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Abstract

We consider a general class of observation-driven models with exogenous regressors for
double bounded data that are based on the beta distribution. We obtain a stationary and ergodic
beta observation-driven process subject to a contraction condition on the stochastic dynamic
model equation. We derive conditions for strong consistency and asymptotic normality of
the maximum likelihood estimator. The general results are used to study the properties of a
beta autoregressive process with threshold effects and to establish the asymptotic properties
of the maximum likelihood estimator. We employ the threshold autoregressive model with
leverage effects to analyze realized correlations for several sets of stock returns. We find
that the impact of past values of realized correlation on future values is at least 10% higher
when stock returns are negative rather than positive. This finding supports the conjecture that
correlation between stock returns tends to be higher when stock prices are falling, and lower
when there is a surge in stock prices. Finally, we conduct an out-of-sample study that shows
that our model with leverage effects can enhance the accuracy of point and density forecasts
of realized correlations.

Key words: Double bounded time series, financial econometrics, leverage effects, observation-
driven models, realized correlation.
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1 Introduction

There is an increasing interest in studying the dynamic statistical properties of double bounded

time series data. A few typical examples of bounded variables are correlation measures, bounded

between -1 and 1, market share variables, bounded between 0 and 100 (Ghosh et al., 1984), wind

directions, bounded between 0 and 360 (Martı́n et al., 1999), and ages of first-time mothers,

bounded between 15 and 45 (Falster et al., 2018). Time series of double bounded variables can be

treated after the result of a transformation. For example, the logistic transformation of a variable

leads to a double bounded variable between 0 and 1. However, data transformations introduce

nonlinear effects in time series which need to be treated when conducting a statistical analysis of

the (transformed) time series data.

A direct modeling approach for a double bounded variable is to consider a beta distribution.

In the case of a time series variable, the dynamics in the beta distribution can be introduced by

having a time-varying mean parameter. Earlier contributions of a time series analyses based on

the beta distribution are as follows. Rocha and Cribari-Neto (2009) introduce a class of ARMA

models based on the beta distribution. Casarin et al. (2012) consider a Bayesian approach for

estimation and model section of beta autoregressive models. Guolo and Varin (2014) propose a

beta time series model to analyze the dataset of Google Flu Trends. A convenient approach to

specify time-variation in the mean of the beta distribution is to consider an observation-driven

equation. In this way, the dynamic mean is a function of lagged values of the series and, possibly,

exogenous regressors. This is in contrast with parameter-driven model specifications where the

dynamic component of the model is specified through an unobserved autoregressive process. A

key advantage of an observation-driven specification is that the practical implementation of the

model is simpler since the likelihood function is in closed form and therefore estimation can be

easily performed by the method of Maximum Likelihood (ML).

We consider a general class of observation-driven models based on the beta distribution that

allows the inclusion of exogenous regressors. We show stationarity and ergodicity of the class

of processes under a contraction condition on the dynamic equation of the model. We argue

that a Markov chain approach for martingale difference sequences as considered in Zheng et al.

(2015) is not applicable in this framework. The Markov chain property for our class of beta
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processes is lost due to the presence of regressors. The regressors are only assumed to follow

a stationary and ergodic process without imposing any specification. Results on stationarity of

observation-driven models with exogenous regressors can be found in Agosto et al. (2016) for

Poisson autoregressions and Aknouche and Francq (2018) for count and duration models. We

also investigate the asymptotic properties of the ML estimator by deriving conditions for strong

consistency and asymptotic normality. Although ML is widely used for the estimation of beta

autoregressive models as in Rocha and Cribari-Neto (2009) and Guolo and Varin (2014), no formal

results are available in literature on its asymptotic properties. Our theoretical framework is applied

to study the properties of a beta observation-driven model with threshold effects. This model forms

the basis for our empirical analysis on realized correlations and leverage effects.

The measurement of dependence between financial assets plays a key role in financial risk

management and portfolio optimization. Realized correlation has become an important measure

of dependence that exploits the information content of high-frequency financial transaction data.

By construction, the realized correlation takes values in the interval between−1 and 1. Therefore,

our modeling framework is particularly suited to model realized correlation as it properly accounts

for the double bounded nature of the data. Particular attention in the empirical analysis is given

to the leverage effects in correlation time series. There is a vast literature on leverage effects in

volatility and covariation. Most literature discusses leverage effects in volatility, where it is well

established that negative returns tend to have a larger impact on the volatility than positive returns.

The standard approach is to consider the generalized autoregressive conditional heteroskedasticity

(GARCH) model (Engle, 1982; Bollerslev, 1986) and introduce leverage in the specification of

the conditional variance; see Glosten et al. (1993) and Nelson (1991) for further discussions. We

refer to Rodrı́guez and Ruiz (2012) for a review on GARCH models with leverage effects. On the

other hand, studies on leverage effects in correlation are typically based on multivariate GARCH

models and, in particular, dynamic conditional correlation (DCC) models; see Cappiello et al.

(2006) and Audrino and Trojani (2011). Recently, Bollerslev et al. (2018) introduce leverage

effects in multivariate GARCH models by using realized semi-covariances.

In the empirical part of this paper we study leverage effects in realized correlation directly

instead of using a multivariate GARCH or DCC model. An important benefit of this approach

is its robustness to model misspecification since the realized correlation is a direct measure of
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correlation. On the contrary, the estimated dynamic properties of the conditional correlation in

a DCC model also rely on the correct specification of the conditional variance of the assets. We

base our empirical study on a beta observation-driven model with threshold effects to describe

leverage in correlation. We consider two specifications of the leverage: the first is based on the

returns of the assets themselves and the second is based on the market returns of the S&P500

index. We analyze realized correlation series of ten pairs of stocks over a time span of ten years.

The results indicate that there is a highly significant leverage effect in correlation of about 10%.

This finding implies that the impact of lagged returns on future correlation is 10% higher when

we are in a period of overall negative returns compared to a period with positive returns. This

result appears to be consistent across the different pairs of stocks and robust with respect to the

specification of the leverage effect. Additionally, the empirical analysis suggests that leverage

effects are better explained by market returns than the returns of the individual stocks. This finding

is confirmed by the in-sample fit of the models as well as the out-of-sample forecasting accuracy.

More specifically, the model with leverage effects determined by the S&P500 produces the most

accurate point and density forecasts.

The remainder of the paper is organized in the following way. Section 2 presents the general

specification of the model and derives its stochastic properties. Section 3 discusses asymptotic

properties of the maximum likelihood estimator for the vector of unknown parameters in the

model. Section 4 introduces the threshold specification as a special case of the general model.

Section 5 presents a Monte Carlo simulation study to evaluate the small sample properties of the

maximum likelihood estimator. Section 6 presents the empirical application to analyze leverage

effects in realized correlation. Section 7 presents concluding remarks. The proofs and technical

derivations are presented in the Appendix.

2 Beta observation-driven models with exogenous regressors

Assume we are modeling time series of continuous random variables that take values in an interval

of the form [a, b], where a, b ∈ R and b > a. The upper and lower bounds of the interval a and b

are known, a priori. For example, time series of proportions have a = 0 and b = 1, of realized

correlation series have a = −1 and b = 1, and of directions have a = 0 and b = 360. However,
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from a modeling perspective and since the bounds are known, we can focus on time series of

values within the unit interval: any time series variable can be transformed such that it take values

in [0, 1]. We consider {yt}t∈Z as the time series of interest. We further assume that n regressor

variables are available, we have {xt}t∈Z where xt is an n-variate random vector. The specification

of the beta observation-driven model with explanatory variables is given by

yt
∣∣Ft−1 ∼ Beta

(
φ · µt , φ (1− µt)

)
, (1)

where Ft is the σ-field generated by {(yj , x>j ) : j ≤ t}, φ is a precision parameter and µt is the

conditional mean of the beta distribution. To address the possible serial dependence in the time

series yt, we consider the dynamic specification for µt given by

µt+1 = gθ(µt, yt, xt), (2)

where gθ : [0, 1]2 × Rn 7→ (0, 1) is a parametric function indexed by a k-dimensional parameter

vector θ ∈ Rk. It is the dependence of µt on yt−1 in (2) that classifies the model as observation-

driven; see the exposition in Cox (1981). We have implicitly assumed that µt is Ft−1-measurable.

Below we shall introduce conditions on gθ to ensure that the process is stationary and ergodic, and

to ensure that µt is Ft−1-measurable. The above specification entails that µt is the conditional

expectation of yt, that is, µt = E(yt|Ft−1). More generally, the conditional density function of yt

is given by

p(yt|µt;φ) =
yφµt−1
t (1− yt)φ(1−µt)−1

B
(
φµt, φ(1− µt)

) ,

where B(·, ·) denotes the beta function.

Next we derive stationarity conditions which form the basis towards consistent inference for

the model. For simplicity of exposition, we rewrite the process in equations (1) and (2) as follows

yt = B(ut;µt, φ), µt+1 = gθ(µt, yt, xt), (3)

where {ut}t∈Z is a sequence of independent and identically distributed (iid) uniform random vari-

ables in the unit interval, ut ∼ U(0, 1), and B(·;µt, φ) is the inverse of the cumulative distribution
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function of a beta distribution with mean µt and precision parameter φ. We impose some assump-

tions on the regressors and a contraction condition on the updating function gθ. More specifically,

we consider the following conditions:

S1: The sequence {(ut, x>t )}t∈Z is stationary and ergodic, and random variable ut is independent

of {(uj , x>j ) : j ≤ t− 1}.

