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Abstract: Hypercongestion is the situation where a certain traffic flow occurs at a combination of low 

speed and high density, while a more favorable combination of these could produce the same flow. The 

macroscopic fundamental diagram (MFD) allows for such hypercongestion, but does not explicitly describe 

the dynamic process leading up to hypercongestion. Earlier studies of hypercongestion on single links have, 

however, confirmed that such dynamic processes are important to consider. The bathtub model is one class 

of model that can be used to investigate how hypercongestion can arise in urban areas, when drivers can 

choose their departure times. This paper investigates equilibrium outcomes and user costs under the realistic 

assumption that there is finite capacity to exit the bathtub, without which it would be hard to explain why 

hypercongestion would not dissolve through shockwaves originating from the bathtub exit. We find that 

when the exit capacity of the bathtub is lower than the attempted equilibrium exit flow from the bathtub, 

no additional inefficiencies arise due to hypercongestion in the bathtub, as the travel time losses incurred 

in the bathtub translate into exactly offsetting reductions in travel time losses in exit queues and the capacity 

of the full system is not affected. In contrast, when the exit capacity is higher than the equilibrium exit 

flows from the bathtub in the central part of the peak period, hypercongestion in the bathtub produces the 

additional inefficiencies known from the conventional textbook description. Our results thus show that the 

observation of hypercongested speeds does not necessarily mean that there is an efficiency loss from 

capacity drop at the level of the full system.  

Keywords: Road traffic congestion; flow congestion; bathtub model; hypercongestion 
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1. Introduction  

Traffic congestion in commuting usually arises because of a combination of limited road capacities and 

a strong concentration of demand in space and time of the day. This leads to travel time losses, scheduling 

costs, and may enhance environmental externalities such as air pollution and traffic accidents. When 

travelers make a trip to an urban region, they usually face two types of congestion: bottleneck queueing 

behind bridges or tunnels and dynamic flow congestion in urban areas. Bottleneck congestion was first 

studied from a dynamic equilibrium perspective by Vickrey (1969), later elaborated upon in papers by 

Arnott et al. (1990; 1993). Dynamic equilibrium in these models arises because the capacity of the 

bottleneck is limited and travelers make trade-offs between travel time losses and scheduling disutility from 

arriving earlier or later at their destination than preferred. In the bottleneck model, the only travel time loss, 

above the free flow travel time, is the waiting time at the queue before the bottleneck when the outflow is 

at the constant capacity of the bottleneck. This feature of the bottleneck model leads to convenient closed-

form results for the traffic equilibrium and optimum, which makes this stylized bottleneck model attractive 

for the economic analysis of dynamic equilibrium (Arnott et al., 1993). 

However, additional time losses can result from flow congestion on roads other than bottlenecks, where 

equilibrium speeds could fall below free-flow speed levels before maximum flow capacity is reached. In 

flow congestion models, the dynamic travel time function provides a structural relationship between 

capacity, the number of travelers or density at a certain time instant, and speed or travel time. Many such 

functions display delays for traffic volumes below capacity. For example, Henderson (1974) applies a 

formulation where the travel time for a single road is a smooth function of the flow at the road’s entrance 

when departing from home, whereas Chu (1995) uses a specification where travel time is determined by 

the flow at the road’s exit when arriving at the destination. Mun (1994) and Mun (1999) divided a one-link 

road into two parts of endogenous lengths: a part without a queue, followed by a traffic jam part caused by 

a downstream bottleneck. Others have investigated the impacts of queue spillback and capacity drops at the 

bottleneck on the upstream flow (e.g., Daganzo, 1998; Nie and Zhang, 2008; Ma et al., 2017; Yuan et al, 

2017; Baer et al., 2019). 

In recent years, there have been new developments in the modelling of peak congestion in cities (e.g., 

Geroliminis and Levinson, 2009; Arnott, 2013; Fosgerau and Small, 2013; Fosgerau, 2015; Daganzo and 

Lehe, 2015; Lamotte and Geroliminis, 2018), arising from empirical observations about congestion in urban 

areas. An important empirical insight is the observation of a stable relationship between average equilibrium 

speed and average equilibrium density at the level of an entire urban area (Geroliminis and Daganzo, 2008). 

This relationship is called the Macroscopic Fundamental Diagram (MFD), in order to distinguish it from 

the familiar link-based fundamental diagram of traffic congestion that depicts the inverted U-shape relation 

between density and flow. The MFD arises as the combined result from speed falling monotonously with 

density, and flow equaling the product of density and speed. A similar stable relationship between traffic 

speed, density and flow for an entire urban area also underlies models of “bathtub congestion” proposed in 

various recent transport economic models (Small and Chu, 2003; Arnott, 2013; Fosgerau, 2015). The usual 

explanation for the parallel with a bathtub is that for an urban area, the process of drivers entering (leaving) 

the traffic network is like the inflow (outflow) of water into (out of) bathtub, where traffic density would 

correspond to the level of water in the bathtub (Fosgerau, 2015). In the bathtub model, instantaneous traffic 
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conditions are assumed to be homogeneous over continuous space, making it possible to avoid the explicit 

modelling of route choices. Furthermore, this setup avoids complications arising from continuous-time-

continuous-place congestion modelling, as in for example car-following models (Verhoef, 2001; 2003) and 

hydro-dynamic models (Newell, 1988).  

The MFD or the bathtub model describes trip completion rate, or outflow from the network, in a way 

that it strongly depends on the average density, and thus the accumulations of vehicles, in the network. 

Given the spatial homogeneity of congestion and slowing-evolving conditions, it is believed that there exists 

an approximately constant relation between the outflow from the network and the accumulations in the 

network (Lamotte and Geroliminis, 2018). Both the MFD and the bathtub model allow for hypercongestion, 

but neither explicitly describes the dynamic process leading up to hypercongestion. From one-directional 

models such as that in Verhoef (2003), we know that in absence of a downstream capacity reduction, 

hypercongestion cannot build up on a single constant–capacity facility, and any initially assumed 

hypercongestion would dissolve from upstream moving shockwaves originating from the exit. It is therefore 

important to include downstream capacity restrictions, even though the earlier bathtub models impose, 

implicitly, that traffic conditions be uniform over space so that such dissolution cannot occur by 

construction, and no downstream capacity limitation is, in modelling terms, “needed” to sustain 

hypercongestion. That is, in these models, vehicles exiting are, as it were, “pulled back” by vehicles still 

present in the bathtub. 

It is clear that one could readily specify a single speed-flow relation that matches the backward-bending 

shape also observed in empirical MFD studies, and then use it for policy analyses and welfare assessments. 

The main potential pitfall of doing that is that if in reality it is the existence of capacity restrictions in the 

exiting of vehicles that causes hypercongested conditions to be observed, and if the existence of such 

capacity restrictions has an impact on how equilibria would change under differential policies, analyses that 

ignore these exit capacity restrictions might very well produce strongly biased and misguiding policy 

recommendations and welfare assessments. The simple observation that this would already be true for the 

two-serial links model in Verhoef (2003), arguably the simplest possible urban network that could be 

represented by an MFD or bathtub model with a downstream capacity restriction, leaves no reason to hope 

that the problem would disappear if the network represented by the bathtub or MFD becomes more complex. 

This motivates our current study, in which we analyze whether, and if so how, the existence of exit capacity 

restrictions would affect the behaviour of and insights from MFD and bathtub models in the assessment of 

welfare and policy implications with a focus on hypercongestion. 

To stay as close as possible to existing MFD and bathtub models we will seek to maintain the assumed 

spatial homogeneity of traffic conditions. Given that these models are in particular designed to model traffic 

in a downtown area, spatial homogeneity requires that destinations or exits be uniformly and continuously 

scattered over space. We thus study what would happen in these models if the exits, which will be closely 

related to parking facilities in reality, have a finite capacity. It should be noted that we only consider the 

limited entrance capacity, i.e., limited flow capacity, of the parking area, but do not involve the stock 

capacity inside the parking areas to simplify the argument of the paper. For a more detailed analysis of 

drivers’ cruising for parking space with a bathtub model without departure time choices of travelers we 

refer to Geroliminis (2015) and Liu and Geroliminis (2016). 
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The conventional bathtub model incorporates drivers’ behavior by endogenizing commuters’ departure 

time choices (Arnott, 2013), but it is analytical intractable because network outflow at each point in time is 

determined by the prior states of traffic over the peak. Amirgholy and Gao (2017) further studied the 

equilibrium solution with different forms of exogenous departure rate function in MFD by extending 

Vickrey’s bottleneck theory to the macro-level. In this paper, we aim to investigate how drivers’ dynamic 

behavior, traffic conditions in the network, and the outflow from the network interact with each other when 

there exist downstream capacity restrictions. In our modelling, we are in particular concerned with how 

these restrictions would affect the deadweight welfare loss from hypercongestion that arises because flow 

drops below its possible maximum, and capacity waste arises. 

