporaneous network dependence between units even in large cross sections, while
capturing dynamics in the data at the same time. The method utilizes an underlying network that
is constant or slowly varying over time. The approach is closely related to the spatial literature, but
is more general as (1) network linkages are not subject to constraints of geographic distances such
as symmetry or non-negativity (2) the intensity parameters are not constant but follow stochastic
processes and (3) we allow for different transmission channels by incorporating more than one
network. Being able to incorporate these features makes our model relevant for applications in
which multivariate, cross-sectionally dependent data are observed over longer time periods, and
where networks can be observed or inferred from theory. Examples include financial contagion
and systemic risk (Ait-Sahalia et al., 2014; Forbes & Rigobon, 2002), comovements of business
cycles (Bohm et al., 2020), and spreading of contagious diseases via travel or social networks.

The paper contributes to the recent literature on time-varying spatial dependence, see Blasques
et al. (2016) and Catania and Billé (2017). However, instead of assuming score-driven dynamics,
we consider an alternative specification for the intensity parameters, in which they have their own
disturbances. Allowing for this more general parameter-driven formulation comes at the price of
having to deal with a nonlinear state-space model, for which no closed-form likelihood is available.
The built-in stochastic volatilities imposes additional demands on the estimation procedure. We
propose to carry out estimation and filtering using a smooth marginalized particle filter (SMPF),
which combines the smooth particle filter of Malik and Pitt (2011) and Doucet et al. (2001) with
the marginalized particle filter of Casella and Robert (1996) and Andrieu and Doucet (2002). This
filter type is an attractive choice due to its ability to incorporate complex nonlinearities as well
as non-Gaussianities without relying on Taylor-type approximations. We can obtain arbitrarily
close approximations to the nonlinearity using sequential Monte Carlo simulations, the so-called
particles, that undergo the actual nonlinear transformation. Furthermore, the marginalization
allows us to accurately and efficiently estimate the linear parameters of the model, such as regres-
sion coefficients with their standard errors. We illustrate the good performance of the SMPF in



Monte Carlo simulations in terms of prediction accuracy, likelihood evaluation/estimation, signal
extraction and coefficient estimation. We show that in our setting, the SMPF clearly outperforms
the widely used extended Kalman filter (EKF), which relies on local Taylor approximations and
has limited ability to handle stochastic volatility. Within the simulations, we also investigate the
impact of different network structures on data features and filtering. In particular, we investigate
network asymmetries, different degrees of network sparsity, and incorporating both positive and

negative spillovers.

We apply the new model and filtering method to analyze the spreading of the new SARS-CoV2
virus across borders. Infected people either travel via airplane (for longer distances) or via railways
and roads (for shorter distances). Therefore, our model features two candidate networks, one of
which is constructed from air travel data, while the other is an adjacency matrix where countries
are connected if they share a common border. We introduce the notion of a contagion faucet, which
is a helpful concept to understand contagion dynamics between both networks. The faucet controls
the overall contagion flow through either network and also regulates flows between networks.
We find strong time-variation in the filtered intensity parameters, indicating several phases of
international transmission of the disease. Initally, air travel was mainly responsible for elevating
the disease from an epidemic to a pandemic. Subsequently, short-distance travel became more
relevant. Our results also suggest that towards the end of the sample, contagion occurs mainly
within countries.

The paper is structured as follows. In Section 2 we describe the different dynamic network effects
models with a single network or multiple networks. Section 3 outlines the smooth marginalized
particle filter as well as the extended Kalman filter, which we use as benchmark in the simulations.
Section 4 provides an analyisis of the model’s behavior subject to different network types. Section
5 investigates the filtering and estimation performance of our method using simulated data. In
Section 6, we illustrate our results using the current COVID-19 disease where we use airline routes
and common borders as the underlying networks for long-distance and short-distance travels.
Section 7 concludes.

2 Dynamic network effects (DNE) model

The general form of the DNE model is most clearly expressed as a nonlinear state-space model
(Durbin & Koopman, 2012). The set of model equations is given by

i = D X,p + DOey, er ~ N(0,%) 1)
D; = F(pr; Wi) ¢r = g(x}) )
®: = F(6; W) 6 = g(x7) ®3)

Xt =C+Axi_1 +u, ur ~ N(0,Q). (4)

The measurement equation for vector y; € RN features a regression component X;$ and an

additive error term e, as well as two nonlinear network components ®;, ®;.

The functional specifications of the network transformation function F and the network effect
function g depend on the type of network model and number of networks considered. Nonethe-



less, we can establish a few general properties for both functions. F is a matric-valued function
that applies a vector of bounded network effects ¢, 0; to a set of network matrices W;. In other
words, F : U — RN*N with U C (=1,1)" for m € {M1, My} and the vector-valued transformation
function g : R”™ — U ensures boundedness of the network effects ¢¢, 0;. The network matrices
themselves W; = {Wtk}kzl,..., x with Wtk € RN*N are normalized such that their largest, absolute
eigenvalues are equal to 1 at all time points (Anselin, 1988; LeSage & Pace, 2009). We emphasize
that the time-variation of the networks W/ should always be negligible compared to the dynamics
of the network effects ¢, 0;.

The latent state vector x; € RM with M = M; + M, contains both xtl, xt2 and supplies the dynamics
for both network effects ¢, 0;. It follows a first-order stationary autoregressive process with
constant vector ¢, autocorrelation matrix A and state innovation vector u; with constant covariance
matrix Q. To ensure stability of the model, x; undergoes a transformation g(x;) before it enters the
measurement equation through the network components. Depending on the network effect model,
the transformation g either represents a logistic function, a softmax function or a combination
thereof.

Itis important to note that while the covariance matrix X of ¢; is constant and diagonal, the effective
covariance of the measurement error ®@;@;e; is not. In fact, its covariance ¥ := d)tG)tZG)tTCDtT
is full and allows for multivariate stochastic volatility. Its off-diagonal structure is informed by
the network matrices Wtk and its temporal dynamics are driven by the network effects ¢y, 0, in
addition to the slow dynamics of the matrices W/ themselves. This architecture keeps the model
parsimonious even when N is large. In the following, we describe F and g for different types of

network effect models.

2.1 Structural dynamic network effects model

The first model we consider is labeled structural dynamic network effects model, as it may be in-
terpreted as a particular version of a structural vector autoregressive (VAR) model with regressors
and time-varying coefficients. In order to identify contemporaneous dependencies, structural
VARs requires parameter restrictions, that are, however, subject to debate in the literature, see
Liitkepohl (2005) and Kilian and Liitkepohl (2017). In the structural DNE model, simultaneous

dependencies are explicitly taken care of by the observed network.

We begin the derivation of the network effects component @; = F(¢;; W;) in (2) with an explicit
formulation where the dependent variable y; appears on both sides of the equation. This reflects
the fundamental idea of network effects, namely that observed outcomes are not only functions
of their own shocks and determinants but also of their neighbors. Who and how relevant these
neighbors are is determined by the network. We assume that contemporaneous spillovers are
captured by a single network matrix W;.! We have

Y = (thyt + Xt‘B + ¢

with ¢; = g(x}), where is the logistic transformation. The univariate latent state x} follows an

autoregressive process of order one as in (4). Furthermore, E[e;] = 0, and Var(e;) = X, which

For clarity of notation, we suppress the time subscript ¢.



is diagonal with © = diag(o?, ..., 012\]). Similar to autoregressive time-series models, repeated
substitution reveals that under the stability condition on ¢; and W;, i.e. shocks to the errors and
regressors die out eventually and we can obtain a steady state/reduced form version of the model
as

Yy = qbtWyt + Xtﬁ + e
= ¢tw[¢twyt + Xtﬁ + et] + Xtﬁ + e (5)
¢tw[¢tw[¢twyt + Xtﬁ + et] + Xtﬁ + et] + Xtﬁ + ey

(IN = W) IXB + (In — W) ey

Therefore, the nonlinear state-space formulation of the model is

yr = O X4 + Dyrey, et ~N(0,X) (6)
D; = (In — W)™ br = g(x}) )

We refer to the parameter ¢; as structural network effect. Note that already in this simple formulation,
the model contains multivariate stochastic volatility (MSV). However, the time-varying covariance
is coupled with the transformation of the regression component. For many applications, it is
difficult to justify why the amplification effect in the regression component should follow the
same dynamics as the error covariance. To disentangle both effects, we model the error network
effects separately.

2.2 Error network effects

In this specification, contemporaneous network spillovers only occur among the disturbances.
Therefore, we label this model error dynamic network effects model. The conditional mean
equation remains linear, corresponding to model (1) with @; = Iy. However, the covariance
matrix has a dynamic network effect ;, which introduces stochastic volatility. Again, we assume
one network matrix W and a scalar network effect. We have

yr=XsB+ 1 (8)
e = 0:Wn; +ey, et ~N(0,X), )

where X is diagonal as before. Equivalently, we express the model in reduced form as

yr = Xif + Ore; (10)
O =(In-0W)", 6 =g(x}). (11)

We refer to the parameter 0; as error network effect. This linear model with multivariate stochastic
volatility is a restricted version of the model in Harvey et al. (1994). Instead of a multiplicative factor
hi: for each error variable e;, the temporal dynamics are contained in 0; in our case. Furthermore,
Harvey et al. (1994) models the variances as stochastic process, but restricts the off-diagonal

covariances to zero. In our model, the covariance structure is informed by the cross-sectional



network structure in the matrix W and, ultimately, the transformation ©y.

2.3 Generalized network effects

The generalised network effects model presented here is simply a synthesis of the structural
and error network effects models introduced before. As before, we assume that cross-sectional
dependence is captured by a single network matrix W, but that spillovers from shocks to the
regressors can differ from shock spillovers among the disturbances. In explicit form, the model is
given by

yr = oWy + Xy + 14 (12)
e =60Wn; + e (13)

with ¢, 0; as above. In the nonlinear state-space form, the measurement equation corresponds
to

yr = O Xif + ©;Oyey, et ~N(0,X) (14)

The model contains both structural and error components which allows us to isolate them from
each other. We note that since both network effects rely on the same matrix W, the two corre-
sponding effects ¢, 0; are only identified if the exogenous variables contribute sufficient variation,
ie. p # 0 (Kelejian & Prucha, 2010). It is certainly possible to introduce different networks for
structural and error network effect components.

