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Abstract

Many statistical and econometric learning methods rely on Bayesian ideas, often applied or rein-
terpreted in a frequentist setting. Two leading examples are shrinkage estimators and model
averaging estimators, such as weighted-average least squares (WALS). In many instances, the
accuracy of these learning methods in repeated samples is assessed using the variance of the pos-
terior distribution of the parameters of interest given the data. This may be permissible when
the sample size is large because, under the conditions of the Bernstein–von Mises theorem, the
posterior variance agrees asymptotically with the frequentist variance. In finite samples, how-
ever, things are less clear. In this paper we explore this issue by first considering the frequentist
properties (bias and variance) of the posterior mean in the important case of the normal loca-
tion model, which consists of a single observation on a univariate Gaussian distribution with
unknown mean and known variance. Based on these results, we derive new estimators of the
frequentist bias and variance of the WALS estimator in finite samples. We then study the
finite-sample performance of the proposed estimators by a Monte Carlo experiment with design
derived from a real data application about the effect of abortion on crime rates.
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1 Introduction

Many statistical and econometric learning methods rely on Bayesian ideas, often applied or rein-

terpreted in a frequentist setting. Examples include shrinkage estimators, such as ridge regression

(Hoerl and Kennard 1970), smoothing splines (Reinsch 1967), and the least absolute shrinkage and

selection operator (LASSO) introduced by Tibshirani (1996). They also include Bayesian model

averaging estimators reinterpreted in a frequentist setting (see, e.g., Raftery et al. 1997, and Clyde

2000), as well as Bayesian-frequentist ‘fusions’ such as the Bayesian Averaging of Classical Esti-

mates (BACE) of Sala-i-Martin et al. (2004), the weighted-average least squares (WALS) estimator

of Magnus et al. (2010), and the Bayesian averaging of maximum likelihood (BAML) estimators of

Moral-Benito (2012).

In many instances, the accuracy of these learning methods in repeated samples is assessed using

the variance of the posterior distribution of the parameters of interest given the data. This may be

permissible when the sample size is large because, under the conditions of the Bernstein–von Mises

theorem (van der Vaart 1998), the posterior variance agrees asymptotically with the frequentist

variance. In finite samples, however, things are much less clear.

To explore these issues we first consider the frequentist properties (bias and variance) of the

posterior mean — the Bayesian point estimator under quadratic loss — in the stylized but im-

portant case represented by the normal location model, which consists of a single observation on

a univariate Gaussian distribution with unknown mean and known variance. The results of our

finite-sample analysis are perhaps somewhat counterintuitive, as they may seem in contradiction

with the large sample implications of the Bernstein–von Mises theorem. We show that, for any

positive and bounded prior, the posterior variance can be interpreted as a first-order delta method

(DM) approximation to the standard deviation, not the variance, of the posterior mean under

repeated sampling. This important result is not new, as it is immediate for the posterior mean

under conjugate Gaussian priors, for which the DM approximation is exact, and follows easily from

available results on the posterior cumulant-generating function (Pericchi et al. 1993) or from the

general accuracy formula in Efron (2015). However, it has received little attention in the statistical

and econometric literature.

We extend this result by deriving analytical DM approximations of any order to the bias and

variance of the posterior mean in the normal location model. Such approximations depend crucially
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on higher-order posterior cumulants, so we also offer a recursive formula which facilitates the

nontrivial task of computing these summaries of the posterior distribution. We describe how the DM

approximations help to better understand the link between the frequentist and Bayesian approaches

to inference, and how higher-order posterior cumulants contribute to improve the accuracy of our

approximations. In addition to analytical comparisons, we evaluate numerically the importance

of the higher-order refinement terms by focusing on specific prior densities (Gaussian, Laplace,

Weibull, and Subbotin) in the class of (reflected) generalized gamma distributions. We show that

posterior skewness and (excess) kurtosis lead to sizable adjustments in the second and third-order

DM approximations to the bias and variance of the posterior mean. Moreover, as the order of the

expansion increases, the approximated bias and variance profiles converge to those obtained via

our Monte Carlo tabulations.

Since sampling moments of the posterior mean depend in general on the unknown location

parameter, we discuss two plug-in methods for estimating the bias and variance of the posterior

mean, respectively based on the (frequentist) ML estimator and the (Bayesian) posterior mean.

In finite samples, choosing between the two methods raises a bias-precision trade-off: the plug-in

ML estimators have better risk performance for sufficiently large values of the location parameter,

while the plug-in Bayesian estimators have better risk performance for sufficiently small values of

the location parameter. The DM approximation to the bias of the posterior mean suggests that

the plug-in Bayesian estimators can be interpreted as double-shrinkage estimators because of the

double evaluation of the posterior mean function in the leading term of the estimated bias.

The normal location model plays an important role in the WALS estimator introduced by

Magnus et al. (2010) to deal with the problem of uncertainty about the regressors in a Gaussian

linear model. WALS is a Bayesian combination of frequentist estimators and has been shown to

enjoy important theoretical and computational advantages over other strictly Bayesian or strictly

frequentist model-averaging estimators (Magnus and De Luca 2016). After implementing prelimi-

nary transformations of the regressors, the parameters of each model are estimated by constrained

least squares under a frequentist perspective, while the weighting scheme is developed under a

Bayesian perspective to obtain desirable theoretical properties, such as admissibility, bounded risk,

robustness, near-optimality in terms of minimax regret, and a proper treatment of ignorance. One

problem of this ‘Bayesian-frequentist fusion’ is the difficulty in evaluating the sampling properties
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of the resulting estimator in finite samples.

Our results for the normal location model can be directly applied to estimating the frequentist

bias and variance of the WALS estimator. We show that the previous estimator of its sampling

variance is upward biased, that is, the WALS estimator is more precise than originally thought.

Our estimators of bias are also new and can be useful for several inferential purposes, such as

constructing a bias-corrected WALS estimator or constructing WALS confidence intervals for the

regression coefficients. Here we emphasize a particular usage of the estimated bias that is typically

ignored in applied work, namely its role in assessing the precision of biased estimators.

We study these issues in an empirical application that looks at the effect of legalized abortion

on crime rates (Donohue and Levitt 2001). In this example, we find that WALS estimates are

qualitatively similar to the post-double selection estimates obtained by Belloni et al. (2014) and

their more recent follow-up studies. Unlike these studies, however, we focus on the importance of

evaluating biased estimators in terms of mean squared error (MSE) to show how the traditional

approach of comparing only the standard errors may lead to misleading conclusions. Further, we

assess the finite-sample performance of the new estimators of the bias and variance of the WALS

estimator by a Monte Carlo experiment whose design is based on the above real data application

about the effect of legalized abortion on crime rates.

The remainder of the paper is organized as follows. Section 2 derives recursive formulae for the

posterior moments and the posterior cumulants in the normal location model. Section 3 shows how

these results can then be used to assess the frequentist properties of the posterior mean. Section 4

evaluates these issues numerically based on specific priors in the class of (reflected) generalized

gamma distributions. Section 5 introduces the WALS approach to model averaging. Section 6

applies the results of the previous three sections to investigate the frequentist properties (bias and

variance) of the WALS estimator in finite samples. Section 7 presents our empirical application,

while Section 8 presents our Monte Carlo experiment. Section 9 concludes.

2 Posterior moments for the normal location model

Consider drawing a single observation x from the Gaussian (univariate) distribution with unknown

mean η and known variance which, without loss of generality, we set equal to one. The problem
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of estimating η from x is known as the normal location problem. The likelihood function for this

model is equal to φ(x − η), where φ(·) denotes the density of the standard Gaussian distribution.

In the Bayesian analysis of the problem, uncertainty (or prior information) about η is represented

by a proper prior density π(·) on R which is assumed to be positive and bounded. Defining the

functions

Ah(x) =

∫ ∞

−∞
(x− η)hφ(x− η)π(η) dη (h = 0, 1, . . . ),

we can combine the likelihood and the prior to obtain the posterior density of η given x,

p(η|x) =
φ(x− η)π(η)

A0(x)
.

Our first result provides a recursive formula for the posterior moments of η given x.

Proposition 1 Given an observation x ∼ N (η, 1) and a prior density π(η) ≥ 0 which is bounded

for η ∈ R, the hth (noncentral) posterior moment of η is given by

µh(x) = E[ηh|x] =

∫ ∞

−∞
ηh p(η|x) dη = gh(x)−

h∑

j=1

(−1)j
(
h

j

)
xjµh−j(x) (h = 1, 2, . . . ),

where µ0(x) = 1 and gh(x) = (−1)h E[(x− η)h|x] = (−1)hAh(x)/A0(x) for h = 0, 1, . . . .