S2: The updating function gθ satisfies the following contraction condition with probability one

|gθ(µ, y, xt)− gθ(µ∗, y∗, xt)| ≤ aµ|µ− µ∗|+ bµ|y − y∗|, (4)

for any (µ, µ∗, y, y∗) ∈ [0, 1]4, where aµ, bµ are positive constants such that aµ + bµ < 1.

Condition S1 imposes stationarity and ergodicity of xt together with some assumptions on how

xt relates to ut. In particular, variables ut and xt are imposed to be jointly stationary and ergodic.

It implies that ut and xt are allowed to be dependent random variables. As a result, variable of

interest yt is not necessarily independent of xt conditional on Ft−1, and hence contemporaneous

dependence is allowed. A further assumption is that ut is independent of the past. This condi-

tion guarantees that yt conditional on the past has a beta distribution with mean µt and precision

parameter φ. This result is needed to ensure the equivalence between the representation of the

process given by equations (1), (2), and equation (3). Condition S2 imposes a contraction condi-

tion on gθ by requiring the Lipschitz coefficient aµ + bµ to be smaller than one. The next results

delivers the stationarity and ergodicity of the observation-driven beta process under S1 and S2.

Theorem 2.1. Let S1 and S2 hold. Then, the process defined by equation (3) admits a stationary

and ergodic solution {(yt, µt, xt)}t∈Z. Furthermore, µt is Ft−1-measurable.

In the next sections, Theorem 2.1 shall be employed to derive the asymptotic theory of the

maximum likelihood estimator and to study the stochastic properties of a threshold model.

3 Maximum likelihood estimation

In this section, we discuss parameter estimation by the method of Maximum Likelihood (ML) for

the model presented in Section 2. The parameters of the model are collected in the (k+1)×1 vector
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κ = (θ>, φ)>. We assume that we observe a sample of T realisations of yt and xt generated by

their respective processes, with true parameter value κ0 = (θ>0 , φ0)>, and we denote the sample

by {(yt, x>t )}Tt=1. The first step to derive the likelihood function is to recover the time-varying

mean from the observed data through the following recursive equation

µ̂t+1(θ) = gθ(µ̂t(θ), yt, xt), t = 1, . . . , T, (5)

where the recursion is initialized at a fixed point µ̂1(θ) ∈ (0, 1). We refer to µ̂t(θ) as the filtered

parameter. The contribution to the log-likelihood of the t-th observation is

l̂t(κ) = log p(yt|µ̂t(θ);φ).

Finally, the ML estimator is defined as the maximizer of the log-likelihood function

κ̂T = arg sup
κ∈K

L̂T (κ), with L̂T (κ) =
1

T

T∑
t=1

l̂t(κ),

where K = Θ× Φ, and Θ ⊂ Rk and Φ ⊂ (0,∞) are compact parameter sets.

To derive the strong consistency and asymptotic normality of the ML estimator, we consider

the following conditions.

A1: The observed sample {(yt, x>t )}Tt=1 follows the model’s equations in (3) at κ = κ0 and

conditions S1 and S2 are satisfied.

A2: The function (θ, µ) 7→ gθ(µ, y, x) is continuous for any y ∈ [0, 1] and any x ∈ Rn.

A3: The contraction condition in (4) is satisfied for any θ ∈ Θ and θ0 ∈ Θ.

A4: There is a c̄ > 0 such that gθ(µ, y, x) ∈ [c̄, 1− c̄] for any (θ, µ, y, x) ∈ Θ× [0, 1]2 × Rn.

A5: For any θ1, θ2 ∈ Θ and µ ∈ (0, 1), the equality gθ1(µ, yt, xt) = gθ2(µ, yt, xt) holds true with

probability one if and only if θ1 = θ2.

A6: The function (θ, µ) 7→ gθ(µ, y, x) is three times continuously differentiable with uniformly

bounded derivatives.
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A7: The elements of vector ∂gθ(µt, yt, xt) / ∂θ
∣∣
θ=θ0

are linearly independent random variables.

Condition A1 ensures that the observed sample of data follows a stationary and ergodic process.

Condition A2 imposes continuity of the updating function, which in turn ensures that θ 7→ µ̂t(θ)

is continuous for any t. This smoothness condition is sufficient for consistency, however, the

additional differentiability condition in A6 is needed to ensure asymptotic normality. Condition

A3 ensures that µ̂t(·) converges to a stationary and ergodic Ft−1-measurable function µ̃t(·) as

t→∞. This is typically referred in the literature as invertibility (Straumann and Mikosch, 2006;

Blasques et al., 2018). Condition A4 sets bounds on the updating function. Bound conditions

are standard in the literature when the time-varying parameter takes values on a bounded set. For

instance, lower bounds are considered in the estimation of conditional heteroscedastic models

(Straumann and Mikosch, 2006) and of positive-valued observation-driven models (Davis and

Liu, 2016). Finally, conditions A5 and A7 ensure identifiability and positive definiteness of the

asymptotic covariance matrix of the ML estimator, respectively.

To establish the asymptotic properties of the ML estimator, we first derive the stochastic limit

properties of the filtered parameter defined in (5). The next result ensures the uniform convergence

over Θ of the filtered parameter µ̂t(·) to an Ft−1-measurable stationary and ergodic limit µ̃t(·)

such that µ̃t(θ0) = µt. The rate of convergence is shown to be exponentially fast. In particular, a

sequence of random variables {η̂t}t∈N is said to converge exponentially almost surely (e.a.s.) to

another sequence {η̃t}t∈N if there is a constant c > 1 such that ct|η̂t − η̃t|
a.s.−−→ 0 as t → ∞. We

denote with ‖ · ‖Θ the supremum norm. For a given function, f : Θ 7→ R, the supremum norm is

defined as ‖f‖Θ = supθ∈Θ |f(θ)|.

Proposition 3.1. Let A1-A3 hold. Then {µ̂t(·)}t∈N converses e.a.s. and uniformly over Θ to a

unique stationary and ergodic sequence {µ̃t(·)}t∈Z,

‖µ̂t − µ̃t‖Θ
e.a.s.−−−→ 0, t→∞,

for any initialization µ̂1(θ) ∈ (0, 1).

The convergence result provided in Proposition 3.1 is useful as it ensures that the log-likelihood
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contribution l̂t(·) converges to a stationary and ergodic function lt(·), given by

lt(κ) = log p(yt|µ̃t(θ);φ).

The next results deliver the strong consistency and the asymptotic normality of the ML estimator.

Theorem 3.1. Let A1-A5 hold and κ0 ∈ K. Then, the ML estimator is strongly consistent, that is

κ̂T
a.s.−−→ κ0, as T →∞.

Assume further that the additional conditions A6 and A7 hold and κ0 ∈ int(K). Then, the ML

estimator is asymptotically normally distributed

√
T (κ̂T − κ0)

d−→ N(0,Ω), as T →∞, where Ω = −E
(
∂2lt(κ0)

∂κ∂κ>

)−1

,

and Ω is positive definite.

Theorem 3.1 will be employed in the next section to derive the asymptotic properties of the

ML estimator for a beta observation-driven process with threshold effects.

4 Threshold beta autoregressive model

To illustrate our general dynamic framework for beta observation-driven processes, as discussed

in Sections 2 and 3, we consider a specific functional form for the updating function gθ(·).

Specifically, we introduce a threshold specification for the conditional expectation of the beta

observation-driven model. We allow the impact of yt on µt+1 to differ depending on the state of a

threshold vector of regressors xt. The threshold model will be employed in the simulation study

of Section 5 where the asymptotic properties of the ML estimator are confronted with its small

sample properties. Furthermore, the threshold beta regression model is adopted in Section 6 for

the purpose of modeling time-varying realized correlation of pairs of financial assets.

The standard threshold regression model, including its inference and asymptotic properties,

are well developed by Chan (1993) and Hansen (2000). The threshold autoregression model is in-

troduced by Tong and Lim (1980) and explored in detail by Tong (1983). A related class of models

9



is the widely explored smooth transition autoregressive model of Teräsvirta (1994) and Teräsvirta

et al. (2010). We regard the model below as an adaptation of the threshold autoregressive models

for bounded time series; when we replace the beta distribution Beta
(
φ · µt , φ (1− µt)

)
in (1) by

the normal distribution N
(
µt , σ

2
)
, with mean µt ∈ R and variance σ2 > 0, we can obtain the

threshold autoregressive model of Tong and Lim (1980) as a special case.

Before we formally define the model, we start by considering a collection of disjoint sets,

A1, . . . , AJ , which are subsets of the sample space of xt, that is Aj ⊂ Rk, j = 1, . . . , J . Next,

we define the following indicator variables

I(Aj , xt) =


1 if xt ∈ Aj ,

0 otherwise,

for j = 1, . . . , J and t ∈ Z. Since {A1, . . . , AJ} is not necessarily a cover of Rk, we can have∑J
j=1 I(Aj , xt) = 0 with positive probability. In general, we have

∑J
j=1 I(Aj , xt) ∈ {0, 1} with

probability one, given that the sets are disjoint. The specification of µt with threshold effects is

µt+1 = δ + βµt +
(
γ +

J∑
j=1

γjI(Aj , xt)
)
yt, (6)

where δ > 0, β ≥ 0, γ > 0, and γj ≥ −γ, for j = 1, . . . , J .

To ensure that µt ∈ (0, 1) with probability one, we impose the following restriction on the

parameters

δ + β + γ + max{0, γ1, . . . , γJ} < 1. (7)

As shown in the next result, it turns out that the double bound restriction in (7) is sufficient to

ensure the stationarity and ergodicity of the process. More specifically, we have that (7) implies

β + γ + max{0, γ1, . . . , γJ} < 1 which makes the contraction condition in (4) to be satisfied.

