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Abstract

We present axiomatic characterizations of the proportional division value

for TU-games, a value that distributes the worth of the grand coalition in

proportion to the stand-alone worths of its members. First, a new propor-

tionality principle, called balanced treatment, is introduced by strengthening

Shapley’s symmetry axiom, which states that if two players make the same

contribution to any nonempty coalition, then they receive the amounts in

proportion to their stand-alone worths. We characterize the family of values

satisfying efficiency, weak linearty, and balanced treatment. We also show

that this family is incompatible with the dummy player property. However,

we show that the proportional division value is the unique value in this fam-

ily that satisfies the dummifying player property. Second, we propose three

appropriate monotonicity axioms by considering two games in which the

stand-alone worths of all players are equal or in the same proportion to each

other, and obtain three axiomatizations of the proportional division value

without both weak linearity and the dummifying player property. Third,

from the perspective of a variable player set, we show that the proportional
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division value is the only one that satisfies proportional standardness and

projection consistency. Finally, we provide characterizations of proportional

standardness.

Keywords: Cooperative game, proportional division value, monotonicity,

consistency

JEL: C71

1. Introduction

A situation in which a finite set of players can generate certain worths

by cooperation can be discribed by a cooperative game with transferable

utility, or simply TU-game. A TU-game consists of a set of players and a

characteristic function that specifies a worth to each coalition of players. A

single-valued solution or value on a class of TU-games assigns a payoff vector

to every game in this class.

The equal division value and the equal surplus division value are two well-

known equal surplus sharing solutions, which rely on egalitarian considera-

tions. The equal division value allocates the worth of the ‘grand coalition’ (be-

ing the coalition consisting of all players) equally among all players. The equal

surplus division value, also known as center-of-gravity of the imputation-set

value in Driessen and Funaki (1991), gives each player its own stand-alone

worth and an equal share of the remainder. Nevertheless, in many actual

situations, and because of external and internal features of the players, pro-

portionality sometimes seems a more appropriate equity principle. The idea

of proportionality can be traced at least as far back as Aristotle’s celebrated

maxim, “Equals should be treated equally, unequals unequally, in proportion

to relevant similarities and differences” from Nicomachean Ethics. With a

natural proportionality consideration, the proportional rule 1 (Moriarity 1975;

Banker 1981) allocates the worth of the grand coalition in proportion to the

1The proportional rule is identical to the stand-alone-coalition proportional value in

Kamijo and Kongo (2015).
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stand-alone worths of its members. Thus, we call it the proportional division

value, shortly denoted by PD value, which also in order to distinguish it from

the proportional rule in claim problems, bargaining problems, insurance, law

and so on. For other proportional solutions, we refer to the proportional

value (Ortmann 2000; Khmelnitskaya and Driessen 2003; Kamijo and Kongo

2015), the proper Shapley values (Vorob’ev and Liapunov 1998; van den

Brink et al. 2015), and the proportional Shapley value (Béal et al. 2018;

Besner 2019).2

The PD value depends only on the worths of one-person coalitions and the

grand coalition, but ignores the worths of any other intermediate coalitions.

Moulin (1987) characterizes the PD value for joint venture games, a class of

TU-games where intermediate coalitions are inessential, i.e., their Harsanyi

dividends are zero. These are the quasi-additive games in Carreras and Owen

(2013), where the PD value is discussed by comparing with the Shapley value

(Shapley 1953). Banker (1981) considers the situation that the worth of a

coalition is a non-negative strictly increasing function with respect to the sum

of the worths of its members. However, for more general TU-games, since

the proportionality principle is not obvious, as far as we know, an axiomatic

characterization of the PD value was still missing.

In this paper, we consider the problem of axiomatizing the PD value on

the domain of TU-games in which the worths of all singleton coalitions have

the same sign. This restrictive class of TU-games includes many applications,

see Béal et al. (2018). We focus on some intuitive fairness criteria that widely

used in the value theory for TU-games, including equal treatment of equals,

monotonicity, and consistency. Our contributions can be discribed as follows.

We begin by introducing a proportionality principle called balanced treat-

ment in TU-games, which is a strengthening of Shapley’s symmetry axiom.

2We remark that the proportional division value cannot be considered as a weighted

division value (Béal et al. 2016) or the weighted surplus division value (Calleja and Llerena

(2017, 2019)) since those values are based on exogenous weights, while the weights in the

PD value are determined in the game, specifically they are equal to the stand-alone worths.
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This axiom states that the payoffs to two weak symmetric players, i.e., the

contribution of these players to any nonempty coalition is the same, are

proportional to the stand-alone worths of each other. It well captures the

principles of ‘equal treatment of equals’ and ‘unequal treatment of unequals’.

Besner (2019) gives a similar axiom for the proportional Shapley value. In-

terestingly, balanced treatment together with efficiency and weak linearity,

being a weak version of linearity introduced in Béal et al. (2018), give a family

of values that have a formula similar as the family of efficient linear and sym-

metric values (ELS values for short) introduced in Ruiz et al. (1998), but the

role of equal division replaced by proportional division. While the Shapley

value is singled out from ELS values by employing the dummy player prop-

erty, we reveal that there is no value belonging to our family that satisfies

the dummy player property. Instead, we adopt the dummifying player prop-

erty introduced in Casajus and Huettner (2014) and somewhat surprisingly

obtain a characterization of the PD value.

We also provide three characterizations of the PD value by applying

monotonicity axioms. A monotonicity axiom states that the payoff of a

player should not decrease if a TU-game changes in certain ways that are

‘advantageous’ for this player. We introduce three such monotonicity ax-

ioms that are a relaxation of three existing axioms, by adding restrictions

on the stand-alone worths of the players.3 The three existing axioms are

coalitional monotonicity due to van den Brink (2007), which focuses on the

worths of coalitions and is closely related to strong monotonicity in Young

(1985), coalitional surplus equivalence and coalitional surplus monotonicity

both axioms due to Casajus and Huettner (2014), which focus on the surplus

of every coalition, i.e., the difference of the worth of a coalition and the total

stand-alone worths of its members. Under efficiency and symmetry, van den

Brink (2007) proved that coalitional monotonicity characterizes the equal

3This modification is similar in spirit to parameterized monotonicity introduced in

Yokote and Funaki (2017).
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division value, and Casajus and Huettner (2014) proved that either coali-

tional surplus equivalence or coalitional surplus monotonicity characterizes

the equal surplus division value. Not surprisingly, any of our monotonicity

axioms together with efficiency and symmetry cannot characterize a unique

value. Outstandingly, replacing symmetry by balanced treatment and keep-

ing efficiency, we derive that any of our monotonicity axioms characterizes

the PD value.

For a variable player set, we provide an axiomatization of the PD value

using proportional standardness and the well-known projection consistency

due to van den Brink and Funaki (2009). Proportional standardness requires

to apply proportional division for two-player games, and is used in, e.g.

Ortmann (2000), Khmelnitskaya and Driessen (2003) and van den Brink and

Funaki (2009). Like other standardness axioms, proportional standardness

is rather strong since it sets the payoff distribution for two-player games.

Therefore, we conclude with characterizing the PD value on the class of two-

player games. It turns out that grand worth additivity, the inessential game

property, and continuity characterize proportional standardness.

The paper is organized as follows. Sect. 2 provides basic definitions

and notation. In Sect. 3, we introduce balanced treatment and provide some

results including an axiomatic charaterization of the PD value. In Sect. 4, we

offer three axiomatic charaterizations using some appropriate monotonicity

axioms. In Sect. 5, we give an axiomatic charaterization on variable player

sets by employing projection consistency and proportional standardness. In

Sect. 6, we characterize the PD value for two-player games. Finally, there

is an appendix with the proof of Theorem 1 and the independence of the

axioms in the characterization results.

2. Preliminaries

2.1. Notation and TU-games

We denote by R and R+ the sets of all real numbers and positive real

numbers, respectively. The cardinality of a set S will be denoted by |S| or,
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if no ambiguity is possible, appropriate small letter s. The notation S ⊆ T

means that S is a subset of T , while the notation S ⊂ T means that S is a

proper subset of T .

Let U be a fixed and infinite universe of players, and denote by N the

set of all finite subsets of U . A cooperative game with transferable utility,

or simply a TU-game, is a pair (N, v), where N ∈ N is the set of players,

and v : 2N → R is the characteristic function assigning a worth v(S) to

each S ∈ 2N , with the convention that v(∅) = 0. A subset S ⊆ N or

S ∈ 2N is called a coalition, and the associated real number v(S) is the

reward that coalition S can guarantee by itself without the cooperation of

the other players.