Proposition 1 generalizes earlier results by Pericchi and Smith (1992) about the posterior mean

and variance to posterior moments of any order. In particular, the posterior mean and variance are

given by

m(x) = E[η|x] = x+ g1(x), v2(x) = E[η2|x]− [m(x)]2 = g2(x)− g21(x),

where we used the fact that E[η2|x] = g2(x) + 2xg1(x) + x2. As noted by Kumar and Magnus

(2013), the first derivatives of the functions Ah(x) and gh(x) satisfy the recursions

A′
h(x) =

dAh(x)

dx
= hAh−1(x)−Ah+1(x)

and

g′h(x) = (−1)h
[
A′
h(x)

A0(x)
−
A′

0(x)

A0(x)

Ah(x)

A0(x)

]
= gh+1(x)− g1(x)gh(x)− hgh−1(x) (1)
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with A′
0(x) = −A1(x) and g′0(x) = 0 as starting values. Hence, in agreement with Pericchi and

Smith (1992, Theorem 1) and Kumar and Magnus (2013, Lemma 3.4), we can also write

m(x) = x+
d logA0(x)

dx
, v2(x) = m′(x) = 1 +

d2 logA0(x)

dx2
.

Because v2(x) is positive, this result implies that the posterior mean m(x) is increasing in x.

Proposition 1 can be also viewed as a special case of the posterior moment-generating function

derived by Pericchi et al. (1993, Proposition 2.1) under the more general setup where the likelihood

comes from the exponential family. Our recursive formula is restricted to the Gaussian likelihood,

which has the practical advantage of facilitating the computation of higher-order posterior moments.

Similar considerations extend to the following proposition which provides a recursive formula for

the derivatives of the posterior mean and therefore complements the results about the posterior

cumulant-generating function derived by Pericchi et al. (1993, Proposition 2.2).

Proposition 2 If m(x) = x+ g1(x) is the posterior mean of η given x, then

m(h)(x) =
dhm(x)

dxh
= ch+1(x) (h = 1, 2, . . . ),

where ch(x) denotes the hth posterior cumulant of η given x. Moreover, c1(x) = g1(x) and

ch+1(x) = gh+1(x)−
h−1∑

j=0

(
h

j

)
cj+1(x)gh−j(x) (h = 1, 2, . . . ). (2)

Higher-order posterior cumulants play a role in the areas of Bayesian robustness and approxi-

mation. They are also important because empirical data are often characterized by skewed distribu-

tions with fat tails (Fernández and Steel 1998). In the next section we emphasize another important

role of higher-order posterior cumulants which has received little attention in the Bayesian litera-

ture, namely the fact that they help assessing the frequentist properties of the posterior mean.

3 Sampling properties of the posterior mean

Under quadratic loss, the posterior mean m(x) = x + g1(x) is the Bayesian point estimator of η.

Now suppose that, irrespective of its Bayesian provenance, m(x) is used as an estimator of η. The
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idea of reinterpreting Bayesian learning methods in a frequentist setting is in fact quite common in

statistics and econometrics. Other examples include shrinkage estimators, such as ridge regression,

smoothing splines, and the LASSO; and model averaging estimators, such as WALS.

Like Efron (2015) we wish to study the accuracy of the posterior mean from a frequentist

perspective. The sampling bias and variance of m(x) are defined, respectively, as

δ(η) = E[m(x)|η]− η = E[g1(x)|η], σ2(η) = E
[
m2(x)|η

]
− (E[m(x)|η])2,

and its mean squared error as MSE(η) = E
[
(m(x)− η)2|η

]
= σ2(η) + δ2(η). We wish to estimate

δ(η) and σ2(η). In deciding on suitable estimators two problems occur. First, except for the

Gaussian prior, the sampling moments of m(x) do not admit closed-form expressions, and hence

we have to either approximate or simulate these moments. Second, the moments depend in general

on the unknown location parameter η, and hence we have to replace η by some estimator η̂. We

discuss these two issues in Sections 3.1 and 3.2, respectively.

3.1 Approximations to the sampling moments of m(x)

Let us start by assuming that the prior is Gaussian with zero mean and finite variance ω2 > 0.

This is convenient because the posterior is then also Gaussian with mean m(x) = wx and variance

v2(x) = w, where w = ω2/(1 + ω2). If we now think of m(x) = wx as a frequentist estimator of η,

then the bias and variance of m(x) are

δ(η) = (w − 1)η = −
η

1 + ω2
, σ2(η) = w2 =

ω4

(1 + ω2)2
, (3)

respectively. Notice that the posterior variance v2(x) = w of η is equal to the standard deviation

σ(η) = w of m(x). This may seem a peculiar feature of the conjugate Gaussian prior, but it isn’t. In

fact, the result holds approximatively for any positive and bounded prior density; see Section 3.1.1.

The Gaussian prior is convenient but often unsuitable, because the difference x−m(x) = (1−w)x

does not vanish when x→ ∞, but rather increases linearly in x. In other words, a Gaussian prior

is not discounted when confronted with an observation with which it drastically disagrees and, in

this sense, is regarded as nonrobust for the normal location model (see, e.g., Kumar and Magnus

2013 and the large literature quoted therein). Equivalently from (3), the bias δ(η) of m(x) is a
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linear, hence unbounded, function of η.

To ensure that δ(η) is a bounded function of η, m(x) must be a nonlinear function of x, which

raises the issue of how to approximate its sampling moments. Two general approaches to this

problem are analytical delta method approximations, discussed in Section 3.1.1, and numerical

Monte Carlo approximations, discussed in Section 3.1.2. In both cases, we ignore for the moment

the fact that η in unknown and needs to be estimated; this issue is addressed in Section 3.2.

3.1.1 Delta method approximation

The following proposition presents our main result on the analytical delta method (DM) approach.

Proposition 3 If the posterior mean m(x) is used as estimator of η, then the delta method ap-

proximations of order h+ 1 (h ≥ 1) to its bias and sampling variance are given recursively by

δ̂h+1(η) = δ̂h(η) + qh+1ch+2(η), σ̂2h+1(η) = σ̂2h(η) +Qh+1ch+2(η),

where

Qh+1 =

((
2h+ 2

h+ 1

)
q2h+2 − q2h+1

)
ch+2(η) + 2

h∑

j=1

((
h+ 1 + j

h+ 1

)
qh+1+j − qh+1qj

)
cj+1(η)

and

qj =





1

2j/2(j/2)!
if j even,

0 if j odd.

The starting values are

δ̂1(η) = m(η)− η, σ̂21(η) = c22(η),

and m(η) = [m(x)]x=η and cj(η) = [cj(x)]x=η denote, respectively, the posterior mean and the

posterior cumulant of order j evaluated at x = η.

Proposition 3 shows that the bias and variance of the posterior mean depend crucially on the

higher-order posterior cumulants of η. In particular, for h = 2, we have

δ̂2(η) = δ̂1(η) +
1

2
c3(η), σ̂22(η) = σ̂21(η) +

1

2
c23(η),
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and, for h = 3,

δ̂3(η) = δ̂2(η), σ̂23(η) = σ̂22(η) +
5

12
c24(η) + c2(η)c4(η).

Defining the posterior skewness and (excess) kurtosis as

τ(x) =
c3(x)

(v2(x))3/2
, κ(x) =

c4(x)

(v2(x))2
,

the second- and third-order approximations (h = 2 and h = 3) can be written equivalently as

δ̂2(η) = m(η)− η +
1

2
τ(η)v3(η), σ̂22(η) = v4(η)

(
1 +

1

2
τ2(η)v2(η)

)

and

δ̂3(η) = δ̂2(η), σ̂23(η) = v4(η)

(
1 +

1

2
τ2(η)v2(η) + κ(η)v2(η) +

5

12
κ2(η)v4(η)

)
, (4)

where v(η) = [v(x)]x=η , τ(η) = [τ(x)]x=η , and κ(η) = [κ(x)]x=η .

We see that σ̂21(η) = v4(η) coincides with the first-order approximation to σ2(η) obtained by the

general accuracy formula of Efron (2015, Theorem 1). Thus, for any positive and bounded prior,

the posterior variance represents an approximation to the standard deviation, not the variance,

of m(x). At first sight, this result may seem counter-intuitive and in contradiction with the large

sample implications of the Bernstein–von Mises theorem. As shown in Appendix B for the Gaussian

and Laplace priors, this apparent contradiction is due to the fact that, when n > 1, the posterior

variance and the sampling variance of m(x) are both of order n−1 and both depend on additional

terms that converge to zero as n→ ∞. Thus, asymptotically, the two variances coincide.