The remainder of the paper is organized as follows. The next section will explain the motivations of 

this paper and its contributions. Section 3 introduces the methodology used this paper. Section 4 extends 

the model to distinguish different types of hypercongestion. Section 5 presents the numerical analyses. The 

final section concludes the paper and discusses possible extensions for future research.  

2. Bathtub model with restricted downstream capacity 

In this paper, we consider commuting trips in which drivers need to drive in a certain area (the bathtub) 

to their work. To maintain the assumption of spatial homogeneity of traffic conditions in a bathtub, we 

assume that drivers’ destinations are uniformly distributed in the bathtub. Thus, exits from the bathtub are 

distributed uniformly over space, in such a fine resolution that they induce no spatial inhomogeneities in 

traffic conditions. The description most closely representing our model would be a spatial continuum of 

exits, which we will approximate by letting the number of exits, E , go to infinity. Also to maintain spatial 

homogeneity, we assume that these exits all have same capacity, so that exit capacity per unit of space in 

the bathtub is also constant over space. 

Denoting the aggregate outflow from the bathtub into all exit queues jointly as ( )A t , the arrival rate 

of new users at each bottleneck – or at the tail of its queue – is, under spatial homogeneity, ( )A t E . 

Denoting the aggregate exit capacity from the bathtub as ac , the capacity per bottleneck will be ac E . 

Now observe that for each of these bottlenecks, the queuing time at any moment is an integral of earlier 

queue growth rates, ( )( )aA t c E− , divided by the bottleneck capacity, ac E , over time. A consequence 

is that we can multiply any single bottleneck’s queue growth rates and capacity by E  and find the same 

time pattern of queuing delays for that bottleneck. In other words, we can analytically treat the continuum 

of exits as if they form a single bottleneck with capacity ac , with an aggregate inflow of ( )A t . That is 

what we will do in what follows. 

Concerns over spatial inhomogeneity in traffic conditions, that a localized single exit point of outflow 

would undoubtedly induce, vanish when E  goes to infinity so that exits become continuous over space, 

while keeping their capacities (which then becomes a density of exit capacity) uniform over space. But we 

can maintain the relatively simple dynamics that a single bottleneck brings about. The assumed uniform 

distribution of exit capacities over the bathtub is of course a simplification, but it seems the only description 

that is consistent with the spatial homogeneity of traffic conditions that characterizes bathtub congestion 
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models in the first place. In particular, spatially homogenous time-varying traffic conditions in the bathtub 

can only be supported as a dynamic equilibrium if also time-varying exit conditions are homogeneous over 

space.1 

In what follows we will thus treat the exit of the bathtub as a single bottleneck with an aggregate 

attempted time-varying inflow of ( )A t  and a capacity of ac , but do this keeping in mind that it produces 

queuing times that would apply for a continuum of spatially homogenous bottlenecks with the same 

aggregate inflow and capacity. We therefore formulate a mathematical model that considers a spatially 

homogeneous bathtub area with a single bottleneck at its exit. Commuters depart from home, encounter 

traffic flow congestion in the city/bathtub area. Then they arrive at the exit and face a finite capacity, which 

results in the build-up of a vertical queue. We also note that the assumption of vertical queues provides a 

conservative approach in identifying the impact of a downstream capacity restriction on the emergency of 

hypercongestion: the queue does not itself reduce space available in the bathtub. After passing the 

bottleneck, they arrive at their office with scheduling costs due to not arriving at their preferred arrival time. 

A similar approach with a constant outflow constraint was already introduced by Mariotte and Leclercq 

(2019) for integration in multi-reservoir systems. An entry supply function and the exit departure rate were 

explicitly modelled, while drivers’ departure time choices are not considered. The effect of a fixed capacity 

at exit was also studied in Ingole et al. (2020) in the context of perimeter gating. As discussed above, what 

we consider in this paper is that there exists a maximum outflow from the network, which is constant over 

space to maintain consistency with the spatial homogeneity assumption that is characteristic for the bathtub 

models. Unlike practice in the bottleneck model, we will not assume that the maximal outflow is achieved 

throughout the peak, especially not when congestion is very serious. Indeed, we will find equilibria where 

also outflow from the bathtub decreases with density and falls below the capacity as hypercongestion occurs, 

in the middle of the peak period. This will actually be shown in Section 4, and relates directly to one of our 

main contributions: the distinction between different types of hypercongestion.  

An interesting and unexpected benefit of equilibria with constant outflow is that these avoid the 

intractability issues of bathtub model. As stated in Amirgholy and Gao (2017), the equilibrium in the 

                                                      
1 We will not explicitly model spillbacks of queues at the exit into the bathtub. The analytical reason is that doing so 

would mean that we can no longer maintain the assumption of spatially homogeneous traffic conditions in the bathtub, 

which would greatly complicate the analysis. The economic justification for ignoring these complications is that the 

qualitative dynamic equilibrium features of the model would not be affected fundamentally. In particular, there would 

still be the two possible types of dynamic equilibria that we also find without explicit modelling of spillbacks: one in 

which the exit rate from the bathtub would remain equal to its exit capacity and where there is a perfect substitution 

between waiting time in the exit queue and travel time in the bathtub, and there is no deadweight loss from 

hypercongestion in terms of reduced arrival rates at the destination; and one where in the most congested period, the 

flow in the bathtub is so low that queuing at the exit disappears close to the most preferred arrival time, and 

hypercongested speeds in the bathtub do produce the additional deadweight loss of arrival rates falling below exit 

capacity. The reason why the first type of equilibrium could also occur with spillbacks is that also then, the exit flow 

remains equal to exit capacity when there is a queue. The reason why the second type of equilibrium could also occur 

with spillbacks is that when we find that the exit queues have disappeared in the most central times of the peak, it no 

longer matters if queue spillbacks would have been modelled explicitly. 
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bathtub model can be pinned down if drivers’ departure rates from home are known. Given the constant 

outflow constraint, an endogenous departure rate from home can be obtained. In fact, even when this 

constraint is not active, the equilibrium departure rate can be obtained, based on the features of MFD 

between outflow and flow or the relationship between trip length, speed and arrival time at exit of the 

bathtub, which in fact correspond to the two approaches used in this paper to solve the model (see Section 

3 below). Therefore, although being somehow unrealistic, an exogenous bottleneck at exit on one hand 

helps to explicitly describe the dynamic process leading up to hypercongestion and thus sheds light on the 

build-up of hypercongestion reflected in the backward-bending segment of MFD, and on the other hand 

provides the methodology to solve the models in closed form. 

Hypercongestion is verified to exist in our model, where the duration of hypercongestion naturally 

depends both on the properties of the network and the assumed demand parameters. However, we will be 

more elaborate than this as in the context of our model, two types of hypercongestion can be distinguished. 

The first is what we will call “bathtub-speed” hypercongestion, which arises when traffic density in the 

bathtub exceeds the value consistent with the maximum possible flow in the bathtub (see Fig. 1, B1). The 

inflow into the queue then naturally falls below the maximum possible inflow, determined by the maximum 

flow that can occur in the bathtub. The second form will be referred to as “system” hypercongestion, and 

this arises when a sufficiently extended period of bathtub-speed hypercongestion makes queuing at the 

bottleneck disappear altogether, and subsequently causes outflow from the bathtub to fall below the exit 

capacity (see Fig. 1, A1) for a certain period where the bathtub is heavily congested. While bathtub-speed 

hypercongestion only involves zero-sum tradeoffs between travel time in the bathtub and queuing time at 

exit, system hypercongestion results in an inefficiently long equilibrium peak period, and corresponds to 

higher equilibrium travel cost.  