Offsetting effects in the errors As both components interact in the disturbances, it may be
tempting to assume that whenever ¢; = —0;, both effects offset each other, for the same network
W. However, this is not the case since it does not imply that ®; = @t_l, which would cancel
each other out and eliminate any network effects in the error term. Instead, for ¢; = —0;, we
observe attenuated effects of the network effect with larger absolute magnitude (see Figure 2c).2
To achieve an offsetting effect, we require a relationship 6; = —¢;/(1—-¢;), provided no invertibility

constraints are violated.

2.4 Generalized network effects with multiple networks

In some empirical applications, several networks may be relevant and the model should allow
to take them into account. In fact, the interplay between multiple networks may be crucial to
disentangle spillover effects and dynamics in the data. For instance, when a virus spreads through
transportation networks, the spread through railway transportation are likely to be different from
air travel dynamics. Restricting the model to capture only one of the networks would lead to
misleading results. The generalized DNE model that allows for K networks can be expressed as

K K
Y = (ptZa)fkat +Xtﬁ +T]t, n = GtZVfWkT]t + ey (15)
i=1 i=1

2To illustrate, if W = I then the largest eigenvalue of @ is A(¢) = 1/(1 — ¢) and similarly for ©. For ¢ = -0 and ¢ > 0t
follows that A(¢p) > 1 > A(6) > 0.



or in reduced form

Y = a)tXt,B + &)téteh et ~N(0,X) (16)
-1
D = [In — ¢ Z a)fwk) (17)
k
-1
O = |Iy -6 Z vfwk) (18)
k

In this model, the state vectors x}, xt2 have a distinct structure. For the structural network compo-
nent, the first element of x/ is a scalar X; which determines ¢ through a logistic transformation, as
before. The remaining m — 1 elements x| determine the weighting parameters w; = G(x}) through
a softmax transformation G : R"™1 — A™-1 a unit simplex with m — 1 dimensions. This ensures
invertibility, since ¥; wf = 1 and w¥ € (0, 1) for all @} in w;. This holds analogously for x? and
the error network effect components 6, vf.

To facilitate interpretation and comparison, we define ¢ = ¢;w* which are the effective structural
network effects associated with network W¥. Similarly, 0F = 0,vF are the effective error network effects
associated with network W*.

Spillover faucet In case of M = 2, equation (15) can be intuitively understood by picturing
a water faucet, specifically, either a single-level faucet (Parkison, 1973) or a ball faucet (Tang,
1998), which we often find in kitchens. Assuming only two networks, the measurement equation
becomes

yr = Ot [wiWi + (1 — w)Wolye + XiB + u (19)

In this case, ¢; measures the overall water flow (faucet turns upwards or downwards) and w;
regulates the shares of hot and cold water (faucet turns sideways). While water faucets are hard
to generalize to more than two temperatures, the concept can be generalized for K networks as
described in (15). The same concept can be analogously applied to the error network component.

Multiple networks are a useful extension for applied cases, where the observed variables are
often the result of an interplay between several network effects. In our illustration, we apply this
idea to a “contagion faucet” that diverts overall contagion flow through either long-distance or
short-distance travel networks.

3 Signal extraction

As laid out in the previous section, the DNE model can be represented as a nonlinear state-space
model. Due to the nonlinearity, which affects both the conditional mean and the variance, we
cannot use the Kalman filter but have to turn to either approximation methods or simulation-
based approaches (see Part II of Durbin and Koopman (2012)). In the following, we describe the
smooth marginalized particle filter (SMPF), which combines the particle filter’s ability to tackle

any complex nonlinearity, with accurate and efficient estimation of all static parameters, even in



high dimensions. In our simulations, we benchmark the SMPF’s performance against the most
widely used approximation method, the extended Kalman filter (EKF). Therefore, this section

also contains the derivation of the relevant model-specific derivatives for the EKF.

3.1 Smooth marginalized particle filter

The primary goal is to filter out the unobserved state vector {x;}:=1,. 1, see equation (4), which

.....

we assume to follow a first-order Markov process x; ~ p(x¢|x¢~1). We infer the value of the
latent state based on the observed variables {y; };-1,. . r that are generated from the state according

to y: ~ p(y¢|x). The particle filter proceeds by simulating a set s =,1..., S of potential states,

(s)
t

density p(x¢|x;-1) and is easy to sample from. Then, for each particle we assess how likely it occurs

so-called particles, x,”” ~ h(x|x;—1). Here h is a proposal density that approximates the actual
for the observed y;, i.e. we calculate the likelihood of observing y; for a given particle. In the
bootstrap particle filter, this likelihood is also called importance weight.

Our estimate of the state x; is then simply an average of all particles, weighted by their importance

weights, i.e. Xy = ) xis)

wgs). Before we can repeat this procedure for t + 1, we need to resample
our particles. This resampling combats particle degeneracy, where only few particles determine
the trajectory of the entire particle swarm (Kantas et al., 2015). Different resampling strategies

have been proposed by the literature. We opt for the stratified strategy (Hol et al., 2006).

Smooth particle filter Beside the latent state x;, the DNE model in state-space form has several
static parameters, which we collect in the vector ¢.> Maximum likelihood estimation of i) using

particle filters is known to be challenging. The likelihood estimates are not continuous in ¢,

-----

(s).d
t+1

p(xt+1]xt; ). However, the associated importance

2015). Small changes 1 + d may lead to proposal particles x

)
t+1

)and w¥ = p(yi+1 |xfi)id) will then be different as well. In the resampling

~ p(x¢41]x¢; P + d) that are slightly

different than without the change x

(s)
t+1

step, we draw particles xis) from the empirical distribution function (EDF) of existing particles,

weights w; = p(yes1]x

yielding a step function. In the case of simple resampling, we simulate u ~ U[0, 1] and evaluate
x = F~!(u) for each particle. Hence, it is conceivable that we draw a u which is close to the edge

of a step in the EDF F(x) (see Figure 10). In such a case, the resulting particle could belong to

(s) (s+1),d
Xy t

follow entirely different paths, even if d is small. The resulting discontinuous, discrete likelihood

, under ¢ and to x , under ¢ + d. Such a bifurcation results in all future particles to

functions in 1 constitute a major challenge for gradient-based optimization methods.

Malik and Pitt (2011) propose the smooth particle filter as a simple and elegant way to deal with
this problem. Instead of resampling from a discrete step EDF E(x), the authors propose a smooth

EDF F(x) which is simply a linear interpolation of F (x). This ensures that small changes 0 + d
(s).d
t+1 7

representation. The resulting likelihood estimate loses the undesirable discontinuities, as shown

will indeed lead to small changes between resampled J?Ei)l and X see Figure 10 for a visual

in Figure 11, and can be used in gradient-based optimization routines. For the models studied
below, we find that only S = 50 particles are sufficient to obtain good convergence results.

SDepending on the model version, 1) contains the elements in the autoregressive parameter matrix A in the state

equation, the state covariance matrix QQ and the measurement variances 02, ey 012\,. The regression coefficient vector B

could be part of i but we advocate treating them as linear state variables, see below.



Marginalized particle filter To distinguish between nonlinear (4;) and linear states b;, we par-
tition the state vector into x; = [a,b;]". A conventional (smooth) particle filter carries out the
estimation of regression coefficients by treating b; as part of the state vector, and filtering them
in the same way as the nonlinear states a;. That is, the updating relies on the likelihood density
p(a¢, belyy). However, this is computationally expensive and, more importantly, statistically inef-
ficient.# Separating the linear from the nonlinear state variables yields significant computational
gains. This process of marginalizing out the linear states is also known as Rao-Blackwellization.
The likelihood density is evaluated in two parts, p(a:, bt|y:) = p(belat, ye)p(atly:). Using the parti-
cle filter steps only for the nonlinear states and the Kalman filter steps for linear states drastically
reduces the computational complexity. The resulting model is known as the marginalized particle
filter or Rao-Blackwellized particle filter (Andrieu & Doucet, 2002; Doucet et al., 2000; Schon et al.,
2005; Schon et al., 2006).

3.2 Benchmark: Extended Kalman filter

For approximate filtering, the EKF requires the first-order derivative of the measurement function
p(x) = E[y|x]. For clarity, we suppress the time subscript . We derive the Jacobian for the general
case with regression effects, such that the state vector x is partitioned into a for the nonlinear and
b for the linear state variables.

J d
Dyt = [Dapt, Dyyt] = [%’C) géx)]

The nonlinear state variable a is further subdivided into a1, 4, which correspond to the structural
and error network effects ¢, 0. The first part of the derivative depends on the derivative of the
network transformation with respect to a, in fact only a4, through the logistic function g

Dot = u(x) [aq)(ﬂl)

Cdar,a) | Om Xb,O]

The derivative of the structural network component @ with respect to a; is

o0(a) _9AT _ 194

-1
8a1 B 8a1 B 8H1A

where A = Iy — g(a;)W and its derivative dA/da; = —g’(a;)W. We use g(x) = e*(e* +1)~! with the

first derivative ¢’(x) = e™*(e™ + 1)72. The second part of the derivative then follows immediately

B du(x) _ 9D(a1)Xb
Do =—57= 5

= q)(al)X
Hence, the Jacobian matrix has dimensions N X (M, + M)

Dy = [§'(a1)PWDXD, 0, OX|

‘Instead of treating them as state variables, by ~ p(bt|bs—1), one could estimate them as additional hyperparameters in
1. However, this approach may become infeasible if the number of regression coefficients increases.



With these derivatives we can implement the EKF using adjusted Kalman filter recursions (Durbin
& Koopman, 2012) and evaluate the likelihood straightforwardly using prediction error decom-
position (Harvey, 1990).

4 Model behavior

In this section we analyze properties of the DNE model by looking at different combinations
of network effects ¢;, 0; for the following two network types. We use simplified DNE models
that abstract from regression components but still retain network components of interest. The
cross-section is set to N = 50.