The second-order expansion generalizes the first-order DM approximations δ̂1(η) and σ̂
2
1(η) by

introducing some additional terms which depend on the third posterior cumulant, that is, on the

posterior variance and the posterior skewness. The sign of the additional term in δ̂2(η) depends on

the sign of τ(η), while the additional term in σ̂22(η) is always nonnegative, so that σ̂22(η) ≥ σ̂21(η)

for any η ∈ R.

The third-order expansion does not further improve the DM approximation to δ(η), because

δ̂3(η) = δ̂2(η) due to the fact that q3 = 0. The additional term in σ̂23(η) depends on the second and

fourth posterior cumulants, that is on the posterior variance and the posterior (excess) kurtosis. We

shall see in Section 4 that this term can be either positive or negative and may lead to a substantial
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improvement in the accuracy of DM approximations to σ2(η).

3.1.2 Monte Carlo approximation

The DM approximations provide closed-form relationships which help us to better understand the

link between the frequentist and Bayesian approaches to inference. But what can we say about

their accuracy? Which order of the expansion is sufficient in practice? And how sensitive are these

issues to alternative choices of the prior density π(η)? We shall address these questions in the

numerical analysis of Section 4.

Monte Carlo (MC) simulation offers an alternative approach for tabulating the unknown func-

tional forms of δ(η) and σ2(η). The advantage over analytical DM expansions is that MC approxi-

mation errors can be made arbitrarily small using a sufficiently large number of independent draws

from the N (η, 1) distribution. To implement the simulations we employ the following algorithm:

(i) For a given value of η, generate a vector x̃ = (x̃1, . . . , x̃J) of J independent draws from the

N (η, 1) distribution.

(ii) Given a prior π(η), compute the values of the posterior mean m̃j = m(x̃j) for each element x̃j

of x̃ (j = 1, . . . , J), then computeM1 =
∑J

j=1 m̃j/J andM2 =
∑J

j=1 m̃
2
j/J , and approximate

the bias and variance of m(x) by δ̃J(η) =M1 − η and σ̃2J(η) =M2 −M2
1 , respectively.

(iii) Repeat the first two steps for selected values of η in a known interval [η1, η2] with a given

stepsize ∆η and store the values of η, δ̃J(η) and σ̃
2
J(η).

When the prior density is symmetric around zero, the posterior density is symmetric around its

mean and the same tabulations with an opposite sign of δ̃J(η) are valid for positive and negative

values of η. In that case we restrict the algorithm to positive values of η by setting η1 = 0.

3.2 Plug-in estimators of the sampling moments of m(x)

So far we have discussed how to approximate the functional forms of δ(η) and σ2(η), either by

analytical DM expansions or by numerical MC tabulations. These approximations depend however

on η, which is unknown. So we have to replace η by an estimator, say η̂, which is function of x.
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For the third-order DM approximations (4) the plug-in estimators of δ(η) and σ2(η) are

δ̂3,η̂(x) = m(η̂)−η̂+
1

2
τ(η̂)v3(η̂), σ̂23,η̂(x) = v4(η̂)

(
1 +

1

2
τ2(η̂)v2(η̂) + κ(η̂)v2(η̂) +

5

12
κ2(η̂)v4(η̂)

)
.

We shall consider two estimators of η. First, η̂ = x, which is the most common choice (see, e.g.,

Efron 2015), because x is the unbiased maximum likelihood (ML) estimator of η. This leads to

the ‘delta method maximum likelihood’ (DMML) estimators δ̂3,x(x) and σ̂
2
3,x(x) of δ(η) and σ

2(η).

Second, η̂ = m(x), which is the Bayesian point estimator of η and leads to the ‘delta method double-

shrinkage’ (DMDS) estimators (because of the double evaluation of the posterior mean function in

the leading term of the estimated bias) δ̂3,m(x) and σ̂
2
3,m(x) of δ(η) and σ

2(η).

The choice between the DMML and DMDS estimators of δ(η) and σ2(η) is similar to the choice

between x and m(x) as an estimator of η (see, e.g., Magnus and De Luca 2016) and is motivated

by finite-sample considerations about their bias-precision trade-off. The ML estimator x has zero

bias and unit variance for all values of η. Under quadratic loss, its risk has good properties when

|η| is large, but not when η is close to zero. The posterior mean m(x) is biased, but it has good

risk properties around |η| = 1, which is the value of central interest.

Similarly, using the MC tabulations from Section 3.1.2, we can define the ‘Monte Carlo maxi-

mum likelihood’ (MCML) and the ‘Monte Carlo double-shrinkage’ (MCDS) estimators δ̃J,η̃(x) and

σ̃2J,η̃(x) of δ(η) and σ
2(η), depending on whether η is estimated by η̃(x) = x or η̃(x) = m(x).

4 Numerical results for generalized gamma priors

In Sections 2 and 3 we only assumed that the prior density π(η) is positive and bounded. To gain

further insight on the problem of estimating δ(η) and σ2(η), we shall restrict our attention to a

flexible and mathematically tractable three-parameter class of priors belonging to the (reflected)

generalized gamma distributions:

π(η; a, b, c) =
cbd

2Γ(d)
|η|−a exp (−b|η|c) (η ∈ R),

where 0 ≤ a < 1, b > 0, c > 0, and d = (1 − a)/c. In addition to the one-parameter family

of Gaussian distributions (a = 0, c = 2) with mean zero and variance ω2 = (2b)−1, this class
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includes as special cases the one-parameter family of Laplace distributions (a = 0, c = 1) and the

two-parameter families of the Subbotin (a = 0, also known as the exponential power distribution)

and the (reflected) Weibull (a = 1− c) distributions.

The Laplace prior, like the Gaussian prior, admits closed-form expressions for the posterior

mean and variance of η given x (Pericchi and Smith 1992):

m(x) = x− bh(x), v2(x) = 1 + b2
(
1− (h(x))2

)
−
b (1 + h(x))φ(x− b)

Φ(x− b)
,

where Φ(·) denotes the distribution function of the standard Gaussian distribution, ψ(x) = [Φ(−x−

b)]/[Φ(x − b)], and h(x) = [1 − e2bxψ(x)]/[1 + e2bxψ(x)] is a monotonically increasing bounded

function with h(−x) = −h(x), h(0) = 0, and h(∞) = 1. Closed-form expressions for arbitrary

moments and quantiles of the posterior distribution of η given x in the normal location model with

Laplace priors have recently been derived by De Luca et al. (2020). Unlike Gaussian priors, Laplace

priors lead to an estimator of η which is admissible and has bounded risk.

The Laplace prior, however, is not robust because x − m(x) = bh(x) → b > 0 as x → ∞, a

property that it shares with the Gaussian prior. In contrast, Weibull and Subbotin priors are robust

because x−m(x) → 0 as x→ ∞ (Kumar and Magnus 2013), but the resulting posterior moments

can only be determined numerically, for example through Gauss-Laguerre quadrature methods.

The choice of the free prior parameters is based on two criteria. For all priors, we first fix the

parameter b to ensure a proper treatment of ignorance about η. Our notion of ignorance relies upon

the concept of neutrality which requires the prior median of η to be zero and the prior median of

|η| to be one. Magnus and De Luca (2016) show that these conditions hold with b = .2275 for the

Gaussian prior and b = log 2 for the Laplace and reflected Weibull priors. For the Subbotin prior

we don’t obtain an explicit value, but neutrality restricts b = b(c) to be a nonlinear function of c.

For the reflected Weibull and Subbotin priors we fix the parameter c on the basis of the minimax

regret criterion. Let m(x; c) be the class of posterior means associated with different values of c.

Under squared error loss, the regret criterion for this class of estimators is defined as

regret(η; c) = risk(η; c) −
η2

1 + η2
=

∫ ∞

−∞
(m(x; c)− η)2 φ(x− η)dx−

η2

1 + η2
,

where η2/(1 + η2) is the lower bound of the risk of m(x; c). By minimizing the maximum regret

11



criterion, Magnus and De Luca (2016) find that the optimal neutral prior has c = 0.7995 (b =

0.9377) for the Subbotin distribution and c = 0.8876 for the Weibull distribution.

4.1 Accuracy of the DM and MC approximations

We now assess the accuracy of different approximations to δ(η) and σ2(η) by comparing the DM

approximations of orders h = 1, 2, 3 with the MC tabulations based on J = 100 and J = 1, 000, 000

draws. For these comparisons we use the Gaussian, Laplace, Subbotin, and Weibull priors described

in the previous section. In our implementation of the MC algorithm, we restrict η to the interval

[0, 30] with stepsize ∆η = 0.01. For the Laplace prior, the computing time of the algorithm with

1, 000, 000 draws is about one hour thanks to the closed-form expressions for the posterior moments;

for the Subbotin and reflected Weibull priors, the computing time is about one week.