Here we first illustrate why hypercongested speeds in equilibrium may not create the conventional 

deadweight welfare loss associated with flow falling below capacity in a qualitative, intuitive sense. In 

short, the reason is that whenever the exit capacity is lower than the flow from the bathtub into the exit, the 

exit flows remain constant, simply because the exit has a fixed capacity and functions as a bottleneck. A 

higher speed in the network may then simply mean an earlier joining of the queue at exit, so that travel time 

gains in the network are nullified by increased queuing time at exit, and the moment of trip completion 

remains unaltered, being determined by the exit capacity. When departure time choices of travelers are 

endogenous, the equilibrium duration of the peak period will depend on the downstream capacity in a way 

identical to the conventional bottleneck model when it operates at full capacity throughout the peak. Only 

when the outflow from the network drops below the exit capacity, the equilibrium duration of the peak will 

be affected by the flow in the bathtub. With reference to the familiar flow-speed and flow-cost relations in 

Figure 1: benefits can then be obtained by moving from the hypercongested situation (A2 in Fig 1) to the 

normally congested range (A1 in Fig 1). This implies that if the exit continues to operate at full capacity 

throughout the peak, it does not matter whether speed in the bathtub varies between v  and v  (with 

hypercongestion), or between 
*v  and v  (without hypercongestion). The duration of the peak period is then 

always equal to the ratio between demand and the downstream capacity: aN c , and travel delays in the 

bathtub are fully substituted by travel delays at the exit queue. Only when speed further increases from v  

(normal congestion) or further decreases from v  (hypercongestion), exit capacity waste may occur if that 
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deviation is sufficiently long-lived to make an early exit queue fully dissipate, and this would then result in 

a longer peak period. We will further investigate this intuition analytically in the following sections.  

Speed
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Fig 1. Hypercongestion and downstream capacity 

Section 3. Modelling approach 

In this section, we will introduce the model to be used in our paper. We first consider equilibria in 

which the exit is always fully utilized, from the first driver arriving at the bottleneck until the last driver 

arriving at the bottleneck. In this way, an endogenous departure rate from home can be easily obtained for 

the whole peak period. However, as mentioned above, this does not mean that in our model the constant 

outflow is necessarily always achieved. But it may, and the reason that the corresponding equilibria are 

considered here is that in this way, we can have a clear picture of the methodology used. We will discuss 

the more general case, where the arrival rate is not constant, in Section 4.  

3.1 The bathtub model 

The bathtub model assumes that urban area is perfectly homogeneous, which results in an equilibrium 

in which traffic speeds, densities, and flows do not vary over space (Fosgerau, 2015). Flow congestion in 

bathtub area follows a stable relationship between density and speed. For this paper, this relationship is 

assumed to be linear and given by (Greenshields et al., 1935):   

( ) ( )( )1fv t v k t= − ,                                                 (1) 

where fv  is the free-flow speed and 1 jk =  is defined as the reciprocal of the jam density, jk , which is 

the value of traffic density that results in zero traffic speed. We can freely choose units of road capacity 

such that density, ( )k t , can be expressed as the total number of cars in the bathtub at time t , and is equal 

to the difference between the cumulative departures from home, ( )D t , and the cumulative exits from the 

bathtub (or the aggregate arrivals/inflow at/into exit) at time t , ( )A t : 

( ) ( ) ( )k t D t A t= − .                                                           (2) 

Denote ( ) ( )d t D t=  and ( ) ( )a t A t=  as the departure rate from home (inflow into the bathtub) and the 

arrival rate at exit (outflow from the bathtub into the exit queue), respectively. The evolution of density 

inside the bathtub is then given by the difference between the departure rate from home and the arrival rate 

at exit: 

( ) ( ) ( )k t d t a t = − .                                                         (3) 



8 

 

Travel time in the bathtub is determined by speed and trip length in the bathtub, L . Trip length in the 

bathtub is logically equal to the integral of speed over time, from the departure time t until the corresponding 

arrival time at exit queue, ( )s t : 

( )
( )s t

t
L v d=   .                                                          (4) 

Then, with the first-in-first-out principle, the cumulative departures from home and the cumulative arrivals 

at exit are related as: 

( ) ( )( )D t A s t= ,                                                          (5) 

which means that the cumulative number of drivers having departed from home at time t  is equal to the 

cumulative number of drivers having arrived at exit at time ( )s t .  

Unfortunately, this bathtub model cannot be solved without making further assumptions. The difficulty 

is that, in order to obtain the equilibrium departure and arrival schedules, we need to know drivers’ arrival 

time at the destination, while this arrival time depends on the traffic speed and density at every instant in 

the bathtub before arriving at the destination. However, the instantaneous traffic speed and density are 

determined by the departure and arrival schedules. There are two approaches available in literature to make 

further progress. First, Arnott (2013) adopted a proportional relationship between outflow from the bathtub 

and flow inside the bathtub by assuming all drivers have the same probability of exiting the network at any 

time. The relationship is consistent with the “Network Exit Function (NEF)” in Gonzales and Daganzo 

(2012), which describes “the flow of vehicles exiting the network as a function of the total number of 

vehicles circulating in the network”. It is demonstrated by Geroliminis and Daganzo (2007) that this 

function can be estimated using the MFD of the network. This approach is also used by Amirgholy and Gao 

(2017) and Lamotte and Geroliminis (2018), and is referred as “accumulation-based” approach in Mariotte 

et al. (2017). The second approach to obtain an equilibrium solution was introduced by Fosgerau (2015), 

and makes use of the relationship between trip length and speed in Eq. (4). Equilibrium was obtained based 

on the assumption of “regular sorting”, which means drivers with a longer trip length will always depart 

earlier and arrive later in equilibrium. By treating departure time and arrival time as functions of trip length, 

drivers’ travel time in equilibrium only depends on the speed-density relationship (1), and on the 

distribution of trip lengths. This approach is also termed as “trip-based” in literature (Mariotte et al., 2017). 

We will adopt and compare both approaches in our paper. The first one, we will refer to as the CPI 

(constant proportion between flow in the bathtub and outflow from the bathtub) model in this paper, while 

the second method will be referred to as the FTL (fixed trip length) model as we assume drivers’ trip length 

are fixed in this case. The key difference of our model with earlier bathtub models in literature is that we 

consider a stylized bathtub area with an exit capacity restriction. As a result, an endogenous departure rate 

from home can be obtained, which makes it much easier to solve the model. For the CPI model, we do not 

need the assumption of drivers’ probabilistic arrivals in Arnott (2013), or the exogenous departure rate in 

Amirgholy and Gao (2017). For the FTL model, we do not need the “regular-sorting” assumption. In the 

following, we will first introduce how an endogenous departure rate is obtained, and then how the two 

approaches solve our models.  
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3.2 Bathtub model with a bottleneck at the exit 

Given the constant outflow constraint, the queuing time for a traveler who departs from home at time 

t  and arrives at exit at time ( )s t  is given by: 

( )( )
( )( ) ( )( )a q

q

a

A s t c s t t
T s t

c

− −
= ,                                                     (6) 

where ac  is the capacity of the exit and qt  is the arrival time at exit (and also at destination as no queue 

exists) of the very first driver departed. For a driver departing at time t , the arrival time at the destination 

is given by: 

( ) ( ) ( )( )
( )( ) ( )

q q q

a a

A s t D t
t s t T s t t t

c c
 = + = + = + ,                                 (7) 

which satisfies: 

( ) ( ) ( )( )
( )

q

a

d t
t s t T s t

c
  = + = .                                                      (8) 

Denote 
*t  as drivers’ preferred arrival time at destination. Drivers’ user cost in monetary units is assumed 

to be given by the conventional expressions for “−−  ” preferences: 

( ) ( ) ( )( )( ) ( ) ( )( )( ) ( ) ( )( )( ) * *max ,q q qp t s t T s t t t s t T s t s t T s t t=  + − +  − −  + − ,   (9) 

where   denotes drivers’ value of time,   and   denote the unit schedule-early cost and the unit schedule-

late cost, respectively. The first-order condition for drivers’ optimal departure time choices is given by: 

( )

( )
( )

( )
( )

,

0

,

s

a

e

a

d t
t t t

c
p t

d t
t t t

c


 − −  


 = =

  +  −  



,                                        (10) 

where st  and et  denote the times of the first departure and the last departure from home, and t  is the 

departure time from home of the drivers who arrive at destination at 
*t . Solving Eq. (10) for the departure 

rate yields: 

( ) 1

2

,

,

s

e

t t t
d t

t t t

  
= 

  
,                                                         (11) 

where 1 ac


 =
 −

, and 2 ac


 =
 + 

, which means the equilibrium departure rate is the same as that in 

the conventional bottleneck model (Vickrey, 1969). The reason is as follows. Because the capacity of the 

exit is always fully utilized, and given the first-in-first-out principle that should hold in equilibrium, drivers 

must queue at the exit in the order of their departure time. Thus, their arrival time at the destination is 

determined by how many drivers have departed before them, in combination with the exit capacity and the 
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arrival time of the first departure. It is therefore not determined but their travel time inside the bathtub in 

itself, but instead only by the sum of that travel time and the queuing time. Thus, we basically have a 

standard bottleneck model, where for an individual’s total travel delay cost, it is only the sum of bathtub 

travel time and bottleneck queuing time that matters. The cumulative departures are thus given by: 

( )
( )

( )

1

2 3

,

,

s s

s e

t t t t t
D t

t t t t t

 −  
= 

 − +   

,                                               (12) 

where ( )*

3 a qc t t
 +

 = −
 + 

.  

