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Abstract

We investigate the impacts of in-vehicle activities of commuters in the autonomous car on

aggregate travel patterns. We allow for an autonomous car to affect the utility difference between

being at home and being in the vehicle differently than the utility difference between being at work

and being in the vehicle, compared to the differences experienced with a normal car. This affects the

relative importance of values of travel delays, schedule delays early, and schedule delays late. Hence

multiple possible changes in travel patterns may occur when autonomous cars become available.

Switching to an autonomous vehicle may impose a net negative or positive externality, by raising

the marginal external cost of autonomous cars themselves while lowering that of normal cars. We

examine three provision regimes: marginal cost pricing, second-best pricing and profit-maximizing

pricing by a private monopoly. The second-best mark-up (over marginal cost) rises with the price

sensitivity, due to the increasing marginal external cost. Surprisingly, for the monopoly, mark-up

may rise or fall with the price sensitivity, depending on the relative strength of the externality and

of market power, where the former tends to raise it, and the latter tends to reduce it. Furthermore,

the difference of the mark-up between private monopoly and second-best public provision falls as

the demand becomes more price-sensitive.

Keywords: Autonomous cars; Bottleneck model; Traffic congestion; Private vs public provi-

sion.
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1 Introduction

In recent years, car manufactures and software companies have presented prototypes of autonomous

car and have announced that autonomous car will be available on the market in the near future

(Fagnant and Kockelman (2015), Wadud et al. (2016)). This may provide alternative way to alleviate

traffic congestion in the morning peak hours. In particular, one new and notably relevant aspect when

traveling in an autonomous car is the possibility of alternative time use: time does no longer need to

be invested in the driving task, but can be used for productive or recreation and leisure activities. In

that way, the time in the autonomous car could become a closer substitute to time at home and/or at

work. This raises an interesting and important issue: how does the in-vehicle activity (leisure or work)

affect the commuters’ willingness to pay and the suppliers’ provision strategy for the autonomous car?

Research on such behavioral impacts of autonomous driving, however, is still in its infancy.

To study these questions, we develop a model in which all commuters travel from home to work in

the morning, by autonomous car or normal car. To reach their destination, they need to pass through

a bottleneck, where congestion occurs. We build on the standard departure-time choice equilibrium

model for a single bottleneck (Vickrey (1969), Hendrickson and Kocur (1981), Arnott et al. (1990)).

That model, and its extensions, has for long been the workhorse model for studying the economics of

traffic congestion (Smith (1984), Daganzo (1985), Newell (1987), Lindsey (2004), Van den Berg and

Verhoef (2011a,b), Liu and Nie (2011), Li et al. (2017)).

To reflect the diverse substitution possibilities of time spent in an autonomous car, versus time

spent at work or leisure, we consider the unpriced equilibrium of the bottleneck model. This setting

closely follows Van den Berg and Verhoef (2016). In their setting, users’ value of time falls after buying

an autonomous car. We allow for the autonomous car to possibly affect the utility difference of being

at home over being in the vehicle differently than the utility difference of being at work over being

in the vehicle. In this way, in-vehicle activities not only result in travelers’ heterogeneity in value of

time, but also the value of scheduel delay. By maximizing their utility in the morning, the travelers’

choice of whether to buy an autonomous car, and their departure time, can both be determined

endogenously. Our model thus produces endogenous heterogeneity of drivers, if not everybody chooses

to drive autonomous cars. This makes the determination of the travel pattern more complex, as it

is not only determined by the value of time and schedule delay, but also by the endogenous numbers

of autonomous cars and normal cars. Therefore, different in-vehicle activities give rise to different

possible types of equilibrium patterns of travelers, for example in terms of the order of traveling. By

analyzing the switching condition between each case, we analytically derive the conditions for each
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possible pattern to happen. While the clear distinction in various discretely different travel patterns is

a natural consequence of the deterministic modeling approach, the patterns will be strongly indicative

of temporal clusterings of traveler types that we may also expect to observe in reality. The same will

be true for efficiency and welfare measures that we can derive.

Various studies have found that heterogeneity is important, and that heterogeneous commuters

may exhibit large behavioral differences in departure time choice during peak hours, and in response

to congestion policies (Arnott et al. (1988), Lindsey (2004), Van den Berg and Verhoef (2011a,b), Silva

et al. (2016)). With heterogeneous preferences, drivers self-select their departure times. With queuing,

the users with the higher ratio of value of schedule delay and value of time travel in the center of peak

when schedule delays are small; the users with lower ratio of value of schedule delay and value of time

travel in the shoulder of the peak and enjoy short travel delays in exchange for a less convenient arrival

time (Arnott et al. (1990)). In Van den Berg and Verhoef (2016), the lower value of time after buying

the autonomous car makes the autonomous car drivers travel in the center of the bottleneck and the

normal car drivers in the shoulder. When considering different possible in-vehicle activities, various

possibilities for impacts on values of time and schedule delay arise, and this leads to the possibility of

different types of travel patterns arising.

Autonomous vehicles receive growing attention in policy circles and have induced extensive research

interest in their impacts, operation and implications for regulation. Previous studies have for example

focused on road safety (Jamson et al. (2013), de Almeida Correia and van Arem (2016), Katrakazas

et al. (2015)), traffic flow (Varaiya (1993), Fajardo et al. (2011), Mahmassani (2016), de Oliveira

(2017)), intersection control (Le Vine et al. (2015), Yang and Monterola (2016)), emissions (Green-

blatt and Saxena (2015), Mersky and Samaras (2016)), shared autonomous vehicles operations (Ma

et al. (2017), Lamotte et al. (2017), Chen et al. (2016a), Chen et al. (2016b)), and parking issues

for autonomous vehicles and associated behavior patterns (Zakharenko (2016), Liu (2018), Nourinejad

et al. (2018)). In terms of commuters’ departure time and car type decisions, Lamotte et al. (2017)

use the bottleneck model to consider separate roads for normal and autonomous cars, assuming that

autonomous cars cooperate by having a departure rate equal to the capacity of their road. In their

setting, autonomous cars do not affect preferences. Levin and Boyles (2016) study route choice equilib-

rium with mixed autonomous and normal cars in a cell transmission model, but the choices of departure

time and car type kept exogenously fixed. Van den Berg and Verhoef (2016) use the bottleneck model

to investigate different provision regimes of autonomous cars; considering the effects on capacity, value

of time and preference heterogeneity. However, possible changes in values of schedule delay are not

considered, and overall demand is kept fixed.
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From an economics standpoint, one may expect impacts on total car ownership if a new alternative

is offered, and is sufficiently attractive to indeed cover a part of the total market. For congested infras-

tructure this is not necessarily exclusively good news, and a proper evaluation of welfare effects should

take this into consideration. It is thus of great importance to incorporate price-sensitive demand when

analyzing the supply strategy. To endogenously decide the optimal share and pricing of autonomous

car, we follow Van den Berg and Verhoef (2016), and consider three "market schemes": marginal cost

pricing, second-best public (welfare-maximizing) pricing, and private monopolistic provision. We take

the interactions between the possible travel patterns and users’ willingness to pay for the autonomous

car into account, which raises the difficulty of modeling the suppliers’ pricing decision.

In light of the above, this paper studies autonomous cars and dynamic bottleneck congestion with

endogenous heterogeneity of drivers. This paper makes three main contributions to the literature.

First, we regard the time spent in the autonomous car as close substitute to either time at home

or time at work, and thus investigate how in-vehicle activities affect equilibrium travel patterns when

automated cars have become available on the market. Second, the properties of the optimal pricing and

share of autonomous cars under different provision schemes are analytically explored and compared,

particularly for the interior solutions. We will find that, and explain why, the provision strategy heavily

depends on travel preferences. Third, we examine the effects of price sensitivity on the provision

strategy and commuters’ scheduling patterns. The relative performance of the perfect competition

and private monopoly in terms of the relative efficiency are also evaluated, accounting for the impact

of demand elasticity.

The remainder of the paper is organized as follows. Section 2 presents the basic model set-up.

Section 3 explores the equilibrium dynamic travel pattern with mixed normal car and autonomous

car drivers. In Section 4, we discuss the supply scheme under fixed demand, and next extend to

price-sensitive demand in Section 5. Numerical illustrations are presented in Section 6. Section 7

concludes.

2 Model set-up

We consider a morning commuting schedule that consists of two desired activities (i.e. being at

home and being at work) and one trip between these (i.e. the journey from home to work), the timing

of which is depicted in Fig.1. Every morning, N commuters travel from home to a workplace connected

by a single road that is subject to bottleneck congestion. Commuters obtain utility from being at home,

being in the vehicle and being at work. We define a clock time tS as the morning start time and a
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clock time tE as the morning end time. Both are arbitrarily chosen, but such that all travel takes place

within the interval [tS , tE ]. The time in the vehicle includes the free-flow travel time and the time in

the queue.