Theorem 4.1. Assume that the vector of regressors xt satisfies condition S1. Then, the threshold

beta autoregressive process specified by equations (1) and (6) admits a stationary and ergodic

solution.
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Theorem 4.1 shows that, under the stationary assumption of the regressors in S1, the threshold

beta observation-driven process always admits a stationary and ergodic solution.

Next, we employ Theorem 4.2 to derive the consistency and asymptotic normality of the ML

estimator for the threshold model. We obtain the following result.

Theorem 4.2. Assume the following conditions hold:

(i) The parameter setK is a compact set such that δ > 0, β ≥ 0, γ > 0, γj ≥ −γ, j = 1, . . . , J ,

and (7) is satisfied for any κ ∈ K. Furthermore, κ0 ∈ K.

(ii) The vector of regressors xt satisfies condition S1. Furthermore, xt ∈ Aj with positive

probability for j = 1, . . . , J and xt /∈
⋃J
j=1Aj with positive probability.

Then, the ML estimator is strongly consistent. Assume further that κ0 ∈ int(K). Then, the ML

estimator is asymptotically normally distributed

√
T (κ̂T − κ0)

d−→ N(0,Ω), as T →∞.

The proof of Theorem 4.2 is obtained by verifying that A1-A7 are satisfied. Condition (i)

in Theorem 4.2 is imposed to ensure that µ̂t(θ) ∈ (0, 1) for any θ ∈ Θ. Condition (ii) is an

identifiability condition that makes A5 hold. It is clear that if the event xt ∈ Aj occurs with

probability zero, then γj is not identified. Similarly, if the probability of xt /∈
⋃J
j=1Aj is zero,

then any re-parameterization of the form γ + cγ and γj − cγ , j = 1, . . . , J , will lead to the same

process for any cγ ∈ R.

5 Simulation study

We conduct a Monte Carlo simulation study to investigate the small sample properties of the ML

estimator. For this purpose, we consider the threshold beta observation-driven model as the data

generating process. Our specific model for this study is given by

yt = B(ut;µt, φ), µt+1 = δ + βµt +
(
γ + γ1I(A1, xt)

)
yt, (8)
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where the inverse of the cumulative beta distribution function is denoted by B, with mean µt and

precision φ, as discussed in more detail below (3), the sequence of random variables {ut}t∈Z is

iid with ut ∼ U(0, 1), indicator function I(A1, xt) is based on the set A1 = (−∞, 0) and on the

zero-mean univariate regressor xt following the first-order autoregressive moving average process

given by

xt = bxt−1 + εt + aεt−1,

with autoregressive coefficient b, moving average coefficient a, and where the sequence of random

normal variables {εt}t∈Z is iid with εt ∼ N (0, 1). The theoretical results allow the random

variables εt and ut to be dependent of each other. We introduce this dependence in the model (8) by

means of a Gaussian copula function, see McNeil et al. (2015, Chapter 7) for a textbook treatment.

In particular, we define vt = (v1,t, v2,t)
> as an iid squence from a bivariate Gaussian copula with

correlation parameter ρ. From this sequence we obtain the two model noise variables by having

ut = v1,t and εt = Φ−1(v2,t), where Φ(·) denotes the cumulative distribution function of the

standard normal distribution. As a result, we have ut coming from a uniform marginal distribution

and εt coming from a standard normal marginal distribution. The dependence between εt and ut

is determined by the correlation parameter ρ of the copula; its functional form is nonlinear.

Table 1 reports the summary results of the simulation experiment. The asymptotic standard

error for each ML estimate is computed from the so-called plug-in estimate of the asymptotic

covariance matrix of the ML estimator as given by

Ω̂ = −

(
1

T

T∑
t=1

∂2 l̂t(κ̂T )

∂κ∂κ>

)−1

. (9)

The results in Table 1 show that the estimation bias is negligible for all parameters and for different

sample sizes. This finding is confirmed by fact that the root mean squared error coincides with the

standard error of the parameter estimates. Hence the (squared) bias contribution to the MSE can

be considered as negligible. Furthermore, the estimates of the standard errors obtained from the

asymptotic distribution of the ML estimator can be considered as accurate, even for small sample

sizes. This finding follows from the fact that the sample mean of the estimated asymptotic standard

errors for the 1000 parameter estimates is almost equivalent to the standard error obtained from the
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Table 1: Summary statistics of a simulation experiment.
We have simulated 1000 time series for yt, with sample size T = {500, 1000, 2500}, from model (8) with
parameter values δ = 0.009, β = 0.85, γ = 0.14, γ1 = −0.03, φ = 25.0, b = 0.8, a = 0.2, and ρ = 0.75.
For each simulated time series, the parameters are estimated by the method of ML as discussed in Section 3,
except parameters b, a and φ which are only used to simulate the regressor and are therefore not estimated.
From the 1000 ML estimates of each parameter, we report the sample mean (Mean), root mean squared
error (RMSE), sample standard error (SE), and the sample mean of the asymptotic standard error (ASE).

δ = 0.009 β = 0.85 γ = 0.14 γ1 = −0.03 φ = 25.0

T = 500 Mean 0.011 0.844 0.141 -0.029 25.157
RMSE 0.004 0.030 0.027 0.008 1.468
SE 0.004 0.029 0.027 0.008 1.460
ASE 0.003 0.029 0.026 0.007 1.568

T = 1000 Mean 0.010 0.846 0.141 -0.029 25.083
RMSE 0.002 0.021 0.020 0.005 1.057
SE 0.002 0.021 0.019 0.005 1.055
ASE 0.002 0.020 0.018 0.005 1.103

T = 2500 Mean 0.009 0.848 0.140 -0.030 25.050
RMSE 0.001 0.012 0.011 0.003 0.669
SE 0.001 0.012 0.011 0.003 0.668
ASE 0.001 0.012 0.011 0.003 0.696
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sample variance of the same 1000 parameter estimates. Finally, the results in Table 1 are obtained

for a correlation parameter of the copula that is set equal to ρ = 0.75. However, after some ample

experimentations with different correlation values, we have concluded that the value for ρ has a

negligible effect on the presented simulation results. This finding is coherent with the theoretical

results in Sections 2 and 3; they indicate that the asymptotic properties hold irrespective of the

contemporaneous dependence between yt and xt.

6 Modeling and forecasting realized correlation with leverage

We employ the threshold beta observation-driven model of Section 4 to analyze realized correla-

tion between pairs of financial assets. Realized measures of volatility and dependence are obtained

from high-frequency intra-daily (minutes, seconds, ticks) financial returns; see the seminal work

of Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002). Much emphasis has been

given to the modeling and forecasting of realized volatility, and its incorporation in financial risk

analyses. For this same purpose, and in particular for financial hedging analyses, econometric

treatments for realized correlation have been developed; see, for example, Audrino and Corsi

(2010) and Aslanidis and Christiansen (2012). In this section we propose an alternative approach

to the modeling and forecasting of realized correlation. We explicitly account for leverage ef-

fects in the dynamic process for realized correlation. The study of leverage effects in realized

correlation is a novel development as leverage effects in correlation are typically studied through

multivariate GARCH models.

6.1 Model for realized correlation with leverage

Let yt denote the realized correlation at time t between some pair, i and j, of financial asset returns,

where the time index t typically refers to a trading day. We consider the dynamic model (3) for yt

where the conditional expectation µt is subject to a threshold function that effectively represents

the leverage effect. We introduce the leverage effect by considering two different specifications of

µt that are based on the threshold specification in (6).

In the first specification, the leverage effect is determined by the daily returns of the pair of

assets i and j, which we denote with ri,t and rj,t, respectively. The realized correlation yt is for
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the same pair of assets but is computed using high-frequency intra-daily returns; see Section 6.2

below. The model for yt is given by yt = B(ut;µt, φ) as in (3). The updating function for the

conditional expectation µt is given by

µt+1 = δ + βµt + (γ + γ+I
+
t + γ−I

−
t )yt, (10)

where parameters δ, β, γ, γ+ and γ− are placed in the unknown parameter vector θ, and the

indicator functions are specified by

I+
t =


1 if ri,t > 0, rj,t > 0,

0 otherwise,
and I−t =


1 if ri,t < 0, rj,t < 0,

0 otherwise.

In this specification the default impact of yt on µt+1 is measured by γ, the impact equals γ + γ+

when both daily returns are positive and equals γ + γ− when both daily returns are negative. In

empirical studies, we expect γ− > γ+ and γ− > 0 which defines implicitly the leverage effect.

Hence, we anticipate that the impact of past values of realized correlation on µt is higher when the

daily returns of the two assets are both negative compared to when they are both positive or have

opposite signs. Finally, we note that contemporaneous dependence between ut and the pair of

returns (ri,t, rj,t) may be present given that they are based on the same equities. This dependence

is accommodated in our framework as discussed in the theory section and in the simulation study.

In the second specification, we let the leverage effect be determined by the daily returns of the

S&P500 market index, which we denote with rsp
t . The conditional mean µt is specified as

µt+1 = δ + βµt + (γ + γ
sp
− I

sp
t )yt, (11)

where I
sp
t =


1 if r

sp
t < 0,

0 otherwise.

In this specification, the impact of yt on µt+1 is equal to γ + γ
sp
− when the daily return of the

market is negative and γ when it is non-negative. Other variables or other sets of variables can be

considered in this specification. Also, the two specifications can be combined.