Circular network Wc  The circular network (Figure 1a) is a useful benchmark, already employed
by Ord (1975) in the study of spatial autoregressive models, due to its simplicity, irreducibility
and scalability. The graph is strongly connected and is defined as Wc = [w;j] € RN*N where the
typical element w;; = 1ifi = j—1ori = j+1- N, which ensures a closed circle. Its simplicity
makes the effects of ¢;, 0; clearly visible and yields interesting parallels to the autoregressive

time-series models.

Random network Wgr ~ We also consider directed Erd6s—Rényi networks, Wer (Figure 1b) which
are closer to observed networks. Such networks have been widely studied due to their stochastic
nature and known limiting properties. The underlying graph D(N, p) is often referred to as a
binomial random directed graph and is closely related to the Erd6s—Rényi model (Graham & Pike,
2008). The N2 possible edges of the random graph D(N, p) are each drawn with probability p.
Similar to the Erd6s—Rényi model, the graph is almost surely strongly connected, if p > In(n)/n.
Figure 1c represents a special case where the network is partitioned into two subnetworks, that

will become relevant for the study of common factors.

4.1 Measurement behavior

In this part, the object of interest is the outcome or measurement variable ;. For these purposes,
it is sufficient to abstract from the time dimension, such that y; = y, and use a reduced version of
the generalized network effect model that only contains a constant

y=9pWy+c+e e=0We+u

To keep the simulation results tractable, we restrict our attention to the circular network W¢ and

linearly increasing or decreasing network effects ¢, 0.

Behavior for y = @c, constant only In the deterministic case in Figure 2a, we consider a model
that only contains a constant with ¢; = (i — N/2)/N. A positive structural network effect ¢ > 0
leads to a shift of the distribution of i, according to the direction of the circle in W¢. Furthermore,
the distribution of constants fans out and the values are amplified through the transformation. A
negative ¢ < 0, in contrast, reduces the distance between the measurements but does not entirely

5The results for the random network WER are less insightful in the static case here.
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Figure 1: Network types

This figure visually represents the three network types we study here. From left to right, the circular
network, the random network (or Erd6s—Rényi network), and a split random network. The latter has
positive network linkages (blue) on the main block diagonal and negative linkages on the off-diagonal
(red). N is set to 50.

(a) Circular network W (b) Random network Wgg (c) Random network W;;lit

collapse them. Both effects lead to asymmetric measurement distributions, but preserve the mean

at zero.

Behavior for y = ®g, error only, single network effect In the error only model, Figure 2b, we
can isolate the effect the network transformation has on Gaussian noise processes. In the case of
positive effects, 0 > 0, increasing the network effect parameter leads to higher concentration and a
lashing out of y. Hence, the average i/ oscillates unstably. In the opposite case, 0 < 0, decreasing
the network effect parameter leads to lower concentration and y are fanning out symmetrically.
Hence, the average 7 is centered around zero. The variance increases in both cases, differing by
whether or not they are skewed.®

Behavior for y = ®®e, error only, both network effects When both effects are present, we
observe compounding and offsetting effects. For ¢ > 0,0 > 0, we can see the combined effect
of 0 > 0 in the single network case, with the same asymmetry and lashing out, but stronger.
Similarly, ¢ < 0,0 < 0 has the combined effect of 6 < 0 in the single network case, which leads to
even more dispersion but maintaining the symmetry. The cases with opposite signs are identical
to each other by construction, ¢ > 0,0 < 0and ¢ < 0,0 > 0. They represent the attenuated
combinations of the two isolated cases, 0 < 0 and O > 0 in the single network case.

4.2 Common factors behavior

In this part we reintroduce the time dimension and shift our attention to common factors contained
in y;. We restrict our attention to ¢; # 0 and set 0; = 0. We demonstrate how networks yield
interesting patterns in the principal components of y;.

¢It is instructive to draw the parallel to AR(1) processes over time. The value of a particular y;; we observe for a given
0 resembles the outcome of an AR(1) process, with autocorrelation coefficient O over N periods. Strong, positive
autocorrelation values lead to persistent deviations from the mean. Strong, negative autocorrelation values lead to
oscillations around the mean.

11



For a circular network, Figure 3a, we observe a curious behavior in the residuals. This unmistakable
wavelet character is the result of the spatial autoregressive dynamics we impose on the Gaussian
noise process e;. Essentially, what we observe over the cross-section over different components is

the spectral decomposition of the ©;e; process over different frequencies.

Given the random network, we can observe a common factor that affects all outcome variables
y¢ (Figure 3b). More interesting is the random network with positive and negative quadrants
(see Figure 1c), which can be constructed using (15) with the Wgg = W! = W2 and two positive
and negative network effects ¢}, ¢?. The positive and negative network linkages translate into
two groups of the first principal component, designated by the positive and negative coefficients
(Figure 3c).” More involved patterns can be constructed in a similar fashion using the DNE model
with multiple networks (15).

’Such a pattern can be seen in the case of credit contagion among European banks studied in Wang et al. (2019).
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Figure 2: Behavior of the network effect model under a circular network Wc
We examine the resulting y for the reduced generalized network effects model y = ¢Wcy + ¢ + n and
n = OWn + e by plotting the y; for each combination of (¢, 0). The black line represents the average y. The
density plot at the right side of each panel is a kernel density estimate of the y; for the largest values of ¢, 6

(a) Behavior for y = ®c, constant only

p— FR—— \‘%’ —_
i
i = 9<0y = =0 M = $>0
W -~ 6=01 - 6=01 - 0=0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

(b) Behavior for y = ®¢, error only and single network effect

— - A

r r "

= $<0- -= $=04 M - ¢0
W -] -

- 0=0

0 50 100 150 200 0

50 100 150 200 0 50 100 150 200

(c) Behavior for y = ®Oe, error only and both network effects

>v vﬂ*—>’
1 = $<0+ “r_‘__*—o—"_'_—‘x = $=0+ M = ¢>0
p - 6>0 - 6>0"

- 6>0
0 50 100 150 200 0

50 100 150 200 0 50 100 150 200

I M "
/

- ¢<0_

| M = $>0
W - -

- 6=0

0 50 100 150 200 0

50 100 150 200 0 50 100 150 200

4 - $<04 -= $=04 = $>0
4 W -~ 9<01 w\ -~ <0 -~ 9<0
50 100 150

200 0 50 100 150 200

13



Figure 3: Principal componenents of y; for different network types

We examine the first principal components of y; for the reduced generalized network effects model. The
vertical bars depict the share of explained variances in descending order. In the last panel, the colors

correspond to the negative and positive groups in Figure 1c.
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5 Monte Carlo study

In this section we investigate the performance of the smooth marginalized particle filter (SMPF)
in filtering unobserved time-varying network intensities and estimating the vector of static co-
efficients. We consider all network effects introduced in Section 2, namely structural, error and
generalised network effects. We analyze four different network types for each network effect,
circular as well as sparse, normal and dense random networks as it is conceivable that the con-
nectedness of a network will influence an estimator’s performance.

5.1 Data-generating process and network inputs

The simulation study uses equation (12) as the data-generating process (DGP). We simulate data
for T = 200 and N = 50,100, 200. The measurement variance is set to X = 0.1Iy. The regressor
matrix X; consists of a constant Xilt = 1 and a Gaussian noise process Xlzt ~ N(0,1) for all i, ¢t.
The associated coefficients are individual-specific and defined as a; = f; = i/N fori =1,...,N.
The unrestricted state variables x], x? follow the stationary process described in equation (4) with
no intercepts, c; = ¢, = 0, autocorrelation matrix A = 0.8]; and covariance matrix variances
Q) = 0.41;. To obtain the structural network effects model, we set A»» = 0 and Q», = 0. For the
error network effects model, we set A1 = 0 and Qg1 = 0, according]ly.

All networks we have the property that they can be generated for different numbers of cross-
sectional units.® As explained in the previous section, we control the density of the random
networks through the edge probability parameter p. The network W, represents the threshold
case where the probability of two nodes being connected is p = 7 = In(N)/N. Erdés and Rényi
(1960) show that the network is almost surely connected for values above 7 and disconnected for
values below it. We choose p = 21 for ng{”“ and p = 7/2 for WESZMSE as edge probabilities. Table
1 summarizes the network properties.

5.2 Computer specifications and programming language

The computations for the Monte Carlo study and the subsequent illustration were carried out on
a Linux 64-bit server with Intel(R) Xeon(R) E5-2690 32-core processsor @ 2.90GHz and 128 GB
memory. The methods described here were implemented in Python 3.7 and for random number
generation we used the numpy.random.RandomState module (version 1.14) which employs the
Mersenne Twister pseudo-random number generator. See Figure 12 (Appendix) for an overview

of the computational time for different filters.

5.3 Results

Tables 2-4 show the results of our simulations. The number of replications is 1,000. In all cases,
we use the median as a robust measure for the average. Due to the persistent auto-correlation
in the network states it can happen that network effects approach 1, which results in diverging
amplification effects (see equation (5)). For the same reason, we use the median absolute deviation

to measure dispersion in Table 5.

8This is not possible or other network types, such as the core periphery network.
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Table 1: Network properties

This table displays the properties of the four networks considered in the Monte Carlo study. The circular
network Wc is deterministic, hence the edge probability is simply 1/N and the number of edges is N. For
the Erd6s-Rényi networks, the edge probability p is a function of T = In(N)/N. We set p = /2 to generate

sparse T _ dense is (¥
Wer ,p=1for Wi, and p = 2t for W{5"*. In every random network, the expected edge number is ( )p.
N=50 N=100 N=200
Network property We  WER™S Wi wiense W WRTC W wilense W wRTC W wense

Edge probability 0.0200 0.0391 0.0782 0.1565 0.0100 0.0230 0.0461 0.0921 0.0050 0.0132 0.0265 0.0530
(Expected) number of edges 50 479 95.8 1917 100 114.0 228.0 4559 200 263.6 5272 1054.4

The smooth marginalized particle filter (SMPF) outperforms the Extended Kalman Filter (EKF) in
almost every case. However, there are exceptions where the EKF is better or is it least on par. In
terms of RMSE of the predicted variable, the EKF is more accurate for sparse networks like Wc or
WEZWSE. The improvement over the SMPFs decreases as the network becomes more dense. This is
because the first order approximation used in the EKF is more accurate for sparse networks than
for dense networks. At the same time, the approximation performed in the SMPF leads to more

accurate results as the network density increases.

