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Abstract

In this paper we focus on restrictions arising from the players belonging to some hierar-

chical structure that is represented by a digraph. Two of these models are the games with

a permission structure and games under precedence constraints. In both cases, the hier-

archy can be represented by a directed graph which restricts the possibilities of coalition

formation. These two approaches led to two different type of solutions in the literature.

The precedence power solutions for games under precedence constraints, are axiomatized

with an axiom that applies a network power measure to the precedence constraint. We will

show that something similar can be done for games with a permission structure, and ob-

tain a class of permission power solutions. This class contains the (conjunctive) permission

value. With this we have two classes of solutions for games with a hierarchy, one based on

permission structures and another based on precedence constraints, that are characterized

by similar axioms. Moreover, the solutions are linked with network power measures.

Key words: Cooperative transferable utility game, permission structures, precedence

constraints, Shapley value, hierarchical solution, power measures.
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1 Introduction

A situation in which a finite set of players can generate certain payoffs by cooperation can

be described by a cooperative game with transferable utility (or simply a TU-game). A

TU-game consists of a player set, and for every subset of the player set, called a coalition,

a real number which is the worth that the coalition of players can earn when they agree to

cooperate.

In a TU-game there are no restrictions on the cooperation possibilities of the players,

i.e., every coalition is feasible and can generate a worth. Various models with restrictions on

coalition formation are discussed in the literature. In this chapter, we focus on restrictions

arising from the players belonging to some hierarchical structure that is represented by a

digraph. Two of these models are the games with a permission structure introduced by

Gilles et al. (1992) and games under precedence constraints introduced by Faigle and Kern

(1992). In both cases, the hierarchy can be represented by a directed graph which restricts

the possibilities of coalition formation. Whereas solutions for games with a permission

structure are based on a restricted game that is defined from a set of feasible coalitions

that typically is a proper subset of the power set of the full player set (i.e. it focuses

on feasible combinations), in games under precedence constraints the coalition formation

process is restricted in the sense that not all orders by which players enter a coalition can

form (i.e. it focuses on feasible permutations). These two approaches led to two different

type of solutions in the literature. In this chapter, we focus on acyclic digraphs.

In a game with a permission structure, the hierarchy or digraph is referred to as a

permission structure, and this models the idea that there are players that need permission

from other players before they are allowed to cooperate. Various assumptions can be made

about how a permission structure affects the cooperation possibilities. In this chapter,

we focus on the conjunctive approach, as developed in Gilles et al. (1992) and van den

Brink and Gilles (1996), where it is assumed that every player needs permission from all

its predecessors before it is allowed to cooperate.1

To take account of the limited cooperation possibilities, for every game with a

permission structure a modified game is defined which assigns to every coalition the worth

of its largest feasible subcoalition in the original game. A solution for games with a

permission structure is a function that assigns to every such a game a payoff distribution

over the individual players. Applying solutions for TU-games to the modified game yields

solutions for games with a permission structure. In this chapter, we consider the Shapley

1Alternatively, for games with an acyclic quasi-strongly connected permission structure in the disjunc-

tive approach, as considered in Gilles and Owen (1994) and van den Brink (1997), it is assumed that every

player needs permission from at least one of its predecessors (if it has any) before it is allowed to cooperate

with other players.
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value yielding a solution that is called the conjunctive (Shapley) permission value.

On the other hand, in a game under precedence constraints, the order in which play-

ers enter to form the ‘grand coalition’ is restricted by the digraph, in the sense, that players

can only enter when their ‘subordinates’ in the hierarchy have already entered. Instead of

taking the average of all marginal contribution vectors, as done by the classical Shapley

value, the precedence (Shapley) value of Faigle and Kern (1992), takes the average of the

marginal vectors over these admissible permutations. Alternatively, this precedence Shap-

ley value can be written as an allocation of the Harsanyi dividends , where the dividend

of every feasible coalition is allocated proportional to the so-called hierarchical strength

being a power measure for digraphs that assigns to every player the number of admissible

permutations where it is the last to enter. Algaba et al. (2017) showed that in this solution

the payoff allocation is influenced by the presence of irrelevant players. These are players

who do not generate worth in the game and, moreover, also all the players who depend

on their presence do not generate worth in the game. Requiring that the payoff allocation

does not depend on the presence of these irrelevant players, they modified the precedence

Shapley value by requiring the allocation of Harsanyi dividends proportional to the hier-

archical strength only in case all players are necessary to generate worth, (this means that

the game is a multiple of the unanimity game of the ‘grand coalition’). Moreover, they

showed that instead of the hierarchical strength, any (positive) power measure can be used

yielding the so-called precedence power solutions . In this way, the game theoretic problem

of payoff allocation is linked with the social network literature on power and centrality

measures.

