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Abstract

We introduce a family of proportional surplus division values for TU-games. Each value

first assigns to each player a compromise between his stand-alone worth and the average

stand-alone worths over all players, and then allocates the remaining worth among the

players in proportion to their stand-alone worths. This family contains the proportional

division value and the new egalitarian proportional surplus division value as two special

cases. We provide characterizations for this family of values, as well as for each single value

in this family.

Keywords: Cooperative game, proportional value, surplus sharing, axiomatization,

balanced contributions

JEL: C71

1. Introduction

Equal and proportional division are two basic principles in allocation problems. In

cooperative games with transferable utility (TU-games), usually these principles are ap-

plied to a remainder of the surplus after each individual player is assigned an individual

entitlement. For two-player games, this can be formalized in axioms such as standard-

ness (assigning each player its stand-alone worth and allocating the surplus equally over

all players), egalitarian standardness (ignoring individual entitlements and allocating the

full worth equally over the players), and proportional standardness (allocating the full sur-

plus proportional to the stand-alone worths of the players). For example, the Shapley

value (Shapley, 1953) and the equal surplus division value (Driessen and Funaki, 1991)

satisfy standardness, the equal division value (axiomatized in van den Brink (2007)) sat-

isfies egalitarian standardness, and various proportional values, such as the proportional
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value (Ortmann, 2000), the proportional Shapley value (Béal et al., 2018; Besner, 2019),

and the proper Shapley value (Vorob’ev and Liapunov, 1998; van den Brink et al., 2015)

satisfy proportional standardness. The values can be extended to games with more than

two players by, for example reduced game consistency or balanced contributions type of

axioms that relate payoffs of players in a game with their payoffs in a game on a reduced

player set.

There is a large literature on ‘equal sharing of the surplus’ type of values. In contrast,

values that appear to be ‘proportional’ are studied less, although proportional considera-

tions play a central role in fair division problems as pointed out by a group of economists

and academics, e.g., Brams and Taylor (1996); Chun (1988); Moulin (1987, 2004); Thom-

son (2015); Tijs and Driessen (1986); Young (1995). However, recently there is a growing

interest in values that are based on proportionality, such as the values mentioned above.

In this paper, we provide a new family of values, called the proportional surplus division

values which make a trade-off between a player’s stand-alone worth and the average stand-

alone worth, and allocate the remainder proportional to the stand-alone worths. Extreme

cases of values in our family are the proportional division value, shortly denoted by PD

value, and the egalitarian proportional surplus division value, shortly denoted by EPSD

value. The PD value allocates the worth of the grand coalition in proportion to players’

stand-alone worth. The EPSD value is a new value that assigns to each player the average

stand-alone worth, and then allocates the remainder of the worth of the grand coalition

in proportion to players’ stand-alone worth. The EPSD value focuses on egalitarianism in

allocating the stand-alone worths by first assigning to every player the average of all stand-

alone worths, whereas the PD value applies an egocentric principle and first assigns to each

player its own stand-alone worth. Both values apply proportionality in the allocation of

the remaining surplus. Besides these two extreme values, our family consists of all convex

combinations of the PD value and the EPSD value, and thus can be viewed as making a

trade-off between egocentrism and egalitarianism. This family of values is in line with a

recent and growing literature that combine different allocation principles by considering

convex combinations of two extreme values, such as the egalitarian Shapley values (being

convex combinations of the Shapley value and equal division value, see Joosten (1996)

and van den Brink et al. (2013)), the consensus values (being convex combinations of the

Shapley value and equal surplus division value, see Ju et al. (2007)) and the family of convex

combinations of the equal division value and the equal surplus division value (axiomatized

in, e.g., van den Brink and Funaki (2009); van den Brink et al. (2016); Xu et al. (2015);

Ferrières (2017)). Also, our family of values is in line with a recent and growing literature

on non-symmetric surplus sharing values, such as the weighted division value (Béal et al.,

2015, 2016a), the weighted surplus division value (Calleja and Llerena, 2017, 2019), the

weighted equal allocation of non-separable contributions value (Hou et al., 2019), and the
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PD value (Zou et al., 2019).

Besides several known axioms from the literature, we introduce new axioms concern-

ing the separatorization of a player. Separatorization1 refers to a player’s obstruction of

cooperation in the sense that the worth of any coalition containing him equals the sum

of the stand-alone worths of the players in this coalition, while the worth of any coalition

without this player remains unchanged. This is not to be confused with dummification as

introduced in Béal et al. (2018) (strengthening nullification studied in, e.g., Gómez-Rúa

and Vidal-Puga (2010); Béal et al. (2016b); Ferrières (2017)), where a player becomes a

dummy player. The first axiom, called proportional loss under separatorization, requires

that if a player becomes a separator, then all other player’s payoff change in proportion to

their stand-alone worths. The second axiom, called proportional balanced contributions un-

der separatorization, requires that, for any two players, the effects of one of them becoming

a separator on the payoff of the other, are proportional to their stand-alone worths.

We identify the consequence of imposing either of the aforementioned axioms in addition

to the classical axiom of efficiency. It turns out that the resulting values have all in

common that they split the worth of the grand coalition in proportion to players’ stand-

alone worth. Moreover, any member of this family is uniquely determined by a value

defined on additive games (being games where all players are separators and thus the

worth of every coalition equals the sum of the stand-alone worths of the players in that

coalition). Subsequently, we characterize a family of values for quasi-additive games (being

games where the worth of every coalition that does not contain all the players equals the

sum of the stand-alone worths of the players in that coalition) by means of known axioms

of efficiency, anonymity, no advantageous reallocation, and continuity, which generalizes a

remarkable result for rights problem in Chun (1988). By combining the axioms in these

results and using weak linearity instead of continuity, the family of affine combinations of

the PD and EPSD values is characterized. Adding superadditive monotonicity (Ferrières,

2017) and replacing anonymity by weak desirability, we derive an axiomatization of the

family of convex combinations of the PD and EPSD values. Besides, we show how specific

values are singled out by using a parametrized axiom which puts a certain lower bound on

the payoffs of individual players.

The paper is organized as follows. Section 2 provides some notation and definitions.

Section 3 introduces the concept of proportional surplus division values. Section 4 contains

the results. Section 5 presents a conclusion. All proofs and the independence of the axioms

in the characterization results are provided in an Appendix.

1We thank André Casajus for suggesting the names of separator and separatorization at the 15th

European Meeting on Game Theory.
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2. Preliminaries

2.1. Notation and TU-games

A cooperative game with transferable utility, or simply a (TU-)game, is a pair (N, v),

where N = {1, 2, . . . , n} is a fixed finite set of players and v : 2N → R is a characteristic

function assigning to each S ⊆ N a worth v(S) ∈ R such that v(∅) = 0. A subset S ⊆ N

is called a coalition, and v(S) is the reward that coalition S can guarantee itself without

the cooperation of the other players. For any non-empty coalition S, let s or |S| be the

cardinality of S. We denote by GN the set of all games with player set N .

A game (N, v) is individually positive if v({i}) > 0 for all i ∈ N , and individually

negative if v({i}) < 0 for all i ∈ N , see Béal et al. (2018). We restrict our discussion to

the class of all individually positive games and all individually negative games, and denote

this class by GNnz.
A game (N, v) is additive if v(S) =

∑
i∈S v({i}) for all S ⊆ N . A game (N, v) is quasi-

additive2 if v(S) =
∑

i∈S v({i}) for all S ( N , see Carreras and Owen (2013). A game

(N, v) is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N with S ∩ T = ∅. A game

(N, v) is monotone if v(S) ≤ v(T ) for all S, T ⊆ N with S ⊆ T . A game (N, v) is weakly

essential if
∑

i∈N v({i}) ≤ v(N). We express the notation ANnz (respectively QANnz) for the

class of all additive games (respectively quasi-additive games) in GNnz.
Player i ∈ N is a separator in (N, v) if v(S) =

∑
j∈S v({j}) for all S ⊆ N with i ∈ S.

For game (N, v) and permutation π : N → N , the permuted game (N, πv) is defined by

πv(S) = v(∪i∈S{π(i)}) for all S ⊆ N . For (N, v), (N,w) ∈ GNnz, the game (N, v+w) ∈ GNnz
is defined by (v + w)(S) = v(S) + w(S) for all S ⊆ N .

2.2. Values

A (point-valued) solution or value on GNnz is a function ψ that assigns a single payoff

vector ψ(N, v) ∈ RN to every game (N, v) ∈ GNnz. Some well-known values are the following.

The equal division value is the value ED on GNnz given by

EDi(N, v) =
1

n
v(N)

for all (N, v) ∈ GNnz and i ∈ N .

The equal surplus division value, also known as Centre-of-the-Imputation-Set (CIS)-

value in Driessen and Funaki (1991), is the value ESD on GNnz given by

ESDi(N, v) = v({i}) +
1

n
[v(N)−

∑
j∈N

v({j})]

2These are closely related to joint venture situations in Moulin (1987).
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for all (N, v) ∈ GNnz and i ∈ N .

The proportional division value is the value PD on GNnz given by

PDi(N, v) =
v({i})∑
j∈N v({j})

v(N)

for all (N, v) ∈ GNnz and i ∈ N .