Denote G as the class of all TU-games with a finite player set in N , and

GN the class of TU-games with player set N . Following Béal et al. (2018),

a TU-game (N, v) is individually positive if v({i}) > 0 for all i ∈ N , and

individually negative if v({i}) < 0 for all i ∈ N . We express the notation

G0 as the class containing all individually positive and individually negative

TU-games, and GN0 as the intersection of G0 and GN . For brevity, we refer to

a TU-game just as a game.

2.2. Values

A value on GN (respectively on GN0 ) is a function ψ that assigns a single

payoff vector ψ(N, v) ∈ RN to every game (N, v) ∈ GN (respectively (N, v) ∈
GN0 ).

The equal division value is the value ED on GN given by

EDi(N, v) =
1

n
v(N)

for every (N, v) ∈ GN and i ∈ N .

The proportional division value is the value PD on GN0 given by

PDi(N, v) =
v({i})∑
j∈N v({j})

v(N) (1)

for every (N, v) ∈ GN0 and i ∈ N .
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We employ the following definitions. Player i ∈ N is a dummy player

in game (N, v) if v(S ∪ {i}) = v(S) + v({i}) for all S ⊆ N\{i}. Player

i ∈ N is a dummifying player in game (N, v) if v(S) =
∑

j∈S v({j}) for all

S ⊆ N with i ∈ S. Notice the difference between a dummy and dummifying

player: a dummy player adds its own stand-alone worth when it joins any

coalition, while a dummifying player entering a coalition results in the worth

of that coalition becoming equal to the sum of the stand-alone worths of the

players in that coalition. Players i, j ∈ N , i 6= j, are symmetric in (N, v) if

v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}. For (N, v), (N,w) ∈ GN0 and

a, b ∈ R, the game (N, av + bw) is defined by (av + bw)(S) = av(S) + bw(S)

for all S ⊆ N .

In the following, we state some properties of values for games.

• Efficiency.
∑

i∈N ψi(N, v) = v(N) for all (N, v) ∈ GN0 .

• Symmetry. ψi(N, v) = ψj(N, v) for all (N, v) ∈ GN0 and i, j ∈ N

being symmetric in (N, v).

• Dummy player property. ψi(N, v) = v({i}) for all (N, v) ∈ GN0 and

i ∈ N being a dummy player in (N, v).

• Dummifying player property. ψi(N, v) = v({i}) for all (N, v) ∈ GN0
and i ∈ N being a dummifying player in (N, v).

• Weak linearity. For all a ∈ R, and all (N, v), (N,w) ∈ GN0 such that

there exists c ∈ R+ with w({i}) = cv({i}) for all i ∈ N , if (N, av+w) ∈
GN0 , then ψ(N, av + w) = aψ(N, v) + ψ(N,w).

The first three axioms are classical, except that they are defined on sub-

class GN0 . The dummifying player property, proposed by Casajus and Huet-

tner (2014), states that a dummifying player just earns its own stand-alone

worth. Weak linearity, proposed by Béal et al. (2018), states that when taking

a linear combination of two games, where the ratio between the stand-alone
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worths is the same in both games, the payoff allocation equals the corre-

sponding linear combination of the payoff vectors of the two separate games.

This axiom is a weak version of the axiom of linearity as proposed by Shapley

(1953). If a = 1, then weak linearity reduces to weak additivity, which is

introduced and studied in Besner (2019).

3. Proportionality principle

In this section, we introduce a new axiom, called balanced treatment, and

characterize the proportional division value.

Definition 1. Players i, j ∈ N , i 6= j, are weak symmetric in (N, v) if

v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}, S 6= ∅.

So, two players being weak symmetric still allows them to have a dif-

ferent singelton worth, but their contribution to any nonempty coalition of

other players should be equal. Notice that in two-player games both players

are always weak symmetric. We now introduce a proportionality property,

comparable to symmetry, which says that the payoffs to two weak symmetric

players are in the same proportion as their stand-alone worths. This axiom

can be considered as a strengthening of Shapley’s symmetry axiom in the

sense that it implies that any two symmetric players in any game should

earn the same payoff.

• Balanced treatment. ψi(N,v)
v({i}) =

ψj(N,v)

v({j}) for all (N, v) ∈ GN0 and i, j ∈
N being a pair of weak symmetric players in (N, v).

Next, we exactly characterize the class of values on GN0 that satisfies

efficiency, weak linearity, and balanced treatment.

Theorem 1. A value ψ on GN0 satisfies efficiency, weak linearity, and bal-

anced treatment if and only if for each (N, v) ∈ GN0 and each i ∈ N ,

ψi(N, v) = v({i})∑
j∈N v({j})v(N) + v({i})

[ ∑
S:i∈S 6=N
|S|≥2

λS∑
j∈S v({j})

v(S)−
∑
S:i6∈S
|S|≥2

λS∑
j∈N\S v({j})

v(S)

]
,

(2)
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where λS for each S ⊂ N with |S| ≥ 2 is a real number such that

λS∑
j∈S v({j})

∑
j∈N\S v({j})

=
λT∑

j∈T v({j})
∑

j∈N\T v({j})
, if |S| = |T |.

(3)

The lengthy proof of Theorem 1 is given in the Appendix. The proof uses

the following proposition, which characterizes the PD value on the class of

two-player games in GN0 . Since the two players in a two-player game (N, v) ∈
GN0 are always weak symmetric, if value ψ satisfies balanced treatment, then
ψi(N,v)
v({i}) =

ψj(N,v)

v({j}) for i, j ∈ N . By efficiency, we then obtain that the worth

of the grand coalition is allocated proportional to the stand-alone worths.

Since it is clear that the PD value satisfies these two axioms, we have the

following proposition.

Proposition 1. Let N ∈ N with n = 2. The PD value is the unique value

on GN0 satisfying efficiency and balanced treatment.

The values characterized in Theorem 1, can be seen as modifications of

the PD value, where to every game they first apply the PD value and then

make a ‘correction’ that is based on the stand-alone worth of a player and

the difference between weighted sums of the worths of all other coalitions

with and without this player. The weights depend on all stand-alone worths.

In this sense, (2) bears some similarity with the for the family of efficient,

linear and symmetric (ELS) values (Lemma 9, Ruiz et al. 1998):

ψi(N, v) =
v(N)

n
+

∑
S:i∈S 6=N

ρs
s
v(S)−

∑
S:i 6∈S

ρs
n− s

v(S),

where ρs, s ∈ {1, 2, . . . , n − 1}, is a real number. The ELS values can be

seen as first applying equal division and then make a correction based on a

weighted sum of differences between worths of coalitions with and without a

player. Specifically, if v({i}) = v({j}) for all i, j ∈ N , (2) coincides with the

above equation.
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Remark 1. Note that (3) indicates that all coefficients of coalitions of the

same size are uniquely determined as soon as any one of them is given. For

computational convenience, given {λS ∈ R | S ⊂ N, |S| ≥ 2}, denoting

λs = λS∑
j∈S v({j})

∑
j∈N\S v({j})

, (2) can be rewritten as

ψi(N, v) = v({i})v(N)∑
j∈N v({j}) + v({i})

[ ∑
S:i∈S 6=N

∑
j∈N\S

v({j})λsv(S)−
∑
S:i 6∈S

∑
j∈S

v({j})λsv(S)

]
,

(4)

where λ1 = 0, and λs, s ∈ {1, 2, . . . , n− 1}, is a function with respect to λS

and all stand-alone worths. Since λs might be different for different games

which stand-alone worths are different, (4) cannot be directly used to verify

weak linearity.

A next question is whether the class of values characterized in Theorem

1 contains a value that satisfies the dummy player property. It turns out

that, for games with at least three players, the dummy player property is

incompatible with the three axioms in Theorem 1.

Theorem 2. Let N ∈ N with n ≥ 3. There is no value on GN0 satisfying ef-

ficiency, weak linearity, balanced treatment, and the dummy player property.

Proof. Let ψ be a value satisfying these axioms. First, suppose that n ≥ 4.