In what follows, we will consider two ways to model the traffic situation in the bathtub, given this 

knowledge of the equilibrium departure pattern. 

3.21 Model I: Constant Proportion of Inflow into the bottleneck (CPI) 

To allow us to consider a conventional bathtub area but with a downstream capacity restriction, and 

maintain the standard assumption that density, speed, and flow are homogeneous over space in the bathtub, 

we assume that queuing involves a standard spaceless, vertical “Vickrey” queue (Vickrey, 1969). For the 

CPI model, the arrival rate at the exit queue (the instantaneous outflow of the bathtub) should be 

proportional to the flow in the bathtub, as for the empirical NEF function, resulting in: 

( ) ( ) ( )( )a t k t v k t=  ,                                                          (13) 

where   is the ratio between outflow from the bathtub (or arrival rate at exit) and flow in the bathtub, which 

reflects the average trip length experienced by drivers in the bathtub (Daganzo, 2007) and depends on the 

availability and size of the ubiquitous exit facilities. Substituting condition (13) into condition (3) yields: 

( ) ( ) ( )
( )

( ) ( ) ( )( )

,

,

s q

q e

d t t t t
k t d t a t

d t k t v k t t t t

 
 = − = 

−  

.                                    (14) 

The arrival rate at exit before qt  is zero, while after qt , it is equal to   times of flow in the bathtub. Given 

the departure rate ( )d t  in Eq. (11), the above ordinary differential equation (14) can be solved for 

equilibrium density, speed and flow with the boundary condition ( ) 0sk t = . Appendix A provides more 

details on these derivations. With the equilibrium departure rates and arrival rates, the arrival time at the 

exit can be obtained using Eq. (5) (see Appendix A).  

3.22 Model II: Fixed Trip Length (FTL) 

The FTL model builds on the relationship between trip length and speed in the bathtub in Eq. (4), an 

approach adopted in Fosgerau (2015). Different from Fosgerau (2015), here we assume a non-stochastic 

fixed trip length, in our case identical across drivers. From Eq. (4) it follows that for a given L , the 

derivative of ( )s t  with respect to t  is given by: 



11 

 

( )
( )( )
( )( )( )

v k t
s t

v k s t
 = ,                                                                (15) 

implying that the change in the arrival time at exit is determined by the ratio between speed at the moment 

of departure from home and speed at the moment of arrival at exit. Combining this equation with conditions 

(2) and (5), we have: 

( )
( ) ( )( )
( )( ) ( )( )( )

v D t A t
s t

v D s t A s t

−
 =

−
,                                                         (16) 

which is an ordinary differential equation (ODE). It should be noted that the departure rate at st  is 

1 ac


 =
 −

, which is larger than the exit capacity. Therefore, queue builds up as soon as the first group 

of drivers arrive at exit. Given the cumulative departures from home, ( )D t , in Eq. (12), the above ODE 

(16) can be solved if ( )A t  is known. Notice that the first driver’s arrival time at the bottleneck is qt  and 

there are no arrivals at the bottleneck before that moment, we have ( ) 0A t =  for ),s qt t . Thus, ODE (16) 

can be rewritten as: 

( )
( )( )

( )( ) ( )( )
), ,s q

v D t
s t t t t

v D s t D t
 = 

−
.                                        (17) 

Given the traffic speed-density relationship (1), ( )s t  can be obtained by solving the above ODE (17) with 

( )s qs t t= . Based on Eq. (5), the cumulative arrivals ( )A t  for ( )),q qt t s t


 is given by: 

( ) ( )( )1A t D s t−= .                                                     (18) 

With Eqs. (12) and (18), ODE (16) can be numerically solved for ( )),q qt t s t


 to yield the arrival time 

at exit, ( )s t . Again, the cumulative arrivals, ( )A t , for the next time interval can be obtained based on Eq. 

(18), and then we can further obtain ( )s t  in this interval. Fig. 2 summarizes the method for the calculation 

of the cumulative arrivals and arrival time at exit in this model. Basically, it is an iterative procedure, that 

links solutions of earlier arrival intervals to later arrival intervals. In this way, we can calculate ( )s t  and 

( )A t  for the whole peak period. Then, equilibrium density results from Eq. (2) and equilibrium speed 

results from Eq. (1). 
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Fig 2. The solution procedure of the FTL Model 

 

Although both model formulations, CPI and FTL, look reasonable, it is in general impossible for them 

to hold at the same time; otherwise, condition (5) is not satisfied. For the CPI model, the arrival rate at the 

exit is proportional to flow in the bathtub, which is attractive from the perspective of logical relations 

between flows of vehicles. But the CPI model results in time varying and stochastic trip lengths. For the 

FTL model, trip length is fixed and deterministic, but the arrival rate at the exit is not deterministically 

related to the flow in the bathtub. This has the disadvantage that the ratio between flow in the bathtub and 

outflow from the bathtub,  , in fact becomes endogenous, and time varying in this formulation. Depending 

on the empirical plausibility, both sets of assumptions might be more or less unattractive for the reasons 

mentioned above, but both can guarantee that an equilibrium can be found. Section 5 will assess numerically 

whether the two formulations lead to strong differences in predicted dynamic congestion patterns in the 

bathtub, therewith providing insight into the importance of choosing between these two model formulations. 

But before that, we will first distinguish two different types of hypercongestion, by allowing for capacity 

waste at the exit.  

Section 4. Hypercongestion 

4.1 Two types of hypercongestion 

This section discusses the qualitative insights on hypercongestion that we can derive from our models. 

Hypercongestion refers to the situation where flow decreases with density, because the impact of reduced 

speed dominates the direct effect of increased density on flow. For our model, this implies that one way to 

identify hypercongestion is to identify conditions where equilibrium speed increases with equilibrium flow 

in the bathtub. This is fully in line with the empirical findings of Geroliminis and Daganzo (2008), who 

established a backward-bending part of the macroscopic speed-flow curve (the part in red oval in Fig 3(a)). 

This type of hypercongestion affects travelers when they are in the bathtub area. However, it should be 

noted that for these equilibria, the bathtub exit operates at full capacity for the whole hypercongestion period. 

The lower speed in the bathtub makes travelers join the exit queue later, but since the outflow from exit is 

not affected, the arrival time at destination does not change, either. Both inflow into the bathtub and outflow 

from the exit are therefore unaffected by this hypercongestion in the bathtub, and although hypercongestion 

exists in the bathtub area, the performance of the full system of the bathtub-exit in terms of arrival rates at 

the final destination is not affected. This happens because there is perfect substitution between the two types 

of travel delays: an increase of travel time in the bathtub leads to a shrinking queuing length at the exit, and 

thus a decrease of queuing time perfectly substitutes the increase of travel time in the bathtub. Indeed, in 
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dynamic equilibrium, it is the sum of the two types of delay that compensates for dynamic variation in 

schedule delay costs, so this sum will not change when hypercongested speeds occur in the bathtub. 

However, there is a second type of hypercongestion that can occur: the increase of travel time in the 

bathtub may be so large, and the drop in the outflow from the bathtub into the exit can be so strong, that the 

arrival rate at the exit at some moments falls below its capacity, and if it does so for a sufficiently long time, 

the exit maybe no longer be used at full capacity throughout the peak (see Fig 3(c)). For this type of 

hypercongestion, inefficiency caused by hypercongestion in the bathtub will affect the full system’s arrival 

rate. As a result, the equilibrium duration of the peak increases, and so does the equilibrium user cost (recall 

that the average user cost is constant over time in a dynamic equilibrium, so that a longer peak duration, 

with higher schedule delay cost for the very first traveler who faces no travel delay, implies a higher average 

cost level for all drivers).  

In single-facility models, these two types of hypercongestion coincide: a speed below the one that 

maximizes the flow, implies that the facility operates below its capacity. The same is true for “single-facility” 

MFD and bathtub models. In our setting, in contrast, hypercongested speeds in the bathtub may or may not 

imply an arrival rate below the exit capacity for part of the peak. It is therefore important to distinguish 

these two types of hypercongestion. We call the former type of hypercongestion “bathtub-speed 

hypercongestion”, as it only involves change of flow-speed relationship in the bathtub; and call the latter 

type of hypercongestion “system hypercongestion”, because it causes an inefficiency in the performance of 

the full bathtub-bottleneck system. 