Figures 1 and 2 illustrate the DM and MC approximations to δ(η) and σ2(η) for the four priors

under consideration. The four panels illustrate the bias δ(η) and the variance σ2(η), respectively,

of the posterior mean m(x) as an estimator of η in the x ∼ N (η, 1) model under alternative choices

of the prior density π(η): Gaussian, Laplace, Weibull, and Subbotin. In each panel, DM1–DM3

represent the first-, second-, and third-order DM approximations to δ(η) and σ2(η), respectively;

and MC1 and MC2 represent the MC tabulations based on J = 100 and J = 1, 000, 000 pseudo-

random draws, respectively.

MC tabulations based on J = 100 draws are still imprecise, but with J = 1, 000, 000 draws the

MC approximation error is of the order 10−8 for both δ(η) and σ2(η), and we may for all practical

purposes take the MC approximation based on 1, 000, 000 draws as exact, so that δ̃J(η) = δ(η) and

σ̃2J(η) = σ2(η) for any η ∈ R. For the conjugate Gaussian prior, all DM approximations are exact

because the posterior distribution of η given x is also Gaussian. For the other priors, the first- and

second-order DM approximations are still poor, but the third-order approximation is already quite

close to the truth, and if we increase the order of the expansion further, then the approximated

bias and variance profiles converge to the MC profiles based on J = 1, 000, 000 draws.

4.2 Monte Carlo evaluation of plug-in estimators

Suppose we have an estimator η̂ of an unknown parameter η and we consider this to be a ‘good’

estimator, then does it follow that f(η̂) is also a good estimator of f(η)? In general, there is no

12



guarantee. For example, if η̂ is an unbiased estimator of η, then η̂2 is not an unbiased estimator

of η2; in fact E[η̂2] ≥ η2 by Jensen’s inequality. In our case we have two estimators of η, namely

x and m(x), and two functions of interest, namely δ(η) and σ2(η). We evaluate the finite-sample

performance of the plug-in estimators of δ(η) and σ2(η) by a simple Monte Carlo experiment. For

any η in the interval [0, 10] with stepsize ∆η = 0.01 we generate a vector x = (x1, . . . , xR) of R =

100, 000 independent draws from the N (η, 1) distribution. For any element xr of x (r = 1, . . . , R),

we then compute the MCML estimates δ̃J,xr = δ̃J (xr) and σ̃
2
J,xr

= σ̃2J(xr) and the MCDS estimates

δ̃J,mr = δ̃J (mr) and σ̃
2
J,mr

= σ̃2(mr). Then we approximate the bias and root MSE (RMSE) profiles

of the MCML and MCDS estimators using their Monte Carlo replications.

The left and right panels in Figures 3 and 4 illustrate the bias (left) and RMSE (right) profiles

of the MCML and MCDS estimators of the bias δ(η) (Figure 3) and the variance σ2(η) (Figure 4)

of m(x) under the Laplace (upper panels) and Weibull (lower panels) priors.

In Figure 3 we estimate the bias δ(η) of m(x). Note that δ(η) is an odd function, that is,

δ(−η) = −δ(η). Under the Laplace prior, δ(η) is nonincreasing and convex for η ≥ 0. This implies

that, even though x is unbiased for η, the MCML estimator δ̃J,x(x) of δ(η) will be upward biased

due to Jensen’s inequality. The estimator is unbiased at η = 0, where δ(η) = 0 and δ̃J,x(x) takes

positive and negative values with equal probabilities, and for large values of η (say, η > 6), where

δ̃J,x(x) is roughly constant. Since m(x) is biased towards zero and δ(η) is nonincreasing, the MCDS

estimator δ̃J,m(x) presents an additional source of positive bias due to the shrinkage estimation of

η. So, from the point of bias we prefer MCML over MCDS. However, from the point of MSE it

is less clear. For small and medium values of η (roughly, η < 2), we prefer MCDS over MCML.

Similar considerations apply to the reflected Weibull prior. Since the key value of η is one and our

prior implies that P(η < −1) = P(−1 < η < 0) = P(0 < η < 1) = P(η > 1) = 1/4, we have a slight

preference for the MCDS estimator.

In Figure 4 we estimate the variance σ2(η) of m(x). In this case σ2(η) is an even function, that

is, σ2(−η) = σ2(η). Under the Laplace prior, σ2(η) is nondecreasing and concave for η > 0. In

the case of MCML there is only one source of bias (nonlinearity) due to Jensen’s inequality. The

bias is positive for small values of η and negative for larger values of η. But in the case of MCDS

there are two sources of bias (nonlinearity and shrinkage). Shrinkage implies a negative bias, while

nonlinearity implies a positive bias for small values of η and a negative bias for larger values of η.
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The net result is positive for small values of η (reaching a maximum at η = 0) and negative for

larger values of η. Regarding the MSE we see, as with the estimation of δ(η), that for small and

medium values of η (roughly, η < 2), we prefer MCDS over MCML. Similar considerations apply

to the reflected Weibull prior. We conclude that we have a slight preference of MCDS over MCML.

5 The WALS approach to model averaging

The normal location model plays a crucial role in the WALS approach, which we summarize briefly

below; for a fuller description see Magnus and De Luca (2016). The basic framework in WALS is

the linear regression model

y = X1β1 +X2β2 + ǫ, (5)

where y (n × 1) is the vector of observations on the outcome of interest, X1 (n × k1) and X2

(n × k2) are matrices of nonrandom regressors, β1 and β2 are unknown parameter vectors, and ǫ

is a vector of random disturbances. The k1 columns of X1 contain the ‘focus regressors’ which

we want in the model on theoretical or other grounds, while the k2 columns of X2 contain the

‘auxiliary regressors’ of which we are less certain. We assume that k1 ≥ 1, k2 ≥ 1, X = (X1,X2)

has full column-rank k = k1 + k2 ≤ n, and that the disturbances are independent and identically

distributed as N (0, σ2In), where In denotes the identity matrix of order n.

Because of the uncertainty on which auxiliary regressors to include, there are 2k2 possible models

that contain all focus regressors and a subset of the auxiliary regressors. We represent the jth model

as (5) with the added restriction R⊤
j β2 = 0, where Rj denotes a k2 × rj matrix of rank 0 ≤ rj ≤ k2

such that R⊤
j = [Irj : 0] or a column-permutation thereof. If β̂1j and β̂2j are the LS estimators of

β1 and β2 in model j, the model averaging estimators are of the form

β̂1 =

2k2∑

j=1

λj β̂1j , β̂2 =

2k2∑

j=1

λj β̂2j ,

where the λj are data-dependent model weights satisfying the restrictions 0 ≤ λj ≤ 1,
∑

j λj = 1

and λj = λj(M1y) with M1 = In −X1(X
⊤
1 X1)

−1X⊤
1 .

Unlike other model averaging estimators, the WALS approach exploits a preliminary rescaling

of the focus regressors and a semiorthogonal transformation of the auxiliary regressors to reduce the
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computational burden from order 2k2 to order k2. Specifically, we rescale X1 by defining Z1 = X1∆1

and γ1 = ∆−1
1 β1, where ∆1 is a diagonal k1×k1 matrix such that all diagonal elements of Z⊤

1 Z1 are

equal to one. We also transform X2 by defining Z2 = X2∆2Ξ
−1/2 and γ2 = Ξ1/2∆−1

2 β2, where ∆2

is a diagonal k2 × k2 matrix such that all diagonal elements of the symmetric and positive definite

matrix Ξ = ∆2X
⊤
2 M1X2∆2 are equal to one. Since Z1γ1 = X1β1 and Z2γ2 = X2β2, the model (5)

after these transformations may equivalently be written as

y = Z1γ1 + Z2γ2 + ǫ. (6)

The fact that Z⊤
2 M1Z2 = Ik

2

brings four important advantages. First, if γ̂1j and γ̂2j are the

ordinary LS estimators of γ1 and γ2 in model j, then the WALS estimators can be written as

γ̂1 =

2k2∑

j=1

λj γ̂1j = γ̂1r −QWγ̂2u, γ̂2 =

2k2∑

j=1

λj γ̂2j =Wγ̂2u,

where γ̂1r = (Z⊤
1 Z1)

−1Z⊤
1 y, γ̂2u = Z⊤

2 M1y, Q = (Z⊤
1 Z1)

−1Z⊤
1 Z2, W =

∑
j λjWj , and Wj =

Ik
2

−RjR
⊤
j . Further, the WALS estimators of β1 and β2 can be directly obtained by the relationships

β1 = ∆1γ1 and β2 = ∆2Ξ
−1/2γ2.

