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Abstract

The likelihood of cancer emergence is highly dependent on the underlying
tissue structure. This article gives evolutionary explanations for why natural
selection fails to select for tissue structures that would minimize the likelihood
of cancer. In a second step, a mathematical framework is proposed, within
which the risk of cancer emergence can be expressed and calculated dependent
on a given tissue structure. This can be used to identify optimal structures and
strategies for improvement. Lastly, the article explores both, ways to identify
target areas for such intervention, as well as avenues towards developing treat-
ment options.

Introduction

Models of Evolutionary Game Theory have been important in understanding the
theoretical origins and dynamics of cancer emergence, and especially, in showing
how the structure of different tissues affects these dynamics. This makes it possible
to analyze the likelihood of cancer emergence, by expressing the probability that
cancerous mutants fixate, as a function of cell reproduction dynamics in different
tissues.1

The purpose of this paper and the framework developed in it is to propose
and conceptualize an approach to preventative cancer treatment by changing tissue
structure. Loosely speaking, the idea is that one would take a tissue sample of
a healthy patient. This sample would be analyzed to identify the proportion of
cells that carry certain mutations which could lead to cancer. This information
would then be used to design an appropriate preventative treatment, which modifies
the structure of the sampled tissue region and thereby decreases the likelihood of
carcinogenesis within the tissue.2

To this aim, the framework should, firstly, formalize the evolution of tissue
structures, so as to model and categorize ways in which natural selection fails
to develop the tissue structures that would be optimal to prevent cancer. This
will justify why there is room for improving tissue structure, further than natural
selection would achieve, and it could help in identifying specific tissue regions in
which treatments could be most effective. The outlined misalignments of natural
selection and the minimization of cancer risk add to the equally relevant concern
that natural selection might not have had sufficient time to adapt tissue structures to
changing circumstances, such as the rapid increases of life expectancy, or increased
exposure to radiation.

Secondly, the framework should enable one to find the optimal tissue structures
for cancer prevention, so as to serve as a benchmark for treatments. Similarly,
restrictions on the possible ways of tissue restructuring can be introduced to find
the best achievable structure.

1See for example Michor et al. (2004), Hindersin et al. (2016), Altrock et al. (2015), Nowak et
al. (2003) and Frank et al. (2003)

2Werner et al. (2016) propose a method of personalized cancer treatment, based on knowledge
about the patient’s treatment trajectories. The framework presented in this paper could be seen as
the ex-ante analogue.
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Obstacles to Natural Selection of Optimal Tissue Structure

There are four distinct reasons for discrepancies between tissue structures that evolve
naturally and those that would minimize the risk of cancer (these will henceforth
be referred to as Problems A-D). Problem (A) is path dependence. In many cell-
types, cells need to accumulate multiple genetic mutations to become cancerous.
The sequence in which these mutations are acquired need not be deterministic.
Moreover, cells carrying different subsets of the required mutations can behave
differently, implying that the optimal tissue structure would depend on the order
in which different mutations spread through the cell population. Natural selection
would favour the cell structure that minimizes cancer likelihood, given a probability
distribution over different orders in which mutations spread. However, this cell
structure might not be optimal, given a certain realization of some stage of the
random process, i.e. once some mutation has already spread in the population.

Problem (B) is termed age dependence. The selection pressures to minimize
cancer risk are not constant over the lifetime of organisms. Most notably, develo-
ping cancer in post-reproductive age would not be as strongly selected against as
developing cancer before the end of reproductive age. Hence, if there is a trade-off
between choosing a tissue structure that optimizes some other fitness enhancing
trait and choosing one that would minimize cancer risk, natural selection would
select some intermediate structure which is not the most cancer-resistant one. This
discrepancy would suggest that there is the possibility for preventative treatments
that alter this tissue structure, before these cancer-types can develop.