Fig. 1. An example of the morning commuting schedule.

Commuters choose their departure times to maximize their own utility, which are based on the

trade-off between the utilities of activities performed at home and at work, and the journey time from

home to work. Let h[t], v(t) and w[t] denote the utility obtained from at home, in the vehicle and at

work, respectively. The commuters’ utilities can be represented as:

u[td, ta] =

∫ td

tS

h[t]dt+

∫ ta

td

v[t]dt+

∫ tE

ta

w[t]dt

=

∫ td

tS

h[t]dt+

∫ tE

tS

v[t]dt−
∫ td

tS

v[t]dt−
∫ tE

ta

v[t]dt+

∫ tE

ta

w[t]dt (1)

=

∫ tE

tS

v[t]dt+

∫ td

tS

(h[t]− v[t])dt+

∫ tE

ta

(w[t]− v[t])dt,

where td is the departure time and ta is the arrival time.

The first term in Eq.(1) is constant and unaffected by behavior, while the second and third terms

involve only differences in marginal utilities. Hence, we could normalize v[t] to zero in the present

set-up, following Tseng and Verhoef (2008). Because later, v[t] will depend on vehicle technology, we

will however not make that normalization here.

To motivate making a trip, at some time point the value of w[t] − v[t] must exceed the value of

h[t]−v[t]. We assume that h[t]−v[t] is non-increasing and w[t]−v[t] non-decreasing over the peak, and

that a time t∗ exists such that h[t]− v[t] > w[t]− v[t] for t < t∗ and h[t]− v[t] < w[t]− v[t] for t > t∗.

With a given free flow travel time Tf , the individual would prefer to depart and arrive at moments t∗∗d
and t∗∗a such that h(t∗∗d )− v(t∗∗d ) = w(t∗∗a )− v(t∗∗a ) while t∗∗a − t∗∗d = Tf is satisfied. Tseng and Verhoef

(2008) called this t∗∗a the ideal arrival time. Under these assumptions, travelers thus prefer to be at

home until t∗∗d .

In accordance with Tseng and Verhoef (2008), the travel costs for someone who departs at td and
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arrives at ta are

c[td, ta] =

∫ ta

td

(h[t]− v[t])dt+


∫ t∗∗

ta

((h[t]− v[t])− (w[t]− v[t])) dt if ta < t∗∗,∫ t∗∗

ta

((w[t]− v[t])− (h[t]− v[t])) dt if ta ≥ t∗∗.
(2)

The conventional linear ("α− β − γ") model can be written as

h[t]− v[t] =α,

(h[t]− v[t])− (w[t]− v[t]) =β, for t < t∗,

(w[t]− v[t])− (h[t]− v[t]) =γ, for t > t∗.

(3)

Substituting them into Eq.(2) yields the travel cost in the traditional Vickrey’s bottleneck model.

While various utility specifications for h[t]− v[t] and w[t]− v[t] are possible, we use this linear one, to

stay as close as possible to the conventional linear scheduling model which assumes constancy of α, β

and γ.

People adopting an autonomous car can spend time on other activities in the car besides driving,

such as professional activities like at work, or relaxing like at home. We allow for the autonomous

car to affect the utility difference of being at home over being in the vehicle differently than the

utility difference of being at work over being in the vehicle. This reflects possibly diverse substitution

possibility of time spent in an autonomous car versus being at work or at home. The natural assumption

to make is then that a switch to an autonomous car shifts h[t]− v[t] downwards by an amount of θH

and w[t] − v[t] by an amount of θW . Hence, in terms of the α-β-γ specification, an autonomous car

decreases α by θH , β by θH − θW , and γ by θW − θH . If the autonomous car is a closer substitute for

being at home than at work, then θH > θW ; and vice versa. As is shown in Fig.2, our specification

leaves the ideal arrival time t∗ unchanged, as it arises from the optimal travel moment if travel took

no time, and we therefore can normalize t∗ to zero.

Fig. 2. Effects of in-vehicle activities.
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According to Eqs.(2-3), the travel cost of departing at time t is

cn[t] = Max(−βt, γt) + αT [t] with normal car,

ca[t] = Max(−β′t, γ′t) + α′T [t] with autonomous car,
(4)

where T [t] is the travel time experienced by the commuters departing from home at time t, which

includes the queuing delay at the bottleneck and the free flow travel time Tf . The subscript ’n’

denotes the normal car and ’a’ denotes the autonomous car. The α is the value of time in a normal

car; β and γ are the penalties for early and late arrivals when the commuters are driving a normal

car. We use α′, β′ and γ′ to denote the value of time, schedule delay early and schedule delay late, for

someone who owns an autonomous car. As explained, we assume that α′ = α− θH , β′ = β− θH + θW ,

γ′ = γ− θW + θH . It is furthermore assumed that γ > α > β, θH < α, θW − θH < β and θH − θW < γ.

γ > α > β is a standard assumption in the literature, and is consistent with many empirical evidence;

the inequality α > β is needed to have an equilibrium without mass departures. The inequality θH < α

measures that the VOT is also positive for autonomous cars, and θW − θH < β and θH − θW < γ

means the substitution effects are such that leisure is always more valuable at home than in the car,

and work is more attractive at the job location than in the car.

The scheduling utility of a driver arriving at time t is the difference between the ideal utility

level, when she departed and arrived at the ideal times t∗, and the travel cost she actually incurs.

Substituting Eqs.(3) into Eq.(1), we obtain the utility level when arriving at time t,

un[t] =

∫ tE

tS

v[t]dt− αtS + (α+ γ)tE − αTf − cn[t],

ua[t] =

∫ tE

tS

v[t]dt− αtS + (α+ γ)tE − α′Tf − ca[t],
(5)

where the first three terms are the ideal utility one can obtain when Tf is zero. We normalize these

first three terms to zero. The fourth term is the free-flow travel time cost. The scheduling model for

the morning commute in Eq.(1) is therefore transformed into minimizing the travel cost by choosing

the arrival time at work.

Both autonomous and normal car drivers choose their departure time to maximize their utility. In

the dynamic equilibrium, for both types of cars, the travel costs need to be constant over the arrival

times used, and can be no lower at other times. Therefore, the equilibrium utility for normal car

drivers and autonomous car drivers are:

un = −αTf − cn;

ua = −α′Tf − ca.
(6)
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3 Commuting equilibrium with mixed drivers

We now investigate the commuting equilibrium with autonomous car and normal car drivers. The

five subsections hereinafter look at five aspects of interest, namely equilibrium travel patterns, proper-

ties of the equilibrium travel patterns, users’ travel cost, marginal willingness to pay for the autonomous

car, and marginal social benefit.

3.1 Equilibrium travel patterns

To keep the travel costs constant over time before t∗, the travel time must grow linearly with arrival

time at a rate β/α for drivers of normal cars, so that the decrease in schedule delay cost over arrival

time is matched by the increase in the queuing cost. Similarly, after t∗, the travel time must shrink

at a rate γ/α with arrival time. Now the travel delay of normal car drivers have slopes β/α and γ/α,

while those of autonomous car drivers naturally have slopes β′/α′ and γ′/α′. When both car types

are present, autonomous car and normal car drivers travel separately and self-select into the center

peak or the shoulder of the peak, depending on the equilibrium slopes of the travel delay functions

just described. Increased ratios β′/α′ and γ′/α′ (relative to β/α and γ/α) mean that the autonomous

car drivers can enjoy the lower schedule delays in the center peak as they care less about travel times

than normals car drivers do; and vice versa for decreased ratios. With the formulation in Section 2,

we can derive different possible dynamic departure/arrival patterns at user equilibrium, when treating

ownership of autonomous cars as given.

As is shown in Fig.3, five possible departure/arrival patterns can in fact appear. The travel delay in

Fig.3 can be interpreted as iso-cost lines, with travel delay plotted along the vertical axis and schedule

delay along the horizontal axis. The dashed lines denote an out-of-equilibrium continuation of the

iso-cost functions for the corresponding case. They indicate what the travel times would have to be,

but are not, for users to be willing to travel at those moments, outside their own equilibrium time

window. The entire population can thus be subdivided into four groups: autonomous and normal

car drivers, who can both be further subdivided into groups arriving before or after t∗. For a certain

schedule preference, the equilibrium travel pattern are divided into two cases according to the share

of autonomous car owners, i.e. high-share and low-share cases. We use "H" and "L" to denote these

two cases.1 In Cases 1H, 1L, 2H and 2L, only three out of the four groups exist; while in Case 3, all
1Under the assumption of γ > α > β, we can easily prove that it is impossible for β′/α′ < β/α and γ′/α′ < γ/α

happening simultaneously, where the normal car drivers travel in the peak and autonomous car drivers travel in the

shoulder. This case can be ignored.
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(a) Case 1H (b) Case 1L

(c) Case 2H (d) Case 2L

(e) Case 3

Fig. 3. Possible travel patterns with mixed drivers.