Second, the equivalence theorem (Magnus and Durbin 1999, Theorem 2) implies that the MSE

of γ̂1 depends on the MSE of γ̂2. Thus, if we can choose the λj optimally such that γ̂2 is a ‘good’

estimator of γ2 (in the MSE sense), then the same weights will also provide a ‘good’ estimator of γ1.

Third, the dependence of γ̂1 and γ̂2 on model j is completely captured by the random diagonal

k2 × k2 matrix W =
∑

j λjWj, whose diagonal elements wh are partial sums of the λj because the

Wj are nonrandom diagonal matrices with k2 − rj ones and rj zeros on the diagonal. It follows

that the computational burden of γ̂1 and γ̂2 is of order k2 as we only need to determine the set of

k2 WALS weights wh, not the considerably larger set of 2k2 model weights λj.

Fourth, the components of γ̂2 = Wγ̂2u are shrinkage estimators of the components of γ2, as

0 ≤ wh ≤ 1, and the components of γ̂2u = Z⊤
2 M1y are independent, as γ̂2u ∼ N (γ2, σ

2Ik
2

). Hence,

if we strengthen the condition λj = λj(M1y) and assume that each wh depends only on the hth

component of γ̂2u, then the shrinkage estimators in γ̂2 will also be independent. Under this addi-

tional assumption, our k2-dimensional problem reduces to k2 (identical) one-dimensional problems,
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namely: given one observation x ∼ N (η, σ2), what is the estimator m(x) of η with minimum MSE?

Since the estimation of the variance parameter has little impact on the risk properties of m(x)

(Danilov 2005), we also assume that σ2 is known. The baseline problem of the WALS weighting

scheme is then equivalent to the normal location problem studied in Sections 2 and 3.

The WALS weighting scheme is based on a Bayesian approach because of theoretical considera-

tions related to admissibility, bounded risk, robustness, near-optimality in terms of minimax regret,

and a proper treatment of ignorance about η. This Bayesian step requires two key ingredients. First,

a neutral prior with bounded risk, such as the Laplace, Subbotin, or Weibull priors discussed in

Section 4. Second, the k2-vector of t-ratios x = γ̂2u/su, where s
2
u = y⊤M1(In−Z2Z

⊤
2 )M1y/(n− k)

is the classical estimator of σ2 in model (6).

For each of the k2 components xh of x, we assume that xh ∼ N (ηh, 1), so the Bayesian approach

to the normal location problem yields the posterior means mh = m(xh) as estimators of ηh for

h = 1, . . . , k2. The WALS estimators of γ1 and γ2 are then given by

γ̂1 = γ̂1r −Qγ̂2, γ̂2 = sum, (7)

and the WALS estimators of β1 and β2 by

β̂1 = ∆1γ̂1, β̂2 = ∆2Ξ
−1/2γ̂2. (8)

6 Sampling properties of the WALS estimator

Our summary of the WALS methodology led to the estimators of the γ’s and β’s in (7) and (8). But

how about their sampling variances? Earlier papers on the development of WALS have estimated

these variances using the diagonal k2 × k2 matrix V = diag(v21 , . . . , v
2
k
2

) with diagonal elements

equal to the posterior variances v2h = v2(xh). More precisely, by exploiting the fact that γ̂1r and

γ̂2u are independent, the estimated variances of γ̂1 and γ̂2 have been computed as

V̂[γ̂1] = s2u(Z
⊤
1 Z1)

−1 +Q V̂[γ̂2]Q
⊤, V̂[γ̂2] = s2uV, (9)
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and the estimated covariance as Ĉ[γ̂1, γ̂2] = −Q V̂[γ̂2], where Q = (Z⊤
1 Z1)

−1Z⊤
1 Z2. As a conse-

quence, the variances of β̂1 and β̂2 have been estimated by

V̂[β̂1] = ∆1 V̂[γ̂1]∆1, V̂[β̂2] = ∆2Ξ
−1/2

V̂[γ̂2] Ξ
−1/2∆2 (10)

and the covariance by Ĉ[β̂1, β̂2] = ∆1 Ĉ[γ̂1, γ̂2] Ξ
−1/2∆2.

This, however, is not quite right. As discussed in Section 3, thinking of the posterior variance

v2h as the estimated variance of mh is not correct in a frequentist world unless the sample size is

very large, which it isn’t because this part of the theory is based on a single observation. In the

extreme case of a single observation, v2h represents the first-order DMML estimator of the standard

deviation of mh, so the diagonal elements of V should not be v2h but v4h.

The accuracy of the estimators can be further improved by using higher-order DM approxima-

tions, which in the limit lead to the MC tabulations studied in Section 3.1.2. Thus, to estimate the

sampling variance of WALS, we now use (9) and (10), where the diagonal matrix V is redefined

so that its hth diagonal element equals the MCDS estimator σ̃2J,m(xh) (or the MCML estimator

σ̃2J,x(xh)) of the sampling variance of mh.

In a similar fashion we now use the plug-in estimators of the biases of the posterior means to

estimate the bias (and hence the MSE) of the WALS estimators. For each of the k2 components

mh of m, we compute first an estimate δ̂h of the bias δh = δ(ηh) of mh using the MCDS estimate

δ̃J,m(xh) (or the MCML estimate δ̃J,x(xh)). As shown in Section 4.2, these estimators are generally

biased but their RMSEs are bounded and their biases are relatively small. For example, under

the Laplace prior, we have that |E[δ̂h]− δh| ≤ 0.0528 for the MCML estimator and |E[δ̂h]− δh| ≤

0.1457 for the MCDS estimator (see Figure 3). In both cases, the maximum bias is reached at

|ηh| = 1.84 where |δh| = 0.5124, and hence |E[δ̂h]/δh − 1| = 10.30% for the MCML estimator and

|E[δ̂h]/δh−1| = 28.43% for the MCDS estimator. This suggests that we can think of δ̂h as a nearly

unbiased estimator of δh, especially for the MCML estimator. After estimating the bias of m by

δ̂ = (δ̂1, . . . , δ̂k
2

), we estimate the bias d2 = E[γ̂2]−γ2 of γ̂2 by d̂2 = suδ̂ and the bias b2 = E[β̂2]−β2

of β̂2 by b̂2 = ∆2Ξ
−1/2d̂2. Provided that the unknown data-generation process (DGP) is nested in

the unrestricted model (6), we can also estimate the bias of γ̂1,

d1 = E[γ̂1]− γ1 = E[γ̂1r]− γ1 −QE[γ̂2] = Qγ2 −Q(γ2 + d2) = −Qd2,
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by d̂1 = −Qd̂2 and the bias b1 = E[β̂1]− β1 of β̂1 by b̂1 = ∆1d̂1.

7 Empirical application: Legalization of abortion and crime re-

duction

In an influential paper, Donohue and Levitt (2001), henceforth DL, used a panel data set of U.S.

states from 1985 to 1997 to show that the legalization of abortion in the early 1970s played an

important role in explaining the reduction of violent, property, and murder crimes during the

1990s. The evidence in favor of this causal relationship has been questioned in a number of follow-

up studies (see, e.g., Foote and Goetz 2008 and Belloni et al. 2014). A major concern is that

state-level abortion rates in the early 1970s were not randomly assigned. Thus, failing to control

for factors that are associated with state-level abortion and crime rates may lead to omitted variable

bias in the estimated effect of interest. In this section, we contribute to this debate by studying

the sampling properties of various least squares (LS) and WALS estimators in the context of the

flexible specifications proposed by Belloni et al. (2014), henceforth BCH.

The regressor of interest is a measure of the abortion rate relevant for each type of crime,

determined by the ages of criminals when they tend to commit crimes. The baseline specification

used by DL includes state and time effects as additional controls, plus eight time-varying and state-

specific confounding factors (log of lagged prisoners per capita, log of lagged police per capita, per

capita income, per capita beer consumption, unemployment rate, poverty rate, generosity of the

AFDC welfare program at time t − 15, and a dummy for the existence of a concealed weapons

law). To reduce serial correlation, BCH eliminate the state effects by analyzing models in first

differences. They also introduce a rich set of control variables to account for a nonlinear trend that

may depend on time-varying state-level characteristics. In this specification the focus regressors

include the first-difference of the abortion rate and a full set of time dummies, while the auxiliary

regressors include a total of 294 controls (initial levels and initial differences of the abortion rates,

first differences, lagged levels, initial levels, initial differences and within-state averages of the eight

controls considered by DL, squares of the aforementioned variables, all interactions of these variables

with a quadratic trend, and all interactions among the first-differences of the eight time-varying
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controls).1 After deleting Washington D.C. and taking first differences, the analysis is based on a

balanced panel of 50 states over a 12-year period. For additional information on data definitions

and transformations we refer the reader to the original papers of DL and BCH.