The third problem (C), risk tolerance, simply acknowledges that natural selection
favours genotypes that produce the fittest phenotypes in expectation, potentially
tolerating some cancer risk, if it is compensated by sufficiently large fitness increases
in the cancer-free organisms. This, again, suggests that natural selection would fail
to select the structure that minimizes cancer risk, which risk averse patients would
prefer. The most simple example of this would be the trade off between a large
body, which might confer some physical selective advantage, but also increases the
amount of cells in which cancerous mutations could occur.

Problem (D), evolvability, refers to a path dependence in the evolutionary emer-
gence of cell structures. Moving from a given structure to a fitness-increasing
alteration of that structure could require multiple mutations, which by themselves
each produce structures that are dominated by the current structure. This would
imply that the tissue structure is ’stuck’ in a local, but not global optimum of the
fitness landscape.

Model

General Model

Consider a body modeled as a system of cells. This system of cells can be seen
as a weighted digraph G = (V,E, ∂,Γ), where V is the set of vertices (with |V |
being the size of the body), E is the set of edges, ∂ : E 7→ V 2 is a mapping from
edges to ordered pairs of vertices, and Γ : E × S 7→ (0, 1] assigns a weight to each
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edge. An edge e ∈ E indicates that there is a nonzero probability Γ(e, s) that an
offspring of the cell at the first vertex replaces the cell at the second vertex. Hence,
a component of G is a closed system of cell reproduction, which corresponds to the
notion of compartments in Michor et al. (2004). (See Appendix)

Each vertex v ∈ V is inhabited by a cell of type θ ∈ Θ. The set of types Θ shall
distinguish cells based on the cancer-relevant mutations that they carry, and the
amount and respective likelihood of mutations they require to become cancerous.
One can thus say, that a digraph G is in a state s ∈ SG, where SG contains all
mappings s : V 7→ Θ. As the above notation suggests, the replacement probability
Γ(e, s) can also depend on the state s.

One can, furthermore, define mutation probabilities, which indicate the likelihood
of cells transitioning between different types θ1, θ2 ∈ Θ.

Adopting the above framework has the advantage that carcinogenesis can be
modeled as a finite state Markov process. Thereby, formulating and computing
fixation probabilities of cancerous cells for any pair (G, s) becomes relatively simple,
which will be demonstrated in a later section.

As the focus of this framework lies on carcinogenesis and possible cancer pre-
vention methods, it can be useful in applications to specify ∂ such that it reflects
only the makeup of healthy tissue. Cancer cells have a tendency to spread much
wider than their non-cancerous counterparts, implying that the number of distinct
components of G could be much lower if ∂ also reflects cancerous states. Higher
compartmentalization (i.e. G having more components) allows one to individually
consider smaller units of the graph, which reduces the computational complexity of
the analysis.3

Failure to evolve to optimal structure

Let fnat : G×SG×D×T 7→ R+ be the fitness function, which assigns an expected
fitness value to every quadruplet of G ∈ G, s ∈ SG, d ∈ D and t ∈ T . G simply
denotes the set of all weighted digraphs. In practice, one can restrict this set to
reflect some conditions of biological feasibility. D shall represent the expected
aggregate amount of damage caused by potentially emerging cancers across the
body. T denotes time. It makes sense to regard T as the lifetime of an individual.
The expected fitness value should correspond to the expected number of future
offspring that are produced over some time interval by individuals who are currently
specified by a pair (G, s). Note that time periods after reproductive age can, even
if only slightly, also have an effect on fnat, namely, if the individual can affect the
reproductive success of related individuals. In the following, fnat is assumed to be
Riemann-integrable. Moreover, let d(G, s, t) be dependent on the weighted digraph
G, on the initial value s0 of the state variable s, and on time. This captures the
notion that the probabilities that cancerous cells fixate by some time t depend on the
structure of reproduction within cell compartments and on the number of already
mutated cells which is captured in s. Higher damage values correspond to lower
fitness: ∂fnat

∂d ≤ 0

3see Appendix for more detailed discussion of the assumption of compartmentality
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Natural selection would, hence, solve the maximization problem

max
G∈G

∫
T
fnat(G, s0, d(G, s0, t), t)dt (1)