When considering the average log-likelihood, the SMPF outperforms the EKF except for the cases
where N = 50.%10 We observe that models with the lowest RMSE do not always have the highest
log-likelihoods. This is because the RMSE only considers the prediction error while the log-
likelihood also depends on the prediction error variance. Linear approximation errors that occur
in the EKF enter the likelihood in a quadratic form. The SMPF, in contrast, does not depend on

Taylor approximation errors to the nonlinearity as it evaluates the network transformation exactly.

In Table 3, we consider the ability of the filters to accurately estimate the underlying network
effects. Different from RMSE of y;, the SMPF strictly outperforms the EKE."' On average the
SMPF with 100 particles reduces the RMSE by more than half compared to the EKE. While more
particles generally lead to more accurate results for both x}, x?, the improvement is most striking
in the structural network effects. For the error network effects, we only find slight improvements.

As expected, the denser the networks are, the more challenging it is for the filters to accurately

2
PR

estimate x}, x
Table 4 also demonstrates the superior estimation performance of the SMPFE. The superiority
is most notable for the structural network effects with a circular network, where the SMPF(100)
reduce the RMSE of the EKF by almost 90 percentage points. Asbefore, the estimation performance
deteriorates with increasing network density. For the error network effects, we do not expect any
differences since the regression coefficients are not affected by the stochastic volatility. Both filters
can estimate the constant more accurately.  estimates are almost indistinguishable across models

and filters.

°Note that the log-likelihood values calculated via the EKF are exact while particle filters only provide estimates. They
are directly comparable only asymptotically for the number of particles tending to infinity.

0In Table 2, the EKF log-likelihoods for the error network effects cases are almost identical because the EKF cannot
identify xtz, which drives the error network effects.

11Since the structural and error network effects only contain one of the two network effects we remove the corresponding
segments in the table. Furthermore, since the EKF is unable to identify the error network effect we remove these cases
in the Table accordingly.
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Finally, Table 5 compares the dispersion of the log-likelihood values of each filter across all
simulations. We find that the log-likelihood values estimated with the SMPF are less dispersed
across simulations than the EKF. The error network effect model is the exception, where for large,
dense cross-sections, the EKF has lower dispersion. However, in conjunction with the low average
log-likelihoods and high RMSE for the same cases (Table 2), this implies that the EKF is inaccurate
in the same way across all simulations. In contrast, the SMPF values are less dispersed than the
EKF in all cases and more particles reduce the amount of dispersion. This is relevant for parameter

estimation, particularly for gradient-based optimization procedures.

To summarize our findings, the SMPF strictly outperforms the EKF in terms of signal extraction
(xtl, xtz) and regression coefficient estimation («;, f;). For the in-sample prediction performance
of the outcome variable y;; the results are not as clear cut. For sparse networks and small cross-
sections the linear approximation in the EKF is it sufficiently accurate. For denser networks and
larger cross-sections, the prediction errors the approximation error in the EKF weigh down its
performance, while the SMPF yields higher likelihoods and more precise estimates. A relatively
small number of particles is sufficient to obtain good estimates of the measurement variable y;.
For signal extraction and coefficient estimation, increasing the number of particles leads to major
improvements. However, this comes at a cost of computational power. On average, for N = 200
the SMPF with 100 particles required about 316.4 seconds per run, 88.4 seconds for 25 particles,
while the EKF only needed 11.2 seconds. For more details, see Figure 12, Appendix.
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Table 2: RMSE of {j; and average log-likelihoods

Monte Carlo results (1 of 4): For each filter we compare their performance in predicting the outcome variable
yr and evaluate their log-likelihoods for three network effect models (structural, error and generalized), four
networks (circular network, and sparse, normal, dense random networks) and three different cross-sections
N =50, 100, 200.

We find that the SMPF performs better in most cases. Except for sparse matrices (Wc, WES;MSK) where the

EKF produces lower RMSE. For more dense matrices, the SMPFs perform better. The differences between
SMPFs with 25 or 50 particles are negligible. In terms of average log-likelihood, the SMPFs achieve higher
values for larger cross-sections (N = 100, 200). This is likely due to the error component, that the EKF only
models indirectly.

Network Average log-likelihood RMSE of y
Effect Type N EKF SMPF(25) SMPF(50) SMPE(100) EKF SMPF(25) SMPF(50) SMPE(100)
50 -1.0982 1.2177 2.0230 © 23181 0 1.1496 1.2532 1.2608 1.2521
We 100 0.7539 13.7004 14.4925  »14.8684 0 1.1653 1.2793 1.2715 1.2753
200 2.3980 14.7431 15.6215  » 15.9880 0 1.1875 1.2847 1.2818 1.2934
50 ©6.1191 2.4978 2.8364 29115  0.9964 1.0594 1.0583 1.0601
E WR* 100 7.2617 14.7781 15.1337  ©15.2702 ¢ 1.0106 1.0722 1.0726 1.0739
z 200 8.1912 15.6293 16.0408  »16.2209  1.0190 1.0796 1.0876 1.0853
= 50 © 5.2338 2.0017 25890 27175 1.0986 * 1.0758 1.0843 1.0800
& Wig 100 7.7987 14.6840 15.0934 e 15.2461 1.0641 1.0587 1.0569 0 1.0546
200 9.1578 15.6919 161224  «16.3105 1.1147 1.0515 © 1.0488 1.0525
50  6.5306 24181 2.8813 2.9729 1.1363 * 1.0409 1.0460 1.0446
wense 100 8.6650 14.7826 152443  «15.3699 1.1408 1.0374 1.0355 © 1.0335
200 9.9112 15.8676 162587  ©16.4108 1.2015 1.0313 © 1.0272 1.0328
50 e 10.4451 5.6663 5.6655 5.6624 0.9323 0.9285 © 0.0284 0.9286
We 100 10.4726 16.5399 165420  ©16.5448 0.9386 0.9360 0.9358 ©0.9357
200 104187 16.6546 16.6510 16.6511 0.9415 ©0.9372 0.9374 0.9373
50 e 11.4386 6.3445 6.3437 6.3365 0.9321 0.9315 © 0.9312 0.9314
WR 100 11.4340 17.1833  ©17.1851 17.1816 0.9361 0.9351 0.9351 09350
5 200 115054  ©17.2967 17.2939 17.2919 0.9400 0.9394 © 0.9394 0.9394
5 50 e 11,5417 64715 6.4658 6.4603 0.9319 0.9314 0.9313 « 0.9313
Wix 100 11.6842 17.4079 o 17.4087 17.4043 0.9363 ©0.9359 0.9359 0.9359
200 11.7523  « 17.5658 17.5634 17.5609 0.9398 0.9396 ©0.9395 0.9396
50 °11.7733 6.7173 6.7159 6.7143 0.9315 0.9312 0.9311 ¢ 0.9311
wdense 100 11.8499 176145 17.6123 17.6142 0.9363 ©0.9361 0.9361 0.9361
200 11.8827  «17.7190 17.7185 17.7183 0.9396 0.9395 © 0.9395 0.9395
50 35417 0.2288 1.1335 © 1.3067 e 1.1596 1.2789 12722 12761
We 100 -1.5715 12.7468 13.4887  «13.8819 0 1.1774 1.2935 1.2953 1.2993
200 -0.2021 13.7391 14.7108 e 15.0418 0 1.1964 1.3068 1.3091 1.3156
- L ©5.5617 2.0334 23491 2.4049 © 0.9989 1.0646 1.0609 1.0655
g Wk 100 6.6910 14.3462 14.6835  »14.8093 e 1.0125 1.0716 1.0722 1.0746
= 200 7.6382 15.2622 15.6415  ©15.7899 ° 1.0217 1.0884 1.0918 1.0910
g 50 e 17172 1.9549 22833 24358 1.1003 °1.0784 1.0806 1.0798
& Wiy 100 7.4379 14.5752 14.8370  ©14.9940 1.0687 1.0575 1.0553 ¢ 1.0513
200 8.9163 15.7847 16.0455  ©16.1758 1.1187 1.0502 0 1.0445 1.0504
50 © 6.3349 2.5819 2.8499 29435 1.1456 1.0450 1.0402 © 1.0368
wense 100 8.5084 15.0967 152827  «15.3841 1.1652 1.0382 1.0332 © 1.0327
200 9.8226 16.1800 163543 16.4462 1.2104 1.0340 0 1.0264 1.0289

Notes. EKF stands for extended Kalman filter and SMPF(X) for smoothed marginalized particle filter with X particles. The three
random networks W/ with i € {sparse, 1, dense} stand for Erd6s-Rényi networks with three corresponding threshold parameter
7 € {0.5,1,2} that determine the networks’ degree of connectedness. The average log-likelihoods are simple averages over cross-
sectional size N of the evaluated log-likelihoods using prediction error decomposition for the EKF and log-likelihood estimates using
the SMPF’s importance weights. The bullets () demarcate the best values (smallest for RMSE and largest for log-likelihoods).
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Table 3: RMSE of network effect states £},
Monte Carlo results (2 of 4): For each filter we compare their estimation performance of the latent network
effect states J?} , ff for three network effect models (structural, error and generalized), four networks (circular

network, and sparse, normal, dense random networks) and three different cross-sections N = 50, 100, 200.
We find that the SMPF performs better in all cases. Furthermore, more particles generally produce more
accurate state estimates. See Figure 8 for a visual depiction of this result.