Note: In Case 1H, there are three conditions according to the relationship between β/α and β′/α′;

in Case 2H, there are three conditions according to the relationship between γ/α and γ′/α′.
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four groups are present. In addition, in Case 1H and Case 2H, the slope of the queuing delay, more

specifically, β′/α′ (in Case 1H) and γ′/α′ (in Case 2H), can be higher or lower than β/α and γ/α. But

in Cases 1L, 2L and 3, the ordering of slopes of the travel delay between autonomous cars and normal

cars is uniquely determined. Van den Berg and Verhoef (2016) had only an effect on the value of time,

so their setting is a special case of Case 3.

3.2 Properties of the equilibrium travel patterns

The travel patterns are jointly determined by the heterogeneity effects and the share of autonomous

cars. The heterogeneity effects determine the arrival orders of the two types of cars, as shown in the

second column in Table 1, where t1, t2, t3, t4 and t∗ are defined in Fig.3. The share of autonomous

cars determines whether the drivers will arrive before or after t∗, which is solved from the critical

time points of each case, as specified in the third column. Combining the above two effects, we can

summarize the conditions for each equilibrium travel pattern to happen in more detail, as given in the

last two columns in Table 1. The derivations are provided in Appendix A. We call the critical switching

shares between cases H and L as "critical share" F#
ij and compactly denote them as F# later.

Table 1

The conditions for each pattern to happen.

Equilibrium Preference conditions Time conditions Result

Case 1H γ′/α′ > γ/α t3 > t∗, t2 > t1
θH/θW > α/(α− β) & F#

11(θH , θW ) < f < 1

1 < θH/θW < α/(α− β) & F#
31(θH , θW ) < f < 1

Case 1L β/α > β′/α′, γ′/α′ > γ/α t2 < t∗ θH/θW > α/(α− β) & f < F#
11(θH , θW )

Case 2H β′/α′ > β/α t2 < t∗, t4 > t3
θH/θW < α/(α+ γ) & F#

22(θH , θW ) < f < 1

α/(α+ γ) < θH/θW < 1 & F#
32(θH , θW ) < f < 1

Case 2L β′/α′ > β/α, γ′/α′ < γ/α t3 > t∗ θH/θW < α/(α+ γ) & f < F#
22(θH , θW )

Case 3 β′/α′ > β/α, γ′/α′ > γ/α t2 > t1, t4 > t3
α/(α+ γ) < θH/θW < 1 & f < F#

32(θH , θW )

1 < θH/θW < α/(α− β) & f < F#
31(θH , θW )

Note: F#
11(θH , θW ) = 1

1+
β′/α′
γ/α

= 1

1+
α(β−θH+θW )

γ(α−θH )

, F#
22(θH , θW ) = 1

1+
γ′/α′
β/α

= 1

1+
α(γ+θH−θW )

β(α−θH )

, F#
31(θH , θW ) = 1

1+
(γ′−γ)/(α′−α)

γ/α

=

1

1+α
γ
(1−θW

θH
)
, F#

32(θH , θW ) = 1

1+
(β′−β)/(α′−α)

β/α

= 1

1+α
β
(
θW
θH
−1)

. When 1 < θH/θW < α/(α − β), F#
31 > F#

1 always exists, and

when α/(α+ γ) < θH/θW < 1, F#
32 > F#

22 always exists.

Table 1 shows that the equilibrium travel pattern is governed by the ratio θH/θW and the share of

users with autonomous cars f . Given θH and θW , as f increases from 0 to 1, (1) if θH/θW > α/(α−β),
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the travel pattern will change from Case 1L to Case 1H; (2) if θH/θW < α/(α+ γ), the travel pattern

will change from Case 2L to Case 2H; (3) if α/(α + γ) < θH/θW < 1, the travel pattern will change

from Case 3 to Case 2H; (4) if 1 < θH/θW < α/(α − β), the travel pattern will change from Case

3 to Case 1H. We call the situation that is infinitely close to the switching conditions the "critical

case". For instance, the critical case between case 1H and 1L means the travel pattern is such that the

autonomous cars depart before the normal cars, and all autonomous car drivers arrive early for work,

while all normal car drivers arrive late for work.

3.3 Users’ travel cost

Based on the earlier discussion we can obtain the travel cost of normal car drivers cn and that of

autonomous car drivers ca in each case, which are summarized in Table 2.

Table 2

Travel costs of normal car and autonomous car in different cases in no-toll equilibrium.

Case Normal car drivers cn Autonomous car drivers ca dcn
df

dca
df

Case 1H γN
s −

γ
β+γ

(
γ′f + γα′

α (1− f)
)
N
s + αTf

β′γ
β+γ

N
s

(
α′

α (1− f) + γ′

γ f
)

+ α′Tf < 0 > 0

Case 1L γ
β+γ

N
s

(
β(1− f) + αβ′

α′ f
)

+ αTf
β′

β+γ
N
s

(
γ + α′β−αβ′

α′ f
)

+ α′Tf < 0 > 0

Case 2H α′β
β+γ

N
s

(
γ′

α′ + (1− f)(β
′

α′ −
β
α )
)

+ αTf
α′γ′

β+γ
N
s

(
(1− f)βα + f β

′

α′

)
+ α′Tf < 0 > 0

Case 2L αβ
β+γ

N
s

(
γ′

α′ f + γ
α (1− f)

)
+ αTf

γ′N
s −

αγ′

β+γ

(
γ′

α′
fN
s + γ

α
(1−f)N

s

)
+ α′Tf < 0 > 0

Case 3 δN
s + αTf

α′

α
δN
s + γ′α−γα′

α
(βα′−β′α)

(β+γ)(α′−α)
fN
s + α′Tf = 0 > 0

The last two columns in Table 2 show that the travel cost of normal car drivers decreases with

the share of autonomous cars; only for Case 3 these costs are unaffected by it. This reflects that

autonomous car drivers impose a non-negative external effect on normal car drivers. Meanwhile, the

higher the share of autonomous car drivers, the larger their own travel costs. Autonomous car drivers

thus impose a negative marginal externality on their own group.

Next, we can see that for every case, ca < cn always holds. This is intuitive, as a normal car driver

could adopt the autonomous car, not change the moment of driving, and benefit from the reduced

disutility of being in the car rather than at home or work. Any induced change in travel moment will

only bring further benefits.

3.4 Marginal willingness to pay for the autonomous car

Each traveler maximizes her own utility by choosing arrival time and traveling mode (i.e. type of

vehicle). The marginal willingness to pay for the autonomous car, ∆u, can hence be determined as
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the difference between the utility that a driver reaches over the course of the morning if one drives the

autonomous car, minus the utility when driving the normal car, where the utility is defined by Eqs.(5).

For a user who switches from a normal car to an autonomous car, the scheduling utility changes by:

∆u = ua − un = θHTf + cn − ca. (7)

As previously stated, the autonomous car reduces the travel cost. Hence the willingness to pay

for the autonomous car is positive, i.e. ∆u > 0 always holds. In Eq.(7), this occurs because the first

term is positive, and cn > ca. We can also derive that d∆u/df < 0. The larger f is, the smaller the

difference in the level of scheduling utility between car types, and thus the less switching raises one’s

own utility.

3.5 Marginal social benefit

The marginal social benefit of one person switching from a normal car to an autonomous car is

the sum of the marginal willingness to pay of the switching driver, the marginal external benefit to

all autonomous car drivers (which will be negative), and the marginal external benefits to all normal

car drivers (which will be positive). The marginal external benefit to all autonomous car drivers is the

difference of the derivative of their generalized travel costs with respect to the number of normal car

drivers and to the number of the autonomous car drivers, multiplied by the number of autonomous

car drivers; and similarly for the normal car drivers. The marginal external benefits to all autonomous

car drivers, MEBa, and to all normal car drivers, MEBn, are therefore:

MEBa = − ∂ca
∂Na

Na +
∂ca
∂Nn

Na; MEBn =
∂cn
∂Nn

Nn −
∂cn
∂Na

Nn, (8)

where Na and Nn are the numbers of autonomous car drivers and normal car drivers, respectively,

which satisfy Na = f ·N , and Nn = (1− f) ·N .

After substituting the travel cost of Table 2 into Eq.(8), we can derive the marginal external benefit

to normal car and autonomous car drivers in Table 3.

Each pair of (θH , θW ) may of course apply for a high and a low share of autonomous car owners,

labeled cases H and L above. The marginal social benefit conditional on having a "high" versus a

"low" share of autonomous car drivers can thus be written as,

MSBH = ∆uH +MEBnH +MEBaH ,

MSBL = ∆uL +MEBnL +MEBaL.
(9)
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Table 3

Marginal external benefit for normal car and autonomous car drivers.