Consider any game (N, v) ∈ GN0 and i ∈ N such that i is a dummy player in

(N, v). By Theorem 1, we have

ψi(N, v) = v({i})∑
j∈N v({j})v(N) +

∑
S:i∈S 6=N
|S|≥2

v({i})·λS∑
j∈S v({j})

v(S)−
∑
S:i 6∈S
|S|≥2

v({i})·λS∑
j∈N\S v({j})

v(S)

= v({i})v(N)∑
j∈N v({j}) +

∑
S:i6∈S

1≤|S|≤n−2

v({i})·λS∪{i}∑
j∈S∪{i} v({j})

v(S ∪ {i})−
∑
S:i 6∈S
|S|≥2

v({i})·λS∑
j∈N\S v({j})

v(S)

=v({i})[v(N\{i})+v({i})]∑
j∈N v({j}) +

∑
j∈N\{i}

v({i})·λ{i,j}
v({i})+v({j})v({i, j})− λN\{i}v(N\{i})

+
∑
S:i 6∈S

2≤|S|≤n−2

[ v({i})·λS∪{i}∑
j∈S∪{i} v({j})

v(S ∪ {i})− v({i})·λS∑
j∈N\S v({j})

v(S)
]
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= v({i})v({i})∑
j∈N v({j}) + v({i})

∑
j∈N\{i}

λ{i,j} + [ v({i})∑
j∈N v({j}) − λN\{i}]v(N\{i})

+
∑
S:i 6∈S

2≤|S|≤n−2

v({i})·λS∪{i}∑
j∈S∪{i} v({j})

v({i}) +
∑
S:i6∈S

2≤|S|≤n−2

[ v({i})·λS∪{i}∑
j∈S∪{i} v({j})

− v({i})·λS∑
j∈N\S v({j})

]
v(S),

where the third equality follows from i being a dummy player in (N, v).

Since, by the dummy player property, the payoff of dummy player i should

not depend on v(S), i 6∈ S and 2 ≤ |S| ≤ n− 1, the third term and the fifth

term of the above equation must be equal to 0, which yields

λN\{i} = v({i})∑
j∈N v({j}) , (5)

λS∪{i}
λS

=

∑
j∈S∪{i} v({j})∑
j∈N\S v({j})

for S ⊂ N with 2 ≤ |S| ≤ n− 2. (6)

Since λS for each S ⊂ N with |S| ≥ 2 satisfies (3), then (5) and (3)

together imply that

λN\{k1} =
v({k1})

∑
j∈N\{k1} v({j})∑

j∈N\{i} v({j})
∑

j∈N v({j})
for any k1 ∈ N\{i}.

By using (6), we have

λN\{i,k1} =

∑
j∈{i,k1} v({j})∑
j∈N\{k1} v({j})

λN\{k1}

=
v({k1})

∑
j∈{i,k1} v({j})∑

j∈N\{i} v({j})
∑

j∈N v({j})
.

The above equation together with (3) imply that, for any k2 ∈ N\{i, k1},

λN\{k1,k2} =

∑
j∈N\{k1,k2} v({j})

∑
j∈{k1,k2} v({j})∑

j∈N\{i,k1} v({j})
∑

j∈{i,k1} v({j})
λN\{i,k1}

=

∑
j∈N\{k1,k2} v({j})

∑
j∈{k1,k2} v({j})v({k1})∑

j∈N\{i,k1} v({j})
∑

j∈N\{i} v({j})
∑

j∈N v({j})
.

Now, exchanging the order of k1 and k2, we have

λN\{k1,k2} =

∑
j∈N\{k1,k2} v({j})

∑
j∈{k1,k2} v({j})v({k2})∑

j∈N\{i,k2} v({j})
∑

j∈N\{i} v({j})
∑

j∈N v({j})
.
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Therefore, it must be that

v({k1})∑
j∈N\{i,k1} v({j})

=
v({k2})∑

j∈N\{i,k2} v({j})
,

from which it follows that v({k1}) = v({k2}) for any k1, k2 ∈ N\{i}. This

contradicts the definition of GN0 .

Similarly, for n = 3, we also have a contradiction to the fact that the

stand-alone worths of players are not always the same.

Remark 2. Note that the contradiction vanishes if n = 2. In fact, in this

case, the PD value satisfies these axioms.

Since the PD value satisfies efficiency, weak linearity, and balanced treat-

ment on GN0 , it belongs to the class of values characterized in Theorem 1. In

fact, it is the value corresponding to λS = 0 for all S ⊆ N . As it turns out,

replacing the dummy player property in the impossibility theorem 2 by the

dummifying player property, characterizes the PD value (also for two-player

games).

Theorem 3. The PD value is the unique value on GN0 that satisfies efficiency,

weak linearity, balanced treatment, and the dummifying player property.

Proof. It is obvious that the PD value satisfies efficiency, weak linearity,

balanced treatment, and the dummifying player property. It remains to prove

the uniqueness part. Let ψ be a value satisfying these axioms. By Theorem

1, any value satisfying efficiency, weak linearity and balanced treatment is

given by (2) for some λS (S ⊆ N, |S| ≥ 2) satisfying (3). To achieve λS,

we consider a modified game (N, vi) ∈ GN0 with respect to (N, v) ∈ GN0 and

i ∈ N , defined by

vi(S) =


v({j}), if S = {j} for all j ∈ N,∑

j∈S v({j}), if i ∈ S and |S| ≥ 2,

v(S), otherwise.
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Applying (2) to the game (N, vi), we have

ψi(N, vi) = v({i}) + v({i})
[ ∑
S:i∈S 6=N
|S|≥2

λS −
∑
S:i 6∈S
|S|≥2

λSv(S)∑
j∈N\S v({j})

]
.

Since i is dummifying in (N, vi), the dummifying player property requires

that ψi(N, vi) = v({i}), and thus∑
S:i∈S 6=N
|S|≥2

λS −
∑
S:i 6∈S
|S|≥2

λSv(S)∑
j∈N\S v({j})

≡ 0.

It follows that
n−1∑
s=2

[∑
S:i∈S
|S|=s

λS −
∑
S:i6∈S
|S|=s

λSv(S)∑
j∈N\S v({j})

]
≡ 0. (7)

We will show that λS = 0 for all S ⊂ N in (7). Suppose by contradiction

that there exists some S ⊂ N with s ∈ {2, . . . , n − 1} such that λS 6= 0

and |S| = s. Let S = {s1, s2, . . . , sm} be the set of such coalitional sizes.

Note that (3) implies that if λS 6= 0, then all coefficients of coalitions of

the same size s are not equal to zero. We denote by Sk = {S1
k , S

2
k , . . . , S

h
k},

k = 1, . . . ,m, h =
(
n
sk

)
, the set of all coalitions of the same size sk ∈ S. Pick

any Srk ∈ Sk with i ∈ Srk. By (3), we have λStk =

∑
j∈St

k
v({j})

∑
j∈N\St

k
v({j})∑

j∈Sr
k
v({j})

∑
j∈N\Sr

k
v({j})λSrk

for any Stk ∈ Sk (it obviously holds for the case Stk = Srk). With this equality,

(7) can be written as∑
sk∈S

[
A(Sk)−

∑
Stk∈Sk,i 6∈S

t
k

B(Stk)v(Stk)
]
λSrk = 0, (8)

whereA(Sk) =
∑

Stk∈Sk,i∈S
t
k

∑
j∈St

k
v({j})

∑
j∈N\St

k
v({j})∑

j∈Sr
k
v({j})

∑
j∈N\Sr

k
v({j}) andB(Stk) =

∑
j∈St

k
v({j})∑

j∈Sr
k
v({j})

∑
j∈N\Sr

k
v({j}) .

Now, pick any sl ∈ {s1, s2, . . . , sm} and any c ∈ R\{0}, and consider the

game (N, vi,sl) ∈ GN0 given by

vi,sl(S) =

vi(S) + c, if |S| = sl and i 6∈ S,

vi(S), otherwise.
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Note that (3) shows that λS only depends on the size of S and the

worths of all singleton coalitions. Therefore, since i is a dummifying player

in (N, vi,sl), for the above game we can obtain an equation similar as (8) but

with an additional term that depends on c,∑
sk∈S

[
A(Sk)−

∑
Stk∈Sk,i 6∈S

t
k

B(Stk)v(Stk)
]
λSrk − cλSrl

∑
Stl∈Sl,i 6∈S

t
l

B(Stl ) = 0.

Together with this equation and (8), it holds that −cλSrl
∑

Stl∈Sl,i 6∈S
t
l
B(Stl ) =

0, yielding λSrl = 0, which is a contradiction.