After reviewing some known axiomatizations of the conjunctive permission value,

the precedence Shapley value and precedence power solutions, we will show that also the

conjunctive permission value can be axiomatized with an axiom that applies a network

power measure to the permission structure. Moreover, similar as for the precedence power

solutions, we can apply any (positive) power measure and obtain a class of permission

power solutions . In this way, we have two classes of solutions for games with a hierarchy,

one based on permission structures and another based on precedence constraints, that are

characterized by similar axioms. Moreover, the solutions are linked with network power

measures.

This chapter is organized as follows. After some preliminaries on cooperative transferable

utility games and digraphs, in Section 2, we introduce the two models of games with a

hierarchy. In Section 3, we discuss the conjunctive permission value, the precedence Shapley

value and the hierarchical solution for these two models. In Section 4, we generalize these

solutions by applying network power measures. In Section 5, we show logical independence

of the axioms in the main theorems. Finally, Section 6 contains concluding remarks.
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2 Games with Hierarchies

2.1 TU-games

A situation in which a finite set of players N ⊂ IN can generate certain payoffs by coopera-

tion can be described by a cooperative game with transferable utility (or simply a TU-game),

being a pair (N, v) where v : 2N → IR is a characteristic function on N satisfying v(∅) = 0.

For any coalition S ⊆ N , v(S) ∈ IR is the worth of coalition S, i.e. the members of coalition

S can obtain a total payoff of v(S) by agreeing to cooperate. We denote the collection of

all TU-games (N, v) by G. We denote the collection of all characteristic functions v on

player set N by GN .

A payoff vector for game (N, v) is an |N |-dimensional vector x ∈ IRN assigning a

payoff xi ∈ IR to any player i ∈ N . A (single-valued) solution for TU-games is a function

that assigns a payoff vector to every TU-game. One of the most widely used solutions for

TU-games is the Shapley value (Shapley (1953)), given by

Shi(N, v) =
1

|N |!
∑

π∈Π(N)

mπ
i (N, v), for all i ∈ N,

where Π(N) is the collection of all permutations π : N → N on N , and for every permuta-

tion π ∈ Π(N),

mπ
i (N, v) = v({j ∈ N | π(j) ≤ π(i)})− v({j ∈ N | π(j) < π(i)}), (2.1)

is the marginal contribution of player i to the players that are ranked before him in the

order π.

For each T ⊆ N , T 6= ∅, the unanimity game (N, uT ) is given by uT (S) = 1 if T ⊆ S,

and uT (S) = 0 otherwise. It is well-known that the unanimity games form a basis for GN .

For every v ∈ GN , it holds that v =
∑

T⊆N

T 6=∅
∆v(T )uT , where ∆v(T ) =

∑
S⊆T (−1)|T |−|S|v(S)

are the Harsanyi dividends , see Harsanyi (1959).

For (N, v), (N,w) ∈ G, the sum game (N, v +w) is defined by (v +w)(S) = v(S) +

w(S), and for c ∈ IR, the game (N, cv) ∈ G by (cv)(S) = cv(S) for S ⊆ N . For (N, v) ∈ G
and S ⊆ N , the subgame (S, vS) is given by vS(T ) = v(T ) for all T ⊆ S.

2.2 Digraphs

An irreflexive directed graph or irreflexive digraph is a pair (N,D) where N is the set of

nodes and D ⊆ {(i, j) | i, j ∈ N, i 6= j} is an (irreflexive) binary relation on N consisting of

ordered pairs called directed links or arcs. Since we assume irreflexivity throughout the full

chapter, we refer to these just as digraphs. Since the nodes will represent players, we often
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refer to the nodes as players. For i ∈ N , the nodes in FD(i) := {j ∈ N | (i, j) ∈ D} are

called the followers or successors of i in D, and the nodes in PD(i) := {j ∈ N | (j, i) ∈ D}
are called the predecessors of i in D. Further, by F̂D(i) we denote the set of successors

of i in the transitive closure of D i.e., j ∈ F̂D(i) if and only if there exists a sequence of

players (h1, . . . , ht) such that h1 = i, hk+1 ∈ FD(hk) for all 1 ≤ k ≤ t − 1, and ht = j.

We refer to the players in F̂D(i) as the subordinates of i in D, and to the players in the

set P̂D(i) = {j ∈ N | i ∈ F̂D(j)} consisting of all predecessors of i in the transitive

closure of D, as i’s superiors . We denote by P̂D(T ) =
⋃
i∈T P̂D(i) the set of all superiors

of players in T . The digraph (N,D) is called acyclic if i 6∈ F̂D(i) for all i ∈ N . We

denote the collection of all acyclic digraphs by D, and the collection of all acyclic binary

relations (which we will also often refer to as digraphs) on N by DN . For S ⊆ N and

(N,D) ∈ D, the digraph (S,D(S)) is given by D(S) = {(i, j) ∈ D | {i, j} ⊆ S}. By

TOP (N,D) = {i ∈ N | PD(i) = ∅} we denote the set of ‘top players’ in (N,D), i.e. the set

of players without predecessors. Note that TOP (N,D) 6= ∅ if (N,D) is acyclic.