Network RMSE of x1 (for ¢) RMSE of x; (for 0)

Effect Type N EKF SMPF(25) SMPF(50) SMPE(100) EKF SMPF(25) SMPF(50) SMPE(100)

50 0.1742 0.1362 0.0949 0 0.0712 — — — —

We 100 0.1757 0.1379 0.0952  0.0753 — — — —

200 0.1736 0.1386 0.0948  0.0740 — — — —

] 50 0.1510 0.1515 0.1163 ¢ 0.1021 - — — —

E W™ 100 0.1600 0.1448 0.1052 ¢ 0.0935 — — — —

Z 200 0.1734 0.1458 0.1039  0.0885 — — — —

2 50 0.2229 0.1580 0.1194 ¢ 0.1156 — — — —

& Wy 100 0.2255 0.1572 0.1249 ©0.1098 — — — —

200 0.2545 0.1699 0.1325 0 0.1158 — — — —

50 0.2714 0.2004 0.1632 e 0.1557 - — — —

wense 100 0.2858 0.1946 0.1707 e 0.1551 — — — —

200 0.2942 0.1950 0.1652 0 0.1613 — — — —

50 p— — — — ) 0.6797 0.6733 ©0.6724

We 100 — — — — o 0.6104 0.6064  0.6015

200 — — — — o 0.5585 0.5484  0.5452

50 p— - - — o 0.9061 0.8981 ©0.8972

WeR"* 100 — — — — o 0.8406 © 0.8315 0.8328

5 200 — — — — o 0.8243 0.8174 0 0.8148

H 50 = - — — o 0.9101 « 0.9030 0.9036

Wie 100 — — — — o 0.9279 0.9188 ©0.9138

200 — — — — o 0.9022 0.9027 e 0.8953

50 p— - - — o 0.9556 0.9501 © 0.9479

wiense 100 — — — — ° 0.9548 09482 ©0.9435

200 — — — — o 0.9416 0.9391  0.9348

50 0.1937 0.1692 0.1331 © 0.1202 o 1.0156 0.9043 * 0.8667

We 100 0.1976 0.1716 0.1370 0 0.1202 o 1.0019 0.8852 * 0.8084

200 0.1928 0.1742 0.1365 0 0.1236 o 1.0178 0.8531  0.7627

- 50 0.1697 0.1749 0.1441 © 0.1322 o 1.0774 1.0169 « 1.0033

g WRT* 100 0.1771 0.1710 0.1408  «0.1227 ° 1.0970 10017  «0.9836

= 200 0.1935 0.1720 0.1417 0 0.1213 o 1.1038 1.0100  0.9579

) 50 0.2409 0.1804 0.1504 © 0.1368 o 11373 1.0688 * 1.0456

§ Wi, 100 0.2388 0.1787 0.1511 ¢ 0.1316 o 1.1546 1.0735  1.0653

200 0.2648 0.1817 0.1515 0 0.1322 o 1.2333 1.1518  1.0850

50 0.2860 0.2100 0.1746 ¢ 0.1676 ° 1.1709 1.1006 © 1.0974

wiense 100 0.2976 0.2066 0.1786 0 0.1547 o 1.2456 1.1385 e 1.1207

200 0.3020 0.2025 0.1736 ©0.1523 o 1.3132 1.2177 011927

Notes. EKF stands for extended Kalman filter and SMPF(X) for smooth marginalized particle filter with X particles. The three
random networks WéR with i € {sparse, T,dense} stand for Erd§s-Rényi networks with three corresponding threshold parameter
7 € {0.5,1,2} that determine the networks’ degree of connectedness. The bullets (8) demarcate the smallest for RMSE. Cases where
the EKF does not produce estimates are signed with circles (

o

). We use a dash (—) to label the cases where the respective state variable is absent from the model considered (e.g. xtz is not part of
the structural NE model).
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Table 4: RMSE of regression coefficients &;, ﬁi

Monte Carlo results (3 of 4): For each filter we compare their estimation performance of the individual

regression coefficients &;, f; for three network effect models (structural, error and generalized), four net-
works (circular network, and sparse, normal, dense random networks) and three different cross-sections

N = 50,100, 200.

We find that the SMPFs perform better than the EKF in all cases. Furthermore, more particles generally
produce more accurate state estimates. The differences between the SMPFs are negligible compared to the
EKF results. All filters estimate the constant «; more accurately than the coefficient ;. While all filters
estimate the latter equally well, the SMPF increases the accuracy significantly for the constant.

Network RMSE of a RMSE of g
Effect  Type N EKF SMPF(25) SMPF(50) SMPF(100) EKF  SMPF(25) SMPF(50) SMPF(100)
50 0.0581 0.0106 0.0074  «0.0065  ©0.099% 0.1001 0.1000 0.1000
We 100 0.0573 0.0114 0.0080  «0.0068 0.1002 0.1002 0001  «0.1001
200 0.0571 0.0108  «0.0072 0.0073 0.1004 0.1001 0.1000  «0.1000
50 0.0354 0.0099 0.0078  «0.0071 0.1011 0.1000 0.1000  «0.1000
E WoR* 100 0.0400 0.0111 0.0093  «0.0090 0.1005 0.1002 01001 «0.1000
E 200 0.0441 0.0120  «0.0102 0.0106 0.1007 0.1002 0001 «0.1000
E 50 0.0466 00153  «0.0117 0.0135 0.1009 0.1001 0.1000 e 0.1000
& Wik 100 0.0438 00152 00118 0.0134 0.1007 0.1001 0001 «0.1000
200 0.0447 0.0184 0.0174  «0.0174 0.1003 0.1001 0.1000  «0.1000
50 0.0447 00236  «0.0169 0.0218 0.1006 0.1000 0.1000  «0.1000
wense 100 0.0415 0.0238  «0.0219 0.0227 0.1004 0.1001 0001 «0.1000
200 0.0405 0.0263  «0.0238 0.0263 0.1001 0.1001 01001 «0.1000
50 0.0054 0.0041 0.0041  «0.0041 0.1003 0.0932 0.0933  «0.0932
We 100 0.0054 0.0039 0.0039  0.0039 0.1000 0.0922 0.0922  «0.0921
200 0.0056 0.0039 0.0039  «0.0039 0.1001 0.0913  «0.0913 0.0914
50 0.0031 0.0030 0.0030  «0.0030 0.1006 0.0993 0.0993  «0.0993
WoR* 100 0.0033 0.0030 0.0030  ©0.0030 0.1003 0.0984 0.0984  ©0.0984
5 200 0.0032 0.0029 0.0029  0.0029 0.1003 0.0986  «0.0985 0.0986
& 50 0.0028 0.0027 00027 «0.0027 0.1006 0.0996 0.0996  «0.09%
Wie 100 0.0024 0.0023 0.0023  «0.0023 0.1005 0.0999 0.0999  0.0999
200 0.0021 0.0020 0.0021  «0.0020 01002 «0.099 0.0997 0.0997
50 0.0019 0.0019 0.0018  «0.0018 0.1006 01002 «0.1002 0.1003
wdense 100 0.0016 0.0016 0.0016  «0.0016 0.1004  «0.1001 0.1001 0.1002
200 0.0014 0.0014 0.0014  «0.0014 01001 «0.0999 0.0999 0.0999
50 0.0601 00120  «0.0103 0.0104 0.0994 0.0967 0.0968  «0.0964
We 100 0.0572 0.0145 0.0124  «0.0110 0.1002 0.0966 0.0962  0.0957
200 0.0581 0.0146  «0.0117 0.0119 0.1004 0.0962 0.0961  «0.0954
- gare 0 0.0366 0.0105 00103 «0.009 01015 «0.09% 0.0996 0.0996
g Wk 100 0.0403 0.0113 0.0104  «0.0104 0.1006  0.0990 0.0991 0.0991
= 200 0.0446  «0.0113 0.0126 0.0121 0.1009 0.0993 0.0993  «0.0991
g 50 0.0477 0.0145 00126 00121 0.1011 0.0996 0.0995  «0.0994
& Wie 100 0.0448 0.0148 0.0144  «0.0126 0.1010 0.1000 0.0999  «0.0998
200 0.0457 0.0166 0.0160  0.0149 0.1004 0.0997 0.0997  0.0995
50 0.0443 0.0176 00170  0.0169 0.1010 0.1000 0.1000 e 0.0999
wdense 100 0.0423 0.0215 0.0202  «0.0187 0.1006 0.1000 0.1000  «0.1000
200 0.0395 0.0252 0.0228  «0.0218 0.1001 0.0998 0.0999  «0.0997
Notes. EKF stands for extended Kalman filter and SMPF(X) for smooth marginalized particle filter with X particles. The three

random networks W/ g With i € {sparse, 7, dense} stand for Erd6s-Rényi networks with three corresponding threshold parameter

7 € {0.5,1, 2} that determine the networks’ degree of connectedness. The bullets (8) demarcate the smallest for RMSE.
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Table 5: Dispersion of log-likelihood values

Monte Carlo results (4 of 4): For each filter we compare the precision of log-likelihood values, using median
absolute deviation, for three network effect models (structural, error and generalized), four networks
(circular network, and sparse, normal, dense random networks) and three different cross-sections N =
50,100, 200. Note that the log-likelihood of the EKF are precise evaulations while the SMPF only provides
estimates.

We find that the log-likelihood values estimated with the SMPF are less dispersed across all simulations
than the EKF. Furthermore, more particles reduce the dispersion. The error network effect model is the
exception, where for large, dense cross-sections, the EKF has lower dispersion. However, in conjunction
with the low average log-likelihoods and high RMSE for the same cases, this implies that the EKF is
inaccurate in the same way across all simulations.