Remark 3. If the domain is restricted to the class containing all individually

equal games (i.e., (N, v) ∈ GN0 such that v({i}) = v({j}) for all i, j ∈ N),

then weak linearity and balanced treatment reduce to linearity and symmetry,

respectively. Denoting this class of games by GNe , in contrast to Theorem 2

and Theorem 3, one can obtain the following results: (i) The Shapley value

is the unique value on GNe that satisfies efficiency, additivity, symmetry, and

the dummy player property; (ii) The ED value is the unique value on GNe
that satisfies efficiency, additivity, symmetry, and the dummifying player

property.

Remark 4. We conclude this section by comparing our results with the main

results in Casajus and Huettner (2014). Recall that Casajus and Huettner

(2014) show that on the domain of TU-games GN , the equal surplus division

value treats dummifying players in the same way as the Shapley value handles

dummy players. Restricting ourselves to the subclass GN0 , notice that the

PD value can be considered as a variation of the equal surplus division value

since PDi(N, v) = v({i}) + v({i})∑
j∈N v({j}) [v(N) −

∑
j∈N v({j})]. Interestingly,

Theorem 3 gives a characterization of the PD value using the dummifying

player property, whereas, for |N | ≥ 3, using the dummy player property

instead of the dummifying player property leads to an impossibility, as we

saw in Theorem 2.
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4. Monotonicity

In this section, we present axiomatic characterizations of the propor-

tional division value by imposing three appropriate monotonicity axioms be-

ing weaker versions of classical monotonicity axioms in the literature.

• Weak coalitional surplus equivalence4. For all (N, v), (N,w) ∈ GN0
with v({j}) = w({j}) for all j ∈ N , and i ∈ N being a dummifying

player in (N,w), we have ψi(N, v + w) = ψi(N, v) + w({i}).

• Weak coalitional surplus monotonicity. For all (N, v), (N,w) ∈
GN0 with w({j}) = cv({j}) for all j ∈ N and c ∈ R+, and i ∈ N such

that v(S) −
∑

j∈S v({j}) ≥ w(S) −
∑

j∈S w({j}) for all S ⊆ N with

i ∈ S, we have ψi(N, v)− v({i}) ≥ ψi(N,w)− w({i}).

• Weak coalitional monotonicity. For all (N, v), (N,w) ∈ GN0 with

v({j}) = w({j}) for all j ∈ N , and i ∈ N such that v(S) ≥ w(S) for

all S ⊆ N with i ∈ S, we have ψi(N, v) ≥ ψi(N,w).

Weak coalitional surplus equivalence states that the payoff of a player

increases with its stand-alone worth if we add a game in which this player is

a dummifying player and each stand-alone worth is the same as that of the

original game.

Weak coalitional surplus monotonicity states that if two games in which

the stand-alone worths of all players are in the same proportion to each other

and the surplus of every coalition a player belongs to (measured by the worth

of the coalition minus the sum of the stand-alone worths of its players) weakly

increases, then the relative payoff of this player (being the difference between

the payoff and stand-alone worth) should not decrease.

4Weak coalitional surplus equivalence is a monotonicity principle due to the fact that

it is implied by weak coalitional surplus monotonicity with c = 2. See Lemma 1.
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Weak coalitional monotonicity states that the payoff of a player should not

decrease whenever the worth of every coalition containing this player weakly

increases, while the worth of every singleton coalition remains unchanged.

Weak coalitional surplus equivalence (respectively, weak coalitional sur-

plus monotonicity) is a weak version of coalitional surplus equivalence5 (re-

spectively, coalitional surplus monotonicity6) as defined in Casajus and Huet-

tner (2014). Weak coalitional monotonicity is stronger than coalitional mono-

tonicity7 as defined in Shubik (1962), while it is weaker than coalitional

monotonicity8 as defined in van den Brink (2007).

Notice that weak coalitional monotonicity is a specific case of weak coali-

tional surplus monotonicity taking c = 1. On the other hand, weak coalitional

surplus monotonicity implies weak coalitional surplus equivalence.

Lemma 1. Every value on GN0 that satisfies weak coalitional surplus mono-

tonicity also satisfies weak coalitional surplus equivalence.

Proof. Suppose that value ψ satisfies weak coalitional surplus monotonicity.

Consider a pair of games (N, v), (N, v + w) ∈ GN0 , where v({j}) = w({j})
for all j ∈ N , and i ∈ N such that w(S) =

∑
j∈S w({j}) for all S ⊆ N

with i ∈ S. Since (v + w)(S) −
∑

j∈S(v + w)({j}) = v(S) −
∑

j∈S v({j})
for all S ⊆ N with i ∈ S, by weak coalitional surplus monotonicity we have

ψi(N, v + w) − (v + w)({i}) = ψi(N, v) − v({i}). It follows that ψi(N, v +

5A value ψ satisfies coalitional surplus equivalence if ψi(N, v + w) = ψi(N, v) + w({i})
for all (N, v), (N,w) ∈ GN and i ∈ N being a dummifying player in (N,w).

6A value ψ satisfies coalitional surplus monotonicity if ψi(N, v)− v({i}) ≥ ψi(N,w)−
w({i}) for all (N, v), (N,w) ∈ GN , and i ∈ N such that v(S) −

∑
j∈S v({j}) ≥ w(S) −∑

j∈S w({j}) for all S ⊆ N with i ∈ S.
7A value ψ satisfies Shubik’s version of coalitional monotonicity if ψi(N, v) ≥ ψi(N,w)

for all (N, v), (N,w) ∈ GN and i ∈ N such that v(S) ≥ w(S) for all S ⊆ N with i ∈ S,

and v(S) = w(S) for all S ⊆ N\{i}.
8A value ψ satisfies van den Brink’s version of coalitional monotonicity if ψi(N, v) ≥

ψi(N,w) for all (N, v), (N,w) ∈ GN and i ∈ N such that v(S) ≥ w(S) for all S ⊆ N with

i ∈ S.
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w) = ψi(N, v)+w({i}), which shows that ψ satisfies weak coalitional surplus

equivalence.

Considering weak coalitional surplus equivalence and weak coalitional sur-

plus monotonicity, the PD value is characterized by either one of these axioms

in addition to efficiency and balanced treatment.

Theorem 4. (i) The PD value is the unique value on GN0 that satisfies effi-

ciency, balanced treatment, and weak coalitional surplus equivalence.

(ii) The PD value is the unique value on GN0 that satisfies efficiency,

balanced treatment, and weak coalitional surplus monotonicity.

Proof. (i) It is clear that the PD value satisfies efficiency, balanced treat-

ment, and weak coalitional surplus equivalence. Now let ψ be a value on

GN0 satisfying the three axioms. For n = 1, (1) is satisfied by efficiency. For

n = 2, (1) is obtained from Proposition 1. For n ≥ 3, uniqueness follows by

induction on d(v) = |{T ⊆ N | v(T )− 1
2

∑
j∈T v({j}) 6= 0 and |T | ≥ 2}|.

Intialization. If d(v) = 0 then v(N) = 1
2

∑
j∈N v({j}). For any (N, v) ∈

GN0 , define (N, v0) ∈ GN0 as follows:

v0(T ) = v(T )− 1

2

∑
j∈T

v({j}) for all T ⊆ N. (9)

Notice that, by d(v) = 0, v0(T ) = 0 for all T ⊆ N with |T | ≥ 2. Clearly,

in this case, all players i, j ∈ N are weak symmetric in (N, v0) and v0(N) = 0.

By efficiency and balanced treatment, we have ψi(N, v
0) = 0 for all i ∈ N .

Notice that (v−v0)({i}) = v({i})−v({i}) + 1
2
v({i}) = 1

2
v({i}) for all i ∈ N ,

and all players are dummifying in (N, v−v0) since (v−v0)(T ) = v(T )−v(T )+
1
2

∑
j∈T v({j}) = 1

2

∑
j∈T v({j}) =

∑
j∈T (v − v0)({j}). It follows from weak

coalitional surplus equivalence that ψi(N, v) = ψi(N, v
0) + ψi(N, v − v0) =

ψi(N, v
0) + 1

2
v({i}) for all i ∈ N . Thus, we obtain ψi(N, v) = 1

2
v({i}) =

PDi(N, v) for all i ∈ N .

Proceeding by induction, assume that ψi(N,w) = PDi(N,w) if d(w) <

d(v). Let S = {S1, S2, . . . , Sd(v)} be the set of coalitions such that v(Sk) −
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1
2

∑
j∈Sk v({j}) 6= 0 and |Sk| ≥ 2. Let S be the intersection of all such

coalitions Sk, i.e., S =
⋂

1≤k≤d(v)
Sk. We distinguish between two cases:

Case (a): i ∈ N\S. Each player i ∈ N\S is a member of at most d(v)− 1

coalitions in S, and at least one Si ∈ S such that i 6∈ Si (obviously, Si 6= N).