15



6.2 Data: daily realized correlation and daily returns

The data set consists of realized correlation series for 10 randomly selected pairs of equities from

15 equities with ticker symbols AA, AXP, BA, CAT, GE, HD, HON, IBM, JPM, KO, MCD, PFE,

PG, WMT, and XOM; all these equities are included in the Dow Jones Industrial Average. The

pairs considered are the same as in Table 1 of Gorgi et al. (2019). The sample size of the data

is T = 2515 trading days; from 1 January 2001 to 31 December 2010. The realized correlation

on trading day t for a pair of equities is obtained from the realized covariance matrix of the pair

by standardizing the realized covariance with the square roots of the realized variances. Realized

covariance matrices are constructed from transaction prices from consolidated trades in the Trade

and Quote (TAQ) database through the Wharton Research Data Services (WRDS) system. In

constructing the realized measures, a standard cleaning procedure is carried out which includes the

exclusion of overnight returns. The realized measures are based on an overall sample frequency

of five minutes. We have adopted a kernel function that is based on the refresh sampling scheme

of Barndorff-Nielsen et al. (2011) where the irregular sampling time interval ends when at least

one realization is recorded for all assets. By shifting the starting time by one-second increments,

300 different estimates in a five-minute interval are obtained; the average gives the subsampled

realized covariance matrix. We refer to Gorgi et al. (2019) for further details on the construction

of this data set. The daily asset returns and the S&P500 returns are based on open-to-close returns.

Figure 1 displays the daily time series of realized correlations between the equities Alcoa (AA)

and Caterpillar (CAT), together with the estimated µt (red line) based on the default autoregres-

sive beta model (3) without leverage, that is γ+ = γ− = 0 in (10). The realized correlations are

strongly varying over time and show strong temporal dependence. We further learn that the cor-

relations sharply increases during the financial crisis of 2008. These empirical features can also

be observed for realized correlations between other pairs of equities. These findings highlight the

empirical fact that correlations tend to be higher during periods of which many negative returns are

observed. It is also a motivation to consider the leverage effect (10) in our model when modeling

and forecasting realized correlations.

16



Table 2: Parameter estimation results.
We present the maximum likelihood estimates of the parameters in our realized correlation model with
leverage, for ten different pairs of assets. The standard errors of the estimates are in brackets. The columnn
“log-lik” reports the maximized loglikelihood value. The last column presents the p-value of the likelihood
ratio test for the null hypothesis of no leverage effects (H0 : γ+ = γ− = 0 or γsp

− = 0).
δ β γ γ+ γ− γ

sp
− φ log-lik p-value

AA/CAT 0.013 0.820 0.160 - - - 39.796 3059.43 -
(0.003) (0.014) (0.012) (1.110)

0.013 0.840 0.139 -0.004 0.010 - 40.241 3073.00 1.3×10−6

(0.003) (0.009) (0.009) (0.003) (0.003) (1.138)

0.012 0.842 0.135 - - 0.013 40.261 3074.48 4.1×10−8

(0.002) (0.012) (0.011) (0.002) (1.124)

AXP/PFE 0.026 0.772 0.188 - - - 45.030 3127.88 -
(0.005) (0.020) (0.015) (1.257)

0.026 0.779 0.178 -0.005 0.009 - 45.348 3136.69 1.5×10−4

(0.004) (0.014) (0.012) (0.003) (0.003) (1.274)

0.027 0.793 0.155 - - 0.019 45.822 3149.83 3.4×10−11

(0.005) (0.019) (0.014) (0.003) (1.280)

AXP/WMT 0.013 0.847 0.134 - - - 44.144 3151.36 -
(0.003) (0.012) (0.010) (1.233)

0.013 0.853 0.127 -0.003 0.008 - 44.493 3161.09 5.9×10−5

(0.003) (0.008) (0.008) (0.003) (0.003) (1.261)

0.015 0.862 0.109 - - 0.015 44.880 3172.33 9.4×10−11

(0.003) (0.011) (0.009) (0.002) (1.254)

BA/HON 0.011 0.820 0.164 - - - 37.408 3057.62 -
(0.003) (0.013) (0.012) (1.044)

0.012 0.825 0.155 0.002 0.005 - 37.491 3059.80 0.112
(0.003) (0.010) (0.010) (0.003) (0.003) (1.057)

0.011 0.830 0.149 - - 0.011 37.713 3068.30 3.8×10−6

(0.002) (0.012) (0.011) (0.002) (1.052)

CAT/KO 0.017 0.843 0.130 - - - 40.830 2997.71 -
(0.004) (0.013) (0.011) (1.139)

0.018 0.854 0.112 0.004 0.013 - 41.200 3008.78 1.5×10−5

(0.003) (0.008) (0.008) (0.003) (0.003) (1.165)

0.019 0.855 0.110 - - 0.013 41.257 3008.72 2.7×10−6

(0.004) (0.013) (0.010) (0.003) (1.149)

GE/PFE 0.026 0.740 0.221 - - - 48.672 3272.49 -
(0.005) (0.019) (0.015) (1.360)

0.028 0.748 0.208 0.000 0.010 - 48.953 3279.57 8.4×10−4

(0.004) (0.014) (0.013) (0.003) (0.003) (1.376)

0.028 0.763 0.186 - - 0.019 49.567 3295.46 1.2×10−11

(0.005) (0.018) (0.014) (0.003) (1.386)

HD/JPM 0.022 0.812 0.156 - - - 48.939 3281.55 -
(0.005) (0.016) (0.012) (1.368)

0.023 0.821 0.141 -0.002 0.011 - 49.408 3293.41 7.1×10−6

(0.004) (0.010) (0.010) (0.003) (0.003) (1.397)

0.024 0.825 0.132 - - 0.016 49.822 3304.11 1.9×10−11

(0.004) (0.014) (0.011) (0.002) (1.393)

IBM/PG 0.037 0.747 0.198 - - - 47.708 3234.79 -
(0.007) (0.023) (0.016) (1.333)

0.041 0.751 0.185 -0.007 0.015 - 48.599 3258.01 8.1×10−11

(0.005) (0.016) (0.013) (0.003) (0.003) (1.366)

0.034 0.778 0.161 - - 0.020 48.719 3261.25 3.5×10−13

(0.006) (0.019) (0.014) (0.003) (1.362)

JPM/XOM 0.021 0.743 0.225 - - - 51.358 3333.40 -
(0.004) (0.017) (0.014) (1.436)

0.022 0.750 0.214 -0.005 0.010 - 51.785 3344.04 2.3×10−5

(0.004) (0.013) (0.012) (0.003) (0.003) (1.456)

0.022 0.757 0.202 - - 0.015 52.011 3349.36 1.6×10−8

(0.004) (0.016) (0.013) (0.003) (1.455)

MCD/PG 0.032 0.774 0.176 - - - 42.214 3034.41 -
(0.006) (0.020) (0.014) (1.178)

0.035 0.783 0.158 0.001 0.014 - 42.513 3043.25 1.4×10−4

(0.005) (0.014) (0.012) (0.003) (0.004) (1.194)

0.031 0.794 0.150 - - 0.017 42.777 3051.13 7.4×10−9

(0.006) (0.019) (0.013) (0.003) (1.194)
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Figure 1: In-sample fit for daily realized correlation between Alcoa and Caterpillar.
The gray line represents the daily time series of realized correlations between Alcoa (AA) and Caterpillar
(CAT) asset returns, from January 2001 to December 2010. The red line represents the estimated µt from
our default beta autoregressive model, without leverage effects.

6.3 Estimation results

Table 2 presents the parameter estimates obtained from the maximum likelihood method applied

to model (3) with conditional mean µt that possibly includes leverage effects as specified by (10)

or (11). The parameter estimates are reported together with their asymptotic standard error based

on Ω̂ in (9). From the estimation results we learn that the model with the leverage effect implied

by the S&P500 specification (11) provides the most significant fit for all correlation series. This is

most easily verified from the p-values of the likelihood ratio test for the null hypothesis of γsp
− = 0.

The estimate of the leverage parameter γsp
− is in all cases positive, from which we can conclude that

the impact of the realized correlation on the S&P500 return is larger when it is negative. When

the leverage effect is determined by the returns of both assets, as in the specification (10), the

estimate of the leverage parameter γ− is highly significant for all correlation series, with the only

exception of BA/HON. Furthermore, the actual estimates for γ− are positive in all cases, which

is in accordance to the leverage effect. The estimates for γ+ are in various cases negative but in

all cases the corresponding standard errors imply that the estimates are not significantly different

from zero (except for IBM/PG). However, the overall leverage effect is present in all cases as the

p-values of the likelihood ratio test for H0 : γ+ = γ− = 0 are very small (except for BA/HON).

The estimation results indicate that the size of the leverage effect is on average 10%. It implies
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that overall the impact of yt on µt+1 is about 10% larger in periods with negative returns compared

to those with positive returns. Furthermore, the results suggest that the leverage effect is better

described by the S&P500 returns than the returns of the individual stocks. This final conclusion

becomes apparent when comparing the fit of the models using the Akaike information criteria (or

others): the maximized log-likelihood value for the model with the S&P500 leverage effect is

always the highest and only needs one additional parameter.

6.4 Out-of-sample results

To complete the empirical illustration for our threshold beta observation-driven model, we conduct

a forecasting exercise and assess whether the leverage effect improves the out-of-sample perfor-

mance. We consider both point and density forecasts. The accuracy of point forecasts is evaluated

by the root mean squared error (RMSE) of one-step ahead forecasts while the accuracy of density

forecasts is evaluated by the log-score criterion of Geweke and Amisano (2011). We obtain one-

step-ahead forecasts for realized correlations of 2010, which means that forecasts for 261 trading

days are produced. A rolling window estimation approach is considered, where the models are

re-estimated for each forecast.