2.3. Axioms

We state some known axioms of values for games. A value ψ satisfies

• Efficiency: if
∑

i∈N ψi(N, v) = v(N) for all (N, v) ∈ GNnz.

• Anonymity: if ψi(N, v) = ψπ(i)(N, πv) for all (N, v) ∈ GNnz, all permutations π :

N → N and all i ∈ N .

• Weak linearity: if ψ(N, av + w) = aψ(N, v) + ψ(N,w) for all (N, v), (N,w) ∈ GNnz
and all a ∈ R such that (N, av+w) ∈ GNnz and there exists c ∈ R with w({i}) = cv({i})
for all i ∈ N .

• Superadditive monotonicity: if ψi(N, v) ≥ 0 for every superadditive and mono-

tone game (N, v) ∈ GNnz and all i ∈ N .

• Weak desirability: if ψi(N, v) ≥ ψj(N, v) for all (N, v) ∈ ANnz and i, j ∈ N such

that v({i}) ≥ v({j}).

• No advantageous reallocation: if
∑

i∈T ψi(N, v) =
∑

i∈T ψi(N,w) for all quasi-

additive games (N, v), (N,w) ∈ QANnz and T ⊆ N such that v(N) = w(N),
∑

i∈T v({i}) =∑
i∈T w({i}) and v({i}) = w({i}) for all i ∈ N\T .

• Continuity: if ψ(N,wk)→ ψ(N, v) for all sequences of games {(N,wk)} and game

(N, v) in QANnz such that (N,wk)→ (N, v).

Efficiency and anonymity are well-known. Weak linearity, introduced in Béal et al.

(2018), states that when taking a linear combination of two games, where the ratio v({i})
w({i})

is the same for all players, the payoff vector equals the linear combination of the payoff

vectors of the two separate games. Superadditive monotonicity, introduced in Ferrières

(2017), states that the payoff of each player should be non-negative for superadditive and

monotone games. Weak desirability states that if i’s contributions are greater than or

equal to j’s contributions in an additive game, then i should receive at least j’s payoff.

No advantageous reallocation states that transfers of individual productivities across a

subset of players do not affect the total payoffs of this coalition. Continuity states that a
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small change in the parameters of the game causes only a small change in the payoff. We

require the last two axioms only for quasi-additive games. Moulin (1987) and Chun (1988),

respectively, used the last two axioms in surplus problems and rights problems, which can

be considered as quasi-additive games.

3. The proportional surplus division values

As mentioned in the introduction, in this paper we characterize families of combinations

of the PD value and a new value called EPSD value. We begin this section by defining this

new value.

The egalitarian proportional surplus division value is the value EPSD on GNnz
given by

EPSDi(N, v) =
1

n

∑
j∈N

v({j}) +
v({i})∑
j∈N v({j})

[v(N)−
∑
j∈N

v({j})]

for all (N, v) ∈ GNnz and i ∈ N .

Similar as other values mentioned before, the EPSD value is based on the idea of first

assigning individual entitlements to the players, and then allocating the remainder of v(N)

over all players using an egalitarian or proportionality principle. In the case of the EPSD

value, we first assign to every player the average stand-alone worth, and then allocate

the remainder proportional to the stand-alone worths. Thus, the individual entitlements

reflect egalitarianism in the sense that all stand-alone worths are equally shared among

all players. However, discrimination is made in the allocation of the remainder which is

allocated proportional to the stand-alone worths.

Table 1 clarifies the difference among the ED, ESD, PD and EPSD values by the

way they allocate (i) the sum of all stand-alone worths
∑

j∈N v({j}), and (ii) the surplus

v(N)−
∑

j∈N v({j}) that is left from the worth of the grand coalition. These are allocated

either equally over the players (E-principle) or proportional to their stand-alone worths

(P-principle). For instance, whereas the ED, respectively PD, values are the E-principle,

respectively P-principle, in both aspects, the ESD value and the EPSD value reflect equal

as well as proportional sharing. Specifically, the ESD value allocates the amounts of∑
j∈N v({j}) and v(N) −

∑
j∈N v({j}) by respectively applying the P-principle and the

E-principle, while the EPSD value does it the other way around.

In this paper, we consider combinations of the EPSD value and the PD value. For

every α ∈ R, the corresponding value ϕα, called α-proportional surplus division value, is

defined by

ϕα(N, v) = αEPSD(N, v) + (1− α)PD(N, v).
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Table 1: Values and division principles

Values

∑
j∈N v({j}) v(N)−

∑
j∈N v({j})

E-principle P-principle E-principle P-principle

ED
√ √

ESD
√ √

PD
√ √

EPSD
√ √

It is straightforward to verify that for every (N, v) ∈ GNnz and every i ∈ N , it holds that

ϕαi (N, v) =
α

n

∑
j∈N

v({j}) +
v({i})∑
j∈N v({j})

[v(N)−
∑
j∈N

αv({j})]. (1)

The value ϕα(N, v) first assigns to every player the fraction α of the average stand-

alone worth, and then allocates the remainder (which might be negative) proportional to

the stand-alone worths.

Alternatively, (1) can be rewritten as follows.

ϕαi (N, v) =
α

n

∑
j∈N

v({j}) + (1− α)v({i}) +
v({i})∑
j∈N v({j})

[v(N)−
∑
j∈N

v({j})]. (2)

This formulation makes clear that an α-proportional surplus division value can also be

interpreted as first assigning to every player a convex combination of the average and its

own stand-alone worth, and then allocating the surplus v(N)−
∑

j∈N v({j}) proportional

to the stand-alone worths. The payoff 1
n

∑
j∈N v({j}) can be viewed as an egalitarian

distribution, while the payoff v({i}) can be interpreted as an egocentric distribution of

the stand-alone worths. Hence, if α ∈ [0, 1] the value ϕα(N, v) can be seen as making

a trade-off between egocentrism and egalitarianism, where the coefficient α ∈ [0, 1] is a

measure of the social preference between egocentrism and egalitarianism. In the extreme

cases, α = 1 yields the EPSD value and reflects that the society prefers egalitarianism,

while α = 0 yields the PD value and reflects that the society prefers egocentrism.

In what follows, we refer to the class of α-proportional surplus division values as ‘pro-

portional surplus division values’.

4. Axiomatizations

4.1. Axiomatizations of the family of proportional surplus division values

In this section, we provide axiomatizations of the family of proportional surplus division

values using known axioms that are mentioned in Section 2, and either one of two new
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axioms. These new axioms are concerned with how a value should respond to the separa-

torization of a player in a game. Separatorization of a player refers to the complete loss

of productive potential of cooperation within any coalition containing this player. More

specifically, a new game is constructed, in which the worth of any coalition containing the

separator is equal to the sum of the stand-alone worths of the players in this coalition.

Formally, for (N, v) ∈ GNnz and i ∈ N , we denote by (N, vi) the game in which player i

becomes a separator: For every S ⊆ N ,

vi(S) =

{∑
j∈S v({j}) if i ∈ S,

v(S) otherwise.

For S = {i1, i2, . . . , is} ⊆ N , consider the sequence (vi1 , (vi1)i2 , . . . , (vik)ik+1 , . . . , (vis−1)is).

Note that (vi)j = (vj)i for every pair i, j ∈ N , so that (N, vS), with vS = (vis−1)is in the

sequence above, is well defined for every coalition S ⊆ N , and does not depend on the

order in which the players become separators. Specifically, (N, vN) is the corresponding

additive game of (N, v) such that vN(S) =
∑

j∈S v({j}) for all S ⊆ N .

4.1.1. Proportional loss under separatorization

The first new axiom is proportional loss under separatorization and states that, if a

player becomes a separator, then any two other players are affected proportionally to their

stand-alone worths. Obviously, this axiom is considered only for games with at least three

players.

• Proportional loss under separatorization. For all (N, v) ∈ GNnz, all h ∈ N , and

all i, j ∈ N\{h},

ψi(N, v)− ψi(N, vh)
v({i})

=
ψj(N, v)− ψj(N, vh)

v({j})
.

Notice that (N, vh) ∈ GNnz for all (N, v) ∈ GNnz and h ∈ N , since the stand-alone worths

do not change when a player becomes a separator. We begin the axiomatic study by

uncovering two useful properties implied by the combination of efficiency and proportional

loss under separatorization. The first property says that under these two axioms, if two

values coincide on the class of quasi-additive games, then they coincide on the class of all

games in GNnz. This also shows the importance of the class of quasi-additive games.

Lemma 1. Let |N | ≥ 3. Consider two values ψ and ϕ satisfying efficiency and proportional

loss under separatorization on GNnz such that ψ = ϕ on ANnz. Then ψ = ϕ on GNnz.

The proof of this lemma and of all other results can be found in Appendix A.

The second property follows from this lemma and describes a relation between the

payoffs of any game in GNnz and the game where all players become separators.
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Corollary 1. Let |N | ≥ 3. If a value ψ on GNnz satisfies efficiency and proportional loss

under separatorization, then

ψi(N, v)− ψi(N, vN) =
v({i})∑
j∈N v({j})

v(N)− v({i}) (3)

for all (N, v) ∈ GNnz and i ∈ N .