For (N, v) ∈ GN0 , define two associated games as follows:

vi,1(T ) =

v(T )− 1
2

∑
j∈T v({j}), if T 6= Si,

0, if T = Si.

vi,2(T ) =

1
2

∑
j∈T v({j}), if T 6= Si,

v(Si), if T = Si.

Clearly, v = vi,1 + vi,2, vi,1({j}) = vi,2({j}) = 1
2
v({j}) for all j ∈ N ,

d(vi,1) = d(v) − 1, and all players i ∈ N\Si are dummifying in (N, vi,2).

Weak coalitional surplus equivalence and the induction hypothesis then

imply that ψi(N, v) = ψi(N, v
i,1) + 1

2
v({i}) = PDi(N, v

i,1) + 1
2
v({i}) =

vi,1({i})∑
j∈N vi,1({j})v

i,1(N)+1
2
v({i}) = v({i})∑

j∈N v({j}) [v(N)−1
2

∑
j∈N v({j})]+1

2
v({i}) =

v({i})∑
j∈N v({j})v(N) = PDi(N, v) for all i ∈ N\Si. Since there exists such a Si

for all i ∈ N\S, we obtain ψi(N, v) = PDi(N, v) for all i ∈ N\S.

Case (b): i ∈ S. If S = {i}, we obtain, by efficiency of ψ and PD and

case (a), ψi(N, v) = PDi(N, v). If |S| ≥ 2, each player j ∈ S is a member

of all coalitions in S. Now we consider the game (N, v0) as defined by

(9) in case d(v) = 0. Clearly, here all players j ∈ S are weak symmetric

in (N, v0). By efficiency and balanced treatment of ψ and case (a), we

obtain that, for any i ∈ S,
∑

j∈S ψj(N, v) =
∑

j∈S
v({j})
v({i})ψi(N, v) = v(N)−∑

j∈N\S ψj(N, v) = v(N) −
∑

j∈N\S PDi(N, v) =
∑

j∈S
v({j})∑
k∈N v({k})v(N),

which yields ψi(N, v) = PDi(N, v).

The proof of (i) is complete.
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(ii) Since it is obvious that the PD value satisfies efficiency and balanced

treatment, we only show that the PD value satisfies weak coalitional sur-

plus monotonicity. Clearly, w({j}) = cv({j}) for all j ∈ N and v(S) −∑
j∈S v({j}) ≥ w(S) −

∑
j∈S w({j}) for all S ⊆ N with i ∈ S, imply that

v(N) ≥ w(N) −
∑

j∈N w({j}) +
∑

j∈N v({j}) = w(N) −
∑

j∈N w({j}) +∑
j∈N

w({j})
c

= w(N)−(1−1
c
)
∑

j∈N w({j}). Thus, PDi(N, v) = v({i})∑
j∈N v({j})v(N) =

w({i})∑
j∈N w({j})v(N) ≥ w({i})∑

j∈N w({j}) [w(N) − (1 − 1
c
)
∑

j∈N w({j})] = PDi(N,w) −
w({i}) + 1

c
w({i}) = PDi(N,w)− w({i}) + v({i}).

Uniqueness follows from Theorem 4 and Lemma 1.

The next lemma shows a logical implication between the axioms in The-

orem 3 and Theorem 4 (i), which implies that weak linearity in Theorem 3

can be weakened as weak additivity.

Lemma 2. Weak additivity and the dummifying player property together

imply weak coalitional surplus equivalence.

Proof. Let (N, v), (N,w) ∈ GN0 be two games such that v({j}) = w({j}) for

all j ∈ N , and i ∈ N is dummifying in (N,w). The dummifying player

property implies that ψi(N,w) = w({i}). Then weak additivity implies that

ψi(N, v + w) = ψi(N, v) + ψi(N,w) = ψi(N, v) + w({i}), as desired.

It is easy to verify that the PD value satisfies weak coalitional monotonic-

ity. Interestingly, the PD value is characterized by replacing weak coalitional

surplus monotonicity with weak coalitional monotonicity in Theorem 4 (ii).

In this case, balanced treatment even can be weakened by requiring the pro-

portionality only for games in which all players are weak symmetric.

• Weak balanced treatment. ψi(N,v)
v({i}) =

ψj(N,v)

v({j}) for all (N, v) ∈ GN0 and

i, j ∈ N if all players are weak symmetric in (N, v).

Theorem 5. The PD value is the unique value on GN0 that satisfies efficiency,

weak balanced treatment, and weak coalitional monotonicity.
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Proof. It is clear that the PD value satisfies efficiency, weak balanced treat-

ment, and weak coalitional monotonicity. To show uniqueness, suppose that

ψ is a value satisfying the three axioms. For any game (N, v) ∈ GN0 , define

the game (N,w) by

w(S) =


v(N), if S = N,

v({j}), if S = {j} for all j ∈ N,

min
T⊆N,|T |≥2

v(T ), otherwise.

Efficiency and weak balanced treatment imply that ψi(N,w) = v({i})∑
j∈N v({j})v(N)

for all i ∈ N . Pick any i ∈ N . Since v(S) ≥ w(S) for all S ⊆ N with

i ∈ S, then weak coalitional monotonicity implies that ψi(N, v) ≥ ψi(N,w) =
v({i})∑
j∈N v({j})v(N). Efficiency then implies that ψi(N, v) = v({i})∑

j∈N v({j})v(N) for

all i ∈ N .

Notice that by using the monotonicity axioms in Theorems 4 and 5, we

can get rid of weak linearity.

Considering the relationship between our monotonicity axioms and the

stronger versions introduced in Casajus and Huettner (2014) and van den

Brink (2007) (to characterize the ESD value or the ED value), from Theorems

4 and 5, we obtain the following corollary.

Corollary 1. Let n ≥ 2. There is no value on GN0 satisfying

(i) efficiency, balanced treatment, and coalitional surplus equivalence.

(ii) efficiency, balanced treatment, and coalitional surplus monotonicity.

(iii) efficiency, weak balanced treatment, and coalitional monotonicity.

As shown before, weak coalitional surplus monotonicity is stronger than

both weak coalitional surplus equivalence and weak coalitional monotonicity.

We conclude this section by mentioning two values to show logical indepen-

dence of weak coalitional surplus equivalence and weak coalitional monotonic-

ity. The value ψi(N, v) = v({i}) − 1
n
[v(N) −

∑
j∈N v({j})], i ∈ N , satisfies
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weak coalitional surplus equivalence, but not weak coalitional monotonicity;

the ED value ψi(N, v) = v(N)
n

, i ∈ N , satisfies weak coalitional monotonicity,

but not weak coalitional surplus equivalence.

5. Consistency

In this section, we consider a variable player set, and characterize the PD

value by proportional standardness used in Ortmann (2000) and Khmelnit-

skaya and Driessen (2003), and projection consistency due to van den Brink

and Funaki (2009) and van den Brink et al. (2016).

If a player j ∈ N leaves game (N, v) with a certain payoff, then the

projection reduced game is a game on the remaining player set that assigns

to every proper subset of N \ {j} its worth in the original game, and to

coalition N \ {j} assigns its worth in (N, v) minus the payoff assigned to

player j.

Definition 2. Given a game (N, v) ∈ G0 with |N | ≥ 2, a player j ∈ N and

a payoff vector x ∈ RN , the projection reduced game with respect to j and x

is the game (N\{j}, vx) given by

vx(S) =

v(N)− xj if S = N\{j},

v(S) if S ⊂ N\{j}.

Projection consistency requires that the payoffs assigned to the remaining

players in N \ {j}, after player j leaving the game with its payoff according

to a value ψ, is the same in the reduced game as in the original game.

Definition 3. A value ψ satisfies projection consistency if for every

game (N, v) ∈ G0 with |N | ≥ 3, j ∈ N , and x = ψ(N, v), it holds that

(N\{j}, vx) ∈ G0, and ψi(N\{j}, vx) = ψi(N, v) for all i ∈ N\{j}.

Proportional standardness requires that in two player games we allocate

the worth of the grand coalition over the two players proportional to their

singleton worths.
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Definition 4. A value ψ satisfies proportional standardness if for every

game (N, v) ∈ G0 with |N | = 2, it holds that

ψi(N, v) = v({i}) +
v({i})

v({i}) + v({j})
[v(N)− v({i})− v({j})], ∀i, j ∈ N.