Table 3 reports the results for the three different model specifications: the default model with

no leverage effects, model with leverage effects as specified in (10), and model with leverage

effects based on S&P500 returns as specified in (11). The results confirm the relevance of the

leverage effect in forecasting realized correlation. In particular, it shows also relevance of leverage

for out-of-sample analyses. The model with the leverage effect based on S&P500 returns has also

the best out-of-sample performance both in terms of point and density forecast precisions for all

correlation series (except for JPM/XOM). We also learn from these results that the default model

(without leverage effects) shows the worst out-of-sample performance in almost all cases.

7 Conclusion

We have studied a class of observation-driven models for double bounded data with exogenous

regressors. We have derived conditions for stationarity and ergodicity of the dynamic process and

formally study the asymptotic properties of the maximum likelihood estimator of the parameter
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Table 3: Out-of-sample results.
We present the relative root mean squared error (“RMSE”) and the log-score criterion (“log-score”) for 261
one-step-ahead forecasts in 2010, which are obtained from the three different beta autoregressive model
specifications: without leverage (“default”), with leverage (“leverage”) as in (10), with leverage based on
the S&P500 index (“S&P500”) as in (11); default model is the benchmark to calculate the relative RMSE.

RMSE log-score
default leverage S&P500 default leverage S&P500

AA/CAT 1.00 0.99 0.99 1.28 1.29 1.29
AXP/PFE 1.00 0.99 0.98 1.14 1.15 1.16
AXP/WMT 1.00 1.00 0.99 1.19 1.19 1.20
BA/HON 1.00 1.01 0.99 1.29 1.28 1.30
CAT/KO 1.00 1.00 0.99 1.23 1.23 1.25
GE/PFE 1.00 0.99 0.98 1.12 1.13 1.15
HD/JPM 1.00 0.99 0.98 1.22 1.23 1.23
IBM/PG 1.00 1.02 0.99 1.21 1.18 1.22
JPM/XOM 1.00 0.98 0.99 1.39 1.41 1.40
MCD/PG 1.00 1.00 0.99 1.15 1.16 1.16

vector. We have applied the theoretical results to study the properties of a threshold autoregressive

model. The finite-sample properties of the maximum likelihood estimator are assessed in a Monte

Carlo study and they compare well with the corresponding asymptotic properties. Further we

have shown that the threshold specification is well suited to introduce a leverage effect in a beta

autoregressive model for daily realized correlation time series. In an empirical application using

realized correlations of pairs of asset returns, we have shown that the beta autoregressive model

with leverage performs convincingly well, both in-sample and out-of-sample. Our approach to the

modeling and forecasting of double bounded time series can be explored further in other empirical

studies. Extensions towards multivariate bounded data and towards other updating functions for

the conditional mean, or other higher order moments, may provide interesting directions for further

research.
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A Appendix

Proof of Theorem 2.1. For notational convenience, we express the stochastic equation in (2) by

using the following shorthand notation

µt+1 = gθ,t(µt),

where gθ,t(µ) = gθ(µ,B(ut;µt, φ), xt) for any µ ∈ [0, 1]. Next, for any t ∈ Z, we define the

sequence {µ(k)
t }k as follows

µ
(k)
t (µ̄) = gθ,t−1

(
µ

(k−1)
t−1 (µ̄)

)
,

where µ(k)
t = µ̄ ∈ [0, 1] for k ≤ 0. The process µ(k)

t can also be expressed as the k-th iteration of

the random function gθ,t starting from the fixed point µ̄, that is,

µ
(k)
t (µ̄) = gθ,t−1 ◦ gθ,t−2 ◦ · · · ◦ gθ,t−k(µ̄).

From the above formulation, we immediately obtain that µ(k)
t (µ̄) is F̃kt−1-measurable, where F̃kt−1

denotes the σ-field generated by {(uj , x>j ) : t − k ≤ j ≤ t − 1}. Next, we note that if the

limit limk→∞ µ
(k)
t (µ̄) exists almost surely, than equation (2) admits a solution and there exists a

measurable function g∞θ such that

µt = lim
k→∞

µ
(k)
t (µ̄) = g∞θ (ut−1, ut−2, . . . , xt−1, xt−2, . . . ).

Therefore, given the stationarity and ergodicity of {(ut, x>t )}t∈Z ensured by S2, we obtain that

{µt}t∈Z is stationary and ergodic. More in general, we can conclude that {(yt, µt, xt)}t∈Z is

stationary and ergodic. Below we show that limk→∞ µ
(k)
t (µ̄) exists almost surely. The proof

follows a similar argument as the proof of Proposition 3.1 of Aknouche and Francq (2018).

We note that ut is independent of µ(k+1)
t and µ(k)

t by S2 since µ(k+1)
t and µ(k)

t are F̃k+1
t−1 -

measurable. Furthermore, accounting that E
(
B(ut;µ, φ)

)
= µ, by the stochastic ordering of

Lemma A.1 we have that E|B(ut; µ̄1, φ) − B(ut; µ̄2, φ)| = |µ̄1 − µ̄2| for any µ̄1, µ̄2 ∈ (0, 1).

Therefore, we obtain that

E
∣∣B(ut;µ

(k+1)
t , φ)− B(ut;µ

(k)
t , φ)

∣∣ = E
(
E
(∣∣B(ut;µ

(k+1)
t , φ)− B(ut;µ

(k)
t , φ)

∣∣∣∣∣F̃k+1
t−1

))
= E

∣∣µ(k+1)
t − µ(k)

t

∣∣.
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Then, by repeated use of the above equality and the contraction condition in (4), we obtain that

E
∣∣µ(k+1)
t (µ̄)− µ(k)

t (µ̄)
∣∣ ≤ aµE∣∣µ(k)

t−1(µ̄)− µ(k−1)
t−1 (µ̄)

∣∣+ bµE
∣∣B(ut−1;µ

(k)
t−1, φ)− B(ut−1;µ

(k−1)
t−1 , φ)

∣∣
≤ (aµ + bµ)E

∣∣µ(k)
t−1(µ̄)− µ(k−1)

t−1 (µ̄)
∣∣

≤ (aµ + bµ)kE
∣∣µ(1)
t−k(µ̄)− µ̄

∣∣
≤ (aµ + bµ)kCµ,

where Cµ = E
∣∣gθ(µ̄,B(u0; µ̄, φ), x0)

∣∣+ µ̄ <∞ and aµ + bµ < 1. This implies that the sequence

{µ(k)
t }k converges in L1-norm at an exponential rate and hence almost surely.

Finally, we conclude the proof of the theorem by showing that that µt is Ft−1 measurable. We

rewrite the stochastic equation of µt as

µt+1 = g̃θ,t(µt),

where g̃θ,t(µ) = gθ(µ, yt, xt) and {yt}t∈Z is the stationary and ergodic solution of the model’s

equations. We define the sequence {µ̃(k)
t }k as follows

µ̃
(k)
t (µ̄) = g̃θ,t−1

(
µ̃

(k−1)
t−1 (µ̄)

)
,

where µ̃(k)
t = µ̄ ∈ [0, 1] for k ≤ 0. The above equation entails that µ̃(k)

t is Fkt−1-measurable,

where Fkt−1 is the σ-field generated by {(yj , x>j ) : t − k ≤ j ≤ t − 1}. Similarly as before, we

show that µt = limk→∞ µ̃
(k)
t (µ̄) exists almost surely and therefore µt is Ft−1-measurable. By the

contraction condition in (4), we obtain

E
∣∣µ̃(k+1)
t (µ̄)− µ̃(k)

t (µ̄)
∣∣ ≤ aµE∣∣µ̃(k)

t−1(µ̄)− µ̃(k−1)
t−1 (µ̄)

∣∣
≤ akµE

∣∣µ̃(1)
t−k(µ̄)− µ̄

∣∣
≤ akµC̃µ,

where C̃µ = E
∣∣g̃θ(µ̄, y0, x0)

∣∣+ µ̄ <∞. This implies almost sure convergence and concludes the

proof of the theorem.

Proof of Proposition 3.1. The proof is obtained by an application of Theorem 3.1 of Bougerol

(1993) in the space of continuous C(Θ,R) equipped with the uniform norm ‖ · ‖Θ as considered

in Proposition 3.12 Straumann and Mikosch (2006). In particular, the stochastic equation

µ̂t+1(θ) = gθ(µ̂t(θ), yt, xt),
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defines a sequence of functions {µ̂t(·)}t∈N in C(Θ,R) given the continuity condition in A2. We

show that conditions C1 and C2 in Theorem 3.1 of Bougerol (1993) are satisfied. Condition C1

holds immediately since gθ is a bounded function and condition C2 is holds since

|gθ(µ, yt, xt)− gθ(µ∗, yt, xt)|
|µ− µ∗|

≤ aµ < 1

with probability one for any θ ∈ Θ by A3.

Proof of Theorem 3.1. Proof of consistency:

By standard arguments that go back to Wald (1949), given the compactness of the parameter space

K, the consistency result follows by showing that

(a) The average log-likelihood converges uniformly to a function L(·), i.e. ‖L̂T − L‖K
a.s.−−→ 0.

(b) The true parameter value κ0 is the unique maximizer of L(κ) in K, i.e. L(κ0) > L(κ) ∀
κ ∈ K,κ 6= κ0.