Network Median absolute deviation of log-likelihoods
Effect Type N EKF SMPF(25) SMPF(50) SMPF(100)
50 117.7157 41.8602 26.0843 © 18.3775
We 100 2421026 81.2481 55.9454 © 37.4607
200 410.0242 159.6669 108.4760  68.4864
50 31.5782 20.4561 13.8994 * 13.6018
E WoR*¢ 100 70.8985 41.0193 31.5474 * 245061
E 200 139.6400 89.4826 61.4464 © 47.4991
3 50 54.5740 34.9102 21.3749 © 17.8309
& Wi, 100 69.9725 52.4510 31.9474 © 25.7047
200 101.9624 105.6580 64.1798 © 43.1675
50 38.9950 34.3572 19.9837  18.4330
Wiense 100 53.6085 60.5676 33.8521 ©27.1196
200 69.7629 99.1985 53.5456 ©39.5332
50 17.7775 8.8232 83023 © 8.2843
We 100 35.7197 17.5047 17.5319 © 17.0523
200 72.1706 © 28.1864 28.4456 29.2141
50 4.8205 47610 45879 e 45730
W™ 100 10.1016 © 10.0249 10.1905 10.3226
5 200 16.1719 16.3256 16.5890 © 16.1567
Bs 50 5.2059 43597 4.2906 e 12186
Wiy 100 © 6.3872 8.6065 8.3596 8.2775
200 © 8.6109 12.5694 12.7289 12.5731
50 35753 2.9601 2.9842 © 2.3636
wense 100 ° 44752 7.8064 7.9373 7.6320
200 © 5.2964 10.8140 10.9273 10.7518
50 134.5517 42.8931 25.3617 e 217171
We 100 267.0145 72.4297 56.1628 © 46.7697
200 457.3822 148.2512 105.4596  85.8157
50 33.9229 17.7477 13.6346 e 125149
§ W 100 75.3883 32.5214 30.3554 © 241527
= 200 156.7100 71.1266 54.3688 © 421840
) 50 54.6410 23,5044 17.1538 e 14.7294
§ Wig 100 74.1757 36.3376 29.7439 ©22.1599
200 111.7836 67.9336 49.1194 ©34.3181
50 37.9592 21.9724 15.9517 o 14.4682
wense 100 55.2080 30.2732 24.2585 © 19.6290
200 68.0529 47.6886 36.8616  28.9590

Notes. EKF stands for extended Kalman filter and SMPF(X) for smooth marginalized particle filter with X particles. The three
random networks Wi, with i € {sparse,7,dense} stand for Erd6s-Rényi networks with three corresponding threshold parameter
T € {0.5,1, 2} that determine the networks’ degree of connectedness. The bullets (8) demarcate the smallest for RMSE.
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Figure 4: Long-distance and short-distance travel networks

In panel (a) we show the air routes between all countries considered. In panel (b) we connect countries
if they share a common border. Both networks jointly capture 95% of international modes of transport
(OECD, 2016).
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6 Empirical Illustration: COVID-19 and travel networks

The SARS-CoV2 virus is spreading rapidly around the world. As of April 20, 211 countries
reported a total of 2,520,000+ confirmed cases. Due to the long incubation and even longer
asymptomatic period (Lauer et al., 2020), research has shown that airport screenings are of limited
effectiveness (Quilty et al., 2020). It is therefore highly probable that long-distance travel, such as
commercial air travel, or short-distance travel, such as railways or road travel, serve as propagation
channels for the virus” global reach.

In this empirical illustration we analyze the importance of networks for the spread of COVID-
19 between countries. For the number of confirmed cases we rely on the database of Johns
Hopkins University, Center For Systems Science and Engineering (Dong et al., 2020). To capture
long distance travel, we construct an airline network using historical flight data for more than
10,000 airports and 5,888 airlines.!? This network reflects air travel under normal conditions
and does not consider disruptions and cancellations, therefore reflecting persistent, long-term
relationships between populations of different countries. For short distance travel, we construct
an adjacency matrix where countries are connected if they share a common border.'® This network
also reflects permanent relationships, abstracting from temporal border closures or increased
border screenings. Both networks capture more than 95% of international modes of transport,
excluding naval travel (OECD, 2016). We find 128 countries with sufficient numbers of confirmed
cases and network information. Since both networks reflect historical conditions, we expect the

result of international containment measures to be reflected in abated dynamic network effects.

2Data source: http://openflights.org
13Data source: https://www.geodatasource.com
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6.1 Phases of contagion

Figure 5 compares the number of days until the first case was reported in a country with its
network centrality in the global air travel network (upper panel) and with its shortest path length
to China (lower panel). The latter is measured using the inverse number of flight routes to China,
that is the more flight routes a country has with China, the closer it is. The shortest path is
computed using the Dijkstra algorithm. We observe that the more central a country is in the
air travel network, the earlier its first case was reported. Its centrality is also correlated with the
total number of infected cases. Furthermore, the lower panel shows that the closer a country is
to China in terms of how easy it is to travel to China from a certain country, the earlier a first
case is reported. Both pictures show a clear distinction between two phases around 20 days in

mid-February (red vertical line).

Phase 1 Countries were likely directly affected by China due to their proximity or international
travel hub status.

Phase 2 The spread occurs globally among all countries and is less likely fueled by direct exposure
to China.

The subsequent analysis will show that as the effects of Phase 2 abate in early April, the world
enters a Phase 3 where the growing numbers are not due to international spread but domestic

contagion dynamics.

6.2 Contagion models

In the analysis we consider DNE models with a single network, W, ¢ Or Wsport, and with both
networks combined. The single-network DNE models in (21) treat the respective networks as
the only channels of contagion, which may result in overestimating the corresponding network
effects. In contrast, the contagion faucet model (22) estimates the effects of both networks together,
and allows us to identify which network dominates in different time periods.™

We first consider models without regression components. When regression components are
absent, structural and error network effects coincide. We opt for error network effects 0; to retain

consistency with the subsequent extension.

Yr=a+1n (20)
Single network ne=0:Wn + e with W e {Wlong/ Wihort } (21)
Contagion faucet Ny = O [Vthong +(1- Vt)Wshort] Nt + e (22)

Due to the exponentially growing case numbers, the observed variable y; is a vector containing the
log-differences of all reported cases at time ¢. The constant is country-specific, a = [a1, ..., an]".
The error e; has a Gaussian distribtuion N(0, 0%2Iy). The state variable x; follows a stationary
process and enters the network transformation F through the logistic transformation g (see Section
2 for details of both functions). Since the models do not contain regression coefficients that could

be marginalized out, it suffices to use a smooth particle filter.

4See Section 2.4 for the explanation of the faucet.
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Figure 5: Occurrence of first case and network position

The upper panel shows the negative relationship between the centrality of a country in the global air travel
network versus how many days had passed until the first COVID-19 was reported. The more central a
country, the earlier the first case was reported. We also note a correlation between centrality and (maximum)
number of reported cases, reflected by color and size of the dots.

The lower panel identifies a positive relationship between the shortest path length between a country and
China and the days until the first COVID-19 case. The closer a country is to China in terms of air travel
connections, the earlier a case was reported. Proximity to China is also correlated with the (maximum)
number of reported cases.

Both panels suggest the existence of two phases, separated by the 20-days marker (red vertical line). In
Phase 1 countries were likely directly affected by China, due to their proximity or international travel hub
status. Phase 2 is the global spread that is less likely fueled by direct exposure to China.
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Days until first case

Next, we extend the contagion faucet with a regression component consisting of a constant and
Flu;, the three-year average global influenza cases between 2017 and 2019. Flu; is reported
weekly and we calculate the percentage changes before using a cubic spline to obtain daily values.
Controlling for the seasonal common flu cases may be relevant due to its similarity with the SARS-
CoV-2 virus in terms of disease presentation, transmission process and occurrence period.’> We
obtain the data from the World Health Organization’s Global Influenza Surveillance and Response
System (GISRS). The model (22) is extended as follows

a+ Flup +n (23)
O [Vtwlong + (1 - Vt)wshort] Nt + et (24)

Yi
Nt

Similar to the Monte Carlo study, we consider heterogeneous coefficients a = [a1, ..., an]T and =

Bhttps:/ /www.who.int/news-room/q-a-detail / g-a-similarities-and-differences-covid-19-and-influenza, accessed on
April 10, 2020.
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[B1, ..., BN]T for all countries i = 1, ..., N. We estimate this model using the smooth marginalized

particle filter.

6.3 Air travel or common borders?

The estimated network effects étl and éf are shown in Figure 6. We can see that the long-distance
network intensity §; picks up two phases of the virus outbreak: Phase 1, which are likely due
to the initial spread from China, and Phase 2, when cases that already entered other countries
in Phase 1 begin to spread globally. Short-distance travel, éf, in comparison, plays a minor role
in Phase 1 and becomes more prominent in Phase 2. For both networks it seems that air travel
was responsible for early, intensive spreads while common border effects lag behind with more
sustained effects. Since both models are estimated independently and people can use either of
them to travel, we cannot distinguish which network effect dominates.

This problem is resolved in the combined contagion faucet model where both network effects are
jointly estimated (Figure 7a). Different from Figure 6, we now introduce the overall error network
importance ét and the weighting parameter 7; divides this overall effect among both networks.
The effective network effect for each network is then étl = 0,9; and étz = ét(l —7t). We can see that
the initial spread is driven by both networks, a finding which is corroborated by media reports.
In subsequent, calm period in February, the contagion faucet is turned off. When it is turned on
again at the end of February, the faucet lever is turned all the way to the W, ¢, side, meaning that
contagion is almost entirely due to long-distance travel étl Towards the end, the handle gradually
moves towards the middle, allowing both Wj,,¢ and Wspe,+ channels to contribute almost equal
parts. Fortunately, the overall contagion flow slowly dries up as 6; drops. Note that total numbers
are still increasing as of the date of writing. Taken together with the decreasing overall network
importance, we can tentatively ascribe the ongoing rise to domestic spreads rather than imported
foreign cases.

6.4 Controlling for global influenza cases

In Figure 7b we display the results from the contagion faucet model while controlling for global
influenza as exogenous variable (24). We first find that the initial spike that was picked up in
the pure contagion faucet model vanishes. This is likely due to the fact that the cases at the end
of January where reported almost simultaenously. The results show that this inital, common
occurrence is better captured by the observed common factor Flu;. The second phase starting
towards the end of February remains clearly visible. The overall contagion flow is slightly lower
than in the pure contagion faucet and diminishes faster. After controlling for historical influenza
cases, the overall hump shape remains the same and the relative importances between air travel
and common borders strongly favors the former. The final peak in early April also vanished.
Afterwards, it appears that the world has entered a Phase 3 where the staggering numbers are not
driven by international travel, but by domestic contagion. Table 6 shows the regression coefficients

estimated for the constant and Flu;.