 

Schedule-
delay cost

Travel time 
cost in the 

bathtub

Travel time 
cost in the 

bathtub

Schedule-
delay cost

Fig 3(a). Average flow vs. average speed 
(Geroliminis and Daganzo, 2008)

Fig 3(b). The equilibrium user cost in the 
bathtub-speed hypercongestion

Fig 3(c). The equilibrium user cost in the 
system hypercongestion

Queuing time 
cost at the 
bottleneck

Queuing time 
cost at the 
bottleneck

st e s at t N c= + e s at t N c  +st

 
Fig 3. Bathtub-speed hypercongestion and system hypercongestion 

 

Different from the bathtub-speed hypercongestion, system hypercongestion means that the exit capacity 

is no longer fully utilized during the whole peak period, and thus the equilibrium departure rate in Eq. (11) 

does not hold for some time. In the following, we will analyze how to obtain the equilibrium solution in 

this analytically more challenging case.  

4.2 Equilibrium with system hypercongestion 

This next section explores equilibrium with system hypercongestion. Here we only consider the CPI 

model, which allows for the derivation of closed-form expressions of equilibrium density in the bathtub 

(Appendix A). 
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Bathtub-speed hypercongestion will occur whenever density exceeds half of the jam density, 
1

2
. In 

equilibrium, density is obtained by solving ODE (14), which is given in Appendix A. It can be observed 

that the equilibrium density pattern between ,qt t    depends on the sign of 14fv −  . If 

14 0fv −   , density decreases over time from qt , and is given by 

( )
( )( )

1 1

1 1

1
,

2 1 exp
qk t t t t

t c

− 
= +  

  +  +
,                         (19) 

where 
1c  is a parameter such that ( )k t  is continuous at qt , and 

1

1

4f

f

v

v

 − 
 =


, 

( )1 14f fv v =   −  . Thus, bathtub-speed hypercongestion exists only if density at qt  is higher than 

1

2
. As there are no arrivals at the bottleneck before the first departed arrives there, density is equal to the 

cumulative departures for s qt t t  , i.e.,  

( ) ( ) ( )1 ,s s qk t D t t t t t t= =  −   .                                   (20) 

From the speed-density relationship in Eq. (1) and the above density function (20), the first driver’s travel 

time is given by2 

1

1
q st t

−
= +


,                                                  (21) 

where 
11 2

f

L

v
 = −  . Substituting the above Eq. (21) into Eq. (20), we have 

( )
1

qk t
−

=


.                                                            (22) 

As bathtub-speed hypercongestion exists only if ( )
1

2
qk t 


, we have 

  
1

3

8f

L

v
  .                                                              (23) 

                                                      
2 Eq (21) implies that the first driver already chooses the same speed as his/her followers when he/she travels. Again, 

the assumption has the benefit of consistency of assumptions, but the disadvantage of being unrealistic: the very first 

driver is slowed down because of upstream density; i.e., because of traffic conditions behind. Although being 

unrealistic in physical queue in single link, it is not necessarily an issue in a whole network with an instantaneous 

spread of homogeneous traffic conditions. Daganzo (2007) and Geroliminis and Daganzo (2008) observe that this 

assumption should be acceptable under slow-varying conditions, and is indeed a typical assumption in literature; still, 

in the very first instance in a dynamic equilibrium peak it remains an issue.  
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Therefore, if 14 0fv −   , bathtub-speed hypercongstion exists if and only if 
1

3

8f

L

v
  . If 

14 0fv −  = , density increases over time between ,qt t   , and is given by 

( )
( )2

1 1

1 1
,

2 4
qk t t t t

t c
= −  

   +
.                                (24) 

Thus, bathtub-speed hypercongestion exists as long as ( )
1

2
k t 


, which can be simplified as 

( )
( )

*

1

1 1

2 1 2
a s ac t t c

−
−  +

 −  
.                                    (25) 

If 14fv   , density is given by 

( ) ( )1 1 1

1 1 1
tan ,

2 2 2
qk t t c t t t

 
= +   +   

   
,                          (26) 

which also increases over time between ,qt t   . Therefore, bathtub-speed hypercongestion exists if 

( )
1

2
k t 


, which can be simplified as 

* 1

1 1 1

2 2 1 1
arctans

a

t t
c

  − −
−  + 

   
.                            (27) 

Compared to the conditions for bathtub-speed hypercongestion, the establishment of the conditions for 

the existence of system hypercongestion is much more complicated. This type of hypercongestion occurs 

when there exists at least one moment, s , in the middle of the peak period such that 1) the arrival rate at 

the exit is lower than the capacity of the exit; and 2) the cumulative arrivals at the exit falls short of the 

potential maximum of cumulative arrivals at destination after tq. These two conditions can be written as 

( ) ( ) ( ) aa s k s v s c=   ,                                                      (28) 

( ) ( ) 0a qA s c s t− −  .                                                         (29) 

Unfortunately, it is not easy to pinpoint when the above conditions (28) - (29) hold. Instead, we consider 

an alternative condition here. Let ŝ  denotes the moment that the arrival rate at the bottleneck is equal to 

the bottleneck capacity, i.e., ( )ˆ aa s c= . Then, system hypercongestion exists if  

( ) ( )ˆ ˆ
a qA s c s t − .                                                               (30) 

Thus, the above Eq. (30) is equivalent to conditions (28) - (29). Without loss of generality, here we assume 

that 
*ŝ t . From Appendix A, density after 

*t  is given by 

( )
( )( )

2 2

2 2

1
,

2 1 exp
ek t t t t

t c

− 
= +  

  +  +
                                       (31) 
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where 
2

2

4f

f

v

v

 − 
 =


, ( )2 24f fv v =   −  , and 2c  is a parameter such that ( )k t  is 

continuous at t . Then, the arrival rate and the cumulative arrivals at exit are given by 

( )
( ) ( )( ) ( )( )

( )( )
2 2 2 2 2 2

3

2 2

1 2 1 exp 1
,

4 1 exp

f

e

v t c
a t t t t

t c

  −   +  + +  − 
=  

 +  +
                (32) 

( ) ( )
( )( )

2
2 2
2

2 2 2

4
1 ,

4 1 exp

f

A e

v
A t t c t t t

t c

  
= − − +   

   +  + 

                (33) 

where Ac  is a parameter such that ( )A t  is continuous at t . Solving ( )ˆ aa s c=  yields 

( ) ( )
( )

2

2 2
2

2
2 22

1 2 4 41
ˆ ln

4 1

f f f a a

a f

v v v c c c
s

c v

  + +    −  − 
 = −
   +  − 
 

                (34) 

By substituting the above Eqs. (33) - (34) into Eq. (30), we have 

( ) ( ) ( )
( )

( ) ( )

2 0 2*

2 2 2 0 2 2

1 2

2 2
2 2 2 22

2 2

2 2 1 2 ln 2

2 ln 2 2 0

a
a s a

a

f

a f

f

c
c t t c

c

v
c v k

v k

  +  
  − −  − − +   +   − − 

   − 

   −
−   − − +   −  +  

     

 (35) 

where 0 4f av c =  −  , 2 24fv =  −  , and ( )k k t=  denotes the value of density at t  which 

depends on the density pattern between ,qt t   . Although no closed-form result can be obtained, it is not 

hard to test Eq. (35) numerically. Apparently, the existence of bathtub-speed hypercongestion cannot ensure 

that condition (30) holds, which means that, quite intuitively, the existence of bathtub-speed 

hypercongestion is a necessary but not a sufficient condition for system hypercongestion to occur.  

When system hypercongestion occurs, the capacity of the exit is no longer fully used, and thus the 

departure rate function (11) does not hold for a certain period, here we will further introduce how to obtain 

an equilibrium in this case, which use the methods from both the CPI model and the FTL model. Denote t  

and t̂  as the departure times of the first driver and the last driver who pass the bottleneck without queue in 

the middle part of the peak, respectively. For drivers departing at ˆ,t t t    , their arrival time at the 

bottleneck, and therefore also at the destination as no queue exists for them, is given by:  

( )

( ) ( )

( )

( ) ( )

*

,  if 

ˆ ˆ,  if  , ,

ˆ,  if  

t t s t t t t

s t t t t t t t t t t t

t t s t t t t t

 
− +  

 −

 

 = − +       + 
 

− +   
 + 

.                                  (36) 
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However, the departure rate from home during this period does not satisfy Eq. (11) for ˆ,t t t    , and the 

“constant proportion of inflow into the bottleneck”, i.e., condition (13), does not hold for ( ) ( )ˆ,s t s t 
  . 