2.3 Games with a Permission Structure

A game with a permission structure describes a situation where some players in a TU-

game need permission from other players before they are allowed to cooperate with other

players. Formally, a permission structure is a directed graph on N . In this context, a triple

(N, v,D) with N a finite set of players, v ∈ GN a TU-game and D ∈ DN a digraph on N

is called a game with a permission structure. In the conjunctive approach as introduced in

Gilles et al. (1992) and van den Brink and Gilles (1996), it is assumed that a player needs

permission from all its predecessors in order to cooperate with other players. In this sense,

a coalition is feasible if and only if for every player in the coalition all its predecessors

are also in the coalition. So, for permission structure D, the set of conjunctive feasible

coalitions is given by

Φc(N,D) = {S ⊆ N |PD(i) ⊆ S for all i ∈ S } .

For every S ⊆ N , let σcD(S) =
⋃
{F∈Φc(N,D)|F⊆S} F = S\F̂D(N\S) be the largest conjunctive

feasible subset2 of S in the collection Φc(N,D). Then, the induced conjunctive restricted

game of (v,D) is the game rcv,D : 2N → IR that assigns to every coalition S ⊆ N the worth

2Every coalition having a unique conjunctive largest feasible subset follows from the fact that Φc(N,D)

is union closed.
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of its largest conjunctive feasible subset3, i.e.

rcv,D(S) = v(σcD(S)) for all S ⊆ N. (2.2)

We denote the class of all games with a permission structure by GPS.

2.4 Games under Precedence Constraints

Faigle and Kern (1992) consider situations where a partial order or acyclic directed graph

represents a precedence relation meaning that the order in which players enter the grand

coalition is restricted. Assuming that a player can only enter after all its subordinates have

entered, a coalition is feasible if for every player in the coalition all of its successors in the

digraph are also present in the coalition. The set Φp(N,D) of feasible coalitions according

to digraph (N,D) ∈ D is thus given by

Φp(N,D) = {S ⊆ N | FD(i) ⊆ S for all i ∈ S}.

Instead of considering a restricted game on the collection of all coalitions (i.e. subsets of N),

Faigle and Kern (1992) consider cooperative games, where for acyclic digraph (N,D) ∈ D
the domain of the characteristic function is given by the set Φp(N,D). In this context,

we call a triple (N, v,D), where N ⊆ N is a finite set of players, (N,D) ∈ D is an acyclic

digraph, and v : Φp(N,D)→ IR, with v(∅) = 0, is a characteristic function that is defined

only on Φp(N,D), a game under precedence constraints .

We denote the class of all games under precedence constraints by GPC , and we

denote the class of games under precedence constraints on graph (N,D) ∈ D by G(N,D)
PC . For

(N, v,D), (N,w,D) ∈ GPC , the sum game (N, v+w) is defined by (v+w)(S) = v(S)+w(S),

and for c ∈ IR, the game (N, cv) ∈ G by (cv)(S) = cv(S) for S ∈ Φp(N,D). The game

under precedence constraints obtained from (N, v,D) ∈ GPC by considering only feasible

coalition S and its subsets is denoted by (S, vS, D(S)), where vS(T ) = v(T ) for all feasible

coalitions T ⊆ S. We refer to (S, vS, D(S)) as the subgame on S of (N, v,D).

Because of the difference in interpretation, we refer to a triple (N, v,D) with v a character-

istic function on 2N as a game with a permission structure, and to a triple (N, v,D) with v

a characteristic function on Φp(N,D) as a game under precedence constraints. Sometimes,

we refer to these situations in general as a game with a hierarchy.

3Alternatively, for acyclic and quasi-strongly connected permission structures, in the disjunctive ap-

proach as introduced in Gilles and Owen (1994) and van den Brink (1997) (see also Gilles (2010)), it

is assumed that a non-top player needs permission from at least one of its predecessors. By a similar

approach as described here, one can define the disjunctive restricted game.
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3 Solutions for Games with Hierarchies

3.1 The Conjunctive Permission Value for Games with a Per-

mission Structure

A solution for games with a permission structure is a function f that assigns a payoff

distribution f(N, v,D) ∈ IRN to every game with permission structure (N, v,D). The

conjunctive (Shapley) permission value ϕc is the solution that assigns to every game with

a permission structure the Shapley value of the conjunctive restricted game4, i.e.

ϕc(N, v,D) = Sh(N, rcv,D).

Next, we discuss one of the axiomatizations of the conjunctive permission value. Player

i ∈ N is inessential in game with permission structure (N, v,D) if i and all its subordinates

are null players in game v, i.e., if v(S) = v(S \ {j}) for all S ⊆ N and j ∈ {i} ∪ F̂D(i).