Remark 1. The converse of Corollary 1 does not hold since a value with the form of (3)

need not satisfy efficiency as can be illustrated by the value ϕ = PD + a, where a ∈ RN

is such that
∑

i∈N ai 6= 0, which also satisfies (3) but not efficiency. However, every value

of the form given in (3) satisfies proportional loss under separatorization, which follows

since applying (3) to (N, vh) and using the fact that vh(N) =
∑

j∈N v({j}), we have

ψi(N, v
h)−ψi(N, vN) = 0. Subtracting this equality from (3) yields ψi(N, v)−ψi(N, vh) =

v({i})∑
j∈N v({j})v(N)− v({i}), as desired.

The following theorem characterizes a family of values on a restrictive domain of quasi-

additive games. This theorem echoes Theorem 1 in Chun (1988) that shows a similar result

for the situation that the sum of all stand-alone worths is nonzero.

Theorem 1. Let |N | ≥ 3. A value ψ on QANnz satisfies efficiency, anonymity, no ad-

vantageous reallocation, and continuity if and only if there exists a continuous function

g : R2 → R such that

ψi(N, v) =
v({i})v(N)∑
j∈N v({j})

−
(

v({i})∑
j∈N v({j})

− 1

n

)
g(
∑
j∈N

v({j}), v(N)) (4)

for all (N, v) ∈ QANnz and i ∈ N .

Remark 2. In Theorem 1, if continuity is replaced by the weaker condition that ψ is

continuous at least one point of its domain, then it affects only the properties of g which is

no longer required to be continuous, but does not affect equation (4). We refer to Remark

1 in Chun (1988).

The ED, ESD, PD, and EPSD values are members of the family characterized by

Theorem 1. They are obtained by setting g(
∑

j∈N v({j}), v(N)) equal to v(N), v(N) −∑
j∈N v({j}), 0, and

∑
j∈N v({j}), respectively.

Among the values characterized in Theorem 1, only the affine combinations of the PD

and EPSD values satisfy proportional loss under separatorization and weak linearity. This

result still holds even if the domain QANnz extends to the domain GNnz.

Theorem 2. Let |N | ≥ 3. A value ψ on GNnz satisfies efficiency, anonymity, no advanta-

geous reallocation, proportional loss under separatorization, and weak linearity if and only

if there is α ∈ R such that ψ = αEPSD + (1− α)PD.
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A subfamily of affine combinations of the PD value and the EPSD value on GNnz is

characterized by imposing superadditive monotonicity.

Theorem 3. Let |N | ≥ 3. A value ψ on GNnz satisfies efficiency, anonymity, no advanta-

geous reallocation, proportional loss under separatorization, weak linearity, and superaddi-

tive monotonicity if and only if there is α ∈ [0, n
n−1 ] such that ψ = αEPSD + (1− α)PD.

Remark 3. Define the following modification of the EPSD value:

EPSD′i(N, v) =
1

n− 1

∑
j∈N\{i}

v({j}) +
v({i})∑
j∈N v({j})

[v(N)−
∑
j∈N

v({j})].

The difference between the EPSD value and EPSD′ is that in the last one, each player

i ∈ N first gets the average stand-alone worth over all other players j ∈ N \ {i} instead

of the average stand-alone worth over all players as in the EPSD value. Then, the family

of values characterized in Theorem 3 can also be expressed as {α′EPSD′ + (1 − α′)PD |
α′ ∈ [0, 1]} with α′ = n−1

n
α.

We identify the family of convex combinations of the PD value and the EPSD value on

GNnz by replacing anonymity in Theorem 3 by weak desirability.

Theorem 4. Let |N | ≥ 3. A value ψ on GNnz satisfies efficiency, no advantageous realloca-

tion, proportional loss under separatorization, weak linearity, superadditive monotonicity,

and weak desirability if and only if there is α ∈ [0, 1] such that ψ = αEPSD+ (1−α)PD.

The proof uses the following lemma, which reveals that weak desirability together with

some of the axioms in Theorem 3 imply anonymity.

Lemma 2. On GNnz with |N | ≥ 3, efficiency, no advantageous reallocation, proportional

loss under separatorization, and weak desirability imply anonymity.

4.1.2. Proportional balanced contributions under separatorization

Notice that in the results of Section 4.1.1, we had to exclude two-player games. The

reason is that proportional loss under separatorization compares the effect on the payoffs

of two distinct players by separatorization of yet another (third) player, and thus involves

three players. In contrast, we introduce proportional balanced contributions under separa-

torization which states that any two players are affected proportionally to their stand-alone

worths if the other becomes a separator.

• Proportional balanced contributions under separatorization. For all (N, v) ∈
GNnz and all i, j ∈ N ,

ψi(N, v)− ψi(N, vj)
v({i})

=
ψj(N, v)− ψj(N, vi)

v({j})
.
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Since proportional balanced contributions under separatorization only compares the

effect on the payoffs of two players by mutually becoming a separator, and thus involves

only two players, it turns out that using this axiom instead of proportional loss under

separatorization, Lemma 1 and Corollary 1 can be stated also for two-player games.

Lemma 3. Consider two values ψ and ϕ satisfying efficiency and proportional balanced

contributions under separatorization on GNnz such that ψ = ϕ on ANnz. Then ψ = ϕ on GNnz.

Corollary 2. If a value ψ on GNnz satisfies efficiency and proportional balanced contribu-

tions under separatorization, then

ψi(N, v)− ψi(N, vN) =
v({i})∑
j∈N v({j})

v(N)− v({i})

for all (N, v) ∈ GNnz and i ∈ N .

Comparing Corollary 1 and Corollary 2, efficiency together with either proportional

loss under separatorization or proportional balanced contributions under separatorization

generate the family of values with the same formula. Thus, we can adopt proportional

balanced contributions under separatorization instead of proportional loss under separa-

torization for the axiomatic results given in Section 4.1.1.

Theorem 5. Let |N | ≥ 3. Let ψ be a value on GNnz that satisfies efficiency, no advantageous

reallocation, proportional balanced contributions under separatorization, and weak linearity.

Then,

(i) ψ satisfies anonymity if and only if there is α ∈ R such that ψ = αEPSD + (1 −
α)PD.

(ii) ψ satisfies anonymity and superadditive monotonicity if and only if there is α ∈
[0, n

n−1 ] such that ψ = αEPSD + (1− α)PD.

(iii) ψ satisfies weak desirability and superadditive monotonicity if and only if there is

α ∈ [0, 1] such that ψ = αEPSD + (1− α)PD.

Remark 4. Although Lemma 3 and Corollary 2 are valid also for two-player games, in

Theorem 5, the restriction |N | 6= 2 cannot be omitted since no advantageous reallocation

is just a restatement of efficiency if |N | = 2. Specifically, if |N | = 2 then, for example, the

value defined by

ψi(N, v) =
v({i})∑
j∈N v({j})

v(N)− v({i}) +
(v({i}))2∑
j∈N(v({j}))2

∑
j∈N

v({j}) (5)

satisfies all axioms, but it does not coincide with αEPSD + (1− α)PD for any α ∈ R.
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Remark 5. In Theorems 2–5, no advantageous reallocation can be replaced by a stronger

axiom, called transfer rationality, requiring that an additive game is constructed from

the initial additive game by transfering individual productivities across the players, then

the difference in payoffs for any two players is proportional to the difference in their stand-

alone worths.3 In this way, the restriction |N | 6= 2 can be taken out in Theorem 5.

4.2. Axiomatizations of specific proportional surplus division values

We now provide characterizations for specific values from the family of proportional

surplus division values. For this, we use a parametrized axiom, depending on α ∈ [0, 1],

such that it singles out the corresponding value ϕα from the class {αEPSD+ (1−α)PD |
α ∈ [0, 1]}.

The α-egalitarian inessential game property makes a trade-off between egalitarianism

and egocentrism in additive games, by requiring that in such games a fraction α of the worth

of the grand coalition is allocated equally over the players, and the players additionally

keep the complementary fraction (1− α) of their own stand-alone worth.

• α-egalitarian inessential game property. Let α ∈ [0, 1]. For every additive game

(N, v) ∈ ANnz and all i ∈ N , ψi(N, v) = (1− α)v({i}) + α v(N)
n

.

When α = 0 this yields the well-known inessential game property, while α = 1 yields

equal division for inessential games as introduced in Ferrières (2017). Further, a higher

(respectively lower) α reflects a more egalitarian (respectively egocentric) society. Adding

this axiom to the axioms of efficiency and proportional loss under separatorization char-

acterizes the corresponding α-proportional surplus division value (except for two-player

games).

Theorem 6. Let α ∈ [0, 1] and |N | 6= 2. A value ψ on GNnz satisfies efficiency, proportional

loss under separatorization, and the α-egalitarian inessential game property if and only if

ψ = ϕα.

Next, we provide an alternative characterization of a specific proportional surplus di-

vision value using another parameterized axiom. For α ∈ [0, 1], we call a game α-essential

if
∑

i∈N αv({i}) ≤ v(N). Clearly, for α = 0 this boils down to v(N) ≥ 0, while for α = 1

this is weak essentiality. The following axiom imposes a lower bound on the payoffs of

players in α-essential games between zero and the average stand-alone worth. Specifically,

it requires that each player receives at least a fraction α ∈ [0, 1] of the average stand-alone

worth if it is feasible to do so.