Therefore, for ˆ,t t t    , conditions (13) - (14) hold but the departure rate is unknown; for ( ) ( )ˆ,s t s t 
  , 

the departure rate is given by Eq. (11) but conditions (13) - (14) do not hold. Without further assumptions 

on the departure rate, the traffic density and speed in the bathtub for ˆ,t t t     cannot be obtained by 

solving Eq. (14). In fact, multiple solutions of the departure rate, and thus different traffic speeds in the 

bathtub during ˆ,t t t     can lead to an equilibrium. This is because drivers’ trip length is not required to 

be fixed, so as long as the travel time in the bathtub follows Eq. (5), different combinations of departure 

and traffic density satisfying condition (14) can lead to equilibrium (see also Fosgerau, 2015). For example, 

if we in addition assume that the trip length for drivers departing during ˆ,t t    is fixed and equal to the 

average trip length L , based on condition (4), we have: 

( )
( )( )
( )( )( )

( ) ( )( )
( )( ) ( )( )

1
ˆ, ,

1

v k t D t A t
s t t t t

v k s t D s t D t

− −
  = =  

− −
.                                (37) 

Here we only give a special case that t̂ t  and ( )s t t . As conditions (13) - (14) hold for ˆ,t t   , we 

can get ( )A t , and as the departure rate follows Eq. (11) for ( ) ( )ˆ,s t s t 
  , we can get ( )( )D s t . 

Combining Eqs. (36) – (37) yields: 

( )
( )( )( ) ( ) ( )2

2

ss t t C A t

D t


− +  − + +  −
=

 −
,                                   (38) 

and hence: 

( ) ( )2
2 2

d t a t
   −

=  +
 −  −  −

.                                               (39) 

Substituting the above Eq. (39) into conditions (13) - (14) yields 

( ) ( ) ( )( )2
2 2

k t k t v k t
   −

 =  − 
 −  −  −

.                                      (40) 

Solving this differential equation gives the equilibrium traffic density in the bathtub for ˆ,t t t    . But 

other assumptions on L  during ˆ,t t    can also be consistent with equilibrium (although a different one in 

terms of departure patterns).  

From the above analyses, bathtub-speed hypercongestion is a necessary but not a sufficient condition 

for system hypercongestion to occur. Bathtub-speed hypercongestion occurs as long as density exceeds half 

of the jam density. We will know whether it occurs given the equilibrium departure time of the first driver. 

Whether system hypercongestion occurs depends on the cumulative arrivals at exit. To determine its 

existence, the density at t  is also needed. In the next section, we will use a numerical example to analyze 
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the models presented above, and illustrate the two types of hypercongestion. To fulfill the prior assumption 

that there will be no capacity waste at the bottleneck, parameters will first be chosen such that system 

hypercongestion does not occur. This underlines the above intuitive and analytical notion that bathtub-

speed hypercongestion is a necessary but not a sufficient condition for system hypercongestion to occur. 

However, if the capacity of the bathtub (represented by the jam density, 1jk =  ) further decreases, the 

assumption of no capacity waste at the bottleneck will not hold anymore, and for some drivers’ equilibrium 

travel times in the bathtub are so long that the arrival rates at the bottleneck are less than the exit capacity 

for some period. Therefore, system hypercongestion may arise, and will occur if the period of low arrival 

rates is long enough to make the queues disappear in the central period in the peak, so that outflow from 

the bottleneck falls below capacity. To investigate this kind of hypercongestion, the assumptions on 

parameters to secure that no capacity waste at the bottleneck exists will be changed. 

Section 5. Numerical results 

In the following, we will first compare the the two alternative modelling approaches described in 

Section 3, i.e. the CPI and FTL models; and then illustrate the two types of hypercongestion just discussed. 

Example 1: This example is used to illustrate the CPI model and the FTL model. The value of time and the 

shadow prices for early and late arrivals follows that in Verhoef (2005): 7.5 =  ($/h), 3.75 =  ($/h), 

15 =  ($/h). The total travel demand is set to be 10000N =  cars, while the capacity of the bottleneck is 

5000ac =  (cars/h) so that the minimum time needed for all drivers to pass the bottleneck is two hours. The 

length of the trip in the bathtub area is assumed to be 10L =  km, and the free-flow traffic speed is 

40 (km/h)
f

v = . Let 0.00012 = , so that the jam density is about 8333.3jk =  (cars/km2)3. Drivers’ 

preferred arrival time at the destination is set to be 
* 9t = . The ratio between the flow of the bathtub and 

the inflow to the bottleneck is assumed to be equal to 0.07982 = , which is chosen in such a way that the 

maximum density in the CPI model is the same as in the FTL model. To demonstrate the proposed models 

converging to equilibrium, plots of the resulting generalized travel costs are shown in Appendix C.  

5.1 Comparing models: CPI versus FTL 

Table 1 presents the numerical results of the CPI model and the FTL model. As benchmark models we 

use closed-form approximations given in Appendix B, assuming the last driver’s travel time is free-flow 

travel time. It can be observed that the divergences caused by the different assumptions are very small. The 

generalized travel costs for the two models increase by 0.30%, and 0.11%, respectively, compared to that 

in the approximate closed-form solution. Moreover, the generalized travel cost in the FTL model is closer 

to the benchmark than that in the CPI model. Similar conclusions can be obtained for the equilibrium peak 

period. In fact, compared to the benchmark, the equilibrium peak periods in both models are merely 

earlier/later less than 1 minute. Therefore, given the different assumptions about the relationship between 

                                                      
3 Density is measured in cars/km2 (rather than cars/km) as it is defined as the total number of cars in the bathtub 

(Arnott, 2013). Thus, flow is measured in cars/km-h. For uni-directional traffic, the cars/km in the numerator of flow 

should be interpreted as care per kilometre of “width” of urban space; i.e., perpendicular on the driving direction.  
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the outflow and flow (e.g., the NEF in Gonzales and Daganzo, 2012) or the relationship between the travel 

time and speed (e.g., Fosgerau, 2015), no substantial quantitative differences result for the equilibrium 

generalized travel costs and the equilibrium peak periods. For the traffic situation in the bathtub, we observe 

that the maximum equilibrium densities are slightly different for both models. Both models have a 

hypercongested period in the bathtub that lasts about 16 minutes. The last driver’s travel time is also affected 

by the traffic situation in the bathtub. We find that the last driver’ travel times in both cases are slightly 

higher than the free-flow travel time (less than 2 minutes). This means that when the last driver travels in 

the bathtub, speed is already very close to free-flow speed.  

 
Table 1. Numerical results of the CPI model and the FTL model 

Closed-form approximations: the travel time of the last driver is free-flow travel time (Appendix B) 

Departure period from home [7.1162, 9.1725] 

Arrival period at destination [7.4225, 9.4225] 

Generalized travel cost ($) 8.2127 

Numerical: the travel time of the last driver is endogenous 

Travel time of the first 

driver 

Method CPI FTL 

Value (h) 0.3063 0.3063 

Departure period from origin [7.1096, 9.1492] [7.1137, 9.1638] 

Arrival period at destination [7.4158, 9.4158] [7.4200, 9.4200] 

Travel time of the last driver (h) 0.2666 0.2562 

Generalized travel cost ($) 8.2377 8.2221 

Maximum density 

Value 

(cars/km2) 
4744.0 

4744.0 

Time 7.9016 7.9037 

The critical density value for hypercongestion: 4166.7 cars/km2 

Hypercongestion period [7.7316, 8.0139] [7.7281, 8.0014] 

Trip length Varied Fixed 

Ratio between arrival rate at bottleneck 

and flow in bathtub 
0.07982 Varied 

 

To better understand the traffic situation in the bathtub, graphical representations of the various relevant 

traffic variables are given in this section (Fig 4a-b). We also give the equilibrium cumulative departures 

and arrivals (Fig 4a-b), and the resulting equilibrium travel time in the bathtub (Fig 5). First, Fig 4a and Fig 

4b give the equilibrium cumulative departures and arrivals, traffic density, speed and flow in the bathtub 

over the peak period for the CPI model and the FTL model, respectively. From Fig 4a and Fig 4b, it can be 

observed that the shapes of the cumulative arrivals at exit in the CPI model and the FTL model are 

somewhat different. In Fig 4a, the curve of the cumulative arrivals at exit is approximately linear at the 

early part of the peak period. Moreover, no queue exists in the last few minutes of the peak period in the 

CPI model, and thus drivers pass the exit as soon as they arrive. In contrast, the curve of the cumulative 

arrivals at exit in Fig 4b is clearly convex at the early part of the peak period and is approximately linear 

for the late part of the peak period.  

Interestingly, the traffic variables in the bathtub are quite different in the late part of the peak period for 

the two model formulations. When we compare Fig 4(a) and Fig 4(b), we observe that the curve of density 

between t  and et  is convex in the CPI model ( 7.9016,9.1492 ) while it is first concave and then convex 

in the FTL model ( 7.9037,9.1638 ). In particular, for the FTL model (Fig 4b), density decreases rather 
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sharply after t , reaching a relatively low value in a short time. Then it becomes very flat for a long time. 