Player i ∈ N is necessary in game v if v(S) = 0 for all S ⊆ N \ {i}.
Next, we mention some axioms of solutions for games with a permission structure.

Efficiency and linearity are straightforward generalizations of TU-game solution axioms.

The inessential player property requires that inessential players earn a zero payoff. The

necessary player property requires that necessary players earn at least as much as any other

player if the game is monotone. Notice that a necessary player is a ‘strong’ player in a

monotone game. Structural monotonicity requires that in monotone games, players earn

at least as much as their successors. From now on, the class of monotone TU-games on N

will be denoted by GNM .

Efficiency For every v ∈ GN and D ∈ DN , it holds that
∑

i∈N fi(N, v,D) = v(N).

Linearity For every v, w ∈ GN and D ∈ DN , it holds that f(N, v +w,D) = f(N, v,D) +

f(N,w,D), and for c ∈ IR it holds that f(N, cv,D) = cf(N, v,D).

Inessential player property For every v ∈ GN and D ∈ DN , if i ∈ N is an inessential

player in (N, v,D) then fi(N, v,D) = 0.

Necessary player property For every v ∈ GNM and D ∈ DN , if i ∈ N is a necessary

player in (N, v) then fi(N, v,D) ≥ fj(N, v,D) for all j ∈ N .

Structural monotonicity For every v ∈ GNM andD ∈ DN , if j ∈ FD(i) then fi(N, v,D) ≥
fj(N, v,D).

4Alternatively, for acyclic and quasi-strongly connected permission structures, the disjunctive permis-

sion value is obtained as the Shapley value of the disjunctive restricted game, see Footnote 3.

6



The above five axioms characterize the conjunctive permission value.5

Theorem 3.1 (van den Brink and Gilles (1996)) A solution for games with a permission

structure is equal to the conjunctive permission value ϕc if and only if it satisfies efficiency,

linearity, the inessential player property, the necessary player property and structural mono-

tonicity.

If D = ∅ then there are no restrictions in coalition formation (i.e. Φc(N,D) = 2N),

and then ϕc(N, v,D) = Sh(N, v). In this sense, the conjunctive permission value generalizes

the Shapley value for TU-games. Notice that the axiomatization in Theorem 3.1 gives an

axiomatization of the Shapley value for TU-games by taking D = ∅. In that case, efficiency

and linearity just boil down to the corresponding axioms for TU-game solutions. Since no

player has subordinates, a player is inessential if and only if it is a null player in the

game, and thus the inessential player property boils down to the null player property for

TU-game solutions. The necessary player property does not depend on the permission

structure anyway, and can be stated as well for TU-game solutions by requiring that a

necessary player in a monotone game earns at least as much as any other player.6 Efficiency,

linearity, the inessential (null) player property and the necessary player property then give

uniqueness as in Shapley (1953). Note that structural monotonicity has no meaning when

D = ∅.
In Gilles at al. (1992) it is shown that the conjunctive permission value can also be

obtained by allocating the Harsanyi dividends in the conjunctive restricted game, equally

over all players in the corresponding coalition and their superiors, i.e.

ϕci(N, v,D) =
∑
S⊆N

i∈S∪P̂D(S)

∆rcv,D
(S)

|S ∪ P̂D(S)|
for all i ∈ N.

3.2 The Precedence Shapley Value and the Hierarchical Solution

for Games under Precedence Constraints

3.2.1 The Precedence Shapley Value

Faigle and Kern (1992) introduce the precedence Shapley value as solution for games under

precedence constraints. First, a permutation π ∈ Π(N) is called admissible in acyclic

digraph (N,D) if π(i) > π(j) whenever (i, j) ∈ D, i.e. successors enter before their

5We remark that, instead of linearity van den Brink and Gilles (1996) use the weaker additivity axiom.
6Since all players in T ⊆ N are necessary players in the unanimity game uT on T , they should earn the

same in that unanimity game, which in the axiomatization of the Shapley value is guaranteed by symmetry.
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predecessors in the digraph.7 The set of admissible permutations ΠD(N) in D is denoted

by

ΠD(N) = {π ∈ Π(N) | π(i) > π(j) if (i, j) ∈ D}. (3.3)

Note that the set of admissible permutations in D is the same as that of its transitive

closure tr(D): ΠD(N) = Πtr(D)(N).

The precedence marginal vector mπ(N, v,D) ∈ IRN , associated with the game under

precedence constraints (N, v,D), permutation π ∈ ΠD(N), and player i ∈ N , is given by

mπ
i (N, v,D) = v({j ∈ N | π(j) ≤ π(i)})− v({j ∈ N | π(j) < π(i)}). (3.4)

Recall from Section 2 that the Shapley value assigns to the players the average over

all marginal vectors associated with all permutations of the player set N . The precedence

Shapley value H is the solution on GPC given by

Hi(N, v,D) =
1

|ΠD(N)|
∑

π∈ΠD(N)

mπ
i (N, v,D), for all i ∈ N,

and assigns to the players in N the average over all precedence marginal vectors of game

under precedence constraints (N, v,D). For (N, v,D) ∈ GPC , all permutations in Π(N) are

admissible when D = ∅. In that case the domain of characteristic function v is given by

2N , and thus is a classical characteristic function of a TU-game. So, also the precedence

Shapley value H generalizes the Shapley value for TU-games.