3Transfer rationality. For any additive games (N, v), (N,w) ∈ ANnz such that
∑
j∈N v({j}) =∑

j∈N w({j}), it holds that ψi(N, v)− ψi(N,w) = β[v({i})− w({i})] for some β ∈ R and all i ∈ N .
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• α-reasonable lower bound. Let α ∈ [0, 1]. For every α-essential game (N, v) ∈ GNnz
and all i ∈ N , ψi(N, v) ≥ α

n

∑
j∈N v({j}).

We compare this axiom with a known lower bound axiom for α-essential games which

requires that in such games, every player earns at least a fraction α of its stand-alone

worth, see van den Brink et al. (2016).4

• α-individual rationality. Let α ∈ [0, 1]. For every α-essential game (N, v) ∈ GNnz
and all i ∈ N , ψi(N, v) ≥ αv({i}).

Notice that α-individual rationality relies on egocentrism and α-reasonable lower bound

rests on egalitarianism. In both cases, α can be seen as a social selfish coefficient balancing

the preference between egalitarianism and egocentrism. For α = 0 both boil down to

nonnegativity, requiring that ψi(N, v) ≥ 0 for all i ∈ N and every game (N, v) ∈ GNnz with

v(N) ≥ 0. For α = 1, 1-individual rationality is the usual individual rationality axiom

requiring that in a weakly essential game every player earns at least its stand-alone worth,

while 1-reasonable lower bound guarantees every player at least the average stand-alone

worth. It turns out that adding α-reasonable lower bound to efficiency and proportional

loss under separatorization characterizes the corresponding ϕα, while adding α-individual

rationality yields only the PD value.

Theorem 7. Let α ∈ [0, 1] and |N | 6= 2. A value ψ on GNnz satisfies efficiency, proportional

loss under separatorization, and α-reasonable lower bound if and only if ψ = ϕα.

Corollary 3. Let α ∈ [0, 1] and |N | 6= 2. A value ψ on GNnz satisfies efficiency, proportional

loss under separatorization, and α-individual rationality if and only if ψ = PD.

Theorems 6 and 7 immediately imply axiomatic characterizations of the PD value as

well as the EPSD value by taking ϕα with α = 0, 1 respectively.

All characterization results in this section still hold by replacing proportional loss under

separatorization with proportional balanced contributions under separatorization. In this

way, the restriction |N | 6= 2 can be taken out.

Remark 6. The difference between the PD value and the proportional Shapley value5 is

pinpointed to one axiom. With Theorem 6, it immediately follows that the PD value is

4Recall that α-individual rationality is used to characterize the convex combinations of the ED and

ESD values in van den Brink et al. (2016) and Xu et al. (2015).
5The proportional Shapley value is defined as: ψPShi (N, v) =

∑
S⊆N,i∈S

v({i})∑
j∈S v({j})

∆v(S) for all (N, v) ∈

GNnz and i ∈ N , where ∆v(S) = v(S)−
∑

T⊆S,T 6=∅
∆v(T ) is the Harsanyi dividend of S.
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characterized by efficiency, proportional balanced contributions under separatorization, and

the inessential game property. Béal et al. (2018) offer a characterization of the proportional

Shapley value on GNnz by employing efficiency, proportional balanced contributions under

dummification6, and the inessential game property.

5. Conclusion

In this paper, we have introduced the family of proportional division surplus values,

being the convex combinations of the EPSD and PD values. These values make a trade-off

between egalitarianism and egocentrism. Therefore, this is similar in spirit to the literature

that combines diffferent economic allocation principles, such as also, for example, the

egalitarian Shapley values, the consensus values, or the convex combinations of the equal

surplus division value and the equal division value. We provided characterizations for this

family of values as well as any member belonging to this family using two parallel axioms

on a fixed player set based on player separatorization. The study of other characterizations

for the family of proportional surplus division values is left for future research.

Appendix A: Proofs

Let us denote K(v) =
∑

j∈N v({j}) for all (N, v) ∈ GNnz. If no ambiguity is possible, we

use K instead of K(v).

Proof of Lemma 1. Suppose that (N, v) ∈ GNnz with |N | ≥ 3. Denote D(N, v) = {i ∈
N | i is a separator in (N, v)}. We proceed by descending induction on |D(N, v)|.

Initialization. For |D(N, v)| = n, i.e. all players are separators, (N, v) is an additive

game. Then ψ = ϕ by hypothesis. There is no game in which |D(N, v)| = n− 1, because

if n− 1 players are separators then the nth one is also a separator. Therefore, ψ = ϕ holds

for |D(N, v)| ≥ n− 1.

Induction hypothesis. Suppose that ψ(N, v) = ϕ(N, v) for all games (N, v) ∈ GNnz such

that |D(N, v)| ≥ d, for 0 < d ≤ n− 1.

Induction step. Consider any game (N, v) ∈ GNnz such that |D(N, v)| = d − 1. Since

d ≤ n−1, and thus d−1 = |D(N, v)| ≤ n−2, then |N\D(N, v)| ≥ 2. Let h, l be two distinct

players in N\D(N, v). For any i, j ∈ N\{h}, by proportional loss under separatorization

6Proportional balanced contributions under dummification. For all (N, v) ∈ GNnz and i ∈ N , it

holds that
ψi(N,v)−ψi(N,v

j
d)

v({i}) =
ψj(N,v)−ψj(N,v

i
d)

v({j}) , where (N, vid) ∈ GNnz is the game in which i is dummified:

vid(S) = v(S\{i}) + v({i}) for all S ⊆ N with i ∈ S, and vid(S) = v(S) for all S 63 i.
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of ψ and ϕ,

ψi(N, v)− ψi(N, vh)
v({i})

=
ψj(N, v)− ψj(N, vh)

v({j})
, (6)

and

ϕi(N, v)− ϕi(N, vh)
v({i})

=
ϕj(N, v)− ϕj(N, vh)

v({j})
. (7)

Since h is a separator in (N, vh) and not a separator in (N, v), and D(N, v) ⊂ D(N, vh),

then |D(N, vh)| ≥ |D(N, v)|+ 1 = d. The induction hypothesis then implies that

ψk(N, v
h) = ϕk(N, v

h), for all k ∈ N. (8)

Subtracting (7) from (6) and using (8) yields

ψi(N, v)− ϕi(N, v) =
v({i})
v({j})

[ψj(N, v)− ϕj(N, v)].

The above equality similarly holds for all i, j ∈ N\{l}. Since |N | ≥ 3, this equality

holds for all i, j ∈ N . Then, summing this equality over i ∈ N and using efficiency, we

obtain

v(N)− v(N) =

∑
i∈N v({i})
v({j})

[ψj(N, v)− ϕj(N, v)].

Since
∑

i∈N v({i})
v({j}) 6= 0 for all (N, v) ∈ GNnz, it immediately follows that ψj(N, v) = ϕj(N, v)

for all j ∈ N .

Proof of Corollary 1. Let ψ be a value on GNnz, |N | ≥ 3, satisfying efficiency and

proportional loss under separatorization. We first present two claims on ψ.

Claim 1. For any h ∈ N , i ∈ N\{h} and any non-empty S ⊆ N\{i, h},

ψi(N, v)− ψi(N, vh) = v({i})
K−v({h}) [v(N)− ψh(N, v)− vh(N) + ψh(N, v

h)], (9)

ψi(N, v
S)− ψi(N, vS∪{h}) = v({i})

K−v({h}) [−ψh(N, v
S) + ψh(N, v

S∪{h})]. (10)

Proof. Let (N, v) ∈ GNnz, h ∈ N and i, j ∈ N\{h}. By proportional loss under separator-

ization, we have

ψj(N, v)− ψj(N, vh) =
v({j})
v({i})

[ψi(N, v)− ψi(N, vh)].
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Summing this equality over j ∈ N\{h} and using efficiency, we have

v(N)− ψh(N, v)− [vh(N)− ψh(N, vh)] =
∑

j∈N\{h} v({j})
v({i}) [ψi(N, v)− ψi(N, vh)],

which implies (9).

Pick any non-empty S ⊆ N , and consider (N, vS) ∈ GNnz. Since vS(N) =
∑

k∈N v({k}) =

K and vS({k}) = v({k}) for all k ∈ N , then (10) is implied by (9) applied to (N, vS).

Claim 2. For all S ⊆ N with 1 ≤ |S| ≤ n− 1, ψ(N, vS) = ψ(N, vN).

Proof. The assertion is obtained by an induction with respect to the number of separators.

Initialization. Since (N, vN\{h}) = (N, vN) for all h ∈ N , we obtain that ψ(N, vS) =

ψ(N, vN) for all S ⊆ N with |S| = n− 1,

Induction hypothesis. Assume that ψ(N, vT ) = ψ(N, vN) holds for all T ⊆ N with

|T | = t, for some 2 ≤ t ≤ n− 1.