First, we show that (a) holds. An application of the triangle inequality yields

|L̂T (κ)− L(κ)| ≤ |L̂T (κ)− LT (κ)|+ |LT (κ)− L(κ)|,

where LT (κ) = 1
T

∑T
t=1 lt(κ). Next we show that both terms on the right hand side of the above

inequality converge uniformly to zero almost surely. As concerns the first term, A4 implies that

µ̃t(θ) ∈ [c̄, 1− c̄] with probability one for any θ ∈ Θ. An application of the mean value theorem

yields

|l̂t(κ)− lt(κ)| ≤ sup
µ∈[c̄,1−c̄]

∣∣∣∣∂ log p(yt|µ, φ)

∂µ

∣∣∣∣ |µ̂t(θ)− µ̃t(θ)|.
Furthermore, we note that

∂ log p(yt|µ, φ)

∂µ
= −φψ(φµ) + ψ(φ(1− µ)) + φ log(yt)− φ log(1− yt),

where ψ(·) denotes the digamma function. Therefore, given the continuity of the digamma func-

tion in (0,+∞) and the compactness of Φ, we obtain that

‖l̂t − lt‖K ≤
(
c1 − c2 log(yt)− c3 log(1− yt)

)
‖µ̂t − µ̃t‖Θ,

for some positive constants c1, c2 and c3. Finally, from the properties of the beta distribution, we
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obtain that

E log(yt) = −E(E(log(yt)|Ft−1))

= E(ψ(φ0)− ψ(µtφ0))

≤ ψ(φ0)− ψ(c̄φ0) <∞,

and we note that E log(1 − yt) < ∞ can be shown using the same argument. Therefore, ‖l̂t −
lt‖K

a.s.−−→ 0 follows by an application of Lemma 2.1 of Straumann and Mikosch (2006) since

‖µ̂t − µ̃t‖Θ
e.a.s.−−−→ 0 by Proposition 3.1. As a result,

‖L̂T − LT ‖K ≤
1

T

T∑
t=1

‖l̂t − lt‖K
a.s.−−→ 0.

As concerns the second term, we show that ‖LT − L‖K
a.s.−−→ 0 by an application of the ergodic

theorem of Rao (1962). Given that {lt(·)} is a stationary and ergodic sequence of continuous

functions and K is compact, the ergodic theorem follows if E‖lt‖K <∞. We obtain that

|lt(κ)| ≤ | logB
(
φµ̃t(θ), φ(1− µ̃t(θ))

)
| − φµ̃t(θ) log(yt)− φ(1− µ̃t(θ)) log(1− yt)

≤ C − φ log(yt)− φ log(1− yt),

where supφ∈Φ | logB
(
φµ̃t(θ), φ(1−µ̃t(θ))

)
| ≤ C a.s. for some positive constantC since µ̃t(θ) ∈

[c̄, 1− c̄] with probability one for any θ ∈ Θ andB(z1, z2) is continuous for z1, z2 > 0. Therefore,

we have that E‖lt‖K < ∞ since E log(yt) < ∞ and E log(1 − yt) < ∞ as shown before. This

concludes the proof of (a).

As concerns (b), following the same argument as in the proof of Theorem 4.1 of Gorgi

(2019), we have that (b) is satisfied if we can show that µ̃t(θ1) = µ̃t(θ2) a.s. if and only if

θ1 = θ2 for any θ1, θ2 ∈ Θ. The if part of the statement holds trivially. Below we show that

the only if part holds by contradiction. Assume that θ1 6= θ2 and µ̃t(θ1) = µ̃t(θ2) a.s., then we

have that µ̃t(θ1) = µ̃t(θ2) a.s. for any t since µ̃t is stationary. Therefore, we can assume that

µ̃t(θ1) = µ̃t(θ2) = µ and it must hold that gθ1(µ, yt, xt) = gθ2(µ, yt, xt) with probability one.

This contradicts A5.

Proof of asymptotic normality:

To prove asymptotic normality, we follow a similar argument as in the proof in Section 7 of

Straumann and Mikosch (2006). In particular, first, we derive the asymptotic distribution of the
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ML estimator κ̃T based on the limit likelihood LT , which is defined as

κ̃T = arg sup
κ∈K

LT (κ).

Then, we show that κ̂T and κ̃T have the same asymptotic distribution.

The uniform convergence results in Lemma A.2 imply that µ̃t is twice continuosly differen-

tiable in Θ with first and second derivatives given by µ̃′t and µ̃′′t , respectively. Therefore, we have

that LT is twice continuously differentiable in K. A Taylor expansion around κ0 yields

L′T (κ̃T ) = L′T (κ0) + L′′T (ηT )(κ̃T − κ0),

where ηT is a point between κ̃T and κ0. By definition, κ̃T is the maximizer of LT (κ). Therefore,

we have that L′T (κ̃T ) = 0 for large enough T since κ̃T
a.s.−−→ κ0 and κ0 ∈ int(K). As a result, the

following equation holds true

√
TL′T (κ0) = −L′′T (ηT )

√
T (κ̃T − κ0).

By Lemma A.3 together with an application of the ergodic theorem of Rao (1962), we obtain

that −L′′T (ηT )
a.s.−−→ −E[l′′t (κ0)]. Furthermore, Lemma A.5 ensures that −E[l′′t (κ0)] is positive

definite and Lemma A.4 shows that
√
TL′T (κ0)

d−→ N(0,Ω−1). Therefore, we get that

√
T (κ̃T − κ0) = Ω

√
TL′T (κ0) + op(1),

where Ω = −E[l′′t (κ0)]−1. This implies that
√
T (κ̃T − κ0)

d−→ N(0,Ω) as T →∞.

We conclude the proof by showing that κ̂T and κ̃T have the same asymptotic distribution. A

Taylor expansion yields

L′T (κ̂T ) = L′T (κ̃T ) + L′′T (η̃T )(κ̂T − κ̃T ),

where η̃T is a point between κ̃T and κ̂T . Furthermore, we note that L̂′T (κ̂T ) = 0 and L′T (κ̃T ) = 0

for large enough T by definition. Therefore, we have that

√
T
(
L′T (κ̂T )− L̂′T (κ̂T )

)
= L′′T (η̃T )

√
T (κ̂T − κ̃T ).

The left hand side of the above equation goes to zero almost surely as T →∞ by an application of

Lemma A.6. Furthermore, Lemma A.3 ensures that L′′T (η̃T )
a.s.−−→ E[l′′t (κ0)]. Therefore, we obtain
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that
√
T (κ̂T − κ̃T )

a.s.−−→ 0, which implies that κ̂T and κ̃T have the same asymptotic distribution.

Proof of Theorem 4.1. By an application of Theorem 2.1, we have that the result holds true if the

contraction condition in (4) is satisfied. From the expression of gθ in 6, we obtain

|gθ(µ, y, xt)− gθ(µ∗, y∗, xt)| ≤ β|µ− µ∗|+
∣∣∣γ +

J∑
j=1

I(Aj , xt)γj

∣∣∣|y − y∗|
≤ β|µ− µ∗|+ (γ + max{0, γ1, . . . , γJ})|y − y∗|,

where the second equality follows since
∑J

j=1 I(Aj , xt) ∈ {0, 1} with probability one. This

concludes the proof as β+γ+ max{0, γ1, . . . , γJ} < 1 is implied by the double bound condition

in (7).

Proof of Theorem 4.2. We show that conditions A1-A7 hold. Condition A1 is implied by (i) and

(ii). In particular, (i) imposes that θ0 satisfies (7), which ensures that the contraction in S2 holds

as shown in the proof of Theorem 4.1. Instead, (ii) directly imposes that the regressors satisfy S1.

The continuity condition A2 trivially holds from the expression of the stochastic equation given in

(6). Condition A3 holds since the parameter restrictions in (i) impose that (7) holds and therefore

the contraction holds for any θ ∈ Θ. Condition A4 holds since gθ(µ, y, x) is bounded from below

by δ > 0 and from above by δ + β + γ + max{0, γ1, . . . , γJ} < 1. Condition A6 trivially holds

from the expression of gθ(µ, y, x). Finally, first we prove that A7 holds and then we show that A7
implies A5. From equation (6), we obtain that

∂gθ
∂θ

(µt, yt, xt)
∣∣
θ=θ0

=



1

µt

yt

I(A1, xt)yt
...

I(AJ , xt)yt


.

Therefore, we show that

c1 + c2µt + c3yt +
J∑
j=1

c3+jI(Aj , xt)yt = 0 a.s. (12)

only if c = 0, where c = (c1, . . . , cJ+3)>. We note that c 6= 0 can occur in one of the following
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three ways: (a) (c1, c2)> 6= 0 and (c3, . . . , cJ+3)> = 0, (b) (c1, c2)> = 0 and (c3, . . . , cJ+3)> 6=
0, and (c) (c1, c2)> 6= 0 and (c3, . . . , cJ+3)> 6= 0. Below we show that (12) does not hold in each

of these three cases. In the case (a) is true, we have that (12) holds only if c1 + c2µt = 0 a.s.

However, this is not true for (c1, c2)> 6= 0 since µt is non-degenerate with positive probability. In

the case (b) is true, we have that (12) holds only if

(
c3 +

J∑
j=1

c3+jI(Aj , xt)
)
yt = 0 a.s.,

and since yt = 0 with probability zero the above equation is equivalent to

c3 +

J∑
j=1

c3+jI(Aj , xt) = 0 a.s.

Furthermore, given that the sets A1, . . . , AJ are disjoint, c3 +
∑J

j=1 c3+jI(Aj , xt) takes values in

the set {c3, (c3 + c4), . . . , (c3 + c3+J)} with probability one. Furthermore, condition (ii) ensures

that each element of the set {c3, (c3 + c4), . . . , (c3 + c3+J)} occurs with positive probability. This

obviously implies that c3 +
∑J

j=1 c3+jI(Aj , xt) 6= 0 with positive probability when (b) is true. In

the case (c) is true, we have that (12) holds only if

c1 + c2µt =
(
c3 +

J∑
j=1

c3+jI(Aj , xt)
)
yt a.s.