Faigle and Kern (1992) give an axiomatization of the precedence Shapley value

using the following axioms. Efficiency and linearity are the same as for the conjunctive

permission value, but defined on the domain GPC .

Efficiency For each game (N, v,D) ∈ GPC it holds that
∑

i∈N fi(N, v,D) = v(N).

Linearity For every pair of games (N, v,D) and (N,w,D) ∈ G(N,D)
PC it holds that f(N, v+

w,D) = f(N, v,D) + f(N,w,D), and for (N, v,D) ∈ G(N,D)
PC and c ∈ IR it holds that

f(N, cv,D) = cf(N, v,D).

A player i ∈ N is a null player in game under precedence constraints (N, v,D), if for every

π ∈ ΠD(N) it holds that mπ
i (N, v,D) = 0.

Null player property For each (N, v,D) ∈ GPC , if i ∈ N is a null player in (N, v,D),

then fi(N, v,D) = 0.

7The terminology looks somewhat counterintuitive, but this is because of the different interpretations

of the hierarchy in games with a permission structure and games under precedence constraints, see also

the last paragraph of Section 6.
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Besides these three axioms8, Faigle and Kern (1992) introduce an axiom that is based

on the hierarchical strength of players. First, for all i ∈ S, S ∈ Φp(N,D), the set of

permutations Πi
D(N,S) is defined by

Πi
D(N,S) = {π ∈ ΠD(N) | π(i) > π(j) for all j ∈ S \ {i}}, (3.5)

being the collection of those admissible permutations in ΠD(N) where i enters after the

players in S \ {i}. Note that the collection {Πi
D(N,S)}i∈S is a partition of ΠD(N).

The absolute hierarchical strength is the function h that assigns to every (N,D) ∈ D
and coalition S ∈ Φp(N,D), the vector h(N,D, S) ∈ IRS, where hi(N,D, S) = |Πi

D(N,S)|
is the number of permutations in ΠD(N) where i ∈ S enters after the players in S \ {i}.

The normalized hierarchical strength is the function h that assigns to every (N,D) ∈
D and coalition S ∈ Φp(N,D), the vector h(N,D, S) ∈ IRS, where hi(N,D, S) =

|Πi
D(N,S)|
|ΠD(N)|

is the fraction of permutations in ΠD(N) where i ∈ S enters after the players in S \ {i}.
Note that

∑
i∈S

hi(N,D, S) = 1 for all S ∈ Φp(N,D).

Unanimity games under precedence constraints are defined similar to classical una-

nimity TU-games. For each T ∈ Φp(N,D), T 6= ∅, the unanimity game under precedence

constraints (N, uT , D) ∈ GPC is given by uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise,

S ∈ Φp(N,D). Note that, different from classical TU-games, the unanimity game (called

simple game by Faigle and Kern) uT is only defined on the set Φp(N,D). Faigle and Kern

(1992) also consider the dividend of a coalition S ∈ Φp(N,D) in game under precedence

constraints (N, v,D), given by ∆D
v (S) = v(S)−

∑
T⊂S,T∈Φp(N,D),T 6=∅∆D

v (T ).

For every (N, v,D) ∈ GPC , Faigle and Kern (1992) show that the characteristic

function in (N, v,D) can be written as a linear combination of the characteristic functions

of unanimity games under precedence constraints (N, uT , D):

v =
∑

T∈Φp(N,D)

T 6=∅

∆D
v (T )uT . (3.6)

The axiom of hierarchical strength of a solution for games under precedence con-

straints states that in unanimity games under precedence constraints, the earnings are

distributed among the players in the unanimity coalition proportional to their normalized

hierarchical strength in that coalition. Obviously, this is equivalent to distributing the

dividends proportional to the absolute hierarchical strength of the players.

Hierarchical strength For every (N,D) ∈ D, every S ∈ Φp(N,D) and every i, j ∈ S, it

holds that hi(N,D, S)fj(N, uS, D) = hj(N,D, S)fi(N, uS, D).

8We remark that, similar to Shapley (1953), Faigle and Kern (1992) combine efficiency and the null

player property into a carrier axiom.
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Theorem 3.2 (Faigle and Kern, 1992) A solution on GPC is equal to the precedence

Shapley value H if and only if it satisfies efficiency, linearity, the null player property and

hierarchical strength.