Induction step. Consider (N, vS) ∈ GNnz and S ( N such that |S| = t−1. Take j ∈ N \S
and i ∈ N \ (S ∪ {j}) (It is possible since |S| ≤ n− 2). We have

ψi(N, v
S)− ψi(N, vS∪{j})

(10)
=

v({i})∑
k∈N\{j} v({k})

[−ψj(N, vS) + ψj(N, v
S∪{j})]

(IH)
=

v({i})∑
k∈N\{j} v({k})

[−ψj(N, vS) + ψj(N, v
N)]

(IH)
=

v({i})∑
k∈N\{j} v({k})

[−ψj(N, vS) + ψj(N, v
S∪{i})]

(10)
=

v({i})∑
k∈N\{j} v({k})

[ v({j})∑
k∈N\{i} v({k})

[ψi(N, v
S)− ψi(N, vS∪{i})]

]
(IH)
=

v({i})v({j})∑
k∈N\{j} v({k})

∑
k∈N\{i} v({k})

[ψi(N, v
S)− ψi(N, vS∪{j})],

where (IH) represents that the equality holds by the induction hypothesis.

Since v({i})v({j})∑
k∈N\{j} v({k})

∑
k∈N\{i} v({k})

6= 1, we have ψi(N, v
S) = ψi(N, v

S∪{j}) for every i ∈
N \ (S ∪ {j}). For any k ∈ S, again by proportional loss under separatorization, we

have ψk(N,v
S)−ψk(N,v

S∪{j})
v({j}) = ψi(N,v

S)−ψi(N,v
S∪{j})

v({i}) , which yields ψk(N, v
S) = ψk(N, v

S∪{j}).

Efficiency then implies that ψj(N, v
S) = ψj(N, v

S∪{j}). Since there exists such a j for all

S ( N , we conclude that ψ(N, vS) = ψ(N, vS∪{j})
(IH)
= ψ(N, vN).

Based on Claims 1 and 2, we prove Corollary 1 as follows.
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Proof of Corollary 1. For any i ∈ N and j ∈ N\{i}, Claim 2 together with (9) imply that

ψi(N, v)− ψi(N, vN) =
v({i})∑

k∈N\{j} v({k})
[v(N)− vN(N)− ψj(N, v) + ψj(N, v

N)],

which can be rewritten as:

[K − v({j})][ψi(N, v)− ψi(N, vN)]

=v({i})[v(N)− vN(N)− (ψj(N, v)− ψj(N, vN))].

Summing the above equality over j ∈ N\{i} yields

[(n− 1)K −
∑

j∈N\{i}

v({j})][ψi(N, v)− ψi(N, vN)]

=v({i})
[
(n− 1)[v(N)− vN(N)]−

∑
j∈N\{i}

(ψj(N, v)− ψj(N, vN))

]
.

Using
∑

j∈N\{i}(ψj(N, v) − ψj(N, v
N)) = v(N) − ψi(N, v) − vN(N) + ψi(N, v

N), which

follows from efficiency, we have

[(n− 2)K + v({i})][ψi(N, v)− ψi(N, vN)]

=v({i})
[
(n− 2)[v(N)− vN(N)] + [ψi(N, v)− ψi(N, vN)]

]
.

Since n− 2 6= 0, it follows that

K[ψi(N, v)− ψi(N, vN)] = v({i})[v(N)− vN(N)],

as desired.

Proof of Theorem 1. It can easily be checked that any value of the form given in (4)

satisfies the four axioms on QANnz. To prove the ‘only if’ part, let (N, v) ∈ QANnz be any

game with |N | ≥ 3. Without loss of generality, we assume that (N, v) is individually

positive. Let ψ be a value on QANnz satisfying the four axioms. Also let i, j ∈ N be two

fixed players, and let ε ∈ R+ be any number such that 0 < ε < mini∈N{v({i})}.
First, we consider the following quasi-additive games such that the worth of the grand

coalition and the sum of all stand-alone worths are identical to those of (N, v):

(i) Consider the game (N, vij) ∈ QANnz defined by vij({i}) = v({i}) + v({j}) − ε,

vij({j}) = ε, vij({k}) = v({k}) for all k ∈ N\{i, j} and vij(N) = v(N). This

involves a transfer from j to i. By no advantageous reallocation we have

ψi(N, v) + ψj(N, v) = ψi(N, vij) + ψj(N, vij). (11)
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(ii) Consider the game (N, v′i) ∈ QANnz defined by v′i({i}) = v({i}), v′i({j}) =
∑

k∈N\{i} v({k})−
(n−2)ε, v′i({k}) = ε for all k ∈ N\{i, j}, and v′i(N) = v(N). This involves a transfer

from the players in N\{i, j} to player j. By no advantageous reallocation applied to

(N, v) and (N, v′i), we obtain∑
k∈N\{i}

ψk(N, v) =
∑

k∈N\{i}

ψk(N, v
′
i).

Efficiency then implies

ψi(N, v) = ψi(N, v
′
i). (12)

(iii) Consider the game (N, v′
ij

) ∈ QANnz defined by v′
ij

({i}) = v({j}), v′
ij

({j}) =
∑

k∈N\{j} v({k})−
(n−2)ε, v′

ij
({k}) = ε for all k ∈ N\{i, j}, and v′

ij
(N) = v(N). This game is obtained

by first switching roles between i and j in game (N, v) and then making a transfer

similar to the one in case (ii). Let π be a permutation such that π(i) = j, π(j) = i,

and π(k) = k for all k ∈ N\{i, j}.

Define the game (N, v′j) ∈ QANnz by v′j({i}) =
∑

k∈N\{j} v({k})− (n− 2)ε, v′j({j}) =

v({j}), v′j({k}) = ε for all k ∈ N\{i, j}, and v′j(N) = v(N). By no advanta-

geous reallocation applied to (N, v) and (N, v′j), we obtain
∑

k∈N\{j} ψk(N, v) =∑
k∈N\{j} ψk(N, v

′
j). Efficiency then implies ψj(N, v) = ψj(N, v

′
j). Notice that (N, v′j) =

(N, πv′
ij

). By anonymity, ψj(N, v
′
j) = ψπ(i)(N, πv

′
ij

) = ψi(N, v
′
ij

). Therefore,

ψj(N, v) = ψi(N, v
′
ij

). (13)

(iv) Consider the game (N, v′ij) ∈ QANnz defined by v′ij({i}) = v({i}) + v({j}) − ε,

v′ij({j}) =
∑

k∈N\{i,j} v({k}) − (n − 3)ε, v′ij({k}) = ε for all k ∈ N\{i, j}, and

v′ij(N) = v(N). This involves a transfer from the players in N\{i, j} to player j

given game (N, vij). By no advantageous reallocation applied to (N, vij) and (N, v′ij),

we obtain
∑

k∈N\{i} ψk(N, vij) =
∑

k∈N\{i} ψk(N, v
′
ij). Efficiency then implies

ψi(N, vij) = ψi(N, v
′
ij). (14)

(v) Consider the game (N, v′) ∈ QANnz defined by v′({j}) =
∑

k∈N v({k}) − (n − 1)ε,

v′({k}) = ε for all k ∈ N\{j}, and v′(N) = v(N). This involves a transfer from

i to j given game (N, v′ij). Let (N, v′′) ∈ QANnz be the game defined by v′′({i}) =∑
k∈N v({k})− (n− 1)ε, v′′({k}) = ε for all k ∈ N\{i}, and v′′(N) = v(N). Clearly,

(N, v′′) = (N, πv′) for the permutation such that π(i) = j, π(j) = i, and π(k) = k

for all k ∈ N\{i, j}. By anonymity, we obtain ψi(N, v
′) = ψj(N, v

′′). On the other

hand, applying no advantageous reallocation to (N, v′′) and (N, vij), and then using

efficiency, we obtain ψj(N, v
′′) = ψj(N, vij). Therefore,

ψj(N, vij) = ψi(N, v
′). (15)

18



Next, based on (11)-(15), we derive the formula of ψi(N, v). Substituting (12)-(15) into

(11), we have

ψi(N, v
′
i) + ψi(N, v

′
ij

) = ψi(N, v
′
ij) + ψi(N, v

′). (16)

Notice that each game used in (16) is uniquely determined by four parameters: the

worth of {i}, the number ε (which determined the stand-alone worths of players k ∈
N \ {i, j}), the sum of stand-alone worths

∑
k∈N v({k}) (which, with ε, determines the

stand-alone worth of j), and the worth of the grand coalition v(N). For such game (N, v0),

let Fi : R4 → R be such that ψi(N, v0) = Fi(v0({i}), ε,
∑

k∈N v0({k}), v0(N)). Clearly,
ψi(N, v

′
i) = Fi(v({i}), ε,K, v(N)),

ψi(N, v
′
ij

) = Fi(v({j}), ε,K, v(N)),

ψi(N, v
′
ij) = Fi(v({i}) + v({j})− ε, ε,K, v(N)),

ψi(N, v
′) = Fi(ε, ε,K, v(N)).

(17)

Let c ∈ R be such that c− ε > 0. Let f : R4 → R and h : R3 → R be defined by

f(c− ε, ε,K, v(N)) = Fi(c, ε,K, v(N))− Fi(ε, ε,K, v(N)), (18)

and

h(ε,K, v(N)) = Fi(ε, ε,K, v(N)). (19)

(Notice that we surpress the index i at the functions f and h. In fact, as we see later,

these functions are the same for every i ∈ N .)