Table 1 shows the estimated coefficients on the first differences of the abortion rates in the models

for violent, property, and murder crimes. For each type of crime, we compare the WALS estimates

based on the Laplace (WALS-L) and Weibull (WALS-W) priors with the four LS estimates from

the unrestricted model that includes all focus and auxiliary regressors (LS-U), the fully restricted

model that includes only the focus regressors (LS-R), the intermediate model that includes the

focus regressors and the subset of auxiliary regressors corresponding to the first differences of the

eight time-varying controls used by DL (LS-I), and the intermediate model that includes the focus

regressors and the subset of auxiliary regressors selected by the BCH’s double-selection procedure

(LS-DS). The LS-U, LS-I and LS-DS estimates coincide with those reported in BCH (Table 1).2

In addition to the estimated coefficients, we present the estimated bias, standard error (SE) and

RMSE of the various LS and WALS estimators based on the assumption that the unknown DGP is

nested in the unrestricted model. The assumption is crucial for most sensitivity analyses where the

investigator assesses (formally or informally) whether the estimated coefficients of interest are robust

to deviations from a baseline model. This assumption implies that the LS-U estimator is unbiased,

so we can estimate the bias of the other LS estimators unbiasedly by the observed differences in

the estimated coefficients with respect to the LS-U estimates. For example, we estimate the bias

b1r = E[β̂1r]− β1 = (X⊤
1 X1)

−1X⊤
1 X2β2 of the LS-R estimator β̂1r by b̂1r = (X⊤

1 X1)
−1X⊤

1 X2β̂2u =

β̂1r−β̂1u. As for the SE (and hence RMSE) of the LS estimators, we report both the classical SE and

the SE clustered at the state-level (SEc and RMSEc). For the WALS estimators, we compute the

MCDS and MCML estimates of the bias and the (classical) SE discussed in Section 6, but not the

SE clustered at the state-level which would require extending our theoretical results to dependent

data. To our knowledge, the problem of computing clustered SE for model averaging estimators

is still unexplored. Similarly, very little is known about the SEc of the LS-DS estimator because

1 The full set of auxiliary variables used by BCH includes 294 noncollinear variables, not 284 variables as incorrectly
reported in their papers. In practice, because of a coding error, their Stata program also excludes interactions between
squared initial differences of the eight time-varying controls and the quadratic trend terms. For comparability reasons,
we use exactly the same controls of BCH.

2 Unlike BCH, we adopt a common procedure to exclude the collinear controls in the various estimation routines.
In the models for property and murder crimes, this leads to small differences in the controls selected by the BCH’s
double-selection procedure. In turn, we also find small differences in the LS-DS estimate of abortion on murder crime.
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the double selection procedure of BCH does not account for serial correlation of the data and the

reported SEc reflects only the effects of clustering in the selected model. An alternative approach

could be to compute the LS and WALS estimates after some preliminary data transformation (e.g.

Prais-Winsten or Cochrane-Orcutt) which attempts to remove serial correlation from the outcome

and the regressors. The underlying WALS theory has been developed in Magnus et al. (2011).

However, this alternative approach would assume that the preliminary model needed to estimate

the serial correlation coefficients is correctly specified. For simplicity, we shall focus our discussion

on the comparisons of the classical SE and RMSE.

In line with previous studies, we find that the small differences between the LS-R and LS-

I estimates are basis for the robustness of the results provided by the DL sensitivity analysis.

Although unbiased, the LS-U estimator has a large SE. Actually, if we take formally into account

the bias-precision trade-off in the choice of the control variables, as suggested by BCH, then this is

the worst estimator in terms of RMSE. The BCH double selection procedure drastically reduces the

uncertainty due to the choice of the 294 auxiliary variables by selecting a few controls (between 7

and 9) that are important to predict either the outcome or the treatment variable of interest in each

model. The SEs of the LS-DS estimator are much lower with respect to the LS-U estimator, but are

about twice those of the LS-R and LS-I estimators. Based on these findings, BCH conclude that

the empirical evidence in favor of the causal effect of abortion on crime is not robust to the presence

of nonlinear trends. However, as it is clear from our results on the estimated bias and RMSE, this

conclusion neglects one important point: according to the assumed model space the LS-DS is never

preferred to LS-R and LR-I estimators, neither in terms of bias nor in terms of SE. Thus, why should

we question the robustness of the DL’s findings based on a ‘worse’ estimator of the coefficient of

interest? Probably, trying to control for 294 additional controls in a sample of 600 observations is

a very ambitious task for both the LS-U and the LS-DS estimators. Similar considerations extend

to the WALS-L and WALS-W estimators, which lead to the same policy implications of the LS-DS

estimator. Estimated sampling moments suggest that the WALS estimators are less biased, but

also less precise, than the LS-R, LS-I, and LS-DS estimators. In terms of RMSE, the preferred

estimators are LS-I/LS-R in the model for property crimes and WALS-W/WALS-L in the model for

murder crimes. In the model for violent crimes, these four estimators have similar estimates of the

RMSE. It is therefore difficult to establish which is the preferred estimator, which adds ambiguity
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to the results because different estimators lead to different policy implications.

8 Monte Carlo simulations

In this previous section we estimated parameters of interest in a real-life application. In such an

application we don’t know the truth. We now turn to MC simulations, where we do know the truth.

This truth (the DGP) is based on the empirical application in the previous section. Specifically,

for each type of crime, we set the parameters of the DGP equal to the unrestricted LS estimates

for the model in first differences and then simulate the variation in the crime rates of interest by

adding to the estimated linear predictor pseudo-random draws from the Gaussian distribution with

mean zero and variance equal to the classical LS estimate s2u of σ2. We focus on estimating the

coefficient on the first-difference of the abortion rate, which under the assumed DGP is equal to

0.071 for violent crimes, −0.161 for property crimes, and −1.327 for murder crimes.

For each model, we compare six estimators of the causal effect of interest: the four LS estimators

(LS-U, LS-R, LS-I, and LS-DS) and the two WALS estimators (WALS-L and WALS-W). The true

bias, SE and RMSE of each estimator are approximated using 5,000 Monte Carlo replications by

using the LS estimates of the unrestricted model as true DGP. For each of these estimators we

have one or more methods for estimating the underlying bias and SE: the LS estimators of the

biases and SEs of the four LS estimators and the MCDS and MCML estimators of the biases and

SEs of the two WALS estimators. In our Monte Carlo experiment we also study the bias, SE and

RMSE of the LS, MCDS and MCML estimators of the biases and SEs of the six estimators of the

causal effects of interest. Specifically, since each estimator has its own bias and SE, we report the

relative bias, SE and RMSE of these three estimators of the sampling moments by taking ratios

with respect to the true biases and the true SEs.

Table 2 presents the (true) bias, SE and RMSE of the six estimators of the causal effect for the

three models on each type of crime. As expected, the bias of the LS-U estimator is always close to

zero, but this estimator is never preferred in terms of RMSE due to its large SE. In line with the

sampling moments estimated from the empirical application, we find that the LS-DS estimator is

more biased and less precise than the LS-R and LS-I estimators, and that the two WALS estimators

have lower bias and higher SE than the LS-R, LS-I and LS-DS estimators. According to the RMSE
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criterion, the preferred estimators are LS-I/LS-R in the models for violent and property crimes and

WALS-L/WALS-W in the model for murder crimes.

In Table 3 we concentrate on estimating the bias. We present the relative bias, SE and RMSE

of the LS, MCDS and MCML estimators of the biases of the LS-R, LS-I, LS-DS, WALS-L and

WALS-W estimators of the causal effects of interest. Although unbiased, the LS estimators of the

biases of the LS-R, LS-I and LS-DS estimators are rather imprecise as they depend directly on

the LS estimators of the auxiliary coefficients under the unrestricted model. As predicted from

our theoretical results, the MCML estimator of the bias of each WALS estimator is generally less

biased than the corresponding MCDS estimator. The latter, however, is always preferred to the

other estimators in terms of relative RMSE.

In Table 4 we consider the standard error, and we present the relative bias, SE and RMSE of the

LS, MCDS and MCML estimators of the SEs of the six estimators of the causal effects of interest.