Note that the graph-dependency of d can induce a trade-off between minimizing
the damage parameter and optimizing the other fitness effects of the graph structure.
Problem (A) can already be formalized with this framework: Over time, the random
state variable s may have diverged from its expected trajectory. Hence, Problem
(A) would be a discrepancy between the graph G(1) that solves Equation (1) and
G(2) that solves

max
G∈G

∫
TA

fnat(G, sA, d(G, sA, t), t)dt (2)

, where TA ⊂ T is a subinterval of T starting at some later point in time, and sA is
the state of the cell system at this point in time.

To express Problem (B) and (C), a further function needs to be defined. fu :
G × SG × D × T 7→ R+ acts as the counterpart to the natural selection fitness
function, in that it assigns a normative valuation to all (G, s, d, t)-quadruplets. This
function can be seen as a utility function, and it will also be assumed to be Riemann-
integrable.
Problems (B) and (C) would thus be discrepancies between G(1) and G(3), which
solves

max
G∈G

∫
T
fu(G, s0, d(G, s0, t), t)dt (3)

For Problem (B), this discrepancy would arise from fu assigning higher relative
importance to later time periods than fnat does. Formally, let TB ⊂ T be some
subinterval of T, starting at a later point in time, then Problem (B) is described by
the following condition:∫

TB
fu(G, s0, d(G, s0, t), t)dt∫

T f
u(G, s0, d(G, s0, t), t)dt

>

∫
TB
fnat(G, s0, d(G, s0, t), t)dt∫

T f
nat(G, s0, d(G, s0, t), t)dt

(4)

Problem (C) is simply a violation of the assumption that fu would be linear in
the statistical expectation of fu for different realizations of s.

Et[fu(st)] 6= fu(Et[st]) (5)

Problem (D) can be modeled as a restriction Ĝ in the set of attainable graphs
G, so that (1) would be maximized over Ĝ. In the example of local but not global
optimality outlined in the introduction, Ĝ could be of the form

Ĝ = {G ∈ G|G = λv(G∗), v ∈ N, fnat(λw(G∗)) ≥ fnat(λw−1(G∗)), 1 ≤ w ≤ v}

where λ(G∗) is some mutation-sequence operator on an initial graph G∗. The
condition thus states that there must exist some mutation sequence from G∗ to
G so that all intermediate mutations are not selected against, when paired against
their predecessor. Alternatively, G could also be a restriction on the complexity of
the graph, which will be discussed in more detail for recursively coded structures.

4



Feasibility of Treatment and Promises of Fractal Structures

Many forms of tissue modifications might seem out of reach given today’s technology,
as they would require far-reaching genetic modifications to the stem cells that
govern the cell division patterns in a compartment. Even if one were able to
genetically engineer a stem cell which is functionally equivalent to the stem cells
in the compartment, and differs only in what cell division structure it induces,
transplanting this cell into a compartment would still be a challenge.

However, there is good reason to believe that inducing beneficial changes to
compartment structure can be achieved by simpler means. In many models of
population dynamics, fixation probabilities change dependent on the size of the
population (or compartment). Hence, merging or splitting up compartments, without
changing their structure, might be sufficient to reduce cancer risk in a given cluster
of compartments.

The channel, through which these changes of tissue division can be achieved,
could well be extracellular, i.e. by modifying the availability and spatial distribution
of growth factors and other signaling circuits that affect differentiation patterns or
apoptosis. For instance, compartmentalization might be naturally achieved through
spatially limiting the area into which a certain growth factor is emitted. In that case,
one could artificially merge compartments by supplying additional growth factors
(or distributing them more evenly) to cover uncovered space, or, conversely, split up
compartments artificially by extracting some of the growth factor.4