Proportional standardness is called proportional for two person games in

Ortmann (2000).

Proposition 2. The PD value satisfies projection consistency on the class

of all games G0.

Proof. For every (N, v) ∈ G0 with |N | ≥ 3 and any j ∈ N , (N\{j}, vx) ∈ G0.9

For x = PD(N, v) and i ∈ N\{j}, we have

PDi(N\{j}, vx) =
vx({i})∑

k∈N\{j} v
x({k})

vx(N\{j})

=
v({i})∑

k∈N\{j} v({k})
[v(N)− PDj(N, v)]

=
v({i})∑

k∈N\{j} v({k})
[v(N)− v({j})∑

k∈N v({k})
v(N)]

=
v({i})∑
k∈N v({k})

v(N)

= PDi(N, v).

Projection consistency together with proportional standardness for two-

player games characterizes the PD value on the class of games with at least

two players. We denote the class of games in G0 with at least two players by

Ĝ0.

9Notice that, if (N, v) ∈ G0 with |N | = 2 and v(N) = 0, then for x = PD(N, v), we

have that xi = xj = 0, and thus (N\{j}, vx) 6∈ G0 for any j ∈ N . In case v(N) 6= 0,

for x = PD(N, v), we have (N\{j}, vx) ∈ G0, since [v({i}) > 0 ⇒ PDj(N, v) < v(N) ⇒
vx({i}) > 0] (similar if v({i}) < 0).
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Theorem 6. A value ψ satisfies proportional standardness and projection

consistency on the class of all games Ĝ0 if and only if ψ = PD.

Proof. It is straightforward to show that the PD value satisfies proportional

standardness. Projection consistency follows from Proposition 2. To show

the ‘only if’ part, suppose that ψ is a value satisfying proportional standard-

ness and projection consistency.

If |N | = 2, then ψ(N, v) = PD(N, v) follows from proportional standard-

ness.

Proceeding by induction, for |N | ≥ 3, suppose that ψ(N ′, w) = PD(N ′, w)

whenever |N ′| = |N |−1. Take any i, j ∈ N such that i 6= j. Let x = ψ(N, v)

and y = PD(N, v). For the two reduced games (N\{j}, vx) and (N\{j}, vy),
by the induction hypothesis, we have

xi − yi = ψi(N\{j}, vx)− PDi(N\{j}, vy)
= PDi(N\{j}, vx)− PDi(N\{j}, vy). (10)

By definition of the PD value and the projection reduced game, we have

PDi(N\{j}, vx)− PDi(N\{j}, vy)

=
vx({i})∑

k∈N\{j} v
x({k})

(v(N)− xj)−
vy({i})∑

k∈N\{j} v
y({k})

(v(N)− yj)

=
v({i})∑

k∈N\{j} v({k})
(yj − xj).

Together with (10), this implies that, for all i, j ∈ N with i 6= j,

xi − yi =
v({i})∑

k∈N\{j} v({k})
(yj − xj). (11)

Summing (11) over all i ∈ N\{j} yields

∑
i∈N\{j}

(xi − yi) =

∑
i∈N\{j} v({i})∑
k∈N\{j} v({k})

(yj − xj) = yj − xj. (12)
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On the other hand, (11) can be written as v({i})(yj−xj) =
∑

k∈N\{j} v({k})(xi−
yi). Summing this equality over all j ∈ N\{i}, we have∑

j∈N\{i}

∑
k∈N\{j}

v({k})(xi − yi) =
∑

j∈N\{i}

v({i})(yj − xj)

⇔
∑

j∈N\{i}

(
v({i})(xi − yi) +

∑
k∈N\{i,j}

v({k})(xi − yi)
)

= v({i})
∑

j∈N\{i}

(yj − xj)

⇔[(n− 1)v({i}) + (n− 2)
∑

j∈N\{i}

v({j})](xi − yi) = v({i})
∑

j∈N\{i}

(yj − xj).

(13)

Together with (12) and (13), it holds that (n− 2)(xi − yi)
∑

j∈N v({j}) = 0.

Thus, xi − yi = 0 for all i ∈ N . This shows that ψ(N, v) = PD(N, v).

Proposition 1 and Theorem 6 together imply the following corollary.

Corollary 2. The PD value is the unique value on Ĝ0 that satisfies efficiency,

balanced treatment, and projection consistency.

6. Proportional standardness: characterizations for two-player

games

In the previous section we imposed proportional standardness to charac-

terize the PD value for any player set. Note that proportional standardness,

as other two-player standardness axiom, is a quite strong axiom since it co-

incides with the definition of the PD value for two-player games. In this

section, we support proportional standardness by showing how the PD value

can be characterized on the class of two-player games. We first characterize

the PD value for rational numbers, and then apply continuity to obtain a

characterization for real worths. Denote G20 = {(N, v) ∈ G0 | |N | = 2} and

G20Q = {(N, v) ∈ G20 | v(S) ∈ Q for all S ⊆ N}, so the worths of coalitions in

games in G20Q are rational numbers.

First, we introduce two additional axioms, the first on G20Q and the second

on G20 .
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• Grand worth additivity. For games (N, v), (N,w) ∈ G20Q with N =

{i, j} such that v({i}) = w({i}) and v({j}) = w({j}), it holds that

ψ(N, v) + ψ(N,w) = ψ(N, v ⊕ w), where (N, v ⊕ w) is defined as:

(v ⊕ w)({i}) = v({i}), (v ⊕ w)({j}) = v({j}) and (v ⊕ w)(N) =

v(N) + w(N).

• Inessential game property. For every game (N, v) ∈ G20 with N =

{i, j} such that v({i}) + v({j}) = v({i, j}), it holds that ψi(N, v) =

v({i}) and ψj(N, v) = v({j}).

Grand worth additivity10 states that for two games in which all worths

are rational numbers and the stand-alone worths are the same, we consider

the game where the stand-alone worths are the same as in the original game,

and the worth of the grand coalition equals the sum of the worth of the grand

coalition in the two games, then the payoff to each player equals the sum of

the payoffs in the two separate games. The inessential game property is a

well-known axiom requiring that players earn their stand-alone payoff in an

inessential game. First, we show that these two axioms characterize the PD

value on the class of two-player games with rational worths.

Proposition 3. A value ψ on G20Q satisfies grand worth additivity and the

inessential game property if and only if ψ = PD.

Proof. It is obvious that PD satisfies grand worth additivity and the inessen-

tial game property. To show uniqueness, suppose that ψ is a value on G20Q
satisfying the two axioms. Let (N, v) ∈ G20Q be an arbitrary game with N =

{i, j}. For any α ∈ Q, let the game (N, vα) be defined by vα({i}) = v({i}),
vα({j}) = v({j}) and vα(N) = αv(N). Clearly, (N, vα) ∈ G20Q.

If α = 0 then grand worth additivity implies that ψ(N, vα) = 0. For

any α ∈ Z+
11 , since (N, vα) = (N, vα−1 ⊕ v) = · · · = (N, v ⊕ · · · ⊕ v︸ ︷︷ ︸

α

),

10This axiom is similar to additivity in Moulin (1987) and Chun (1988).
11Z, Z+ and Z− denote the sets of integers, positive integers and negative integers,
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grand worth additivity implies ψ(N, vα) = αψ(N, v). For any α ∈ Z−, since

(N, vα ⊕ v ⊕ · · · ⊕ v︸ ︷︷ ︸
|α|

) = (N, v0), grand worth additivity and ψ(N, v0) = 0

(from above) imply ψ(N, vα) = −|α|ψ(N, v) + ψ(N, v0) = αψ(N, v). Simi-

larly, considering (N, v), for any α ∈ Z+, (N, v) = (N, v
1
α ⊕ · · · ⊕ v

1
α︸ ︷︷ ︸

α

) implies

that ψ(N, v) = αψ(N, v
1
α ); for any α ∈ Z−, (N, v⊕ v

1
α ⊕ · · · ⊕ v

1
α︸ ︷︷ ︸

|α|

) = (N, v0)

implies that ψ(N, v) = αψ(N, v
1
α ).

Next, take any α ∈ Q and consider the game (N, vα). Since any rational

number can be written as a fraction, we suppose that α = k
m

with k ∈ Z and

m ∈ Z\{0}. Therefore, ψ(N, vα) = ψ(N, v
k
m ) = kψ(N, v

1
m ) = k

m
ψ(N, v) =

αψ(N, v).