The data is certainly subject to measurement and reporting errors not captured in ¢;. Also, the
long incubation period, cancelled flights and changes in reporting standards limit the insights we
can gleam from this illustration. We acknowledge these data short-comings but addressing them
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is outside the scope of this study. Nevertheless, this exercise demonstrates the ability of the SMPF
26

to extract the time-varying network effects for multiple networks.



Figure 7: Spread of COVID-19 cases through the contagion faucet

We show the effective error network effects étl = étvt (Air travel network, Wi,,¢) and étz = ét(l - V)
(Common border network, Wspor+) for the model in (22). The dashed lines represents the overall importance

of both networks, 6;. The red line roughly distinguishes between Phase 1 and 2 (see Figure 5).

(a) Pure contagion faucet

As with the single network model (Figure 6) it seems that the initial spike was driven by the air travel.
After the contagion faucet had been turned off for the most part of Feburary (see Section 2.4 for an
explanation of the faucet), we observe stronger overall network effects ét since the end of February, which
was predominately driven by long-distance travel (Wj,,¢). In contrast, short-distance travel (Wsp,,¢) grew

in importance towards the end of the observation period. This may reflect the result of global containment
measures.
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(b) Contagion faucet, controlling for Flu;

After controlling for global influenza levels, we find that while the overall hump shape in Phase 2 persists,
its values are lower. The predominance of the air travel network also remains. However, the initial spike
around the end of January and the spike at the beginning of April vanished, indicating that they are better
explained by a global common factor Flu;.
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Table 6: Regression coefficients of the contagion faucet

This table presents the regression coefficients that were estimated using the marginalized particle filter as
linear state variables. The global influenza variable refers to the average global levels of influenza cases
between 2016 and 2019. The model covers 128 countries for which sufficient COVID-19 cases had been
reported. Coefficients significant on a 5% significance level are highlighted in bold.

Constant Global influenza Constant Global influenza
Coef t-stat p-val.  Coef. t-stat  p-val Coef. tstat p-val.  Coef. t-stat  p-val
AFG  -0.791 -26.336 0.000 -0.279 -1416 0.157 JPN  -0.690 -23.161 0.000 0.320 1.626 0.104
ALB  -0.770 -25.881 0.000 -0.112 -0.570 0.569 KAZ -0.792 -26.237  0.000 -0.361 -1.829 0.067
AND -0.813 -27.360 0.000 -0.267 -1.358 0.175 KEN -0.803 -26.556 0.000 -0.319 -l1.616 0.106
ARE 0.066 2.295 0.022 0.022 0.114 0.909 KGZ -0.795 -26.611 0.000 -0.391 -1.985 0.047
ARG  -0.780 -25.804 0.000 -0.197 -0.996 0.319 KHM  -0.790 -26.552 0.000 -0.063 -0.321 0.748
ARM  -0.784 -26.338 0.000 -0.223 -1.132 0.258 KOR  -0.664 -22.100 0.000 0497 2519 0.012
AUS  -0.679 -22.361 0.000 0.404 2.042 0.041 KWT  -0.801 -26.922 0.000 -0.636 -3.237  0.001
AUT  -0.766 -25.728 0.000 -0.317 -1.610 0.107 LBN -0.800 -26.883 0.000 -0.229 -1.167  0.243
AZE  -0.796 -26.719 0.000 -0.344 -1.749 0.080 LKA  -0.790 -26.274 0.000 -0.147 -0.745 0.456
BEL -0.755 -25.334 0.000 -0.346 -1.757  0.079 LTU -0.777 -26.122 0.000 -0.244 -1.242 0.214
BFA  -0.774 -26.010 0.000 -0.271 -1.379 0.168 LUX -0.758 -25.409 0.000 -0.176 -0.892 0.372
BGD -0.817 -27.451 0.000 -0.533 -2.711 0.007 LVA  -0.769 -25.729 0.000 -0.134 -0.683 0.495
BGR -0.799 -26.316 0.000 -0.125 -0.634 0.526 MAR  -0.793 -26.681 0.000 -0.344 -1.750 0.080
BHR -0.807 -27.145 0.000 -0.480 -2.440 0.015 MDA  -0.792 -26.181 0.000 -0.338 -1.713 0.087
BIH -0.783 -26.215 0.000 -0.244 -1.241 0.215 MDG  -0.808 -27.162 0.000 -0.247 -1.257 0.209
BLR -0.805 -26.788 0.000 -0.530 -2.690 0.007 MEX -0.782 -25.671 0.000 -0.486 -2.458 0.014
BOL -0.795 -26.717  0.000 -0.302 -1.534 0.125 MKD  -0.791 -26.313 0.000 -0.227 -1.150 0.250
BRA  -0.763 -25.633 0.000 -0419 -2.131 0.033 MLI -0.824 -27.711 0.000 -0.392 -1.992 0.046
BRN  -0.795 -26.162 0.000 0.001 0.006 0.995 MLT -0.782 -26.219 0.000 -0.140 -0.709 0.478
CAN -0.729 -23.981 0.000 0.026 0.132 0.895 MMR  -0.816 -26.974 0.000 -0.344 -1.741 0.082
CHE -0.766 -25.646 0.000 -0.442 -2.244 0.025 MNE -0.805 -27.056 0.000 -0.293 -1.492 0.136
CHL -0.760 -25.570 0.000 -0.284 -1.442 0.149 MUS -0.795 -26.716 0.000 -0279 -1.419 0.156
CHN  -0.639 -21.270 0.000 0.970 4918 0.000 MYS -0.681 -22.889 0.000 0.431 2.192 0.028
CIV  -0.786 -26.241 0.000 -0.369 -1.872 0.061 NER -0.828 -27.838 0.000 -0.566 -2.879 0.004
CMR -0.807 -26.624 0.000 -0.375 -1.896 0.058 NGA -0.793 -26.628 0.000 -0.369 -1.874 0.061
COD -0.813 -26.854 0.000 -0.252 -1.274 0.203 NLD -0.754 -25.338 0.000 -0419 -2.132 0.033
COG -0.806 -27.116 0.000 -0.474 -2.409 0.016 NOR -0.767 -25.785 0.000 -0.329 -1.673 0.094
COL  -0.752 -25.284 0.000 -0.296 -1.508 0.132 NZL -0.768 -25.846 0.000 -0.307 -1.564 0.118
CRI  -0.787 -26.044 0.000 -0.126  -0.638 0.524 OMN  -0.796 -26.356 0.000 -0497 -2515 0.012
CUB -0.801 -26.904 0.000 -0.360 -1.833 0.067 PAK  -0.782 -26.295 0.000 -0.434 -2.209 0.027
CYP -0.808 -27.261 0.000 -0.140 -0.712 0.476 PAN  -0.782 -25.950 0.000 -0.266 -1.346 0.178
CZE -0.758 -25.444 0.000 -0.239 -1.217 0224 PER -0.781 -26.209 0.000 -0.384 -1.951 0.051
DEU -0.675 -22.660 0.000 0.220 1117  0.264 PHL -0.750 -24.924 0.000 -0.043 -0.219 0.826
DI  -0.815 -27.345 0.000 -0.560 -2.847  0.004 POL  -0.765 -25.676 0.000 -0.231 -1.175 0.240
DNK -0.762 -25.554 0.000 -0.233 -1.184 0.236 PRT -0.768 -25.431 0.000 -0.248 -1.257 0.209
DOM  -0.789 -26.262 0.000 -0.328 -1.666 0.096 PRY -0.788 -26.078 0.000 -0220 -1.116 0.265
DZA  -0.768 -25.830 0.000 -0.383 -1.947  0.052 PSE 0.023 0.800 0424 -0223 -1.165 0.244
ECU -0.787 -26.004 0.000 -0.368 -1.861 0.063 QAT  -0.777 -25.625 0.000 -0.376 -1.903 0.057
EGY -0.778 -26.026 0.000 -0.257 -1.305 0.192 ROU  -0.776 -26.042 0.000 -0.354 -1.801 0.072
ESP  -0.725 -24.377  0.000 -0462 -2.347  0.019 RUS -0.758 -25.306 0.000 -0.387 -1.967  0.049
EST -0.766 -25.717  0.000 -0.158 -0.804 0.421 RWA  -0.807 -26.961 0.000 -0.208 -1.056 0.291
ETH -0.816 -27.249 0.000 -0.276 -1.399 0.162 SAU -0.774 -25.981 0.000 -0.283  -1.440 0.150
FIN -0.777 -25.916 0.000 -0.296 -1.503 0.133 SEN  -0.792 -26.504 0.000 -0.185 -0.941 0.347
FRA  -0.710 -23.760 0.000 0.100 0.509 0.611 SGP  -0.616 -17.440 0.000 0.569 1.185 0.236
GAB -0.805 -27.017 0.000 -0.411 -2.092 0.036 SLV ~ -0.833 -27.927  0.000 -0.333 -1.690 0.091
GBR  0.083 2.880 0.004 -0.117 -0.615 0.538 SMR  -0.770 -25.890 0.000 -0.216  -1.097 0.273
GEO  -0.801 -26.945 0.000 -0.201 -1.023 0.306 SOM  -0.830 -27.893 0.000 -0.522  -2.655 0.008
GHA  -0.797 -26.560 0.000 -0.339 -1.722 0.085 SRB  -0.798 -26.605 0.000 -0.243 -1.234 0.217
GIN  -0.835 -28.081 0.000 -0.555 -2.821 0.005 SVK  -0.658 -23.627  0.000 0.842 1.522 0.128
GRC  -0.796 -26.738 0.000 -0.299 -1.520 0.128 SVN  -0.764 -25.670 0.000 -0.056 -0.285 0.776
GIM  -0.819 -27.282 0.000 -0.316 -1.605 0.109 SWE -0.780 -26.239 0.000 -0416 -2.117  0.034
HND -0.798 -26.506 0.000 -0.286 -1.451 0.147 THA  -0.700 -23.301 0.000 0.463 2.348 0.019
HRV  -0.785 -26.384 0.000 -0.382 -1.944 0.052 TTO 0.014 0.485 0.628 -0.142 -0.748 0.455
HUN  -0.779 -26.102 0.000 -0.249 -1.264 0.206 TUN 0.021 0.721 0471 -0.182 -0.958 0.338
IDN  -0.801 -26.432 0.000 -0239 -1.210 0.226 TUR  0.017  0.584 0559 -0.476 -2.499 0.012
IND -0.748 -24.586 0.000 -0.264 -1.335 0.182 TWN  -0.705 -23.692 0.000 0.522  2.653 0.008
IRL  -0.766 -25.764 0.000 -0.265 -1.347 0.178 TZA  -0.824 -27.430 0.000 -0.383 -1.944 0.052
IRN  -0.758 -25.472 0.000 -0454 -2.307 0.021 UKR  0.021 0.734 0463 -0.465 -2.434 0.015
IRQ -0.800 -26.343 0.000 -0.412 -2.082 0.037 URY -0.002 -0.084 0933 -0.149 -0.779 0.436
ISL  -0.775 -26.073 0.000 -0.237 -1.205 0.228 USA 0.143 4.955 0.000 0.068 0.355 0.722
ISR  -0.769 -25.750 0.000 -0.448 -2.274 0.023 UZB 0.001 0.052 0959 -0475 -2.493 0.013
ITA -0.729 -24.486 0.000 -0.227 -1.155 0.248 VEN 0.007  0.251 0.802 -0.152 -0.793 0.428
JAM  -0.827 -27.780 0.000 -0220 -1.117 0.264 VNM 0.098 3.371 0.001 0.493 2.582 0.010
JOR -0.794 -26.685 0.000 -0.186 -0.944 0.345 ZAF  -0.758 -25.475 0.000 -0.131 -0.666 0.506
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7 Conclusion