However, the above equality does not hold with probability one since the left hand side is Ft−1-

measurable and instead the right hand side is not measurable with respect to Ft−1. This shows

that (12) holds only if c = 0. Finally, we note that (12) implies that A5 holds since we can write

gθ(µt, yt, xt)− gθ∗(µt, yt, xt) = δ − δ∗ + (β − β∗)µt +
(

(γ − γ∗) +
J∑
j=1

(γj − γ∗j )I(Aj , xt)
)
yt,

and therefore gθ(µt, yt, xt) = gθ∗(µt, yt, xt) a.s. only if θ∗ = θ.
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A.1 Lemmas

Lemma A.1. Let X ∼ Beta
(
φµ1, φ(1 − µ1)

)
and Y ∼ Beta

(
φµ2, φ(1 − µ2)

)
with µ1 ≥ µ2.

Then X is stochastically greater than Y , X ≥st Y ,

Fµ1(z) ≤ Fµ2(z), for any z ∈ N,

where Fµ1 and Fµ2 denote the cumulative distribution functions of X and Y , respectively.

Proof. We prove the lemma by showing that X is greater than Y in likelihood ratio order X ≥lr
Y . Note that likelihood ratio orderX ≥lr Y implies stochastic orderX ≥st Y . The ratio between

the density function of X and Y is

lr(z) =
fµ1(z)

fµ2(z)
∝
(

z

1− z

)φ(µ1−µ2)

.

Therefore, given that φ > 0 and µ1 ≥ µ2, we obtain that the likelihood ratio lr(z) is an increasing

function in the interval (0, 1) and hence X ≥lr Y .

Lemma A.2. Let A1-A7 hold. Then,

‖µ̂′t − µ̃′t‖Θ
e.a.s.−−−→ 0 and ‖µ̂′′t − µ̃′′t ‖Θ

e.a.s.−−−→ 0 as t→∞,

where µ̃′t(θ) = ∂µ̃t(θ)
∂θ and µ̃′′t (θ) = ∂2µ̃t(θ)

∂θ∂θ>
are stationary and ergodic. Furthermore, there is a

constant Cµ > 0 such that ‖µ̂′t‖Θ ≤ Cµ and ‖µ̂′′t ‖Θ ≤ Cµ with probability one. The norm ‖ · ‖
denotes the L1-norm when applied to a vector and the operator norm induced by the L1-norm

when applied to a matrix.

Proof. The convergence results ‖µ̂′t − µ̃′t‖Θ
e.a.s.−−−→ 0 and ‖µ̂′′t − µ̃′′t ‖Θ

e.a.s.−−−→ 0 are obtained

by showing that the conditions S.1-S.3 of Theorem 2.10 of Straumann and Mikosch (2006) are

satisfied.

The derivative process µ̃′t(θ) can be expressed through the following stochastic equation

µ̃′t+1(θ) = gθt (θ) + gµt (θ) µ̃′t(θ),

where gµt (θ) = ∂gθ(µ,yt,xt)
∂µ

∣∣
µ=µ̃t(θ)

and gθt (θ) = ∂gθ(µ,yt,xt)
∂θ

∣∣
µ=µ̃t(θ)

. We note that conditions

S.1 and S.2 are immediately satisfied because ‖gµt ‖Θ ≤ aµ < 1 a.s. by A2 together with the

differentiability conditions in A6, and ‖gθt ‖Θ is bounded by a constant by A6. Next we show that

S.3 is satisfied. This is the equivalent of showing ‖ĝθt − gθt ‖Θ
e.a.s.−−−→ 0 and ‖ĝµt − g

µ
t ‖Θ

e.a.s.−−−→ 0,
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where ĝµt (θ) = ∂gθ(µ,yt,xt)
∂µ

∣∣
µ=µ̂t(θ)

and ĝθt (θ) = ∂gθ(µ,yt,xt)
∂θ

∣∣
µ=µ̂t(θ)

. By an application of the

mean value theorem together with the smoothness conditions in A6, there is a constants c > 0

such that

‖ĝθt − gθt ‖Θ ≤ c‖µ̂t − µ̃t‖Θ and ‖ĝµt − g
µ
t ‖Θ ≤ c‖µ̂t − µ̃t‖Θ.

As a result, S.3 is satisfied since ‖µ̂t− µ̃t‖Θ
e.a.s.−−−→ 0 by Proposition 3.1 and therefore we conclude

that ‖µ̂′t− µ̃′t‖Θ
e.a.s.−−−→ 0 holds true. Finally, we note that the expression of the stochastic equation

of µ̃′t(θ) together with ‖gµt ‖Θ and ‖gθt ‖Θ being bounded by some constant imply that ‖µ̃′t‖Θ is

bounded with probability one.

Next, we note that the derivative process µ̃′′t (θ) satisfies the following stochastic equation

µ̃′′t+1(θ) = mt(θ) + gµt (θ) µ̃′′t (θ),

where

mt(θ) = gθθt (θ) + gθµt (θ) µ̃′t(θ)
> + µ̃′t(θ) g

θµ
t (θ)> + gµµt (θ) µ̃′t(θ)µ̃

′
t(θ)

>,

with gθθt (θ) = ∂2gθ(µ,yt,xt)
∂θ∂θ>

∣∣
µ=µ̃t(θ)

, gθµt (θ) = ∂2gθ(µ,yt,xt)
∂θ∂µ

∣∣
µ=µ̃t(θ)

and gµµt (θ) = ∂2gθ(µ,yt,xt)
∂µ2

∣∣
µ=µ̃t(θ)

.

First, we obtain that S.1 is satisfied since ‖mt‖Θ is bounded by a constant with probability one.

In particular, ‖gµµt ‖Θ, ‖gθµt ‖Θ and ‖gθθt ‖Θ are bounded by a constant with probability one by

A6, and ‖µ̃′t+1‖Θ is also bounded by a constant as shown before. Second, S.2 is satisfied since

‖gµt ‖Θ ≤ aµ < 1 a.s. by A2. Finally, we have that S.3 is satisfied if

‖ĝθθt − gθθt ‖Θ
e.a.s.−−−→ 0, ‖ĝθµt µ̂′>t − g

θµ
t µ̃′>t ‖Θ

e.a.s.−−−→ 0, and

‖ĝµµt µ̂′tµ̂
′>
t − g

µµ
t µ̃′tµ̃

′>
t ‖Θ

e.a.s.−−−→ 0, as t→∞,

where ĝθθt (θ) = ∂2gθ(µ,yt,xt)
∂θ∂θ>

∣∣
µ=µ̂t(θ)

, ĝθµt (θ) = ∂2gθ(µ,yt,xt)
∂θ∂µ

∣∣
µ=µ̂t(θ)

and ĝµµt (θ) = ∂2gθ(µ,yt,xt)
∂µ2

∣∣
µ=µ̂t(θ)

.

Note that ‖ĝµt − g
µ
t ‖Θ

e.a.s.−−−→ 0 holds true as shown before. By A6 and the mean value theorem,

we obtain that there is a constant c > 0 such that ‖ĝθθt − gθθt ‖Θ ≤ c‖µ̂t− µ̃t‖Θ. Therefore, ‖ĝθθt −
gθθt ‖Θ

e.a.s.−−−→ 0 by an application of Proposition 3.1. As concerns ‖ĝθµt µ̂′>t − g
θµ
t µ̃′>t ‖Θ

e.a.s.−−−→ 0,

by condition A6 and the mean value theorem, we obtain that there is some constant c > 0 such

that

‖ĝµt µ̂′>t − g
µ
t µ̃
′>
t ‖Θ ≤ ‖g

µ
t (µ̂′>t − µ̃′>t )‖Θ + ‖(ĝθµt − g

θµ
t ) µ̂′>t ‖Θ

≤ ‖gµt ‖Θ‖µ̂′t − µ̃′t‖Θ + ‖µ̂′t‖Θ‖ĝ
θµ
t − g

θµ
t ‖Θ

≤ c‖µ̂′t − µ̃′t‖Θ + c‖µ̂t − µ̃t‖Θ.
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Therefore, the result follows since ‖µ̂t− µ̃t‖Θ and ‖µ̂′t− µ̃′t‖Θ converge to zero e.a.s. As concerns

‖ĝµµt µ̂′tµ̂
′>
t − g

µµ
t µ̃′tµ̃

′>
t ‖Θ

e.a.s.−−−→ 0, similarly as before, we obtain that

‖ĝµµt µ̂′tµ̂
′>
t − g

µµ
t µ̃′tµ̃

′>
t ‖Θ ≤ ‖g

µµ
t (µ̂′tµ̂

′>
t − µ̃′tµ̃′>t )‖Θ + ‖(ĝµµt − g

µµ
t )µ̂′tµ̂

′>
t ‖Θ

≤ ‖gµµt ‖Θ ‖µ̂′tµ̂′>t − µ̃′tµ̃′>t ‖Θ + ‖µ̂′t‖2Θ‖ĝ
µµ
t − g

µµ
t ‖Θ

≤ c‖µ̂′t − µ̃′t‖Θ + c‖µ̂t − µ̃t‖Θ.

The result then follows since ‖µ̂t − µ̃t‖Θ and ‖µ̂′t − µ̃′t‖Θ converge to zero e.a.s. Finally, we note

that ‖gµt ‖Θ and ‖mt‖Θ are bounded by some constant and therefore, given the expression of the

stochastic equation of µ̃′′t , we obtain that ‖µ̃′′t ‖Θ is bounded with probability one. This concludes

the proof of the theorem.

Lemma A.3. Let A1-A7 hold, then the second derivative of the likelihood function has a uniformly

bounded moment, i.e. E‖l′′t ‖K <∞.