Notice that (16) can be rewritten as

ψi(N, v
′
i)− ψi(N, v′) + ψi(N, v

′
ij

)− ψi(N, v′) = ψi(N, v
′
ij)− ψi(N, v′).

Taking (17) and (18) into account, we can then write[
Fi(v({i}), ε,K, v(N))− Fi(ε, ε,K, v(N))

]
+
[
Fi(v({j}), ε,K, v(N))− Fi(ε, ε,K, v(N))

]
=Fi(v({i}) + v({j})− ε, ε,K, v(N))− Fi(ε, ε,K, v(N)),

which is equivalent to

f(v({i})− ε, ε,K, v(N)) + f(v({j})− ε, ε,K, v(N))

=f(v({i}) + v({j})− 2ε, ε,K, v(N))

Since v({i}) + v({j}) − 2ε = [v({i}) − ε] + [v({j}) − ε], f is additive with respect to its

first argument for each ε, K and v(N). By continuity of ψ, f is continuous. Therefore,
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the theorem on Cauchy’s equation (see Corollary 3.1.9, p.51, Eichhorn (1978)) applied to

f implies that there exists a continuous function f0 : R3 → R such that

f(c− ε, ε,K, v(N)) = (c− ε)f0(ε,K, v(N)). (20)

Substituting (20) into (18) and taking c = v({i}), it follows that

(v({i})− ε)f0(ε,K, v(N)) = Fi(v({i}), ε,K, v(N))− Fi(ε, ε,K, v(N)).

We obtain

ψi(N, v) = ψi(N, v
′
i)

= Fi(v({i}, ε,K, v(N))

= f(v({i})− ε, ε,K, v(N)) + Fi(ε, ε,K, v(N))

= (v({i})− ε)f0(ε,K, v(N)) + h(ε,K, v(N)), (21)

where the first equality follows from (12), the second from (17), the third from (18), and

the last from (19) and (20).

Note that (21) holds for all i ∈ N . Summing up these equations over all i ∈ N and

using efficiency, we obtain

v(N) = (K − nε)f0(ε,K, v(N)) + nh(ε,K, v(N)).

It follows that

h(ε,K, v(N)) =
v(N)

n
− K

n
f0(ε,K, v(N)) + εf0(ε,K, v(N)).

The above equation and (21) yield

ψi(N, v) = v({i})f0(ε,K, v(N)) +
v(N)

n
− K

n
f0(ε,K, v(N)). (22)

Taking any two positive numbers ε1, ε2 < mini∈N{v({i})}, (22) yields v({i})f0(ε1, K, v(N))+
v(N)
n
− K

n
f0(ε1, K, v(N)) = ψi(N, v) = v({i})f0(ε2, K, v(N)) + v(N)

n
− K

n
f0(ε2, K, v(N)), and

thus it must be that (v({i})− K
n

)(f0(ε1, K, v(N))−f0(ε2, K, v(N))) = 0. Notice that f0 is a

function with respect to ε,K, v(N), then it is possible to take a game with v({i})− K
n
6= 0,

and thus f0(ε1, K, v(N)) = f0(ε2, K, v(N)). This means that the number f0(ε,K, v(N))

does not depend on ε (belonging to its domain). Then, let g : R2 → R be a continuous

function defined by f0(ε,K, v(N)) = v(N)
K
− 1

K
g(K, v(N)). Using this function, (22) can be

rewritten as

ψi(N, v) =
v({i})v(N)

K
− v({i})

K
g(K, v(N)) +

v(N)

|N |
− Kv(N)

nK
+
Kg(K, v(N))

nK

=
v({i})
K

v(N)− (
v({i})
K

− 1

n
)g(K, v(N)),

as desired.
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Proof of Theorem 2. Since it is obvious that ψα = αEPSD+(1−α)PD, α ∈ R, satisfies

efficiency, anonymity, and weak linearity, we only show that ψ satisfies proportional loss

under separatorization and no advantageous reallocation. For any (N, v) ∈ GNnz and h ∈ N ,

using (1) and the definition of (N, vh), we have

ϕαi (N, vh) =
α

n

∑
j∈N

vh({j}) +
vh({i})∑
j∈N v

h({j})
[vh(N)−

∑
j∈N

αvh({j})]

=
α

n
K(v) +

v({i})
K(v)

[K(v)− αK(v)]

for all i ∈ N\{h}.
Subtracting the above equation from (1) for arbitrary (N, v) ∈ GNnz, we have

ϕαi (N, v)− ϕαi (N, vh) =
v({i})
K(v)

[v(N)−K(v)], for all i ∈ N \ {h}.

It follows that

ϕαi (N, v)− ϕαi (N, vh)

v({i})
=

1

K(v)
[v(N)−K(v)], for all i ∈ N \ {h},

which immediately shows that proportional loss under separatorization is satisfied.

To show that ϕα satisfies no advantageous reallocation, let (N, v), (N,w) ∈ QANnz and

T ⊆ N be such that v(N) = w(N),
∑

i∈T v({i}) =
∑

i∈T w({i}), and v({i}) = w({i}) for

all i ∈ N\T . Clearly, K(v) = K(w). Then, using (1),∑
i∈T

ϕαi (N, v) =
∑
i∈T

[α
n
K(v) +

v({i})
K(v)

[v(N)− αK(v)]
]

=
αt

n
K(v) +

∑
i∈T v({i})
K(v)

[v(N)− αK(v)]

=
αt

n
K(w) +

∑
i∈T w({i})
K(w)

[w(N)− αK(w)]

=
∑
i∈T

ϕαi (N,w),

which shows that no advantageous reallocation is satisfied.

It remains to prove the ‘only if’ part. Let ψ be a value on GNnz that satisfies the five

axioms.

First, consider any game (N, v) ∈ QANnz and (N, vN) ∈ ANnz. From Corollary 1, we have

ψi(N, v)− ψi(N, vN) =
v({i})
K

v(N)− v({i}), for all i ∈ N. (23)
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Since (N, vN) is an additive game, this implies that ψi(N, v
N) doesn’t have the terms

of v(S), S ⊆ N , |S| 6= 1. Moreover, since the right-hand side of (23) only has the terms

of v(S) with |S| = 1, n, we obtain from (23) that ψi(N, v) has the term v({i})
K

v(N), but

no terms of v(S), S ⊆ N , 1 < |S| < n. This implies that ψi(N, v) is continuous with

respect to v(S) with S ⊆ N , |S| 6= 1. Hence, from Remark 2 and Theorem 1, ψi(N, v) and

ψi(N, v
N) have the form of (4). Substituting them into (23), we obtain for every i ∈ N ,

ψi(N, v)− ψi(N, vN)− v({i})
K

v(N) + v({i})

=
v({i})v(N)

K
−
(
v({i})
K

− 1

n

)
g(K, v(N))− v({i})vN(N)

K
+

+

(
v({i})
K

− 1

n

)
g(K, vN(N))− v({i})v(N)

K
+ v({i})

= −
(
v({i})
K

− 1

n

)
(g(K, v(N))− g(K, vN(N)) = 0, (24)

where in the second equality we use vN(N) = K, and the last equality follows from (23).

To obtain the formula of ψi(N, v), (N, v) ∈ QANnz, we consider two cases:

(i) Suppose that (N, v) ∈ QANnz is such that v({i}) 6= v({j}) for some i, j ∈ N . It

must be that v({h})
K
6= 1

n
for some h ∈ N . Then, from (24) we obtain g(K, v(N)) =

g(K, vN(N)). This means that g : R\{0}×R→ R is a constant function with respect

to its second argument for each K since vN(N) = K. Let f : R\{0} → R be such

that f(x) = g(x, y) for all x ∈ R\{0} and y ∈ R. Then (4) can be written as

ψi(N, v) =
v({i})v(N)

K
−
(
v({i})
K

− 1

n

)
f(K). (25)

Consider any (N, v), (N,w) ∈ QANnz and a ∈ R such that (N, av + w) ∈ QANnz
and there exists c ∈ R with w({i}) = cv({i}) for all i ∈ N . By weak linearity,

ψi(N, av + w) = aψi(N, v) + ψi(N,w) for all i ∈ N . Using (25), this yields that

f(K(av + w)) = af(K(v)) + f(K(w)), which implies that f satisfies linearity on

R\{0}. Hence, f(K) = αK, where α is an arbitrary constant. Therefore, using (25)

we have

ψi(N, v) =
v({i})v(N)

K
−
(
v({i})
K

− 1

n

)
αK

=
v({i})v(N)

K
− αv({i}) +

1

n
αK

=
1

n

∑
j∈N

αv({j}) +
v({i})
K

[v(N)−
∑
j∈N

αv({j})],

which equals to Formule (1) of ϕα(N, v).
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(ii) Suppose that (N, v) ∈ QANnz is such that v({i}) = v({j}) for all i, j ∈ N . Then, by

(4) we have ψi(N, v) = v(N)
n

, which also satisfies (1).