Case Normal car MEBn Autonomous car MEBa

Case 1H γ2

(β+γ) (
γ′

γ −
α′

α ) (1−f)N
s > 0 − β′γ

β+γ (γ
′

γ −
α′

α ) fNs < 0

Case 1L − γ
β+γ

αβ′−α′β
α′

(1−f)N
s > 0 − β′

β+γ
α′β−αβ′

α′
fN
s < 0

Case 2H − α′β
β+γ (βα −

β′

α′ )
(1−f)N

s > 0 −α′γ′

β+γ (β
′

α′ −
β
α ) fNs < 0

Case 2L − αβ
β+γ ( γ

′

α′ −
γ
α ) (1−f)N

s > 0 αγ
β+γ ( γ

′

α′ −
γ
α ) fNs < 0

Case 3 0 α′γ−αγ′
α

(βα′−β′α)
(β+γ)(α′−α)

fN
s < 0

4 Provision regimes with fixed demand

This section examines the equilibrium outcomes under three provision regimes of autonomous cars:

marginal cost pricing (MC), socially optimal second-best public pricing (Pub), and pricing with private

monopoly (PM). For now the total amount of travel N is fixed. Section 5 will look at the price-sensitive

demand. The travel patterns, of course, are endogenous and may thus vary between the regimes.

Following Van den Berg and Verhoef (2016), the generalized price per trip is the sum of the travel

cost, the automobile cost and the per-trip mark-up on the car. The mark-up is determined by the

producer of the car and is expressed as a per-trip equivalent. We normalize the normal cars’ mark-up

and automobile cost to zero. For autonomous cars, we use MUa to denote the mark-up per trip,

and MCa the automobile cost. The MUa and MCa therefore reflects by how much the mark-up and

marginal production cost of autonomous cars exceed those for normal cars, which may be negative,

zero or positive. The generalized utility of normal car is un and that of autonomous car is hence

ua −MCa −MUa.

4.1 Marginal cost provision

The provision at marginal cost means the price of an autonomous car equals marginal costs, im-

plying a zero mark-up. It will lead to over-consumption of autonomous cars if there is a negative

externality from the consumers’ purchase, and to under-supply under a positive externality.2 The user

equilibrium can be expressed as:

∆uH(f,N) = MCa, if F#(θH , θW ) ≤ f ≤ 1,

∆uL(f,N) = MCa, if 0 ≤ f ≤ F#(θH , θW ),
(10)

2In this Section, we do not consider road pricing, and congestion is not internalized through tolls.
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where ∆uH and ∆uL are the marginal willingness to pay with high share and low share case, respec-

tively. The MCa is the excess per-peak cost of owning an autonomous vehicle.

In equilibrium, the share of autonomous cars can be over or below the critical share F#, that

defines in Table 1, whether Case H or Case L will apply. To find the marginal cost that distinguishes

the high and low share cases, we compare the equilibrium share and the critical share F#. A smaller

marginal cost naturally leads to a higher share of autonomous cars. Apart from the interior solutions,

however, often, there are also corner solutions. We summarize the equilibrium share of all cases in

Appendix C.

4.2 Second-best public provision

Second-best public provision is assumed to maximize the total social welfare, SW , under the

constraint that the bottleneck remains untolled. Total social welfare is the integral of marginal social

benefits, given by Eq.(9), minus the automobile cost of autonomous cars. The optimization problem

depends on whether f exceeds F#:

max
f,MUa

SW = max
f,MUa


∫ F#

0
MSBL(f) ·Ndf +

∫ f

F#

MSBH(f) ·Ndf −MCa · fN, if F# ≤ f ≤ 1,∫ f

0
MSBL(f) ·Ndf −MCa · fN, if 0 ≤ f ≤ F#.

(11)

Eq.(11) shows that to reach the social optimum, a public provider should set a price that equates the

marginal social costs and marginal cost of autonomous cars. Combining this with the user equilibrium

that the willingness to pay should equal the sum of the marginal cost and the mark-up for autonomous

cars, we find

MUa =
dca
df

+
dcn
df

(1− f) = −MEBa −MEBn, (12)

implying that the mark-up under second-best public supply is the sum of the negative marginal external

benefit to all autonomous and normal car drivers.

To find the optimal share, we solve the first-order conditions of Eq.(11) 3. Comparing the outcomes

with those under marginal cost provision in Table 5, we can obtain Proposition 1. The proof is given

in Appendix B.

Proposition 1 Consider situations when second-best public and private provision lead to the same

case, i.e. both have "High" or "Low" proportion of autonomous car users, then for interior solutions,
3The second-order derivative satisfies d2SW

df2 = dMSB
df

< 0, hence the maximization can be reached.
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(i) for Case 1H and 1L, fpub = 1
2f

MC + γ
2(β′+γ) ;

(ii) for Case 2H and 2L, fpub = 1
2f

MC + β
2(β+γ′) ;

(iii) for Case 3, fpub = 1
2f

MC .

Proposition 1 indicates that the travel pattern matters in determining the provision strategy. In-

deed, the relationship between the equilibrium shares of second-best public versus marginal cost provi-

sion depends on the marginal external benefit to all drivers, which are related to the equilibrium travel

patterns. When the negative marginal external benefit to the autonomous car drivers dominates the

positive one to the normal car drivers, i.e. MEBa +MEBn < 0, marginal cost provision leads to an

over-supply of the autonomous cars. Therefore, fPub is below fMC and a tax on autonomous cars is

required to correct the negative externality. Otherwise, fPub is above fMC and a subsidy is required.

4.3 Private monopoly provision

The private monopolist maximizes its profit, which equals the mark-up per trip multiplied by the

number of autonomous cars. The profit maximization problem is:

max
f,MUa

Π = max
f,MUa

MUa · fN = max
f,MUa


(∆uH(f)−MCa) · fN, if F# ≤ f ≤ 1,

(∆uL(f)−MCa) · fN, if 0 ≤ f ≤ F#,
(13)

where Π is the monopolist’s profit. ∆uH and ∆uL give the willingness to pay for the autonomous car

in the high-share and low-share cases, respectively.

As there are two cases, there are two local maximal in which the first- and second-order conditions

for Eq.(13) hold. The monopolist chooses the one that maximizes its profit; or, as we will see, may

also choose the corner solution, exactly between the two cases. At this point separating the low

and high case, the first order condition is discontinuous and has a massive jump. For now in the

analytial model, we will focus more on the interior solutions. We will consider the corner solution in

the numerical model.

For interior solutions, solving the first-order condition of Eq.(13) yields the mark-up on the au-

tonomous cars under monopoly pricing:

MUa = −MEBa −MEBn −
∂cn
∂f

, (14)

where the last term measures the effect of autonomous cars on the normal car drivers’ travel cost,

which is positive. This implies that compared to the second-best mark-up, the private monopolist
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internalizes the negative external effects that autonomous cars imposed on the autonomous car drivers

themselves, but ignores the positive ones on normal cars. The profit-maximizing pricing hence exceeds

the second-best welfare-maximizing pricing.

The mark-up on the autonomous car in Eq.(14) can also be rewritten as

MUa = (
∂ca
∂Na

− ∂cn
∂Na

)Na − (
∂ca
∂Nn

− ∂cn
∂Nn

)Na (15)

= MECa −MECn − (
∂cn
∂Na

− ∂cn
∂Nn

)N, (16)

where the first term in Eq.(15) captures the effect of autonomous car on the willingness to pay, and the

second term captures the effect of normal car on the willingness to pay. The MECi is defined as the

"full" marginal external cost, imposed by type i cars on both types of users. The last term in Eq.(16)

gives the monopolist mark-up due to the market power.

The optimal share can also be obtained by solving the first-order condition of Eq.(13). For interior

solutions, we find that the optimal share under profit maximizing pricing with a private monopoly is

half of that under marginal cost pricing, regardless of the travel patterns. This conclusion is presented

in Proposition 2.

Proposition 2 Consider interior solutions, the optimal share for a private monopolist is half of that

under marginal cost pricing, i.e. fPM = 1
2f

MC .

Recalling that when the travel pattern is in Case 3, the second-best optimal share is also half of

that under marginal cost pricing (see Proposition 1), we can easily conclude that private monopoly

provision equals the second-best socially optimum provision at this time. We will discuss it in more

detail in Section 5.4.

5 Price-sensitive demand

A first important extension is to make demand price-sensitive. Thus, if autonomous cars make

travel cheaper, one might expect to see more car users, and this is important to consider. We are again

interested in the pricing rule and relative efficiency in perfect competition and with a profit-maximizing

monopoly, compared to the second-best social optimum.