Proof. The second derivatives of the likelihood is

l′′t (κ) =

[
lφφt (κ) lφµt (κ) µ̃′t(θ)

>

µ̃′t(θ) l
φµ
t (κ)> lµµt (κ) µ̃′t(θ) µ̃

′
t(θ)

> + lµt (κ)µ̃′′t (θ)

]
,

where lµt (κ) = ∂ log p(yt|µ;φ)
∂µ

∣∣
µ=µ̃t(θ)

, lφφt (κ) = ∂2lt(κ)
∂φ2

, lφµt (κ) = ∂2 log p(yt|µ;φ)
∂φ∂µ

∣∣
µ=µ̃t(θ)

, and

lµµt (κ) = ∂2 log p(yt|µ;φ)
∂µ2

∣∣
µ=µ̃t(θ)

. By Lemma A.2 and the submultiplicativity of the norm ‖ · ‖Θ,

we obtain that there is a constant c > 0 such that

E‖l′′t ‖K ≤ E‖lφφt ‖K + 2 E‖lφµt µ̃′>t ‖K + E‖lµµt µ̃′t µ̃
′>
t ‖K + E‖lµt µ̃′′t ‖K

≤ E‖lφφt ‖K + 2c E‖lφµt ‖K + c E‖lµµt ‖K + c E‖lµt ‖K .

Therefore, E‖l′′t ‖K < ∞ holds true if E‖lφφt ‖K < ∞, E‖lφµt ‖K < ∞, E‖lµµt ‖K < ∞ and

E‖lµt ‖K < ∞. We note that, up to some additive constant, the expression of the likelihood

function is

lt(κ) = log Γ(φ)− log Γ(φµ̃t(θ))− log Γ(φ(1− µ̃t(θ)))

+ φµ̃t(θ) log(yt) + φ(1− µ̃t(θ)) log(1− yt),

where Γ(·) denotes the gamma function. Furthermore, µ̃t(θ) ∈ [c̄, 1− c̄] for any θ ∈ Θ by A1 with

c̄ > 0. Therefore, since the log-gamma function is twice continuously differentiable in the set of
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positive real numbers we obtain that first and second partial derivatives of the first three terms in

the expression of lt(κ) are uniformly bounded with probability one. Similarly, we obtain that first

and second partial derivatives of the last three terms in the expression of lt(κ) have a uniformly

bounded first moment since E| log(yt)| < ∞ and E| log(1 − yt)| < ∞ as shown in the proof of

Theorem 2.1.

Lemma A.4. Let A1-A7 hold, then the following asymptotic result holds true

√
TL′T (κ0)

d−→ N
(
0,E[l′t(κ0)l′t(κ0)>]

)
, T →∞.

Proof. The first derivative of lt(κ) evaluated at κ = κ0 can be expressed as

l′t(κ0) =

 lφt (κ0)

lµt (κ0)µ̃′t(θ0)

 ,
where lµt (κ0) = ∂ log p(yt|µ;φ0)

∂µ

∣∣
µ=µ̃t(θ0)

and lφt (κ0) = ∂lt(κ0)
∂φ . First, we obtain that l′t(κ0) has

a finite second moment by showing that E‖l′t(κ0)‖2 < ∞. The proof follows as in the proof

of Lemma A.3 by noticing the first and second derivatives of the log-likelihood are uniformly

bounded by a linear combination of log(yt) and log(1 − yt). Therefore, E‖l′t(κ0)‖2 < ∞ holds

if E log2(yt) < ∞ and E log2(1 − yt) < ∞. We can show that log(yt) has a finite second

moment by relying on the properties of the beta distribution. In particular, Var(log(yt)|Ft−1) =

ψ1(φ0µt)−ψ1(φ0), where ψ1(·) denotes the trigamma function. Therefore, ψ1(φ0µt) is bounded

by a constant with probability one since µt ∈ [c̄, 1−c̄] a.s. and the trigamma function is continuous

in R+. This implies that the unconditional second moment is finite. Finiteness of E log2(1 − yt)
can be obtain by an application of the same argument. Next, we obtain that E[l′t(κ0)|Ft−1] = 0.

We note that µ̃′t(θ0) is Ft−1-measurable and therefore

E[l′t(κ0)|Ft−1] =

 E[lφt (κ0)|Ft−1]

E[lµt (κ0)|Ft−1] µ̃′t(θ0)

 .
The result is obtained noticing that E[lµt (κ0)|Ft−1] = 0 and E[lφt (κ0)|Ft−1] = 0 since lµt (κ0)

and lφt (κ0) are conditional scores of the beta log-density evaluated at the true parameter vector

(µt, φ0).

The above results imply that {l′t(κ0)}t∈N is a stationary and ergodic martingale difference
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sequence with finite second moment. Therefore, we conclude that

√
TL′T (θ0)

d−→ N
(

0,E[l′t(κ0)l′t(κ0)>]
)
, as T →∞,

by an application of the Central Limit theorem for stationary and ergodic martingale difference

sequences, see Billingsley (1999).

Lemma A.5. Let A1-A7 hold, then the Fisher information matrix is positive definite, i.e.−E[l′′t (κ0)] =

E[l′t(κ0)l′t(κ0)>] > 0.

Proof. We note that it is obvious that E[l′t(κ0)l′t(κ0)>] is positive semi-definite. Therefore, we

only need to show that w>l′t(κ0) = 0 a.s. only if w = 0 to rule out the possibility that E[l′t(κ0)l′t(κ0)>]

is singular. Consider the partition w = (w1,w>−1)>, where w1 ∈ R and w−1 ∈ Rk. We have that

w>l′t(κ0) = w1
∂lt(κ0)

∂φ
+ w>−1

∂lt(κ0)

∂θ
.

Below, we show that w>l′t(κ0) = 0 a.s. implies w = 0. Having w 6= 0 can occur in one of the

following ways: (i) w1 6= 0 and w−1 = 0, (ii) w1 = 0 and w−1 6= 0, and (iii) w1 6= 0 and

w−1 6= 0. In the case (i) holds, we have that w>l′t(κ0) = 0 a.s. holds only if ∂lt(κ0)
∂φ = 0 with

probability one. However, it is trivial to see that ∂lt(κ0)
∂φ 6= 0 with positive probability. As concerns

(ii), we obtain that w>l′t(κ0) = 0 a.s. is satisfied only if

w>−1

∂lt(κ0)

∂θ
= lµt (κ0) w>−1

∂µ̃t(θ0)

∂θ
= 0 a.s.,

where lµt (κ0) = ∂ log p(yt|µ;φ0)
∂µ

∣∣
µ=µ̃t(θ0)

. Given that lµt (κ0) 6= 0 with probability one, the above

equality would imply that w>−1
∂µ̃t(θ0)
∂θ = 0 a.s. However, this possibility is ruled out by A7.

Finally, if (iii) holds, then w>l′t(κ0) = 0 a.s. is satisfied only if

w1
∂lt(κ0)

∂φ
(lµt (κ0))

−1
= −w>−1

∂µ̃t(θ0)

∂θ
a.s.

However, this equation does not hold because ∂µ̃t
∂θ is Ft−1-measurable and, instead, the term on

the left hand side is not Ft−1-measurable as it depends on yt.

Finally, the Fisher information equality −E[l′′t (κ0)] = E[l′t(κ0)l′t(κ0)>] holds true. In partic-

ular, lt(κ0) is the true conditional log-density evaluated at yt and the likelihood function is twice

continuously differentiable with a uniformly bounded moment. This enables interchanging inte-

gration and differentiation, which entails the desired result by following standard arguments.
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Lemma A.6. Let A1-A7 hold, then

√
T ‖L̂′T − L′T ‖K

a.s.−−→ 0, as T →∞.

Proof. From the expression of l′t given in the proof of Lemma A.4, the submultiplicativity of

matrix norms and the mean value theorem, we obtain

‖l̂′t − l′t‖K ≤ ‖l̂
φ
t − l

φ
t ‖K + ‖l̂µt µ̂′t − l

µ
t µ̃
′
t‖K

≤ ‖l̂φt − l
φ
t ‖K + ‖lµt (µ̂′t − µ̃′t)‖K + ‖(l̂µt − l

µ
t )µ̂′t‖K

≤ ‖vφµt ‖Φ ‖µ̂t − µ̃t‖K + ‖lµt ‖K ‖µ̂′t − µ̃′t‖Θ + ‖µ̂′t‖Θ ‖v
µµ
t ‖Φ ‖µ̂t − µ̃t‖Θ,

where vφµt (φ) = supµ∈[c̄,(1−c̄)]
∣∣∂2 log p(yt|µ;φ)

∂φ∂µ

∣∣ and vµµt (φ) = supµ∈[c̄,(1−c̄)]
∣∣∂2 log p(yt|µ;φ)

∂µ2

∣∣. Next,

we note that E‖lµt ‖K <∞, E‖vφµt ‖Φ <∞ and E‖vµµt ‖Φ <∞ since lµt , vφµt and vµµt are bounded

by linear combinations of log(yt) and log(1− yt), which have a bounded moment. Furthermore,

‖µ̂′t‖Θ is bounded by a constant with probability one by Lemma A.2. Therefore, ‖l̂′t−l′t‖K
e.a.s.−−−→ 0

follows by an application of Lemma 2.1 of Straumann and Mikosch (2006) since ‖µ̂t−µ̃t‖K
e.a.s.−−−→

0 and ‖µ̂′t− µ̃′t‖K
e.a.s.−−−→ 0 by Proposition 3.1 and Lemma A.2, respectively. Finally, we conclude

the proof noticing that

lim
T→∞

T ‖L̂′T − L′T ‖K ≤
T∑
i=1

‖l̂′t − l′t‖K <∞ a.s.

Therefore,
√
T ‖L̂′T − L′T ‖K

a.s.−−→ 0 holds true.
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