Second, consider any game (N, v) ∈ GNnz. Since (N, vN) is an additive game, by (1)

applied to (N, vN), we have ψi(N, v
N) = α

n
K + v({i})

K
(K − αK) = α

n

∑
j∈N v({j}) + (1 −

α)v({i}). Substituting this equation into (3) from Corollary 1, we obtain ψi(N, v) =

ψi(N, v
N)+ v({i})

K
v(N)−v({i}) = α

n
K+(1−α)v({i})+ v({i})

K
v(N)−v({i}), which coincides

with (2), and thus ψ(N, v) = αEPSD(N, v) + (1− α)PD(N, v).

Proof of Theorem 3. For the ‘if’ part, we already know that ϕα = αEPSD+(1−α)PD

satisfies efficiency, anonymity, no advantageous reallocation, proportional loss under sepa-

ratorization, and weak linearity. We show that ϕα also satisfies superadditive monotonic-

ity if α ∈ [0, n
n−1 ]. Let (N, v) ∈ GNnz be an arbitrary superadditive and monotone game.

Since v(N) ≥
∑

j∈N v({j}), by (2) we have ψi(N, v) ≥ α
n

∑
j∈N v({j}) + (1 − α)v({i}) >

α
n
v({i}) + (1− α)v({i}) =

(
1− n−1

n
α
)
v({i}) ≥ 0. Hence, ψ satisfies superadditive mono-

tonicity.

It remains to prove the ‘only if’ part. Let ψ be a value on GNnz satisfying the six axioms.

From Theorem 2, there exists α ∈ R such that ψ = αEPSD+ (1−α)PD. We must show

that α belongs to [0, n
n−1 ]. Suppose, by contradiction, that α 6∈ [0, n

n−1 ]. We distinguish

the following two cases.

(i) Suppose that α < 0. Consider an additive game (N, v) ∈ ANnz, where v({i}) = 1

and v({j}) = 1− α
n−1 −

n
(n−1)α for all j ∈ N\{i}. Clearly, this game is superadditive

and monotone since α
n−1 + n

(n−1)α = α2+n
(n−1)α < 0. By Theorem 2 and (N, v) being

additive, ψi(N, v) = α
n

∑
j∈N v({j})+(1−α)v({i}) = α

n
(1+(n−1)−α− n

α
)+1−α =

α+(n−1)α)−α2

n
− 1 + 1− α = −α2

n
< 0, which contradicts superadditive monotonicity.

(ii) Suppose that α > n
n−1 . Consider an additive game (N, v) ∈ ANnz such that v({i}) =

1 + 2n
(n−1)α−n and v({j}) = 1 for all j ∈ N\{i}. Also this game is superadditive

and monotone. In this case, ψi(N, v) = α
n
(n + 2n

(n−1)α−n) + (1 − α)(1 + 2n
(n−1)α−n) =

α + 2α
(n−1)α−n + 1 − α + 2n(1−α)

(n−1)α−n = 1 + 2α+2n(1−α)
(n−1)α−n = −1 < 0, which contradicts

superadditive monotonicity.

Proof of Theorem 4. It is easy to check that ψ = αEPSD + (1 − α)PD, α ∈ [0, 1],

satisfies the six aioms. For the uniqueness, together with Theorem 3 and Lemma 2, we

have to show α ≤ 1, which follows immediately from (2) and weak desirability.
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Proof of Lemma 2. Let ψ be a value on GNnz satisfying efficiency, proportional loss under

separatorization, no advantageous reallocation, and weak desirability. Let π be a permuta-

tion on N . First, consider any two games (N, v), (N,w) ∈ ANnz such that (N,w) = (N, πv).

Without loss of generality, we assume that (N, v) is individually positive. We distinguish

the following three cases with respect to the players:

(i) π(i) = i. In this case, v({i}) = w({i}) and
∑

k∈N\{i} v({k}) =
∑

k∈N\{i}w({k}).
By no advantageous reallocation,

∑
k∈N\{i} ψk(N, v) =

∑
k∈N\{i} ψk(N,w). Efficiency

then implies that ψi(N, v) = ψi(N,w) = ψπ(i)(N, πv).

(ii) π(i) 6= i and v({i}) < K
2

. We consider a game (N, v′) ∈ ANnz such that v′({i}) =

v′({j}) = v({i}) and
∑

k∈N\{i,j} v
′({k}) = K−2v({i}), where j = π(i). By no advan-

tageous reallocation applied to (N, v), (N, v′) andN\{i}, we have
∑

k∈N\{i} ψk(N, v) =∑
k∈N\{i} ψk(N, v

′). This together with efficiency imply that ψi(N, v) = ψi(N, v
′).

On the other hand, by no advantageous reallocation applied to (N,w), (N, v′) and

N\{j}, we have
∑

k∈N\{j} ψk(N,w) =
∑

k∈N\{j} ψk(N, v
′). Efficiency then implies

that ψj(N,w) = ψj(N, v
′). Moreover, since v′(S ∪ {i}) = v′(S ∪ {j}) for all S ⊆

N\{i, j}, weak desirability implies that ψi(N, v
′) = ψj(N, v

′). Therefore, ψi(N, v) =

ψj(N,w) = ψπ(i)(N, πv).

(iii) π(i) 6= i and v({i}) ≥ K
2

. Since |N | ≥ 3, there exists at most one such player.

Applying cases (i) and (ii) to all other players j ∈ N \ {i}, we have that ψj(N, v) =

ψπ(j)(N, πv) for all j ∈ N \ {i}. Efficiency then implies that ψi(N, v) = ψπ(i)(N, πv).

The above three cases show that if a value ψ on ANnz satisfies efficiency, no advantageous

reallocation, and weak desirability, then it also satisfies anonymity. From Corollary 1,

efficiency and proportional loss under separatorization imply (3), and thus ψi(N, v) =

ψi(N, v
N)+ v({i})

K
v(N)−v({i}) = ψπ(i)(N, πv

N)+ πv({π(i)})
K

πv(N)−πv({π(i)}) = ψπ(i)(N, πv)

since πvN = (πv)N . Thus, ψ satisfies anonymity on GNnz.

Proof of Lemma 3. It is easy to check that the assertion holds for |N | = 2. For |N | ≥ 3,

the proof is similar to the proof of Lemma 1 except the induction step, which now is as

follows.

Induction step. Consider any game (N, v) ∈ GNnz such that |D(N, v)| = d − 1. Since

d < n− 1, then |N\D(N, v)| ≥ 2.

First, consider any i ∈ N\D(N, v) and any j ∈ D(N, v). Obviously, |D(N, vi)| ≥
|D(N, v)| + 1 = d and (N, v) = (N, vj). Proportional balanced contributions under sepa-

24



ratorization and the induction hypothesis imply that

ψj(N, v) = ψj(N, v
i) +

v({j})
v({i})

[ψi(N, v)− ψi(N, vj)]

= ψj(N, v
i)

(IH)
= ϕj(N, v

i)

= ϕj(N, v
i) +

v({j})
v({i})

[ϕi(N, v)− ϕi(N, vj)]

= ϕj(N, v), (26)

where the first and the last equalities follow from proportional balanced contributions

under separatorization.

Next, consider two distinct players i, k ∈ N\D(N, v). Again, proportional balanced

contributions under separatorization and the induction hypothesis imply that

ψk(N, v) =ψk(N, v
i) +

v({k})
v({i})

[ψi(N, v)− ψi(N, vk)]

(IH)
= ϕk(N, v

i) +
v({k})
v({i})

[ψi(N, v)− ϕi(N, vk)]

=ϕk(N, v) +
v({k})
v({i})

[ψi(N, v)− ϕi(N, v)],

where again the first and the last equalities follow from proportional balanced contributions

under separatorization.

Thus

ψk(N, v)− ϕk(N, v) =
v({k})
v({i})

[ψi(N, v)− ϕi(N, v)].

Summing the above equality over k ∈ N\D(N, v), together with (26), and then using

efficiency, we obtain that∑
k∈N\D(N,v)

(ψk(N, v)− ϕk(N, v)) =
∑

k∈N\D(N,v)

(
v({k})
v({i})

[ψi(N, v)− ϕi(N, v)]

)
⇔

v(N)−
∑

j∈D(N,v)

ψj(N, v)− v(N) +
∑

j∈D(N,v)

ϕj(N, v)

=
∑

k∈N\D(N,v)

(
v({k})
v({i})

[ψi(N, v)− ϕi(N, v)]

)
⇔

0 =
ψi(N, v)− ϕi(N, v)

v({i})
∑

k∈N\D(N,v)

v({k}),
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where the second equivalence follows from (26). Thus, since v({k}) 6= 0 for all k ∈ N ,

ψi(N, v) = ϕi(N, v) for any i ∈ N\D(N, v).

Proof of Corollary 2. Let ψ be a value on GNnz satisfying the two axioms. For any

(N, v) ∈ GNnz and any i, j ∈ N , by proportional balanced contributions under separator-

ization we have ψj(N, v)− ψj(N, vi) = v({j})
v({i}) [ψi(N, v)− ψi(N, vj)]. Summing this equality

over j ∈ N\{i} and using efficiency, we have

v(N)− ψi(N, v)− [vi(N)− ψi(N, vi)]

=

∑
j∈N\{i} v({j})
v({i})

ψi(N, v)− 1

v({i})
∑

j∈N\{i}

v({j})ψi(N, vj).