Similarly, if compartmentalization was achieved through physical boundaries
between compartments, these could be artificially extracted or added to alter com-
partment sizes. Alternatively, compartmentalization could predominately be a result
of cell division and differentiation patterns, for example, if there was a cluster of
stem cells which each, dependent on extracellular signaling, either divide into two
differentiated cells, or into one differentiated and one stem cell. Assume that the
number of compartments is equal to the number of stem cells (each stem cell gives
rise to a cluster(compartment) of differentiated cells). Then, reducing compartment
sizes could be achieved through changing the differentiation-signal environment in a
way that maintains more stem cells, which creates more compartments, and further
through keeping the amount of growth factors for the cluster of compartments
constant, so that each individual compartment will be smaller.5

Another promising route would be to make use of fractal structures in the body.
The comparatively low amount of information stored in the genetic code, relative to
the vast complexity of the resulting phenotype, indicates that there must be some
usage of recursive (fractal) patterns in the genetic code. Hence, larger structures
would emerge as fractal sequences of substructures that are scaled copies of one

4Adler et al. (2018) lay out how constant ratios of different cell types are maintained through
endocytosis. It seems conceivable that a similar endocytotic processes results in a spatial
containment of growth factors, which induces compartmentalization.

5For general notes on how the extracellular matrix affects carcinogenesis, see Pickup et al.
(2014).
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another.6

Applied to the framework at hand, this process could result in disjoint compart-
ments which differ only in their size, but are identical in their cell reproduction
dynamics. Stem cells in these compartments would thus be ideal candidates to
identify genetic loci that determine compartment size. Analogously, analyzing the
extracellular environment that gives rise to this structure would be informative
about how compartment sizes can be artificially modified. The study of fractally
organized structures in the body would thus be an ideal avenue to advance the
understanding necessary to develop future treatment options.

Moreover, the process of cell division within the compartments of a fractal
structure could itself be such that there would be an optimal compartment size.
Then, by the nature of fractally repeating substructures of similar makeup, but
different size, one would have tissue compartments with substantial variance around
the optimal compartment size. This would fall under Problem (D), as a restriction
on the complexity of G (or the required information to construct it).
Again, this suggests that modifying the size of some of the compartments could
reduce fixation probabilities of possible mutations. In fractal structures it would
seem more plausible that this could be achieved by stem cell transplants. The
stem cells inducing different compartment sizes already exist and don’t need to be
artificially modified. Moreover, it seems plausible that the high genetic similarity
between stem cells that are extracted and re-implanted in similar structures would
increase the likelihood of successful transplantation. Similarly, on an extracellular
molecular level, the concentrations that give rise to structures of different scale
can simply be copied from the corresponding part of the already existing fractal
structure. Indeed, this hypothesis of fractal structures being c.p. more vulnerable
to carcinogenesis could be investigated empirically, by comparing the per-cell rates
of cancer emergence in compartments of different size within a fractal structure.

Simple Application: Two Mutations

To illustrate that even simple tissue modifications like changes to the compartment
size can drastically affect the likelihood of cancer emergence, consider the most
simple model of cell reproduction: the Moran Process. In this birth-death process,
in each iteration, one cell per compartment is picked to reproduce, with a probability
proportional to its fitness r (which can be interpreted as its growth rate). The
offspring then replaces another cell in the compartment, which is picked uniformly
at random from the set of all cells in the compartment, including the parent cell.

This specification is adapted from Michor et al. (2004), who consider the case of a
single mutable gene with two possible expressions. They show that the probability
P (t) that a compartment which is initially occupied by unmutated cells will be
fully taken over by mutated cells at some time t is an increasing function of the
compartment size N , if the relative fitness of the mutants is greater than that of the
unmutated cells. Conversely, it is a decreasing function of N , if their relative fitness

6Several studies have found that genomic data can be well explained by reference to fractal
paradigms, see for instance: Ghorbani et al. (2018), Moreno et al. (2011) and Petoukhov et al.
(2018). For a meta-analysis finding scale-independent variability see Sapolsky and Balt (1996).
For applications of fractal structure to cancer see Bizzarri et al. (2011)
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is smaller.