Alternatively, the precedence Shapley value can be defined as the solution that

allocates the dividend of a coalition S ∈ Φp(N,D) proportional to the hierarchical strength

h(N,D, S) of the players in S:

Hi(N, v,D) =
∑

S∈Φp(N,D)

i∈S

hi(N,D, S)∑
j∈S hj(N,D, S)

∆D
v (S) for all i ∈ N. (3.7)

3.2.2 The Hierarchical Solution

Algaba et al. (2017) introduce the solution for games under precedence constraints that is

obtained by weakening hierarchical strength in Theorem 3.2 to weak hierarchical strength

and adding irrelevant player independence.

Weak hierarchical strength is a weaker version of the hierarchical strength axiom in

the sense that it only requires the equality for unanimity games of the grand coalition.

Weak hierarchical strength For every (N,D) ∈ D and every i, j ∈ N , it holds that

hi(N,D,N)fj(N, uN , D) = hj(N,D,N)fi(N, uN , D).

This is a considerable weakening, also in interpretation. If unanimity among all

players must be reached before any non-zero worth can be generated, we might consider

the players equals with respect to the game. Therefore, worth allocation should depend

only on the strength of the players in the digraph. The strength of each player in the

digraph is measured by the hierarchical strength.

Player i ∈ N is called an irrelevant player in game under precedence constraints

(N, v,D) if i is a null player, and any j ∈ P̂D(i) is also a null player (this implies that any

j ∈ P̂D(i) is also irrelevant). So, an irrelevant player is a null player such that all players

who depend on its presence are also null players in the game. We call a player i ∈ N

relevant if it is not an irrelevant player.

Let Irr(N, v,D) be the set of irrelevant players in game under precedence constraints

(N, v,D). Irrelevant player independence states that removal of irrelevant players from the

game, does not affect the payoff to relevant players.

Irrelevant player independence For every (N, v,D) ∈ GPC , it holds that fi(N, v,D) =

fi(N
′, vN ′ , D(N ′)) for i ∈ N ′, with N ′ = N \ Irr(N, v,D).
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For a collection of sets F ⊆ 2N , let FS = {T ∈ F | T ⊆ S} be the collection of

subsets of S in F . It can be seen that, for N ′ = N \Irr(N, v,D), it holds that Φp
N ′(N,D) =

Φp(N ′, D(N ′)), i.e. the collection of feasible subsets of coalition N ′ obtained from graph

(N,D) is equal to the collection of feasible sets obtained from subgraph (N ′, D(N ′)). (Note

that this does not have to be the case for all subsets of N). This means that removing

irrelevant players from the game does not have an effect on the ability of relevant players

to cooperate with each other.

We consider irrelevant player independence a desirable property for a solution for

games under precedence constraints to satisfy. Since irrelevant players are null players,

they do not make any contribution to their subordinates in the digraph. Moreover, their

superiors are also null players, and thus irrelevant players do not make any contribution

through players that need them to be present in any admissible permutation. Therefore,

they should not be able to affect the payoffs of those players who do make a contribution in

the game. The precedence Shapley value does not satisfy irrelevant player independence,

as illustrated by the following example.

Example 3.3 Consider the following acyclic digraph used by Faigle and Kern (1992). Let

N = {1, 2, 3, 4} , and D = {(3, 1) , (3, 2) , (4, 2)}.
The set of admissible permutations is

ΠD (N) = {(1, 2, 3, 4) , (1, 2, 4, 3) , (2, 1, 3, 4) , (2, 1, 4, 3) , (2, 4, 1, 3)} .

In this case, for S = {1, 2, 4} ∈ Φp(N,D), we have

h1 (N,D, S) = 1, h2 (N,D, S) = 0, h4 (N,D, S) = 4.

Consider the game v = u{1,2,4}. Then, the precedence Shapley value is given by H (N, v,D) =(
1
5
, 0, 0, 4

5

)
.

Notice that player 3 is an irrelevant player. Deleting player 3 gives the game under

precedence constraints (N ′, v′, D′) with N ′ = {1, 2, 4}, v′ = u{1,2,4} (but on a different

domain), and D′ = {(4, 2)}.
The set of admissible permutations on subgraph (S,D (S)) is given by

ΠD(S) (S) = {(1, 2, 4) , (2, 1, 4) , (2, 4, 1)} .

Therefore, h1 (S,D(S), S) = 1, h2 (S,D(S), S) = 0, h4 (S,D(S), S) = 2, yielding the prece-

dence Shapley value H (N, v,D) =
(

1
3
, 0, 2

3

)
.

The presence of irrelevant player 3 changes the payoffs of players 1 and 4 according

to the precedence Shapley value.
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Figure 1: Digraphs (N,D) and (S,D(S)) of Example 3.3

It can be shown that for games (Nm, u{1,2}, Dm), where Nm is given by {1, . . . ,m}
andDm by {(3, 1), (4, 3), . . . , (m,m−1)}, the precedence Shapley value is given byH1(Nm, u{1,2}, Dm) =
1
m
, H2(Nm, u{1,2}, Dm) = m−1

m
and Hi(Nm, u{1,2}, Dm) = 0 for i ∈ Nm \ {1, 2} and so

limm→∞H1(Nm, u{1,2}, Dm) = 0 and limm→∞H2(Nm, u{1,2}, Dm) = 1. We find that the

fact that player 1 has many irrelevant players as superiors in the digraph, is detrimental

to its payoff, even though, for different values of m, player 1 is present in exactly the same

feasible coalitions that contain only relevant players.