Here, for the WALS-L and WALS-W estimators, we also report the finite-sample performance of

the previously used estimator of the SEs (labeled as PV) which was computed from (9) and (10)

using the posterior variances v2h as diagonal elements of V . Our Monte Carlo results confirm that

the new MCDS and MCML estimators of the SEs of the WALS estimators reduce the substantial

upward bias of the previously used PV estimator. The relative RMSE performances of the new

MCDS and MCML estimators of the SEs of the WALS estimators are comparable to those of the

LS estimator of the SEs of the correctly specified LS-U estimator.

9 Conclusions

In this paper we have analyzed the finite-sample sampling properties (bias and variance) of the

posterior mean in the normal location model using both analytical delta method approximations and

numerical Monte Carlo tabulations. Our analytical results have shown how higher-order posterior

cumulants contribute to improving the accuracy of delta method approximations to the bias and

to the variance of the posterior mean. We have also provided recursive formulae to facilitate the

nontrivial task of computing higher-order posterior moments and posterior cumulants, which are

in turn the key ingredients needed to derive delta method approximations of any order.

Our numerical results reveal that high-order refinement terms have sizable effects. Moreover,
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as the order the expansion increases, the approximated bias and variance profiles converge to those

resulting from accurate Monte Carlo tabulations. Since sampling moments of the posterior mean

depend on the unknown location parameter, we have compared two plug-in strategies for estimating

the frequentist bias and variance of the posterior mean: one based on the ML estimator and another

on the posterior mean. Our simulations show that the former has a relative advantage in terms

of bias and good risk performance for large values of the normal location parameters, while the

latter leads to better risk performance for small values of the normal location parameter. The

performance of these estimators is relatively unaffected by the prior under consideration and by

the nonlinear profiles of the bias and variance of the underlying posterior mean.

Our theoretical and numerical results for the normal location model have direct implications

for the sampling properties of the WALS estimator, a partly-Bayesian and partly-frequentist model

averaging estimator which accounts for the problem of uncertainty about the regressors in a Gaus-

sian linear model. We have derived estimators of the bias and variance of WALS that are based

on considerations about the finite-sample sampling properties of the posterior mean in the normal

location model. We illustrate the importance of these developments in a real data application that

looks at the effect of legalized abortion on crime rates. Results from a related Monte Carlo experi-

ment also reveal that the new estimators of the bias and variance of WALS have good finite-sample

performance. Further work is required to investigate the implications of our findings for the WALS

approach to inference (e.g., confidence intervals and testing strategies). Preliminary results in this

direction appear to be promising.
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Table 1: Effect of abortion on crime

Estimated sampling moments

Type of crime Estimator Effect Method Bias SE SEc RMSE RMSEc

Violent LS-U 0.071 LS 0.000 0.318 0.284 0.318 0.284
LS-R −0.157 LS −0.228 0.046 0.033 0.232 0.230
LS-I −0.157 LS −0.227 0.047 0.034 0.232 0.230
LS-DS −0.171 LS −0.242 0.113 0.117 0.267 0.269
WALS-L −0.007 MCDS −0.046 0.224 0.229

MCML −0.067 0.234 0.244
WALS-W −0.012 MCDS −0.046 0.223 0.227

MCML −0.067 0.237 0.246

Property LS-U −0.161 LS 0.000 0.135 0.106 0.135 0.106
LS-R −0.100 LS 0.061 0.024 0.022 0.066 0.065
LS-I −0.106 LS 0.055 0.024 0.021 0.060 0.059
LS-DS −0.061 LS 0.100 0.042 0.058 0.108 0.115
WALS-L −0.134 MCDS 0.013 0.097 0.098

MCML 0.022 0.102 0.104
WALS-W −0.130 MCDS 0.012 0.097 0.098

MCML 0.024 0.103 0.106

Murder LS-U −1.327 LS 0.000 1.485 0.932 1.485 0.932
LS-R −0.215 LS 1.112 0.184 0.052 1.127 1.113
LS-I −0.218 LS 1.109 0.185 0.068 1.124 1.111
LS-DS −0.192 LS 1.135 0.416 0.176 1.209 1.149
WALS-L −0.849 MCDS 0.220 1.016 1.040

MCML 0.386 1.035 1.104
WALS-W −0.783 MCDS 0.213 0.997 1.019

MCML 0.411 1.024 1.103

Notes. LS-U and LS-R are the LS estimators of the effect of interest in the unrestricted and fully
restricted models, respectively; LS-I is the LS estimator in the intermediate model with the eight
time-varying controls used by DL; LS-DS is the LS estimator in the intermediate model with the
subset of controls selected by BCH’s double selection procedure; WALS-L and WALS-W are the
WALS estimators based on the Laplace and Weibull priors. Estimators of the sampling moments: LS
(least squares), MCDS (Monte Carlo double shrinkage), MCML (Monte Carlo maximum likelihood).
All models are estimated in first-differences as explained in Section 7.
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Table 2: Monte Carlo results for the estimators of the effect of abortion on crime

Type of crime Effect Estimator Bias SE RMSE

Violent 0.071 LS-U −0.001 0.319 0.319
LS-R −0.228 0.043 0.232
LS-I −0.227 0.043 0.231
LS-DS −0.248 0.105 0.269
WALS-L −0.066 0.235 0.244
WALS-W −0.067 0.237 0.246

Property −0.161 LS-U −0.000 0.136 0.136
LS-R 0.062 0.022 0.065
LS-I 0.056 0.022 0.060
LS-DS 0.092 0.043 0.102
WALS-L 0.022 0.103 0.106
WALS-W 0.024 0.105 0.108

Murder −1.327 LS-U −0.000 1.471 1.471
LS-R 1.113 0.200 1.131
LS-I 1.110 0.204 1.129
LS-DS 1.130 0.442 1.213
WALS-L 0.385 1.027 1.097
WALS-W 0.410 1.017 1.097

Notes. See Notes to Table 1.
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Table 3: Monte Carlo results for the estimators of the biases of the estimated effects of abortion
on crime

Estimators of the bias

Type of crime Estimator Bias Method R.Bias R.SE R.RMSE

Violent LS-R −0.228 LS 0.005 1.389 1.389
LS-I −0.227 LS 0.005 1.392 1.392
LS-DS −0.248 LS 0.004 1.223 1.223
WALS-L −0.066 MCDS 0.323 0.947 1.000

MCML 0.127 1.218 1.225
WALS-W −0.067 MCDS 0.340 0.927 0.987

MCML 0.158 1.188 1.199

Property LS-R 0.062 LS 0.007 2.188 2.188
LS-I 0.056 LS 0.008 2.421 2.422
LS-DS 0.092 LS 0.005 1.441 1.441
WALS-L 0.022 MCDS −0.398 1.186 1.251

MCML −0.132 1.498 1.504
WALS-W 0.024 MCDS −0.430 1.087 1.169

MCML −0.173 1.369 1.380

Murder LS-R 1.113 LS 0.000 1.309 1.309
LS-I 1.110 LS 0.000 1.311 1.311
LS-DS 1.130 LS 0.000 1.244 1.244
WALS-L 0.385 MCDS −0.401 0.768 0.867

MCML −0.145 1.046 1.056
WALS-W 0.410 MCDS −0.435 0.719 0.841

MCML −0.186 0.983 1.000

Notes. See Notes to Table 1. Estimators of the bias: LS (least squares), MCDS
(Monte Carlo double shrinkage), MCML (Monte Carlo maximum likelihood).
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Table 4: Monte Carlo results for the estimators of the standard errors of the estimated effects of
abortion on crime

Estimators of the SE

Type of crime Estimator SE Method R.Bias R.SE R.RMSE

Violent LS-U 0.319 LS −0.001 0.041 0.041
LS-R 0.043 LS 0.285 0.035 0.287
LS-I 0.043 LS 0.282 0.035 0.284
LS-DS 0.105 LS 0.294 0.039 0.297
WALS-L 0.235 MCDS −0.012 0.040 0.042

MCML 0.039 0.043 0.058
PV 0.158 0.047 0.165

WALS-W 0.237 MCDS −0.017 0.042 0.046
MCML 0.048 0.046 0.067
PV 0.149 0.048 0.157

Property LS-U 0.136 LS −0.012 0.041 0.042
LS-R 0.022 LS 0.303 0.035 0.305
LS-I 0.022 LS 0.295 0.035 0.297
LS-DS 0.043 LS 0.170 0.061 0.181
WALS-L 0.103 MCDS −0.034 0.037 0.050