To embed this model into the framework of the present paper, imagine that a
cluster of identical compartments needs to fulfil some purpose for which it needs
to consist of C cells, where C ∈ N is some constant. Assume for simplicity that
cancerous cells don’t metastasize or grow beyond their own compartment before
they have reached fixation in their compartment. Hence, the Moran Processes in
the different compartments can be viewed as independent. The task is to find the
compartment size N , which maximizes (1 − P (t))

C
N , i.e. the probability that no

cancer has emerged in any of the compartments by some time t.

The Markov process can then be set up as follows. The cells in each compartment
can differ binarily on η genes, hence Θ = {0, 1}η. In the Moran process, each type θ
has a fitness rθ. The fitness of the unmutated cells r{0}η = 1 is normalized, so that
r can be interpreted as the fitness relative to unmutated cells.

A compartment G′ ⊂ G is given by the complete digraph of N nodes, and the
state-space SG′ of a compartment is characterized by all s′ : {1, . . . , N} 7→ Θ. If
reproduction occurs without mutations, the replacement probabilities Γ(e, s′) for an
edge e connecting two vertices ∂1(e) ∈ V and ∂2(e) ∈ V in the compartment would
be given by

Γ(e, s′) =
rs′(∂1(e))∑
v∈V rs′(v)

· 1

N
(6)

The first factor denotes the fitness of the individual at the first vertex of e as a
proportion of the sum of all cells’ fitnesses in the compartment. The second factor
reflects the uniform probability of deletion in the Moran process.

Note that with this setup, all pairs (G′, SG′), for which for all types θ ∈ Θ,
SG′ assigns the same number of cells to that type, are isomorphic to one another.
Therefore, it is sufficient to only consider the set of isomorphism classes SG′ as the
state space. Elements of this set are simply the different ways of allocating N cells
to |Θ| types. This reduces the cardinality of the considered state space drastically.

Next, to introduce mutations to the framework, let u
1−u be the rate at which

mutations occur, relative to the speed of the Moran process. Hence, in each iteration
of the Markov Process, a birth-death event occurs with probability 1 − u and a
mutation occurs with the remaining probability u. Mutation likelihoods shall be
the same for all gene loci, and be small, so that uq ≈ 0 for q ≥ 2, implying that cells
mutate at most on one gene locus per iteration. (see Figure 1)

With this information, the Markov transition matrix can be constructed. As a
small amendment to the setup of Michor et al. (2004), the state of cancer reaching
fixation in the compartment (all cells are of type {1}η) is assumed to be an absorbing
state. This reflects the notion that cancerous cells metastasize or grow beyond their
initial compartment from the time of fixation onwards. It further has the advantage
that P (t) shows the probability of cancer emerging at any time up to t, not only the
probability of cancers arising and persisting until or throughout t. (For more notes
on methodology, see Appendix.)
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Figure 1: Illustration of the state space for a compartment of size N = 3 (left), and
of the type space of an individual cell (right). {i, j} ∈ SG refers to a state where all
cells are of type (i, j) ∈ Θ.

The medical action-set considered is all treatments which result in some division
of the N cells into compartments of equal size. Hence, one must consider all digraphs
G, which are unions of identical complete components with their weighting function
given by Equation (6).

Starting with the case of a cancer caused by a single mutation Θ = {0, 1}, and
an initially unmutated cluster, it turns out that (1 − P (t))

C
N is increasing in N for

any t ≥ 0, independently of the relative fitnesses of the mutated and unmutated
cells. This is consistent with the results of Michor et al. (2004). (Shown in the
Appendix)

However, already when moving to a setting where two mutations are required for
cancerous cells to emerge, the model becomes more intricate. To see this, let r1,0,
r0,1 and r1,1 denote the fitnesses of cells carrying the first, second or both mutations
relative to unmutated cells. Consider the case of 1 < r1,0 = r0,1 < r1,1. This
ordering seems quite natural, as enhanced growth capabilities are a defining feature
of cancerous cells (Hanahan and Weinberg (2000)). The assumption r0,1 = r1,0 is
made for ease of illustration, and could be interpreted as a gene which has to mutate
on two corresponding symmetric alleles so that cancer emerges.