We proposed the dynamic network effects (DNE) model and put forward the smooth marginalized
particle filter (SMPF) as an appropriate estimation method. The DNE model incorporates cross-
sectional network spillovers, the intensity of which are captured by a vector of latent time-varying
parameters. Similarly to dynamic factor models, DNE models allow us to decompose panel data
into a constant cross-sectional component, informed by the networks, and a lower-dimensional
time-varying component. Different from the extracted factors from a dynamic factor model,
the interpretation of estimated network effects is always unambiguous as it is derived from the
associated network(s).

Depending on the application, different DNE models can be formulated. The structural network
effect model assumes that the observed outcome of a unit this is not only a function of its own
regressors and idiosyncratic shocks, but also of regressors and disturbances of its neighbors. The
error network effects model follows the same rationale but restricts its effect to the error only, allowing
us to parsimoniously incorporate multivariate stochastic volatilities into the model. Combining

the two yields the generalized network effects model.

For the purpose of estimation and filtering, we cast the DNE model into a nonlinear state-space
framework, and advocate the use of the SMPF, as it can handle complicated nonlinearities as
well as large numbers of regressors. We demonstrate its superior performance compared to a
widely-used alternative, the extended Kalman filter (EKF), in a Monte Carlo study. We highlight
the performance differences in terms of prediction, signal extraction, coefficient estimation and
likelihood evaluation/estimation. We also compare the filtering behavior for different network
types, such as the circular network and Erd§s—Rényi networks with different degrees of connect-
edness. We find that the EKF performs better only for small cross sections with sparse networks

and when error network effects are absent.

To illustrate our framework, we apply it to model the contagion process of the current COVID-19
outbreak. In this case, the model features a “contagion faucet” that measures overall contagion
flow between 128 countries through either long-distance travel, proxied by commercial air travel
routes, or short-distance travel, proxied by a network of common borders. We find that the
pandemic has spread around the globe in two phases, at first primarily through air travel, and
later through shorter-distance travel between neighboring countries. As of the time of writing the
overall importance of networks has abated, in particular that of air travel. However, the number
of cases is still rising exponentially. This leads us to conclude that we have a new phase where the
growth of infection numbers seems to be primarily due to domestic contagion. This is definitely
an interesting subject of further research.
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8 Appendix

8.1 Illustrative simulation: Filtering and estimation differences between SMPF, EKF
and simple Kalman Filter

We illustrate the performance of different candidate filters filters in terms of signal extraction and
regression coefficient estiamtion. The simulation study is set up as follows. We simulate from a
generalized DNE model with a regression component «; + X;;f; and a circular network Wc. We
simulate T = 200 periods and a cross-section of N = 50. The measurement error variance is set to
0% = 1forall i. The state equation for xt1 = g‘l(gbt) has no intercept, i.e., c1 = 0, the autocorrelation
coefficient is A1 = 0.8 and the state variance is set to ); = 0.5. The state equation for th = g_l(Gt)

also has ¢» = 0, autocorrelation coefficient A» = 0.4 and the state variance O, = 0.7.

We first analyze the performance of the KF, EKF and the SMPF with respect to filtering the true
state x; and thereby correctly estimating the network effects ¢;, 0;. We then illustrate the bias

introduced to the regression coefficient estimates «;, f; when using a linear filter like the KF and
how the EKF and SMPF remove this bias.

8.1.1 Results: Signal extraction

We compare the results of the EKF and SMPF, as the KF does not have the capacity to handle
nonlinear latent states. The EKF is able to accurately estimate the signal ¢; but has no tractability
for the 0; signal. This is by construction of the EKF. In the spirit of Kalman filtering, the EKF
updates the state variable based on the prediction error v;, which relies on the derivative of the
measurement function D, u(x;). However, this derivative is zero for xtz, since it does not play a
role in p(x;). The derivative does play a role in the Kalman filtering steps through the prediction
error variance and the measurement error covariance Yy = CDt@tZ@tTCDtT. In comparison, the
SMPF is able to estimate the signal ¢; with a lower MSE than the EKF and, most importantly, also
provides an accurate measure for the signal 0.

8.1.2 Results: Regression coefficient estimation

Regression intercept a; We see that for increasing |¢¢|, the KF introduces significant biases
into the individual &; as well as their average, The EKF largely contains the bias and is not
strongly affected by varying A; values. The SMPF has the most efficient estimates with only small

individual biases.

Regression coefficient §; A different picture emerges for the 5. We see that for increasing | ¢/,
the KF introduces significant biases into the individual &; but on average, the estimated intercept
stays around zero. As before, the EKF largely contains the bias and is not strongly affected by
varying A; values. The SMPF again yields the most efficient estimates with negligible individual
biases.

8.2 Additional figures
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Figure 8: Signal extraction with EKF and SMPF

The figures below demonstrate the performance of the EKF and SMPF in terms of extracting the true signals
or network effects (black, dashed). The shaded areas around the extracted signals (blue and red) represent
the 95% asymmetric confidence intervals.

(a) Extended Kalman Filter

phi, mse=0.0069

1.0
N \
1\
\ 1
\
—0.5 W\"\/ W
_1-0 T T T T T T T T T
0 25 50 75 100 125 150 175 200
theta, mse=0.1270
1.0
LN A o
] Ah A i A
0.5 A 1\ gy nooae H A i A e
' IR Y oMo A ", o Y Y S
ool abi Al Ba i L AAT AN A R R AN TN YL
. TTIP R yor 18 ' T 1O rerqreved Ve YU LA R T A v
A L Y A LR VA T T Y A L WALV AR A
-0.5 1 Ty ||,' 1 \‘ v YooYy v “/" oo
) LA
_1-0 T T T T T T T T T
0 25 50 75 100 125 150 175 200
(b) Particle Filter
phi, mse=0.0056
1.0
0.5 -
0.0
—0.5 A
-1.0 . . :

100 125 150 175 200

o4
N
(S;]
(%]
o
~
(6]

theta, mse=0.0295

33



Figure 9: Regression coefficient estimation with KF, EKF and SMPF

The figures summarize the behavior of the estimated &, B under different ¢ intensities. Each density
represents a kernel density over the estimated coefficients for all i = 1,..,50. The vertical lines mark the
average estimate coefficient and the dots on the floow depict the individual coefficient estimates. The true
coefficients are @; = 0 and 8; = 1.
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Figure 10: Empirical distribution function of particles

In this figure we compare the empirical distribution function of a stratified and continuous resampling
procedures. The latter allows the resampled particles to be distributed more evenly over the domain,
whereas the former subjects the resampling to the abrupt changes in the step function.
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Figure 11: Discontinuous and smooth likelihood estimates

Discrete and smooth log-likelihoods from corresponding empirical distribution functions by varying the
autocorrelation parameter T in the state equation. The true value is Ty = 0.8. We can see that the smooth
likelihood has unique maximum while the likelihood estimate using stratified resampling may result in
local minima.
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Figure 12: Computational time of EKF versus SMPF with different number of particles

This figure shows the average computational time for the extended Kalman filter (EKF) and the smooth
marginalized particle filter (SMPF) considered in the Monte Carlo study. S denotes the number of particles
used in the SMPF. The vertical bars show the average time plus/minus one standard deviation. See Section
5.2 for a description for the computational environment used for these results.
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Figure 13: Overview of global COVID-19 cases

This figure shows the number of COVID-19 cases in 128 countries between Jan 22 and April 19, 2020. For
improved visualization we take the square root. The black lines and dots demarcate the beginning of a
week. Behind the country codes we list the number of active cases at the end of the observation period.
We can see two phases of the pandemic: A first phase starts at the end of January, where earliest cases are
reported in 33 countries outside of China. After a few calm weeks, a second phase begins in the last week
of February. The virus spreads around the globe until the second week of March, before the World Health
Organization recognizes the disease as a pandemic on March 11.
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Figure 14: Overview of global COVID-19 cases (differences)

This figure shows the changes in numbers of COVID-19 cases in 128 countries between Jan 22 and April 19,
2020. For improved visualization we take the square root. The black lines and dots demarcate the beginning
of a week. Behind the country codes we list the number of active cases at the end of the observation period.
We can see two phases of the pandemic: A first phase starts at the end of January, where earliest cases are
reported in 33 countries outside of China. After a few calm weeks, a second phase begins in the last week

of February. The virus spreads around the globe until the second week of March, before the World Health
Organization recognizes the disease as a pandemic on March 11.
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