We assume that drivers regard the two alternatives as perfect substitutes. There is therefore one

aggregate inverse demand function D(N), where N denotes the total number of travelers. The mark-

up and the marginal cost of normal cars are again normalized to zero. The decision variables are the
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mark-up on the autonomous car MUa, the number of autonomous and normal cars Na, and Nn. In

user equilibrium, the inverse demand equals the generalized utility of each mode:

D(N) = −un(Na, Nn), D(N) = −ua(Na, Nn) +MCa +MUa, (17)

where un and ua are the utility of normal cars and autonomous cars. Note that each θH/θW again

applies for a high and low share of autonomous car owners. If Na/(Na + Nn) ≤ F#, the utilities ua

and un correspond to the low-share case, otherwise, they correspond to the high-share case.

5.1 Marginal cost provision

With marginal cost provision, under perfect competition, the price of an autonomous car will equal

its marginal cost, implying a zero mark-up. The interior equilibrium solutions of Na and Nn are

therefore determined by the following equation set,
MUa = 0,

D(N) = −un(Na, Nn),

D(N) = −ua(Na, Nn) +MCa.

(18)

Given a specific D(N), Na and Nn can be endogenously determined. For corner solution of Nn = 0,

we have D(Na) = −(ua(Na, 0)−MCa), and that of Na = 0, we have D(Nn) = −ua(0, Nn).

5.2 Second-best public provision

A social planner aims to maximize social welfare by setting the mark-up of autonomous cars and

the number of autonomous and normal cars. Social welfare is defined as the total consumer benefit,

minus the congestion costs and the automobile cost. When both drivers travel on the road, i.e. Na > 0,

Nn > 0, the Lagrangian is given by:

max
Na,Nn,MUa

SW =

∫ Na+Nn

0
D(x)dx+ ua(Na, Nn) ·Na + un(Na, Nn) ·Nn −MCa ·Na

− λa (D(N) + ua(Na, Nn)−MCa −MUa)− λn (D(N) + un(Na, Nn)) ,

(19)

where the Lagrangian multipliers λa and λn refer to the user equilibrium constraints.

For interior solutions, we have

MUa = − ∂ua
∂Na

Na −
∂un
∂Na

Nn −

(
−D′ − ∂un

∂Na

−D′ − ∂un
∂Nn

)(
− ∂ua
∂Nn

Na −
∂un
∂Nn

Nn

)
(20)

= MECa −
∆Nn

∆Na
MECn. (21)
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The derivation is in Appendix D.

The first two terms in Eq.(20) are the marginal external costs imposed by autonomous cars in

the second-best equilibrium. The last term corrects for the marginal costs of congestion caused by

substitution to the normal cars when a mark-up is levied on autonomous cars. The marginal external

costs imposed by normal cars are multiplied by a fraction which depends on the sensitivity of the

marginal benefits with respect to total demand, both systematically via D′(N) and via the sensitivity

of the utility of normal cars with respect to the number of the autonomous cars ∂un
∂Na

and to the number

of normal cars ∂un
∂Nn

.

A more detailed look at Eq.(20) shows that the MUa can be rewritten as MUa = MECa −
∆Nn
∆Na

MECn, as expressed in Eq.(21), where MECi is the marginal external cost imposed by type i

cars on both car drivers. It means that switching to autonomous car increases the welfare loss from

normal cars. More specifically, Eq.(21) shows that the term −D′− ∂un
∂Na

is the change in the constraint

for normal cars due to a marginal change in Na, whereas −D′ − ∂un
∂Nn

is the change in the constraint

for normal cars due to a marginal change in Nn. The ratio therefore gives ∆Nn
∆Na

.

For perfectly overall inelastic demand, D′(N) → −∞, the MUa rule reduces to the difference in

marginal external costs of both users:

lim
D′(N)→−∞

MUa =

(
− ∂ua
∂Na

Na −
∂un
∂Na

Nn

)
−
(
− ∂ua
∂Nn

Na −
∂un
∂Nn

Nn

)
(22)

This is consistent with Eq.(12). Because there is no effect ofMUa on the overall demand, the regulator

only seeks to find the optimal mode split.

In contrast to the zero mark-up under marginal cost pricing, a positive second-best mark-up means

that marginal cost provision leads to an over-supply of autonomous cars, and a corrective tax is

needed. A negative second-best mark-up means that marginal cost provision leads to an under-supply

of autonomous cars and a subsidy is needed. If the second-best mark-up is also zero, it implies that

marginal cost provision equals the second-best optimum provision.

5.3 Private monopoly provision

A private monopolist would maximize profits by solving the following Lagrange problem:

max
Na,Nn,MUa

Π = MUa ·Na

− λa (D(N) + ua(Na, Nn)−MCa −MUa)− λn (D(N) + un(Na, Nn)) .

(23)
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For interior solutions, we find

MUa = (− ∂ua
∂Na

+
∂un
∂Na

)Na −

(
−D′ − ∂un

∂Na

−D′ − ∂un
∂Nn

)
(− ∂ua
∂Nn

+
∂un
∂Nn

)Na (24)

= (− ∂ua
∂Na

+
∂un
∂Na

)Na −
∆Nn

∆Na
(− ∂ua
∂Nn

+
∂un
∂Nn

)Na. (25)

The first term of Eq.(24) is the difference of marginal costs on autonomous cars and normal cars

imposed by autonomous cars. The last term corrects for the marginal cost difference caused by sub-

stitution to the normal cars when a MUa is levied on autonomous cars. The marginal cost difference

imposed by the normal cars is multiplied by a fraction, which depends on the sensitivity of the marginal

benefits with respect to the demand, ∂un
∂Na

, ∂un
∂Nn

and of the demand curve D′(N). Using the same logic

as in second-best public provision, we find the ratio again gives ∆Nn
∆Na

, as expressed in Eq.(25). In

contrast to the second-best public provision, where the correction can be positive or negative, for the

monopoly provision, a non-positive mark-up has to be subtracted. Clearly, the monopolistic mark-up

will never be a subsidy.

Compared to the second-best mark-up in Eq.(21), the mark-up with a monopolist can be further

written as

MUa = MECa −
∆Nn

∆Na
MECn − (

∂cn
∂Na

− ∆Nn

∆Na

∂cn
∂Nn

)N, (26)

implying that the profit-maximizing mark-up exceeds the second-best welfare-maximizing mark-up.

This is because the private monopolist internalizes the negative external effects that the autonomous

cars impose on autonomous car drivers themselves. However, the positive externalities of autonomous

cars to the normal car drivers are (as with inelastic demand) left outside the monopolistic pricing rule,

and this term would reduce the socially optimal price. In addition, with price-sensitive demand, the

markup is also demand-related. The effect of the price elasticity depends on the relative strength of

the marginal external cost of autonomous cars and the correction on the marginal cost of normal cars

(the first two terms in Eq.(26)), and the monopolistic mark-up determined by the market power, the

last term in Eq.(26).

Apart from the interior solutions, the corner solution is often common. When the share of au-

tonomous car drivers is at the critical point, mark-up is determined by the Wardrop equilibrium with

a fixed share of autonomous cars F#.

5.4 A detailed discussion on Case 3

Case 3 is a special case that may switch to Case 1H or Case 2H as the share of autonomous car

increases, so we analyze it more specifically in this subsection. The following proposition reveals the
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properties of the mark-up under second-best public and private monopoly provision in Case 3.

Proposition 3 If the travel pattern is in case 3, (i) private monopoly provision equals the second-best

socially optimum provision; and (ii) for second-best public and private monopoly provision, ∂MUa
∂D′ = 0,

∂MUa
∂θH

> 0, ∂MUa
∂θW

= 0.

To understand Proposition 3, we first look at the fixed demand case. The travel cost of normal

car drivers is constant at δN
s + αTf , so the marginal external benefit enjoyed by normal car drivers

is zero. The mark-up for the second-best public and private monopoly supplier thus both reduce to

−MEBa. This also means that no demand-related price premium can be applied: the effective demand

for autonomous cars is perfectly elastic because the user cost for normal cars is constant. Moreover, the

optimal share provided in these two regimes are both half of that under marginal cost provision (see

Proposition 1 and Proposition 2). Private monopolistic provision hence also maximizes social welfare.

Now we need to prove that price sensitivity does not change the total number of cars. Apparently,

the total number of cars satisfies the user equilibrium condition:

D(N) = δN/s+ 2αTf . (27)

Note that the right-hand side of Eq.(27) is also the utility one would obtain if all users have normal

cars. The total number of cars is hence also always at N regardless of the price elasticity, since Eq.(27)

will remain true for marginal changes of the monopoly price. The price-sensitive demand then reduces

to the fixed demand case.

In addition, substituting fpub = fPM = 1/2fMC into Eq.(12) yields

MUa =
θHδN − α(MCa − 2θHTf )s

2αN
, (28)

where fMC is given in Table 4.