As a result, the corresponding speed (flow) in the FTL model also rises (declines) very sharply over a short 

time and then stays flat over a substantially long time. This can also be verified by the horizontal distances 

between the cumulative departures from home and the cumulative arrivals at exit, which are very small and 

only have a minor decrease for the late part of the peak period. In contrast, density decreases gradually after 

t  until et  in the CPI model (Fig 4a). As a result, the horizontal distances between the cumulative departures 

from home and the cumulative arrivals at exit are relatively large and decrease over time.  

 

 
Fig 4a. Equilibrium departure/arrival pattern and the traffic variables in the bathtub for the CPI model  

 

 
Fig 4b. Equilibrium departure/arrival pattern and the traffic variables in the bathtub for the FTL model  

 

Fig. 5 shows drivers’ equilibrium travel times in the bathtub for the two approaches. The CPI model 

shows that drivers’ equilibrium travel times in the bathtub both increase and decrease over a relatively long 

period. In contrast, the FTL model shows that drivers’ equilibrium travel time in the bathtub increases to 
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its maximal value in a relatively short time and is flat over an extended period in the late part of the peak 

period, which is consistent with that in Mariotte et al. (2017). As a result, drivers departing at t  (at 7.9016) 

have a maximum travel time in the bathtub in the CPI model, while the maximum travel time in the bathtub 

occurs for drivers departing much earlier than t  (around 7.6). Moreover, the maximum travel time in the 

bathtub is higher for the CPI model compared to the FTL model. This is because for the CPI model, the 

actual trip length is not constant. This means that drivers may have a longer trip length, and thus a longer 

trip time.  

 
Fig 5. Drivers’ travel time in the bathtub for the CPI model and the FTL model  

5.2 Bathtub-speed hypercongestion 

Table 1 shows that bathtub-speed hypercongestion exists in both models. Based on the speed-density 

relationship in Eq. (1), the critical value of density for bathtub-speed hypercongestion to occur is 4166.7. 

The FTL model gives a maximum density (5469.5) that is much higher than this critical density value, and 

the duration of bathtub-speed hypercongestion is considerable (about 30 minutes). The maximum density 

is lower and bathtub-speed hypercongestion only exists during a short period (only a few minutes) in the 

CPI model.  

Whether bathtub-speed hypercongestion exists depends on the values of various parameters, such as 

the total number of drivers, the preference parameters, and   in the CPI model (see Section 4.2). In order 

to show the impact of   on the occurrence of bathtub-speed hypercongestion, Fig 6 shows the equilibrium 

density and flow in the CPI model for different values of  . The figure confirms the intuition that bathtub-

speed hypercongestion is more likely to occur when   is smaller ( 1  ); i.e., when the capacity of the exit 

is smaller. Only then ( 0.07,0.08,0.09 = ) we observe that equilibrium density exceeds the critical value 

of 4166.7 in the upper left panel in combination with a drop of flow in the central peak in the upper right 

panel and longer equilibrium travel times in the lower left panel as a result. Consequently, the generalized 

travel costs decrease with   (lower right panel). 
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Fig 6. The impact of   in CPI model  

 

The value of   also plays an important role in the occurrence of hypercongestion, as it is the reciprocal 

of the jam density. Fig 7a and Fig 7b give the equilibrium density, flow and travel time in the bathtub and 

the equilibrium generalized travel costs with different values of   in the CPI model and the FTL model, 

respectively. The value of   greatly affects the existence and the duration of hypercongestion in both 

models. The impact for the FTL model is more pronounced than that for the CPI model, but the qualitative 

effects in both models are consistent. Density during the whole peak period is higher when   increases 

(and hence the jam density declines). Equilibrium travel times in the bathtub therefore also increase with 

 . The beginning time of the peak period is naturally earlier when   increases and therefore the 

generalized travel costs also increase with  . 

 

Fig 7a. The CPI model with different values of   
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Fig 7b. The FTL model with different values of   

5.3 System hypercongestion 

Fig 8 presents the CPI model with system hypercongestion, and hence capacity waste, in the middle of 

the peak. We set 0.000145 = , i.e., the jam density is equal to 6896.6jk = , while the values of the other 

parameters follow those above. Fig 8a confirms that the cumulative arrivals at exit between ( ) ( )ˆ,s t s t 
   

are equal to the cumulative arrivals at destination, and the arrival rate is less than the exit capacity. At the 

same time, the departure rate from home between ˆ,t t    follows Eq. (26), and is less than the departure 

rate at other moments in the early departure period (before t  or after t̂ ), which implies fewer drivers 

departing between ˆ,t t    to avoid the jam in the bathtub. At the same time, Fig 8b confirms that the 

equilibrium generalized travel costs during the peak period are identical for all drivers departing between 

the entire equilibrium departure period  ,s et t , and would be higher outside. The duration of the 

equilibrium departure period (2.1520 hours in this case) is longer than that without capacity waste (2 hours), 

and the equilibrium generalized travel cost (8.6911) is higher (increased by 5.50%). Consistent with this, 

the total travel time cost is higher (55390 vs 52365), and so is the total schedule delay cost (31521 vs 30012), 

underlining the inefficiency of system hypercongestion. Fig 8c and Fig 8d show the corresponding density 

and flow in the bathtub. The whole hypercongestion period with bathtub-speed hypercongestion, is given 

by t̂  to ( )ˆs t . However, system hypercongestion only exists between ( ) ( )ˆ,s t s t 
   when the queuing time 

is zero.  
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Fig 8. The CPI model with capacity waste in the middle of the peak period 

In summary, the numerical results confirm that bathtub-speed hypercongestion can exist without the 

specific loss of efficiency associated with a drop in outflow of the whole system. This happens when flow 

decreases with density in the bathtub, but the exit capacity nevertheless remains fully utilized. In this case, 

drivers’ total travel time does not change and thus it is merely a tradeoff between longer travel time in the 

bathtub and longer queuing time at the bottleneck. On the other hand, if the capacity of the bathtub 

(represented by the jam density) further decreases (or, the exit capacity further increases), system 

hypercongestion can occur. While flow decreases with density in the bathtub, the exit capacity is then not 

fully utilized resulting in an efficiency loss at the level of the full system.  

6. Conclusions 

This paper investigated the impacts of introducing finite exit capacity in the bathtub model on 

equilibrium outcomes and user costs, using two model formulations that were proposed in the earlier 

literature. The motivation for making this extension is that earlier studies of one-directional facilities, like 

the one in Verhoef (2003), have shown that without the existence of a downstream capacity restriction, 

hypercongestion cannot build up on a single facility, and initially assumed hypercongestion would dissolve 

following upstream moving shockwaves from the exit as traffic there speeds up in the absence of a capacity 

restriction. Especially because a capacity restriction at the exit significantly affects policy recommendations 

and welfare assessments for congested facilities, and even more so in the face of hypercongestion, it is a 

crucial addition to a modelling framework based on the MFD or bathtub methodologies. The same issue 

was also pointed in Mariotte and Leclercq (2019), in which an outflow model was proposed to account for 

the outflow limitation and to overcome the unrealistic very long duration of hypercongestion.  

A first main finding from our analysis is that the occurrence of hypercongested speeds in the bathtub 

does not necessary lead to the particular type of efficiency losses that would occur at the level of the full 

system when hypercongestion causes the outflow to fall below its maximum achievable level.  Two types 

of hypercongestion can thus be distinguished: “bathtub-speed hypercongestion”, and “system 

hypercongestion”. When there is bathtub-speed hypercongestion, but the exit capacity remains fully utilized, 
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longer travel times in the bathtub caused by hypercongested speeds result in shorter equilibrium queuing 

times at exit, and therefore the total equilibrium travel time of the trip does not change. On the contrary, 

when the drop in equilibrium bathtub flows is sufficiently large and long-lasting, the exit capacity may no 

longer be fully used in the most central time window of the peak period, and system hypercongestion arises. 

Hypercongestion in the bathtub then results in a longer equilibrium peak period, and affects the full system’s 

performance and thereby causes a specific type of efficiency losses on top of the conventional losses due 

to the existence of congestion externalities, namely a drop in the system’s effective capacity.  

It was demonstrated that bathtub-speed hypercongestion is a necessary but not a sufficient condition 

for system hypercongestion to occur. This implies that with a restricted exit capacity, the possible gains 

from managing hypercongestion in an urban area partly depends on the performance of the exit capacity, 

which is consistent with the conclusions in Ingole et al. (2020). Expanding the downstream capacity may 

be a better way to deal with hypercongestion than expanding flow capacity in the bathtub; a finding which 

is consistent with the one-directional model of Verhoef (2003), where an expansion of upstream capacity 

that holds the hypercongested queue would make queues shorter, wider and slower; while trip completion 

rates remain capped by downstream capacity. 