On the one hand, the probability that any mutant cell produces a lineage which
reaches fixation is a decreasing function of N. Hence, at a state in which none of
the individual cells carry both mutations, it might seem that compartments should
be as large as possible to decrease cancer risk. Yet, this is counterbalanced by
the phenomenon that cells with higher r are favoured disproportionately by larger
compartments. Hence, once cells carrying only one of the two mutations prevail
in the compartment, choosing a small compartment would imply that states, in
which cells carrying no mutation or carrying both mutations prevail, are reached
with higher probability than if large compartments were chosen. This, of course,
also includes the absorbing state, in which cancerous cells have reached fixation, and
thereby affects P (t). However, the relative proportions of the probability mass on
states with more cancerous cells (1, 1) versus on states with more cells that carry
zero mutations (0, 0) is more favourable, i.e. is more biased towards healthy (0, 0)
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cells, in small compartments.7 This induces a trade-off, which can be seen in Figure
2.

Figure 2: Plot of cancer risk over time. The highest curve corresponds to lowest
cancer risk. Parameter values C = 30, r0,0 = 1, r1,0 = 2, r0,1 = 2, r1,1 = 10,
u = 0.01, initial state of the system: all cells are of type (0, 0) ∈ θ ({0, 0}-corner of
the simplex). Note the logarithmic scaling of the y-axes.

For small t, (1 − P (t))
C
N is still maximized by large compartments. However,

small compartments become optimal, as the probability with which the system
is ’pushed back’ to states with more (0, 0)-cells, from which the absorbing state
would be ’harder’ to reach, starts to matter more. This can be seen in the middle
graph of Figure 2, where the line corresponding to N = 5 intersects with the line
corresponding to N = 30 at t = 35. For very large t (≥ 775), N = 30 will revert to
being optimal, as can be seen in the bottom right subfigure of Figure 2.

This example already highlights a variety of scenarios in which modifications
of N would be beneficial. As states with large proportions of individuals that
carry only one mutation are with high likelihood traversed on a path towards the
fixation of a cancer cell, it follows that natural selection would take into account
the ’counterbalancing’. Hence, if the lifespan of an individual would be between
the equivalent of 35 and 775 time iterations, natural selection would select for some
N < C. Let’s assume the patient gets lucky, and acquires no mutations over a long
time span. If the person’s expected further life expectancy is less than the equivalent
of 35 iterations, then the optimal preventative treatment would be to merge small
compartments into larger compartments as much as possible. This is a special case
of Problem (A), with sA = s0, but where the considered time horizon differs.

The obvious analogue to this for lifespans beyond 775 and patients with unmu-
tated compartments and a remaining life expectancy of between 35 and 775 iterations
would be nature selecting for large compartments, which can be improved by dividing
compartments.

7In a similar context Michor et al. (2003b) find that the rate of cancer initiation is minimized
at an intermediate compartment size N , also reflecting a trade-off between preventing the spread
mutations in tumor suppressor genes (high r) versus mutations that lead to chromosomal instability
(low r). However, their focus lies on explaining the ex-ante minimization of cancer risk, not on
path or time dependency of the optimal N . See also Michor et al. (2003c).
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However, if again the lifespan was in the interval [35, 775] and the patient was
diagnosed to be in a state in which mutations in sufficiently many cells have already
occurred, then increasing N would be optimal. This is exemplified in Figure 3,
which considers a starting state where all cells are of type (1, 0). Here, at any t

larger than the starting time, (1− P (t))
C
N is maximized by large compartments.

In the Appendix, it is also shown that the results presented in this section would
not qualitatively change, if one were to drop the assumption that mutation rates
are uniform, or the assumption that {1, 1} is an absorbing state.