Taking the derivative of Eq.(28) yields

∂MUa
∂D′

= 0,
∂MUa
∂θH

=
δ + 2αsTf

2α
> 0,

∂MUa
∂θW

= 0. (29)

6 Numerical example

This section presents numerical results for two base calibrations of the model developed above:

one for the fixed demand and one for the price-sensitive demand, both under marginal cost pricing,

second-best public pricing and profit maximizing pricing with a private monopolist. We also analyze

the performance of these three provision regimes. After discussing these base cases, we turn to the
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sensitivity analyses. The model outcomes are rather sensitive to the parameters, underlining the

importance to present these results.

6.1 Calibration of the numerical models

For the calibration, we stay close to Van den Berg and Verhoef (2016), and focus on petrol passenger

cars. The schedule delay parameters will be based on the ratios β/α = 39/64 and γ/α = 1521/640

established in Small (1982), as are common in the literature. The total number of users under inelastic

demand is 9,000, and the capacity of the bottleneck is 3600. We consider a trip of 20km, with a

free-flow travel time of 20 minutes, implying a free flow speed of 120 km/hr. We use a VOT (α) of

e10, and an MCa of e1.51 (Van den Berg and Verhoef (2016)).

For the price sensitive demand, it is assumed that a linear inverse demand function applies:

D(N) = a− dN. (30)

A choice of a = 72.48 and d = 0.006 ensures that the price elasticity of demand is −0.35 in the base

equilibrium, and when there are no autonomous cars, the number of normal car drivers is 9000. We

assume that the possible substitution for home is e4 and for work is e1, i.e. θH = 4, θW = 1, implying

that autonomous driving is a closer substitute to being at home than to being at work. Therefore, the

possible travel pattern is Case 1H or Case 1L, and the critical share to distinguish these two cases is

0.82.

6.2 Base case

Table 4 shows the outcomes of the base calibrations for four cases: no autonomous vehicles (No AV),

marginal cost provision (MC), second-best public provision (Pub), and private monopoly provision

(PM). Relative efficiency is the total social welfare improvement of a policy from the case without

autonomous cars, divided by the welfare improvement under socially optimal public provision.

Consistent with expectations and with the result in Van den Berg and Verhoef (2016), the intro-

duction of autonomous cars lowers costs, and raises utility. Of course, individual users can never be

worse off than before from adopting, as they can always all choose to stick to the normal car. We find

that impacts on congestion externalities do not undermine this intuition. As expected, the mark-up

under private monopoly provision exceeds that under second-best public provision.

In terms of the equilibrium share of autonomous cars and the travel pattern on the road, different

regimes of course show different results. Marginal cost pricing leads to 100% autonomous cars, because

the autonomous car gives a higher utility than the normal car. Under second-best public provision,
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Table 4

Outcomes under the base calibrations.

Fixed demand Price-sensitive demand

No AV MC Pub PM No AV MC Pub PM

N 9, 000 9, 000 9, 000 9, 000 9, 000 9, 891 9, 567 9, 215

Na 0 9, 000 8, 550 7, 380 0 9, 891 8, 802 7, 556

Nn 9, 000 0 450 1, 620 9, 000 0 765 1, 659

f - 1 0.95 0.82 - 1 0.92 0.82

MUa - 0 1.81 5.39 - 0 2.82 5.49

SW 0 57, 142 57, 800 53, 700 240, 190 293, 536 297, 710 294, 880

un −18.79 −12.82 −14.09 −17.26 −18.79 −13.43 −15.41 −17.51

ua - −10.93 −10.77 −10.36 - −11.62 −11.08 −10.51

ω∗ 0 0.99 1 0.93 0 0.93 1 0.95

Note: ∗Relative efficiency ω is the welfare gain of a policy relative to the case without autonomous

cars divided by the gain from second-best public provision.

the optimal share is 0.95. Now the travel pattern is Case 1H, where the autonomous car drivers can

be early or late for work, and the normal car drivers who arrive after the autonomous cars are late for

work. For the private monopoly provision, the discontinuity makes the corner solution a more likely

outcome than others. This implies that the private monopolist will choose the critical share, 82% of

the autonomous cars. Compared to Case 1H, now normal car drivers still arrive after the autonomous

cars, but all autonomous car drivers are early for work and all normal car drivers are late.

Under second-best public and private monopoly provision, allowing for price-sensitive demand

raises the mark-up. Intuitively, when the demand becomes price-sensitive, the number of autonomous

cars and normal cars both increase when the generalized price of traveling falls after introducing the

autonomous car. This results in heavier congestion, which tends to raise the marginal external costs

of both types of car user. For second-best public provision, the mark-up equals the marginal external

costs of autonomous cars, minus the correction on the marginal external costs of normal cars. As the

marginal change of the number of autonomous cars exceeds that of the normal cars, the increase in

the marginal external cost of autonomous cars dominates the correction of normal cars. Hence the

mark-up with price-sensitive demand is higher than the one applying with the fixed demand case. For

private monopoly provision, considering the monopolist neglects the positive externality on normal car

drivers, the mark-up thus also becomes higher than in the fixed demand case.

Although marginal cost provision provides 100% of autonomous cars, social welfare is still lower
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than that under second-best public provision. This reflects that a taxation is required to achieve higher

social welfare, which would mean bringing down the number of autonomous cars from 9, 000 to 8, 550

with a tax of 1.81 under fixed demand, and from 9, 891 to 8, 801 with a tax of 2.82 under price-sensitive

demand. In addition, due to the monopolistic market power and the implied price premium, private

monopoly even performs better than perfect competition when the demand is price-sensitive.

6.3 Sensitivity analysis with respect to θH and θW

There is little to no guidance from the literature on what would be realistic values of θH , θW ,MCa,

and the demand parameters. Hence, it is vital to do extensive sensitivity analyses. The effects of other

parameters were found to be in line with the theoretical discussion, so these will not be discussed.

Section 6.4 will look at variation in the demand parameters. Section 6.5 considers the marginal cost

of autonomous cars MCa. First, this section considers variation in θH and θW from 0.5 to 6.5.

(a) Marginal cost pricing (b) Second-best public provision (c) Private monopoly

Fig. 4. Effect of θH and θW on equilibrium share of autonomous cars.

Fig.4 shows the equilibrium share of autonomous car with marginal cost pricing (a), second-best

public pricing (b) and private monopoly provision (c). The darker the area of a contour plot is, the

lower the share of the autonomous car. The kinks are induced by changes in the travel pattern. For

a given θW , the optimal share increases with θH , but for a given θH , it roughly decreases with θW .

Intuitively, the higher θW is, the more likely the autonomous car drivers are to travel in the peak. This

raises the negative externality that autonomous cars impose on each other, which makes decreasing

the share more beneficial. Conversely, a higher θH means the autonomous car drivers are more likely

to travel in the shoulder of the bottleneck. This raises the positive externality on normal car drivers,

which makes increasing the share more beneficial.

The marginal cost pricing may lead to second-best or over second-best optimal share due to the
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zero mark-up, while the private monopoly provision may lead to second-best share or to a lower share.

For the corner solution of 1, the area of 100% autonomous cars under marginal cost provision is much

larger than that under second-best public provision. More specifically, only when θH is sufficiently high

and θW is sufficiently low, can the second-best public provide 100% autonomous cars. Whereas under

marginal cost provision, it only requires θH > θW and a sufficient larger θH . Intuitively, a large θH and

a small θW both make raising the share more beneficial, as the former lowers the travel cost and raises

the willingness to pay for the autonomous car, and the latter also means a large θH/θW . Still, private

monopoly provision will not lead to 100% autonomous cars due to the monopolistic market power.

When θH and θW are both sufficiently low, no suppliers provides autonomous cars and all provision

regimes lead to corner solution 0.

(a) Second-best public provision (b) Private monopoly

Fig. 5. Effect of θH and θW on the mark-up.

Fig.5 compares the changes inMUa under second-best public and private monopoly provision. Not

surprisingly, the latter always equals or exceeds the former one, because the private provider like the

public provider internalizes the negative external benefits that the autonomous car drivers impose up

on one another, but adds a monopolistic mark-up. Moreover, the public operator lowers the mark-up

to allow for more autonomous car drivers imposing a positive externality on normal car drivers. In

the middle of the figure, there is a region where MUa does not change with θW , and the mark-up

provided by the monopolist is just the same as that by the second-best public provision. Indeed, this

is consistent with our discussion in Section 5.4, as the travel pattern here is in Case 3. In addition, for

both regimes, θH has a stronger effect than θW , because θH does not only affect the value of time but

also the schedule delay, while θW only affects the value of schedule delay.