It follows that

ψi(N, v)

(
K

v({i})

)
= v(N)− vi(N) + ψi(N, v

i) +
1

v({i})
∑

j∈N\{i}

v({j})ψi(N, vj)

⇔

ψi(N, v) =
v({i})
K

[v(N)− vi(N)] +
∑
j∈N

v({j})
K

ψi(N, v
j). (27)

Next, we show that ψ(N, vS) = ψ(N, vN) for all S ⊆ N with 1 ≤ |S| ≤ n− 1. We use

an induction on the number of separators.

Initialization. Since (N, vN\{h}) = (N, vN) for all h ∈ N , then ψ(N, vS) = ψ(N, vN) for

all S ⊆ N with |S| = n− 1.

Induction hypothesis. Assume that ψ(N, vT ) = ψ(N, vN) holds for all T ⊆ N with

|T | = t for some 2 ≤ t ≤ n− 1.

Induction step. Consider (N, vS) ∈ GN and S ( N such that |S| = t−1. Let i, k ∈ N\S
be two distinct players. We have

ψi(N, v
S)− ψi(N, vS∪{k})

(27)
=
∑
j∈N

v({j})
K

ψi(N, v
S∪{j})−

∑
j∈N

v({j})
K

ψi(N, v
S∪{k,j})

=
∑
j∈N

v({j})
K

[ψi(N, v
S∪{j})− ψi(N, vS∪{k,j})]

(IH)
=
∑
j∈N

v({j})
K

[ψi(N, v
N)− ψi(N, vN)]

=0.
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Hence,

ψi(N, v
S) = ψi(N, v

S∪{k})
(IH)
= ψi(N, v

N), for all i ∈ N\S. (28)

To prove this equality also for all j ∈ S, pick i ∈ N\S and j ∈ S. Proportional

balanced contributions under separatorization implies that ψj(N, v
S) − ψj(N, v

S∪{i}) =
v({j})
v({i}) [ψi(N, v

S) − ψi(N, vS∪{j})]
(28)
= v({j})

v({i}) [ψi(N, v
S) − ψi(N, vS)] = 0. Hence, ψj(N, v

S) =

ψj(N, v
S∪{i})

(IH)
= ψj(N, v

N) for all j ∈ S.

Therefore, ψ(N, vS) = ψ(N, vN) holds for all S ⊆ N with 1 ≤ |S| ≤ n − 1. This,

together with (27), yields the desired formula.

Proof of Theorem 6. It is clear that ϕα satisfies the three axioms. Conversely, sup-

pose that ψ is a value on GNnz satisfying efficiency, proportional loss under separatoriza-

tion, and the α-egalitarian inessential game property for some α ∈ [0, 1]. For |N | = 1,

ψ = ϕα holds from efficiency. Next, suppose that |N | ≥ 3. By Corollary 1, efficiency

and proportional loss under separatorization imply that ψ satisfies (3). Moreover, the α-

egalitarian inessential game property implies that ψi(N, v
N) = (1 − α)v({i}) + α v

N (N)
n

=

(1− α)v({i}) + α
n

∑
j∈N v({j}). These two equations together imply ψ = ϕα.

Proof of Theorem 7. It is clear that ϕα satisfies the three axioms. Conversely, suppose

that ψ is a value on GNnz satisfying efficiency, proportional loss under separatorization, and

α-reasonable lower bound for some α ∈ [0, 1]. For any (N, v) ∈ GNnz, consider a game

(N,w) ∈ GNnz such that w({i}) = v({i}) for all i ∈ N , and w(N) = α
∑

j∈N w({j}) =

α
∑

j∈N v({j}). From Corollary 1, efficiency and proportional loss under separatorization

imply that ψi(N,w) = w({i})∑
j∈N w({j})w(N)−w({i}) +ψi(N,w

N) = (α−1)w({i}) +ψi(N,w
N)

for all i ∈ N . Since (N,w) is an α-essential game, α-reasonable lower bound gives that

ψi(N,w) ≥ α
n

∑
j∈N w({j}). Hence,

(α− 1)w({i}) + ψi(N,w
N) = ψi(N,w) ≥ α

n

∑
j∈N

w({j}), for all i ∈ N,

and thus ψi(N,w
N) ≥ α

n

∑
j∈N w({j}) + (1− α)w({i}) for all i ∈ N . Efficiency applied to

(N,wN) implies that wN(N) =
∑

i∈N ψi(N,w
N) ≥ α

∑
j∈N w({j})+(1−α)

∑
j∈N w({j}) =∑

j∈N w({j}) = wN(N), and thus these inequalities are equalities. Thus,

ψi(N,w
N) =

α

n

∑
j∈N

w({j}) + (1− α)w({i}).

Since (N, vN) = (N,wN), then ψi(N, v
N) = α

n

∑
j∈N v({j}) + (1− α)v({i}). Again, by

Corollary 1, ψi(N, v) = v({i})
K

v(N)− v({i}) +ψi(N, v
N) = v({i})

K
v(N)− v({i}) + α

n
K + (1−

α)v({i}) = v({i})
K

v(N) + α
n
K − αv({i}) = ϕαi (N, v).
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Proof of Corollary 3. It is clear that the PD value satisfies the three axioms. Con-

versely, suppose that ψ is a value on GNnz satisfying efficiency, proportional loss under

separatorization, and α-individual rationality for some α ∈ [0, 1]. From Corollary 1,

ψ has the form given in (3). For any (N, v) ∈ GNnz, similar as in the proof of The-

orem 7, consider a game (N,w) ∈ GNnz such that w({i}) = v({i}) for all i ∈ N and

w(N) = α
∑

j∈N v({j}). Since (N,w) is an α-essential game, α-individual rationality im-

plies that ψi(N,w) ≥ αw({i}) for all i ∈ N . By (3) applied to (N,w) and (N,wN),

we have ψi(N,w) − ψi(N,w
N) = w({i})∑

j∈N w({j})w(N) − w({i}) = (α − 1)w({i}). Hence,

ψi(N,w
N) = ψi(N,w)−(α−1)w({i}) ≥ αw({i})−(α−1)w({i}) = w({i}). Efficiency then

implies that it must be ψi(N,w
N) = w({i}) for all i ∈ N , since wN(N) =

∑
j∈N w({j}).

Since (N, vN) = (N,wN), then ψi(N, v
N) = w({i}) = v({i}). Again, by (3) applied

to (N, v) and (N, vN), we have ψi(N, v) = v({i})
K

v(N)− v({i}) + ψi(N, v
N) = v({i})

K
v(N)−

v({i}) + v({i}) = v({i})
K

v(N) = PDi(N, v).

Appendix B: Logical independence of the axioms

Logical independence of the axioms used in the characterization results can be shown

by the following alternative values.

Theorem 2:

(i) The value ψ(N, v) = 0 for all (N, v) ∈ GNnz satisfies all axioms except efficiency.

(ii) The value on GNnz defined for all (N, v) ∈ GNnz and i ∈ N , by

ψi(N, v) =
v({i})∑
j∈N v({j})

v(N)− v({i}) +
i∑
j∈N j

∑
j∈N

v({j}) (29)

satisfies all axioms except anonymity.

(iii) The value defined by (5) satisfies all axioms except no advantageous reallocation.

(iv) The ED value satisfies all axioms except proportional loss under separatorization.

(v) The value on GNnz defined for all (N, v) ∈ GNnz and i ∈ N , by

ψi(N, v) =
v({i})∑
j∈N v({j})

v(N)−
(
v({i})− 1

n

∑
j∈N

v({j})
)(

1

2

) ∑
j∈N

v({j})

satisfies all axioms except weak linearity.
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Theorems 3 and 4:

(i) The value ψ(N, v) = 0 for all (N, v) ∈ GNnz satisfies all axioms except efficiency.

(ii) The value defined by (5) satisfies all axioms except no advantageous reallocation.

(iii) The value defined by (29) satisfies all axioms except anonymity and weak desirability.

(iv) The ED value satisfies all axioms except proportional loss under separatorization.

(v) The value on GNnz defined for all (N, v) ∈ GNnz and i ∈ N , by

ψi(N, v) =
v({i})∑
j∈N v({j})

v(N)−
(
v({i})− 1

n

∑
j∈N

v({j})
)(

1

2

)| ∑
j∈N

v({j})|

satisfies all axioms except weak linearity.

(vi) The value ψ(N, v) = 2EPSD(N, v)−PD(N, v) for all (N, v) ∈ GNnz satisfies all axioms

except superadditive monotonicity.

Theorem 6:

(i) The value ψi(N, v) = (1− α)v({i}) + α
n

∑
j∈N v({j}) for all (N, v) ∈ GNnz and i ∈ N ,

satisfies all axioms except efficiency.

(ii) The value ψ(N, v) = αED(N, v) + (1−α)ESD(N, v) for all (N, v) ∈ GNnz, satisfies all

axioms except proportional loss under separatorization.

(iii) The value defined by (29) satisfies all axioms except the α-egalitarian inessential game

property.

Theorem 7:

(i) The value ψi(N, v) = 1
n

∑
j∈N v({j}) for all (N, v) ∈ GNnz and i ∈ N , satisfies all

axioms except efficiency.

(ii) The ED value satisfies all axioms except proportional loss under separatorization.

(iii) The value defined by (29) satisfies all axioms except α-reasonable lower bound.
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