Algaba et al. (2017) provide a characterization where the null player property is

replaced by the following weaker property on irrelevant players.9

Irrelevant player property For each (N, v,D) ∈ GPC , if i ∈ N is an irrelevant player in

(N, v,D), then fi(N, v,D) = 0.

The unique solution for games under precedence constraints that satisfies efficiency,

linearity, the irrelevant player property, irrelevant player independence, and weak hierar-

chical strength is the hierarchical solution which allocates the dividend of every feasible

coalition over the players in that coalition proportional to the hierarchical strength in the

subgraph on that coalition.

The hierarchical solution H̃ is the solution on GPC given by

H̃i(N, v,D) =
∑

S∈Φp(N,D)

i∈S

hi(S,D(S), S)∑
j∈S hj(S,D(S), S)

∆D
v (S), i ∈ N.

A main difference with the precedence Shapley value is that in that value, the

dividends are allocated proportional to the hierarchical strength in the full digraph (see

(3.7)), while in the hierarchical solution, when allocating the dividend of a feasible coalition,

we consider the hierarchical strength of the subgraph on the corresponding coalition.

Theorem 3.4 (Algaba et al., 2017) A solution for games under precedence constraints

is equal to the hierarchical solution H̃ if and only if it satisfies efficiency, linearity, the

irrelevant player property, irrelevant player independence, and weak hierarchical strength.

9It is straightforward to show that the null player property can also be replaced by the irrelevant player

property in the axiomatization of the precedence Shapley value.
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Next, we provide an example which calculates the hierarchical solution and the precedence

Shapley value highlighting that in general both solutions are different, and are also different

from the conjunctive permission value.

Example 3.5 Consider the game under precedence constraint given in Example 3.3. By

taking the appropriate domain for the characteristic function, this can also be seen as a

game with a permission structure. In Example 3.3, we already computed the precedence

Shapley value H (N, v,D) =
(

1
5
, 0, 0, 4

5

)
.

For S = {1, 2, 4} ∈ Φp(N,D), in Example 3.3, we also found that the set of admissible

permutations on subgraph (S,D (S)) is given by

ΠD(S) (S) = {(1, 2, 4) , (2, 1, 4) , (2, 4, 1)} ,

and thus h1 (S,D(S), S) = 1, h2 (S,D(S), S) = 0, h4 (S,D(S), S) = 2. This yields the

hierarchical solution H̃ (N, v,D) =
(

1
3
, 0, 0, 2

3

)
.

The conjunctive restricted game is given by rcv,D = uN , and thus the conjunctive permission

value gives an equal allocation of the payoff, ϕc(N, v,D) = (1
4
, 1

4
, 1

4
, 1

4
).

4 Power Measures for Digraphs and Solutions for Games

with Hierarchies

Power or centrality measures for digraphs are applied to define solutions for games under

precedence constraints by Algaba et al. (2017). In this section, we first review their result,

and then apply this approach to games with a permission structure.

4.1 Precedence Power Solutions for Games under Precedence

Constraints

Algaba et al. (2017) considered a class of solutions for games under precedence constraints

that contains the hierarchical solution. Similar as van den Brink et al. (2011a) generalize

the communication ability property of Borm et al. (1992) for communication graph games

(see Myerson (1977)), this class is obtained by applying a power measure for digraphs to

allocate the dividends, and apply this power measure in a corresponding version of the

weak hierarchical strength axiom.

A power measure for acyclic digraphs is a function p, that to every acyclic digraph

(N,D) ∈ D assigns a vector p(N,D) ∈ IRN . For a player i ∈ N , pi(N,D) is a measure

of its relational ‘power’ or ‘influence’ in (N,D). We call a power measure p positive if∑
j∈N pj(N,D) > 0 for all (N,D) ∈ D with D 6= ∅. Notice that a power measure is defined
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for any set of nodes N ⊂ IN, and thus also for any S ⊆ N ⊂ IN, p(S,D(S)) is defined. In

this chapter, we only consider positive power measures. Let the collection of all positive

power measures be denoted by P .

For positive power measure p, we define the p-hierarchical solution as the solution

that allocates the dividend of a coalition S ∈ Φp(N,D) among the players in S proportional

to p(S,D(S)).

Definition 4.1 For positive power measure p, the p-hierarchical solution is the solution

on GPC given by

Hp
i (N, v,D) =

∑
S∈Φp(N,D)

i∈S

pi(S,D(S))∑
j∈S pj(S,D(S))

∆D
v (S) for all i ∈ N.