Fig.6 shows the effects of θH and θW on the relative efficiency ω, under (a) marginal cost provision,
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(a) Marginal cost pricing (b) Private monopoly

Fig. 6. Effect of θH and θW on the relative efficiency.

and (b) private monopoly provision. The darker the area, the lower the relative efficiency. In the

white area of Fig.6(b), the private monopoly provision is also second-best. However, for the same

region in Fig.6(a), the relative efficiency varies between 0 to 0.8, as the zero mark-up is lower than the

second-best mark-up. The zero mark-up thus brings over-consumption and makes perfect competition

harmful. For the private monopoly provision, the travel pattern in this region is Case 3. Hence, the

relative efficiency of 1 follows directly from the discussion in Section 5.4.

6.4 Sensitivity analysis with respect to demand parameters

Fig.7 shows the effects of demand parameters on the mark-up. As different pairs of (θH , θW ) may

result in different travel patterns on the road, we show results for θH = 1, θW = 1.5 in Fig.7(a);

θH = 2.5, θW = 1.5 in Fig.7(b); θH = 4.5, θW = 1.5 in Fig.7(c); and finally θH = 6.5, θW = 1.5 in

Fig.7(d). For interior solutions, the mark-up under second-best public provision equals the difference

of the marginal external costs of autonomous cars compared to normal cars, corrected for the fact that

this mark-up also distorts the overall demand. Under private monopoly provision, monopoly power

also plays an important role. In addition, as we have noted before, the supplier will also choose the

corner solution that exactly separates the high and low share case, so that the travel pattern is just at

the critical case that between the two cases.

Fig.7(a-b) show that when the travel pattern is in Case 3, second-best public and private monopoly

provision lead to the same mark-up, and the mark-up does not change with the slope of the inverse

demand. This result is consistent with our discussion in Proposition 3, which implies that in case 3,

private supply does not lead to market power distortions.

25



(a) θH = 1, θW = 1.5 (b) θH = 2.5, θW = 1.5

(c) θH = 4.5, θW = 1.5 (d) θH = 6.5, θW = 1.5

Fig. 7. Effect of demand parameters on MUa.

Fig.7(c) shows that for second-best public and private monopoly provision, the travel patterns

are both in Case 1H. Surprisingly, as demand becomes more price-sensitive towards the right-hand

side of the diagrams, the mark-ups both increase, whereas the difference between the mark-ups in

the two regimes decreases. Indeed, total demand increases with the price elasticity, leading to more

cars and congestion on the road. So the more price-sensitive the demand is, the higher the marginal

external costs of both cars. This raises the second-best mark-up. For the private monopoly provision,

the monopolistic mark-up is decreasing, but the monopolistic market power is not strong enough

to overpass the increasing of the marginal external costs. Consequently, the mark-up under private

monopoly also increases with the slope of the inverse demand, but less so than the second-best public.

Fig.7(d) shows that when θH = 6.5, θW = 1.5, the mark-up of the private monopoly first increases

but then starts to fall when the inverse demand becomes increasingly flat. Indeed, before point A,

the number of autonomous and normal cars both increase, and the mark-up increases with the price
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elasticity due to the increasing congestion effects. From point A on, the number of normal cars starts to

fall, and that of autonomous cars still increases and more rapidly than before. This leads to increasing

marginal external costs. However, the positive externality on the normal cars is decreasing. The

declining monopolistic market power thus tends to reduce the monopolistic mark-up, and this effect is

even stronger than the congestion effects. Consequently, the mark-up starts to fall after point A.

(a) θH = 2.5, θW = 1.5 (b) θH = 4.5, θW = 1.5 (c) θH = 6.5, θW = 1.5

Fig. 8. Effect of demand parameters on relative efficiency.

Fig.8 further presents the relative efficiency of marginal cost pricing and the private monopoly.4

A higher price elasticity lowers the social welfare for all regimes. Under marginal cost provision, the

relative efficiency drops with the slope of the inverse demand due to the congestion effect. This is

consistent with the increasing MUa in Fig.7. Under private monopoly provision, the relative efficiency

depends on the relative strength of the externality in second-best public provision, the externality in

private monopoly provision, and the monopolistic market power effect. The first and third term tend

to raise the relative efficiency, and the second term tends to reduce it. When θH = 4.5, θW = 1.5 in

Fig.8(b), the externality in second-best public provision dominates, leading to an increasing relative

efficiency. When θH = 6.5, θW = 1.5 in Fig.8(c), the externality in private monopoly dominates before

A′, and then the monopolistic market power dominates afterwards. So the relative efficiency first drops

and then increases. This is consistent with Fig.7(c).

6.5 Sensitivity analysis with respect to MCa

Fig.9 illustrates the effects of the marginal cost of autonomous cars MCa on the equilibrium share

(a) and the mark-up of autonomous cars (b) with θH = 4 and θW = 1. The kinks are again induced
4When θH = 1, θW = 1.5, the relative efficiency of the marginal cost pricing is zero and the private monopoly provision

is 1. We do not present that result graphically.
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(a) Optimal share of the autonomous cars (b) Mark-up MUa

Fig. 9. Effects of MCa.

by a change of travel patterns. Fig.9(a) shows that when MCa is sufficient low, marginal cost pricing

and private monopoly both lead to corner solutions. The difference is that in the former scheme, the

equilibrium share is at 100%, and in the latter the optimal share is always at the critical share 0.8217.

For interior solutions, the equilibrium share naturally decreases with MCa. When MCa is over 8.7,

both perfect competition and private monopolist no longer provide autonomous cars, due to the high

cost, but second-best public provision still provides these as a measure to reduce congestion, untilMCa

reaches 10.2.

Fig.9(b) further explains the reason, by showing the effects onMUa. WhenMCa is lower than 7.1,

the mark-up under second-best public provision is always positive, meaning that marginal cost pricing

leads to over-supply of autonomous cars and the government taxes for them; when MCa exceeds 7.1,

the mark-up becomes negative, meaning that the marginal cost provision leads to under-supply of the

autonomous cars and the government subsidizes them. For private monopoly provision, the monopolist

stops providing the autonomous cars once the mark-up becomes zero.

7 Conclusion

This paper considered the impacts of autonomous cars on dynamic bottleneck congestion patterns.

We examined different types of market supply: marginal cost pricing, second-best public pricing, and

profit-maximizing pricing by a private monopoly.

Our study shows some important findings and new insights. (i) Our results reveal that travel pattern

changes are related to the changes of values of time and schedule delay that autonomous cars may bring

28



about, as well as to the share of autonomous cars. In particular, if the time spent in the autonomous

car is spent more easily on work activities than on leisure, autonomous car users will travel in the later

part of the peak. Conversely, if these cars are more suitable for leisure, autonomous car users will

arrive early. And finally and quite naturally, in between these cases, autonomous cars will arrive in the

middle of the peak. (ii) As the autonomous car brings a positive externality on normal car drivers and

a negative externality on autonomous car drivers, the net externality of an additional switcher from a

normal car to an autonomous car can be positive or negative. The second-best public mark-up equals

the difference of the marginal external costs of autonomous cars compared to normal cars, corrected

for the fact that this mark-up also distorts the overall demand. For private monopoly provision, the

market power effect also plays an important role. The mark-up of the monopolist is never lower than

the second-best public one, but may be equal so that private supply would not lead to market power

distortions. In particular, in the between case where autonomous cars use the center of the peak, the

monopolist always sets the same price as the public supplier. So, the societal performance of provision

regimes depends heavily on the effects of autonomous cars on the travel preferences. (iii) The difference

of the mark-up between the second-best public and private monopoly provision becomes smaller as the

slope of the inverse demand increases. Specifically, for public provision, the interior mark-up always

increases with the slope of the inverse demand. But for private monopoly provision, it depends on the

relative strength of the marginal external cost and the marker power effects. If the former is stronger,

the mark-up increases; otherwise, it decreases.

Although this paper provides some new insights into the bottleneck model with autonomous cars,

some important questions deserve attention in future research efforts. First, this paper mainly focused

on "α− β − γ" preference, the properties of the model may not be applicable to the case with general

scheduling preferences. In addition, empirical evidence on the shape of marginal utility functions is still

limited. When the marginal utility functions are unknown, a trial-an-error iterative approach proposed

by and may be applied. Second, we only consider one supplier, but in reality, there will be multiple

suppliers of autonomous cars who may also provide normal cars. The competition and cooperation

between these suppliers will be an interesting topic in the future research. Third, this study focused on

a single road bottleneck, and thus the congestion effects over space cannot be addressed. To do so, a

network traffic assignment model should be developed. In a further study, this paper can be extended

to a network context such that the network congestion effects can be explicitly taken into account.
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Appendix A The conditions for each pattern to happen.

We illustrate with Case 1H. We first consider the preference conditions. Substituting γ′ = γ+θH−

θW and α′ = α− θH into γ′/α′ > γ/α yields θH/θW > α/(α+ γ).