Figure 3: Plot of cancer risk over time. The highest curve corresponds to lowest
cancer risk. Parameter values C = 30, r0,0 = 1, r1,0 = 2, r0,1 = 2, r1,1 = 10,
u = 0.01, initial state of the system: all cells are of type (1, 0) ∈ θ ({1, 0}-corner of
the simplex). Note the logarithmic scaling of the y-axes.

Conclusion

In this paper, a novel approach to cancer prevention, namely tissue structure modifi-
cations, has been proposed and formalized. It has been argued, that natural selection
would likely fail to provide the tissue structure that minimizes the risk of cancer at
any given point in time (Problem (A): path dependence, Problem (B): age dependence
and Problem (D): evolvability) or even to start with (Problem (C): risk toleranve).
Changes in compartment-size and the usage of fractal structures in the body have
been identified as the most promising routes to feasible treatments, given current
technology. Implementation may seem distant today. But the potential gains are
high, as was illustrated by the simple two-hit example of a Moran process setting
which has shown that optimal tissue structure to prevent carcinogenesis can be
extremely path-dependent, and that restructurings can yield large decreases in
cancer risk.
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Appendix

Compartmentality

The term compartment is used widely and somewhat inconsistently in the literature,
and emerges usually from an attempt to divide the body into clusters of cells which
can be considered individually (see for example: Ledzewicz and Schättler (2002),
Pérez-Caro et al. (2009), Brash et al. (2005), Zhang et al. (2014) and Grajzel et al.
(2020)). Compartments are sometimes termed modules (as in Bellomo et al. (2008).

A precise definition, given by Teimouri et al. (2019), which also corresponds to
the usage of the term in Michor et al. (2004) and other articles by the authors of
that paper, is that compartments are subsets of tissues which independently achieve
homeostasis.

Even if truly independent regions in the body might be rare, using this approxi-
mation has been very successful in explaining the dynamics of several different types
of cancer (see: Foo et al. (2011), Michor et al. (2005a), Michor et al. (2003a)
and Zhang et al. (2014)). The colonic crypts within which colorectal cancer can
form are a particularly illustrative example of such compartments, which is by now
exceptionally well-studied (Michor et al. (2005b) and Nowak et al. (2003)).

With regard to the framework in this paper, the assumption that G has many
small disjoint components seems to be a good approximation. In applications,
neglecting edges e with very small replacement probabilities Γ(e, ·) might be useful,
if it increases the number of components of G and thereby reduces the cardinality
of the state-space that needs to be considered.

One Mutation

In Michor et al. (2004), the probability that a compartment which is initially
occupied by unmutated cells, will be occupied fully by mutated cells at a time t
is given by P (t) = 1− e−Nutρ. Here

ρ =
1− 1

r

1− 1
rN

denotes the probability of a single mutant reaching fixation. Again, r denotes the
relative fitness of a mutated cell. Note that P (t) is increasing in N if r > 1 and
decreasing in N if r < 1.

With this explicit form, (1− P (t))
C
N is simply given by

(1− P (t))
C
N = (e−Nutρ)

C
N = e−Cutρ.

This is increasing in N, which implies that having one large compartment would
be optimal, independent of r. The same also holds true in the simulated Markov
process with an absorbing state, as the following graphs (Figure 4) show.

Analysis of the Markov Chain

The Markov transition matrixM used in the applications is constructed by enumera-
ting the elements of SG and assigning transition probabilities to the appropriate
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Figure 4: Cancer risk over time with one mutable gene and different values for r1.
Parameter values C = 30 u = 0.01, initial state of the system: all cells are of type
{0} ∈ θ. top left, top right, bottom left: r1 = 2, bottom right: r1 = 0.5

entries as described above. A row-stochastic specification is used. Let es denote a
unit row vector which has entry 1 at the column corresponding to the enumeration
of state s. P (t) can then be computed by premultiplying es0 , with the t-th power
of the Markov transition matrix, and postmultiplying the result with the transpose
of esabs , where s0 denotes the initial state, and sabs denotes the absorbing state.