A second issue addressed was the comparison of two alternative model formulations for bathtub 

congestion: the FTL versus CPI models. Consistent with other findings in the literature (e.g., Amirgholy 

and Gao, 2017), we find that the numerical differences in the equilibrium generalized travel cost and peak 

period for the two approaches are almost negligible, and compared to an approximate model where it is 

assumed that the last driver’s travel time is the free-flow travel time are particularly negligible. The resulting 

analytical closed-form expressions for the generalized travel costs and the peak period of our approximate 

model can give policy analysts a quick estimation of these variables, without having to know the specific 

traffic situation in the bathtub and at exit.  

However, the generated dynamic patterns of the traffic variables in the bathtub and the queue between 

the two models can differ substantially. In fact, one of the main differences between the numerical results 

of the CPI model and the FTL model lies in the tradeoff between the equilibrium travel time in the bathtub 

and the equilibrium queuing time at the exit. For the CPI model, the travel time in the bathtub accounts for 

the majority of the travel time cost whereas in the FTL model, the queuing time at the exit accounts for the 

majority of the travel time costs. However, the sum of the travel time in the bathtub and the queuing time 

at the exit at every instant in the CPI model and the FTL model are similar, as well as the total travel cost. 

It is interesting to investigate empirically in future research which of these two models more accurately 

urban traffic patterns. Still, these questions are not straightforward to address. For now, it suggests that 

observationally diverging predictions in travel conditions may be consistent with rather similar predictions 

of equilibrium travel costs. 

Further development of our research will include the spillback of the exit queue and heterogeneous trip 

lengths. Congestion from the queue will propagate and extend to the whole network, and the size of the 

network will shrink with the increase of the exit queue. Heterogeneous trip lengths may change the FIFO 

principle, and we will investigate its impact on the trip completion rate. Furthermore, empirical 

investigation of the exit flow during peak hours can avoid exploring the relationship between the trip 

completion rate, the flow inside the bathtub, and the downstream capacity.  
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Appendix A. The traffic density in the bathtub for the CPI mode 

Here we assume qt t , and the density function with qt t  can be obtained in a similar way. As 

mentioned before, density in the bathtub is obtained by solving ODE. (14), which is given by, if 

14 0fv −   , 
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where 
1c  and 2c  are parameters such that ( )k t  is continuous at qt  and t , and for convenience we denote 
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As there are no departures after et  while arrivals at exit still occur, for ( )e et t s t  , we have:  
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where 3c  is parameter such that ( )k t  is continuous at et . Based on condition (2), the cumulative arrivals 

are equal to the difference between the cumulative departures and density. Therefore, we have 
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which implies the last driver departing will approach the exit, but will never arrive. This is caused by the 

homogenous density assumption, as the last driver needs to circuit in the bathtub to keep homogenous 

density over space. It means that the peak period will last forever, which is impossible.  

Fortunately, it also implies capacity waste may occur at exit for the very last few minutes of the peak 

period, which means the equilibrium condition (10) cannot apply. Denote ( )ˆs t  as the instant when the 

length of queue at exit becomes zero, namely the cumulative arrivals at exit is equal to the cumulative 

arrivals at destination:  

( )( ) ( )( )ˆ ˆ
a qA s t c s t t= − .                                                         (A7) 

For drivers departing after t̂ , they can pass the exit as soon as they arrive at it. Thus, their generalized 

travel cost is given by:  

( ) ( )( ) ( )( )* ˆ, , eu t s t t s t t t t t =  − +  −   .                                         (A8) 

The first-order condition of equilibrium is:  

( ) ( ) ( ) 0u t s t = +  − = ,                                           (A9) 

which yields: 
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From condition (5), the departure rate satisfies: 
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As there is no queue at exit after ( )ˆs t , the arrival rate at exit, ( )( )a s t , should be no higher than the exit 

capacity, which means the departure rate should be no higher than 2 . For simplicity, here we further 

assume the departure rate between ˆ, et t    is still equal to 2 , and thus, the arrival rate at exit is equal to 

the exit capacity. In this way, the exit capacity is still fully used and no queue exists. Therefore, the 

cumulative departures still follow Eq. (12) between ˆ, et t   , and the cumulative arrives at exit between 

( ) ( )ˆ , es t s t 
   is given by: 

( ) ( )a qA t c t t= − .                                                  (A12) 

Thus, the density between ( ) ( )ˆ , es t s t 
   is given by: 

( ) ( )a qk t N c t t= − − ,                                               (A13) 

and all drivers arrive at their destination at ( )e q as t t N c= + . Although drivers can also choose lower 

departure rates in this period to reach equilibria, they all lead to longer equilibrium peak period and higher 



30 

 

equilibrium travel cost. For peaks in which these light travel conditions in the very last instants are relatively 

short-lived compared to the full peak duration, and are of little importance because of their short duration 

and the low flow levels in those intervals, the assumption seems acceptable, definitely in the light of the 

analytical advantages it brings.  

Appendix B. Approximate closed-form solutions: assuming free-flow travel time for the last driver 

Here we first give the peak period and the generalized travel cost when the travel time of the last driver is 

assumed to be free-flow travel time. This case is useful as it leads to closed-form solutions for the start and 

the end of the peak, as well as for the equilibrium travel costs, which can serve as approximations for true 

equilibrium costs. Obviously, in reality, the last driver’s travel time cannot be far from the free-flow value, 

as otherwise it would become attractive to depart later from home and drive at higher speed. As the exit is 

always fully utilized between ( ),q et s t   , the total number of drivers passing the bottleneck is equal to the 

total demand, N , i.e.,  

( )( )a e qc s t t N− = .                                                                 (B1) 

Thus, the arrival time of the last driver at the destination is given by 

( )e q e

a f

N L
s t t t

c v
= + = + .                                                                    (B2) 

Furthermore, the total number of drivers departed should also be equal to the travel demand, i.e., 

( )eD t N= . Based on Eq. (12), the departure time of the last driver should satisfy the condition below: 

( ) ( ) ( )*

e a e s a qD t c t t c t t N
 + 

= − + − =
 +   + 

                                     (B3) 

Combining the above Eqs. (B2)-(B3) with Eq. (21) yields 

* 1s

a f

N L
t t

c v

  
= − − − −  

 +  + 
,                                  (B4) 

* 1e

a f

N L
t t

c v

  
= + − − −  

 +  + 
,                                  (B5) 

where ( ) 11 fL v = −  −  is the extra travel time above the free-flow travel time which will always 

be positive. The resulting equilibrium generalized travel costs are then given by: 

( )
f a

L N
u t

v c

 
=  + + 

+  + 
,                                  (B6) 

where the last part of this equation is the extra travel time the first driver needs above free-flow travel time 

multiplied by 


+ 
. Compared to the conventional bottleneck model, it therefore has extra equilibrium 

travel cost caused by the increase of the first driver’s travel time which is equal to the extra travel time cost 

multiplied by 


+ 
. In other words, it implies that when the first driver’s travel time increases by  , the 
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equilibrium generalized travel cost increases by 



 + 

. From Eqs. (B4)-(B5), we observe that the 

departure peak period starts earlier with 1
 
−  
 + 

.  

The above results are all based on the assumption that the travel time of the last driver is free-flow 

travel time. However, the travel times of the last driver in the CPI model and in the FTL model are both 

endogenously determined by the condition that the total number of drivers arriving at the destination should 

be equal to the travel demand. The example in Section 5.1 shows that the last driver’s travel time is 

numerically very close to the free-flow travel time. This means the resulting equilibrium generalized travel 

cost and equilibrium peak period will also be very close to those in Eqs. (B4)-(B6). In fact, the differences 

turn out to be almost negligible, and therefore policy analysts can use the above closed-form results to get 

quick and fairly precise estimations of the equilibrium generalized travel costs, as well as the equilibrium 

peak period.  

Appendix C. The equilibrium generalized travel costs 

To demonstrate that the proposed models converge to equilibria, the resulting generalized travel costs in 

equilibrium are plotted below. Fig 9 and Fig 10 confirm that the equilibrium generalized travel costs during 

the peak period are identical for all drivers departing between the entire equilibrium departure period, and 

would be higher outside. 

 
Fig 9. The equilibrium generalized travel costs with bathtub-speed hypercongestion and with system 

hypercongestion 
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Fig 10. The equilibrium generalized travel costs for different values of parameters 

 