MCML 0.016 0.040 0.043
PV 0.127 0.044 0.134

WALS-W 0.105 MCDS −0.042 0.038 0.057
MCML 0.021 0.041 0.046
PV 0.113 0.044 0.121

Murder LS-U 1.471 LS 0.010 0.042 0.043
LS-R 0.200 LS 0.155 0.033 0.158
LS-I 0.204 LS 0.146 0.033 0.150
LS-DS 0.442 LS 0.183 0.034 0.186
WALS-L 1.027 MCDS 0.025 0.042 0.049

MCML 0.069 0.047 0.083
PV 0.203 0.051 0.210

WALS-W 1.017 MCDS 0.029 0.044 0.053
MCML 0.089 0.052 0.104
PV 0.206 0.055 0.213

Notes. See Notes to Table 1. Estimators of the SE: LS (least squares), MCDS
(Monte Carlo double shrinkage), MCML (Monte Carlo maximum likelihood), PV
(Posterior variance).
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Figure 1: DM and MC approximations to the bias δ(η) of the posterior mean m(x) under Gaussian,
Laplace, reflected Weibull, and Subbotin priors.
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Figure 2: DM and MC approximations to the variance σ2(η) of the posterior mean m(x) under
Gaussian, Laplace, reflected Weibull, and Subbotin priors.
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Figure 3: Bias and RMSE of the MCML and MCDS estimators of the bias δ(η) of the posterior
mean m(x) under Laplace and reflected Weibull priors.
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Figure 4: Bias and RMSE of the MCML and MCDS estimators of the sampling variance σ2(η) of
the posterior mean m(x) under Laplace and reflected Weibull priors.
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A Proofs

Proposition 1. The stated assumptions on the prior guarantee that the function Ah(x) exists and

admits derivatives of any order (Pericchi and Smith 1992, Appendix A). We have

(x− η)h =
h∑

j=0

(
h

j

)
xj(−η)h−j = (−1)hηh +

h∑

j=1

(−1)h−j
(
h

j

)
xjηh−j

from the binomial theorem, so that

ηh = (−1)h(x− η)h −
h∑

j=1

(−1)j
(
h

j

)
xjηh−j.

Taking expectations, conditional on x, the result follows.

Proposition 2. The fact that ch+1(x) = m(h)(x), h = 1, 2, . . . , follows from Pericchi et al. (1993,

Proposition 2.2). To prove the recursion (2), we first prove it for h = 1 and h = 2:

c2 = m′(x) = 1 + g′1 = 1 + g2 − g21 − 1 = g2 − g21 = g2 − c1g1,

c3 = m
′′

(x) = g′2 − 2g1g
′
1 = (g3 − g1g2 − 2g1)− 2g1(g2 − g21 − 1)

= g3 − g1g2 − 2(g2 − g21)g1 = g3 − c1g2 − 2c2g1,

with gh = gh(x) and ch = ch(x). Then we prove that if (2) holds at h and h+1, then it also holds

at h+ 2. Since c′1 = c2 − 1 and c′j = cj+1 for j ≥ 2, the recursion (1) implies that

ch+2 = c′h+1 = g′h+1 − c′1gh −
h−1∑

j=1

(
h

j

)
c′j+1gh−j −

h−1∑

j=0

(
h

j

)
cj+1g

′
h−j

= g′h+1 − (c2 − 1)gh −
h∑

j=2

(
h

j − 1

)
cj+1gh−j+1 −

h−1∑

j=0

(
h

j

)
cj+1g

′
h−j

= gh+2 − c1gh+1 − (h+ 1)gh − (c2 − 1)gh −
h∑

j=2

(
h

j − 1

)
cj+1gh−j+1

−
h−1∑

j=0

(
h

j

)
cj+1 (gh−j+1 − c1gh−j − (h− j)gh−j−1)

= gh+2 −
h∑

j=0

(
h+ 1

j

)
cj+1gh−j+1 −∆h+2,
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where

∆h+2 = −
h∑

j=0

(
h+ 1

j

)
cj+1gh−j+1 + c1gh+1 + hgh + c2gh

+

h∑

j=2

(
h+ 1

j

)
cj+1gh−j+1 −

h∑

j=2

(
h

j

)
cj+1gh−j+1

+

h−1∑

j=0

(
h

j

)
cj+1 (gh−j+1 − c1gh−j − (h− j)gh−j−1)

= hgh − c1ch+1 + c1gh+1 − c1

h−1∑

j=0

(
h

j

)
cj+1gh−j −

h−1∑

j=0

(
h

j

)
(h− j)cj+1gh−j−1

= hgh −
h−1∑

j=0

(
h

j

)
(h− j)cj+1gh−j−1 = hgh − h

h−1∑

j=0

(
h− 1

j

)
cj+1gh−j−1

= hgh − h



h−2∑

j=0

(
h− 1

j

)
cj+1gh−j−1 + chg0


 = hgh − h(gh − ch + ch) = 0

and we have used the fact that

(
h

j − 1

)
=

(
h+ 1

j

)
−

(
h

j

)
, (h− j)

(
h

j

)
= h

(
h− 1

j

)
,

and the induction assumption that the formula holds at h and h+ 1.

Proposition 3. Let z = x− η ∼ N (0, 1) and consider a Taylor series expansion of m(x) around η

of order h ≥ 1:

mh(x) = m(η) +

h∑

j=1

aj(η)z
j

j!
,

where the aj(η) =
[
djm(x)/dxj

]
x=η

= m(j)(η) are nonrandom constants which depend on η but

not on x. Proposition 2 implies that aj(η) (j ≥ 1) is equal to the posterior cumulant of order j +1

evaluated at η, that is aj(η) = cj+1(η). Thus, using the fact that

qj =
E[zj ]

j!
=





1

2j/2(j/2)!
if j even,

0 if j odd,
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we obtain the following delta method approximations:

δ̂h(η) = E [mh(x)|η] − η = m(η)− η +
h∑

j=1

cj+1(η)qj

and

σ̂2h(η) = V [mh(x)|η] =
h∑

j=1

h∑

k=1

aj(η)ak(η)C(z
j , zk)

j!k!

=

h∑

j=1

((
2j

j

)
q2j − q2j

)
c2j+1(η) + 2

∑

k<j

((
j + k

j

)
qj+k − qjqk

)
cj+1(η)ck+1(η).

The results follow.

B An apparent contradiction

The results in Section 3.1.1 highlight a puzzling contradiction. We have the posterior mean m(x)

and the posterior variance v2(x). If we interpret m(x) as an estimator of η, then this estimator

has a (frequentist) variance σ2(η). We have seen that the variance v2(x) represents a first-order

approximation to the frequentist standard deviation σ(η). But we also know, from the Bernstein–

von Mises theorem, that v2(x) and σ2(η) converge to each other. How can these two facts be

reconciled?

To understand this apparent contradiction, consider a sample x = (x1, . . . , xn), rather than

a single observation, from the N (η, 1) distribution. The simplest case is when the prior on η is

N (0, ω2). In that case, the posterior mean and variance are given by mn(x) = wnx̄n and nv2n = wn,

where wn = ω2/(ω2 + 1/n). The frequentist variance of mn(x) is σ2n = V[mn(x)] = w2
n/n, and

hence we have v21 = σ1 for n = 1. But when n > 1, both variances are of order 1/n and we have

wn → 1 as n→ ∞ so that

n(σ2n − v2n) = w2
n − wn = wn(wn − 1) → 0

as n→ ∞. This explains the apparent contradiction, at least in the case of a Gaussian prior.

Now consider another prior, the Laplace prior defined by π(η) = b e−b|η|/2 with c > 0. As shown
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by De Luca et al. (2020), the posterior mean and variance of η are now

mn(x) = x̄n −
bhn
n
, nv2n(x) = 1 +

b2(1− h2n)

n
−
b(1 + hn)r(pn)

n1/2
,

where

ψn =
1− Φ(qn)

Φ(pn)
, hn =

1− e2bx̄nψn

1 + e2bx̄nψn
, r(pn) =

φ(pn)

Φ(pn)
,

and

pn = n1/2(x̄n − b/n), qn = n1/2(x̄n + b/n).

Given the posterior mean mn(x) we have

nσ2n(η) = nV[mn(x)] = 1 +
b2

n
V[hn]− 2bC[x̄n, hn].

Both the posterior and the sampling variance are of order 1/n with

n(σ2n(η)− v2n(x)) → 0,

since hn is bounded with finite variance, h2n → 1, r(pn) → 0 as n→ ∞, and

C
2[x̄n, hn] ≤ V[x̄n]V[hn] =

V[hn]

n
→ 0.
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