Then we characterize the critical time boundaries for this case. Due to the heterogeneity induced

by the in-vehicle activities, autonomous cars arrive in [t1, t3], and normal cars arrive in [t3, t4]. The

total commuting time should allow all commuters to pass the bottleneck, and the commuting time for

autonomous cars should allow the whole autonomous car drivers to pass the bottleneck:

t4 − t1 = N/s, t3 − t1 = fN/s. (A.1)

In equilibrium, the drivers of the same type car should have the same costs no matter when they

arrive:

−β′t1 = γ′t3 + α′T3, γt4 = αT3 + γt3, (A.2)

where T3 is the queuing time at t = t3.

From the above equations, we can solve for t1, t3 and t4.

t1 =−α
′(1−f)γN+αfγ′N

α(β+γ)s
; t3 =

α′(1−f)γN−αβ′fN
α(β+γ)s

; t4 =
αβ′N−(α′γ−αγ′)(1−f)N

α(β+γ)s
. (A.3)

To determine t2, note that the first and last drivers of normal car drivers face no queue and should

have the same cost at equilibrium if there is no autonomous car drivers:

−βt2 = γt4. (A.4)

By solving the time conditions in Table 1, i.e., t3 > 0 and t2−t1 > 0, combining with the preference

conditions, we can obtain the conditions for each pattern to happen. The results are summarized in

the last two columns of Table 1.
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Appendix B Proof of Proposition 1.

We again illustrate with Case 1H. Solving the first-order conditions for the share of optimal cars

in Eq.(11) yields:

MSBH = MCa, i.e.,∆uH +MEBaH +MEBnH = MCa, (B.1)

where ∆uH , MEBaH and MEBnH are derived from Table 2 and Table 3. Substituting them into

Eq.(B.1), we obtain

− β′γ

β+γ

N

s

(
α′

α
(1−f) +

γ′

γ
f

)
+
γN

s
− γ

β+γ

(
γ′f+

γα′

α
(1−f)

)
N

s

+
γ2

β+γ
(
γ′

γ
−α

′

α
)
(1−f)N

s
− β′γ

β+γ
(
γ′

γ
−α

′

α
)
fN

s
=MCa−2θHTf .

(B.2)

Solving Eq.(B.2) yields the optimal under second-best public provision fpub1H . On the other hand,

the interior equilibrium of Case 1H in Table 5 is,

fMC
1H = 1−

αβ′(γ′ − γ)N + α(β + γ)(MCa − 2θHTf ) · s
(αγ′ − α′γ)(β′ + γ)N

=
(αγ′ − α′γ)(β′ + γ)N − αβ′(γ′ − γ)N − α(β + γ)(MCa − 2θHTf ) · s

(αγ′ − α′γ)(β′ + γ)N
.

(B.3)

Combining Eq.(B.2) and Eq.(B.3), after a few steps of calculation, we can get the relationshipship

between fpub1H and fMC
1H ,

fpub1H =
1

2
fMC

1H +
γ

2(β′ + γ)
, (B.4)

as expressed in Proposition 1.

Using the same logic, we can obtain the relationship in other cases.

Appendix C The equilibrium share of drivers with autonomous car.

For presentation purposes, we denote MC ′a = MCa − 2θHTf , where the 2θHTf is derived from

the utility difference. The first column in Table 5 is the range of θH/θW , the second column is the

condition of MC ′a that leads to interior share shown in the third column, and the last two columns

show the condition of MC ′a that leads to the corner solution of 0 and 1.

Appendix D Proof of Proposition 3.

We illustrate with Case 1H. The profit of the private monopolist in this case can be expressed as:

Π1H = (∆uH −MCa)fN = (θHTf − ca + cn −MCa)fN, (D.1)
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Table 5

No-toll equilibrium share of autonomous cars under marginal cost provision.

θH/θW MC ′a
* Interior fMC MC ′a Corner fMC

> α
α−β

< θH ·β′γ
α′γ+αβ′

N
s 1− αβ′(γ′−γ)N+α(β+γ)MC′a·s

(αγ′−α′γ)(β′+γ)N < β′(θW−θH)
βγ

δN
s 1

> θH ·β′γ
α′γ+αβ′

N
s

α′γ(β−β′)N−α′·(β+γ)·MC′a·s
(α′β−αβ′)(β′+γ) > (θH−θW )

β
δN
s 0

< α
α+γ

< θH ·βγ′
α′β+αγ′

N
s 1− αγ′(γ−γ′)N+α(β+γ)MC′a·s

(αβ′−α′β)(β+γ′)N < γ′(θH−θW )
βγ

δN
s 1

> θH ·βγ′
α′β+αγ′

N
s

α′β(γ−γ′)N−α′(β+γ)·MC′a·s
(α′γ−αγ′)(β+γ′)N > (θW−θH)

γ
δN
s 0

(1, α
α−β )

< (θH−θW )δN
βs 1− αβ′(γ′−γ)N+α(β+γ)MC′a·s

(αγ′−α′γ)(β′+γ)N < β′(θW−θH)
βγ

δN
s 1

> (θH−θW )δN
βs

θH(β+γ)(θHδN−α·MC′a·s)
(αβ′−α′β)(αγ′−α′γ) > θH

α
δN
s 0

( α
α+γ , 1)

< (θW−θH)δN
βs 1− αγ′(γ−γ′)N+α(β+γ)MC′a·s

(αβ′−α′β)(β+γ′)N < γ′(θH−θW )
βγ

δN
s 1

> (θW−θH)δN
γs

θH(β+γ)(θHδN−α·MC′a·s)
(αβ′−α′β)(αγ′−α′γ) > θH

α
δN
s 0

* We use MC′a to denote MCa − 2θHTf .

where ca and cn are given in the Case 1H of Table 2.

Taking the derivative of Π1H with respect to f yields

∂Π1H

∂f
= (−∂ca

∂f
+
∂cn
∂f

)fN + (θHTf − ca + cn −MCa)N = 0. (D.2)

From Table 2, we have

dca
df

=
β′γ

β + γ
(
γ′

γ
− α′

α
)
N

s
;
dcn
df

= − γ2

β + γ
(
γ′

γ
− α′

α
)
N

s
. (D.3)

Substituting Eq.(D.3) and the travel cost of Case 1H in Table 2 into Eq.(D.2) yields

− β′γ

β+γ
(
γ′

γ
−α

′

α
)
fN

s
− γ2

β+γ
(
γ′

γ
−α

′

α
)
fN

s
− γ(β′+γ)

β+γ

α′

α

(1−f)N

s
− (β′+γ)γ′

β+γ

fN

s
=−γN

s
+MCa−2θHTf .

(D.4)

By solving Eq.(D.4) and taking some algebraic manipulations, we can obtain the optimal share

under private monopoly provision,

fPM1H =
γN (α′(β′ + γ)− α(β + γ)) + α(β + γ)(MCa − 2θHTf )s

2(β′ + γ)(α′γ − αγ′)N
, (D.5)

which can be further simplified as

fPM1H =
1

2

(
1−

αβ′(γ′ − γ)N + α(β + γ)(MCa − 2θHTf )s

(αγ′ − α′γ)(β′ + γ)N

)
. (D.6)

Comparing Eq.(D.6) with fMC
1H in Table 5, we have

fPM1H =
1

2
fMC

1H . (D.7)

Similarly, we can prove fPM = 1
2f

MC is also satisfied in other cases.

32



Appendix E Mark-up under second-best public provision.

As mentioned in Section 5.2, the public provision maximizes social welfare defined as:

SW =

∫ Na+Nn

0
D(x)dx+ua(Na, Nn) ·Na+un(Na, Nn) ·Nn−MCa ·Na (E.1)

−λa (D(N)+ua(Na, Nn)−MCa−MUa)−λn (D(N)+un(Na, Nn)) . (E.2)

The first-order conditions for Na, Nn, MUa, λa and λn are:

∂SW

∂Na
= D(N) + ua +

∂ua
∂Na

Na +
∂un
∂Na

Nn −MCa − λa(D′ +
∂ua
∂Na

)− λn(D′ +
∂un
∂Na

) = 0; (E.3)

∂SW

∂Nn
= D(N) +

∂ua
∂Nn

Na + un +
∂un
∂Nn

Nn − λa(D′ +
∂ua
∂Nn

)− λn(D′ +
∂un
∂Nn

) = 0; (E.4)

∂SW

∂MUa
= λa = 0; (E.5)

∂SW

∂λa
= −(D + ua −MCa −MUa) = 0; (E.6)

∂SW

∂λn
= −(D + un) = 0. (E.7)

Substituting Eq.(E.5) and Eq.(E.7) into Eq.(E.4) yields

λn =
∂ua
∂Nn

Na + ∂un
∂Nn

Nn

D′ + ∂un
∂Nn

. (E.8)

By substituting Eq.(E.5), Eq.(E.6) and Eq.(E.8) into Eq.(E.3), we can obtain the MUa under

second-best public provision, as expressed in Eq.(20). The same logic applies to profit maximization.
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