P (t) = es0 ·M teTsabs

To make the results of different compartment sizes in this single-compartment
Markov approach comparable, one has to account for the different per-cell rates at
which events (mutations or Moran-induced replacements) occur. Each iteration of
the Markov process describes the occurrence of one event. Hence, in a cluster of C
cells, C

N events are described per iteration. With C being held constant, the choice
of N changes the number of considered events per iteration. Hence, when comparing
probabilities arising from the Markov processes of two different compartment sizes
N1 andN2, withN1 = αN2, one needs to correct for the difference in event frequency
in the following way:

PN1(αt) = PN2(t)

In the examples of this paper, one t (on the x-axis of the presented graphs) corresponds
to the iterations of the Markov process of N = 5, i.e. to six events occurring.
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Robustness Checks

Above it has been assumed, firstly, that mutation likelihoods u are constant across
types, and secondly, that once cells of type (1, 1) have reached fixation, they will no
longer mutate, i.e. 1, 1 was assumed to be an absorbing state. This section shows
that neither of these assumptions qualitatively affect the results presented in this
paper. This is to say that large compartments remain optimal at small or large
time scales, and that small compartments are optimal at intermediate time scales,
independent of the two assumptions.

It could be argued, that for the case of mutations in tumor suppressor genes, it
would be more realistic to assume that mutations towards a harmful type are more
likely than mutations from a harmful type back to a healthy type. There might
simply be more ways to disable the functionality of a gene, than there are ways to
repair it. This could be thought to be problematic for the following reason:

The optimality of small compartments at intermediate time scales arises from the
relative success of (0, 0)-cells versus (1, 1)-cells in environments (states) dominated
by cells of type (0, 1) or (1, 0). These (0, 0)-cells can either arise through mutations,
i.e. on a trajectory following the state {0, 1} (or {1, 0}), or they can be remainders of
the initial cell population, which was assumed to be at {0, 0}. Hence the observed
effect could be mostly caused by the performance of healthy mutants, which in
reality might be very unlikely to emerge.

To see that this is not the case, consider the left side of Figure 5. The curves
depicted in it correspond to a scenario in which likelihoods of ’repairing’ mutations
are set to zero, i.e. those from (1, 1) to (1, 0) or (1, 0), as well as those from (1, 0)
or (0, 1) to (0, 0) (jointly denoted as u−), while the remaining mutation likelihoods
(u+) are held constant. As can be seen from the figure, the patterns are similar to
those in Figure 2 (with intersection points at t = 27 and t = 819), indicating that
the assumption of uniform mutation rates does not affect the results qualitatively
in the above sense.

Next, in order to see the effect of dropping the assumption of {1, 1} being an
absorbing state, while keeping mutation likelihoods symmetric, consider the solid
curves in the right subfigure of Figure 5. Different from the previous figures, the
curves are more flat, as they converge to a strictly positive steady-state probability
mass on the state {1, 1}. However, the qualitative result of small compartments
being optimal at intermediate time scales, and of large compartments being optimal
at small and large time scales again remains unchanged.

Note, lastly, that in the specification presented in the left subfigure, {1, 1}
naturally becomes an absorbing state, as likelihoods of mutation away from (1, 1)
towards other types are zero, even before cells of type (1, 1) have reached fixation.
Hence, the left subfigure already represents an interaction of both robustness checks
for the extreme case of u− = 0. In order to see, further, whether dropping both
assumptions simultaneously would affect the results for small but positive u−, consi-
der the remaining lines of the right subfigure of Figure 5. Here, the intersection point
of curves corresponding to large and small compartments are shifted (lower values
for u− correspond to later first intersection points and earlier second intersection

13



points), but again, the qualitative result remains unchanged.

Figure 5: Parameter values u+ = 0.01, r0,0 = 1, r1,0 = 2, r0,1 = 2, r1,1 = 10, initial
state of the system: all cells are of type (0, 0) ∈ θ ({0, 0}-corner of the simplex).
Left: u− = 0, C = 30. Right: varying values for u−, C = 15.
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