Take any game (N, v) ∈ G20Q. Taking α = v({i})+v({j})
v(N)

, vα is an inessential

game, and thus by the inessential game property, ψi(N, v
α) = vα({i}) =

v({i}). Since ψ(N, vα) = αψ(N, v), we have ψi(N, v) = 1
α
ψi(N, v

α) =
v(N)v({i})

v({i})+v({j}) .

Next, adding continuity, which states that if two games are almost the

same then their payoffs are almost the same, we can extend this result from

rational numbers to real numbers.

• Continuity. For games (N, v), (N,w) ∈ G20 , lim
(N,w)→(N,v)

ψ(N,w) =

ψ(N, v).

Theorem 7. A value ψ on G20 satisfies grand worth additivity, the inessential

game property, and continuity if and only if ψ = PD.

Proof. It is clear that PD satisfies the three axioms. To show uniqueness,

suppose that ψ is a value on G20 satisfying the three axioms. From Proposi-

tion 3, we already know ψ(N, v) = PD(N, v) for all (N, v) ∈ G20Q. Now,

take any game (N, v) ∈ G20 , and let {(N, vm)} be a sequence of games

respectively.
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in the class G20Q such that lim
m→∞

(N, vm) = (N, v). Using continuity we

have ψ(N, v) = lim
(N,vm)→(N,v)

ψ(N, vm) = lim
(N,vm)→(N,v)

PD(N, vm) = PD(N, v),

where the last equality holds since PD(N, v) is a continuous function with

respect to (N, v) ∈ G20 .

By Theorems 6 and 7, we immediately obtain the following corollary.

Corollary 3. The PD value is the unique value on Ĝ0 that satisfies grand

worth additivity, the inessential game property, continuity, and projection

consistency.

Remark 5. Each of the following two axioms can replace grand worth addi-

tivity in Theorem 7 and characterizes the PD value together with the inessen-

tial player property on G20 .

• Grand worth proportionality. For N = {i, j}, consider games

(N, v), (N,w) ∈ G20 and take α ∈ R such that v({i}) = w({i}), v({j}) =

w({j}) and w(N) = αv(N). Then ψ(N,w) = αψ(N, v).

• Restricted covariance. ForN = {i, j}, consider games (N, v), (N,w) ∈
G20 and take α ∈ R such that v({i}) = w({i}), v({j}) = w({j}) and

w(N) = v(N)+α[v({i})+v({j})]. Then ψi(N,w) = ψi(N, v)+αv({i})
and ψj(N,w) = ψj(N, v) + αv({j}).

Not surprisingly, Remark 5 and Theorem 6 imply that the PD value on

Ĝ0 is characterized by the inessential game property, projection consistency,

and either grand worth proportionality or restricted covariance.

Remark 6. Ortmann (2000) introduced his proportional value that can be

characterized by proportional standardness and consistency due to Hart and

Mas-Colell (1989). As a consequence of Theorem 7, several characterizations

of this proportional value can be obtained by replacing proportional stan-

dardness by any of its axiomatizations provided in this section. Notice that

we cannot use the axiomatization as given by Proposition 1, since balanced

treatment may not be satisfied by this proportional value for games with

more than two players.
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7. Conclusion

In this paper, we provided several characterizations of the proportional

division value for TU-games using explicit axioms that characterize different

fairness criteria, such as equal treatment of equals, monotonicity, and consis-

tency. It is worth noticing that balanced treatment, one of our main axioms,

in some sense reflects not only equal treatment of equals but also unequal

treatment of unequals. This axiom captures this feature of the proportional

division value. Our axiomatic characterizations, except that for two-player

games, are similar to the characterizations of the equal division value due to

van den Brink (2007) and van den Brink and Funaki (2009), and the charac-

terizations of the equal surplus division value due to Casajus and Huettner

(2014). That is, most of them are obtained by weakening one axiom while

strengthening the other axiom. This implies that the proportional division

value is axiomatically closely related to these two equal surplus sharing val-

ues: the equal division value and the equal surplus division value.

In the future, we will study other characterizations of the proportional

division value relying on some existing characterizations of the equal division

value as well as the equal surplus division value. Parallel to equal surplus

sharing values, we recall that the combination of the proportional division

value and the equal division value for joint venture games is characterized by

Moulin (1987). In this way, we mention future research on characterizations

of the combination of the proportional division value and the equal division

value or the equal surplus division for more general TU-games.

Appendix

This ‘appendix’ contains the lengthy proof of Theorem 1 (Appendix A) and

the logical independence of the axioms used in characterization results (Ap-

pendix B).
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Appendix A: Proof of Theorem 1

Existence: We have to show that any value defined by (2) satisfies effi-

ciency, weak linearity, and balanced treatment.

Summing (2) over all i ∈ N yields∑
i∈N

ψi(N, v)

=v(N) +
∑
i∈N

∑
S:i∈S 6=N
|S|≥2

v({i})·λS∑
j∈S v({j})

v(S)−
∑
i∈N

∑
S:i 6∈S
|S|≥2

v({i})·λS∑
j∈N\S v({j})

v(S)

=v(N) +
∑
S⊂N
|S|≥2

λSv(S)−
∑
S⊂N
|S|≥2

λSv(S)

=v(N),

showing that (2) satisfies efficiency.

Consider two games (N, v), (N,w) ∈ GN0 and c ∈ R+ such that w({i}) =

cv({i}) for all i ∈ N . For any a ∈ R, if (N, av + w) ∈ GN0 , we have

ψi(N, av + w)

= (av({i})+w({i}))(av(N)+w(N))∑
j∈N (av({j})+w({j})) +

∑
S:i∈S 6=N
|S|≥2

(av({i})+w({i}))·λS∑
j∈S(av({j})+w({j}))

(av(S) + w(S))

−
∑
S:i 6∈S
|S|≥2

(av({i})+w({i}))·λS∑
j∈N\S(av({j})+w({j}))

(av(S) + w(S))

=v({i})(av(N)+w(N))∑
j∈N v({j})) +

∑
S:i∈S 6=N
|S|≥2

v({i})·λS∑
j∈S v({j})

(av(S) + w(S))

−
∑
S:i 6∈S
|S|≥2

v({i})·λS∑
j∈N\S v({j})

(av(S) + w(S))

= v({i})av(N)∑
j∈N v({j}) +

∑
S:i∈S 6=N
|S|≥2

v({i})·λS∑
j∈S v({j})

av(S)−
∑
S:i6∈S
|S|≥2

v({i})·λS∑
j∈N\S v({j})

av(S)

+ cv({i})w(N)
c
∑
j∈N v({j}) +

∑
S:i∈S 6=N
|S|≥2

cv({i})·λS
c
∑
j∈S v({j})

w(S)−
∑
S:i 6∈S
|S|≥2

cv({i})·λS
c
∑
j∈N\S v({j})

w(S)

=aψi(N, v) + ψi(N,w),
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showing that (2) satisfies weak linearity.

Let i, k ∈ N be two players such that v(S ∪ {i}) = v(S ∪ {k}) for all

S ⊆ N\{i, k}, S 6= ∅. We have the following:

ψi(N, v)

v({i})
− ψk(N, v)

v({k})
=

∑
S:i∈S,k 6∈S
|S|≥2

λS∑
j∈S v({j})

v(S)−
∑

S:i 6∈S,k∈S
|S|≥2

λS∑
j∈N\S v({j})

v(S)

−
[ ∑
S:k∈S,i 6∈S
|S|≥2

λS∑
j∈S v({j})

v(S)−
∑

S:k 6∈S,i∈S
|S|≥2

λS∑
j∈N\S v({j})

v(S)
]

=
∑
S:i,k 6∈S
|S|≥1

λS∪{i}∑
j∈S v({j})+v({i})

v(S ∪ {i})−
∑
S:i,k 6∈S
|S|≥1

λS∪{k}∑
j∈N\S v({j})−v({k})

v(S ∪ {k})

−
[ ∑
S:i,k 6∈S
|S|≥1

λS∪{k}∑
j∈S v({j})+v({k})

v(S ∪ {k})−
∑
S:i,k 6∈S
|S|≥1

λS∪{i})∑
j∈N\S v({j})−v({i})

v(S ∪ {i}
]

=
∑
S:i,k 6∈S
|S|≥1

λS∪{i}∑
j∈S v({j})+v({i})

v(S ∪ {i}) +
∑
S:i,k 6∈S
|S|≥1

λS∪{i}∑
j∈N\S v({j})−v({i})

v(S ∪ {i})

−
[ ∑
S:i,k 6∈S
|S|≥1

λS∪{k}∑
j∈N\S v({j})−v({k})

v(S ∪ {k}) +
∑
S:i,k 6∈S
|S|≥1

λS∪{k}∑
j∈S v({j})+v({k})

v(S ∪ {k})
]

=
∑
S:i,k 6∈S
|S|≥1

∑
j∈N v({j})λS∪{i}v(S∪{i})

[
∑
j∈S v({j})+v({i})][

∑
j∈N\S v({j})−v({i})]

−
∑
S:i,k 6∈S
|S|≥1

∑
j∈N v({j})λS∪{k}v(S∪{k})

[
∑
j∈S v({j})+v({k})][

∑
j∈N\S v({j})−v({k})]

=
∑
S:i,k 6∈S
|S|≥1

∑
j∈N v({j})λS∪{k}v(S∪{i})

[
∑
j∈S v({j})+v({k})][

∑
j∈N\S v({j})−v({k})]

−
∑
S:i,k 6∈S
|S|≥1

∑
j∈N v({j})λS∪{k}v(S∪{k})

[
∑
j∈S v({j})+v({k})][

∑
j∈N\S v({j})−v({k})]

=0,

where the fifth equality follows by (3). This implies that (2) satisfies balanced

treatment.

Uniqueness: Let ψ be a value satisfying efficiency, weak linearity, and

balanced treatment. For |N | = 1 and |N | = 2, uniqueness follows from

efficiency and Proposition 1 respectively. Now let (N, v) ∈ GN0 be an arbitrary

game with |N | ≥ 3. In order to use the property of weak linearity, we

decompose (N, v) into the unique combination of the following two kinds of
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games (N,wS) and (N,w)12. For any coalition S ⊆ N with |S| ≥ 2, the

game (N,wS) is defined as follows:

wS(T ) =


v({i}), if T = {i} for all i ∈ N,

1, if T = S,

0, otherwise.

The game (N,w) is defined as follows:

w(T ) =

v({i}), if T = {i} for all i ∈ N,

0, otherwise.

One can easily check that (N, v) can be written as v = I(v)w+
∑

S⊆N,|S|≥2
v(S)wS,

where I(v) = 1−
∑

S⊆N,|S|≥2 v(S). By using weak linearity 13 of ψ, we have

ψi(N, v) = I(v)ψi(N,w) +
∑

S⊆N,|S|≥2

v(S)ψi(N,w
S), for all i ∈ N.

Now, by balanced treatment, for each S ⊂ N with |S| ≥ 2, since all

players in S are weak symmetric in (N,wS), and the same for all players in

N \ S, there must exist some λS and µS such that

ψi(N,w
S) =


v({i})∑
j∈S v({j})

λS, if i ∈ S,
v({i})∑

j∈N\S v({j})
µS, if i 6∈ S.

(14)

12For any (N, v) ∈ GN0 , the collection of games {(N,w), (N,wS)S⊆N,|S|≥2} is a basis of

the class of games GNv = {(N, v′) ∈ GN0 | ∃c ∈ R such that v′({i}) = cv({i}) for all i ∈
N} ∪ {(N, v) ∈ GN | v({i}) = 0 for all i ∈ N}. The dimension of GNv is 2n − n. Another

interesting basis can be found in the proof of Proposition 5 in Béal et al. (2018) or in van

den Brink et al. (2018).
13To ensure that we stay in the class GN0 , we should consider the games in which their

coefficients are nonzero in a suitable ordering, just like the technical approach as given by

Lemma 5 in Béal et al. (2018).
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By efficiency, it must be
∑

i∈S
v({i})∑
j∈S v({j})

λS +
∑

i∈N\S
v({i})∑

j∈N\S v({j})
µS = 0,

which shows λS = −µS. Similarly, ψi(N,w
N) = v({i})∑

j∈N v({j}) for all i ∈ N .

Meanwhile, we have ψ(N,w) = 0. Putting all together we have the expression

of ψ as given by (2).

Accordingly, let us see that λS only depends on the size of S (S 6= N)

and the worths of all singleton coalitions {i}, i ∈ N . Let S ⊂ N , S 6= ∅ with

i, j 6∈ S, and consider the game (N,wS∪{i} + wS∪{j}). In this game, since

i and j are weak symmetric, it must be that 1
v({i})ψi(N,w

S∪{i} + wS∪{j}) =
1

v({j})ψj(N,w
S∪{i} + wS∪{j}). With (14) and weak linearity, we have that

1∑
k∈S∪{i} v({k})

λS∪{i} −
1∑

k∈N\(S∪{j}) v({k})
λS∪{j}

=
1∑

k∈S∪{j} v({k})
λS∪{j} −

1∑
k∈N\(S∪{i}) v({k})

λS∪{i},

from which it immediately follows that

λS∪{i}∑
k∈S∪{i} v({k})

∑
k∈N\(S∪{i}) v({k})

=
λS∪{j}∑

k∈S∪{j} v({k})
∑

k∈N\(S∪{j}) v({k})
.

Therefore, whenever S and T are of the same size, replacing player by player,

we can form a sequence with at most s+ 1 coalitions, such that the first one

is S, and any of them is the result of replacing a player of S by a player of

N\S. In this way, we conclude the relationship between λS and λT given by

(3).

Appendix B: Logical independence of the axioms

Logical independence of the axioms in Theorem 3 can be shown by the

following alternative values:

(i) The value ψ on GN0 defined for each (N, v) ∈ GN0 and each i ∈ N , by

ψi(N, v) = v({i})

satisfies all axioms, but not efficiency.
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(ii) Let Dv be the set of all dummy players and all dummifying players

in (N, v). The value ψ on GN0 defined for each (N, v) ∈ GN0 and each

i ∈ N , by

ψi(N, v) =

v({i}), if i ∈ Dv,

v({i})∑
j∈N\Dv v({j})

[
v(N)−

∑
j∈Dv v({j})

]
, otherwise.

satisfies all axioms, but not weak linearity.

(iii) The equal surplus division value ESD (Driessen and Funaki 1991) on

GN0 defined for each (N, v) ∈ GN0 and each i ∈ N , by

ESDi(N, v) = v({i}) +
1

n
[v(N)−

∑
j∈N

v({j})]

satisfies all axioms, but not balanced treatment.

(iv) The value ψ on GN0 as given by (2) with some λS 6= 0, satisfies all

axioms, but not the dummifying player property.

Logical independence of the axioms in Theorem 4 can be shown by the

following alternative values:

(i) The value ψ on GN0 defined for each (N, v) ∈ GN0 and each i ∈ N , by

ψi(N, v) = v({i}) satisfies all axioms, but not efficiency.

(ii) The ESD value satisfies all axioms, but not balanced treatment.

(iii) The value ψ on GN0 defined for each (N, v) ∈ GN0 and each i ∈ N , by

ψi(N, v) =
1

2n−1

∑
S:i∈S

v({i})∑
j∈S v({j})

v(N)

satisfies all axioms, but neither weak coalitional surplus equivalence nor

weak coalitional surplus monotonicity.
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Logical independence of the axioms in Theorem 5 can be shown by the

following alternative values:

(i) The value ψi(N, v) = v({i}), i ∈ N , satisfies all axioms, but not effi-

ciency.

(ii) The ED value satisfies all axioms, but not weak balanced treatment.

(iii) The value ψ on GN0 defined for each (N, v) ∈ GN0 and each i ∈ N , by

ψi(N, v) =


v({i})∑
j∈N v({j})v(N), if v(N\{j}) = 0 for some j ∈ N,
v({i})

v(N\{i})
1∑

j∈N
v({j})

v(N\{j})
v(N), otherwise.

satisfies all axioms, but not weak coalitional monotonicity.

Logical independence of the axioms in Theorem 7 can be shown by the

following alternative values:

(i) The value ψ given by ψi(N, v) = v({i}) for all i ∈ N and (N, v) ∈ G20
satisfies the inessential game property and continuity, but not grand

worth additivity.

(ii) The ED value on G20 satisfies grand worth additivity and continuity, but

not the inessential game property.

(iii) The value ψ given by

ψi(N, v) =

PDi(N, v), if v(N) ∈ Q,

ESDi(N, v), if v(N) 6∈ Q.

for all i ∈ N and (N, v) ∈ G20 satisfies grand worth additivity and the

inessential game property, but not continuity.
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