We refer to the class consisting of all p-hierarchical solutions as the class of precedence

power solutions .

In order to axiomatize the p-hierarchical solution, the p-strength axiom is intro-

duced. This axiom has an interpretation similar to that of weak hierarchical strength

from Theorem 3.4. If unanimity among all players must be reached to generate any non-

zero worth, we might consider the players equals with respect to the game. Therefore,

worth allocation should only depend on the strength of the players in the digraph. The

p-hierarchical solution uses the power measure p to measure the strength of each player in

the digraph. The p-strength axiom requires that in a game where all players are necessary

to generate worth, the payoffs are allocated proportional to the power measure p.

p-strength Let p be a positive power measure. For every (N,D) ∈ D and every i, j ∈ N ,

it holds that

pi(N,D)fj(N, uN , D) = pj(N,D)fi(N, uN , D).

The p-hierarchical solution is axiomatized by replacing in Theorem 3.4 weak hier-

archical strength by p-strength.

Theorem 4.2 (Algaba et al., 2017) A solution for games under precedence constraints

is equal to the p-hierarchical solution Hp if and only if it satisfies efficiency, linearity, the

irrelevant player property, irrelevant player independence and p-strength.

Note that this gives Theorem 3.4 as a corollary by taking the hierarchical strength

as power measure. The axioms of Theorem 4.2 are not logically independent. It can

be shown that efficiency and irrelevant player independence together imply the irrelevant

player property.
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Proposition 4.3 Consider a solution f on GPC. If f satisfies efficiency and irrelevant

player independence, then f satisfies the irrelevant player property.

Proof: Suppose that solution f satisfies efficiency and irrelevant player independence.

We show that f must satisfy the irrelevant player property by induction on the number

of irrelevant players. Suppose that |Irr(N, v,D)| = 1, and let j ∈ N be the irrelevant

player in (N, v,D) ∈ GPC . By irrelevant player independence, we have that fi(N, v,D) =

fi(N \ {j}, vN\{j}, D(N \ {j})) for all i ∈ N \ {j}. By efficiency it then follows that∑
i∈N fi(N, v,D) = v(N) = v(N \ {j}) =

∑
i∈N\{j} fi(N \ {j}, vN\{j}, D(N \ {j})) =∑

i∈N\{j} fi(N, v,D), and thus fj(N, v,D) = 0.

By induction, we assume that irrelevant players get a zero payoff for all (N ′, v′, D′) ∈ GPC
with |Irr(N ′, v′, D′)| < |Irr(N, v,D)|. Take a j ∈ Irr(N, v,D) such that all successors

of j are relevant players. (Existence of such players can be shown as follows. Consider

an irrelevant player who has an irrelevant successor. If this successor has at least one

irrelevant successor, then consider this successor. Continuing in this way, by acyclicity and

finiteness of D, eventually we reach an irrelevant player whose successors are all relevant

players, possibly being an irrelevant player who has no successors.) Consider the game w =

u(N\Irr(N,v,D))∪{j}, i.e. the unanimity game on the set of all relevant players in v with player

j. Then |Irr(N,w,D)| < |Irr(N, v,D)|, specifically Irr(N,w,D) = Irr(N, v,D)\{j}, and

thus by the induction hypothesis∑
h∈Irr(N,v,D)\{j}

fh(N,w,D) = 0. (4.8)

Since also |Irr(N, v + w,D)| = |Irr(N,w,D)| = |Irr(N, v,D)| − 1, we have similar that∑
h∈Irr(N,v,D)\{j}

fh(N, v + w,D) = 0. (4.9)

Since linearity implies that f(N, v,D) = f(N, v+w,D)−f(N,w,D), with (4.8) and (4.9),

it follows that

∑
h∈Irr(N,v,D)\{j}

fh(N, v,D) =
∑

h∈Irr(N,v,D)\{j}

fh(N, v + w,D)

(4.10)

−
∑

h∈Irr(N,v,D)\{j}

fh(N,w,D) = 0.

By efficiency and irrelevant player independence it follows, similar as in the initial step,

that
∑

i∈N fi(N, v,D) = v(N) = v(N \ Irr(N, v,D)) =
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=
∑

i∈N\Irr(N,v,D) fi(N\Irr(N, v,D), vN\Irr(N,v,D), D(N\Irr(N, v,D))) =
∑

i∈N\Irr(N,v,D) fi(N, v,D),

and thus
∑

h∈Irr(N,v,D) fh(N, v,D) = 0. With (4.10) it then follows that fj(N, v,D) = 0.

This shows that the irrelevant player property is satisfied.

Proposition 4.3 and Theorem 4.2 immediately give the following result as a corollary.10

Theorem 4.4 A solution for games under precedence constraints is equal to the p-hierarchical

solution Hp if and only if it satisfies efficiency, linearity, irrelevant player independence

and p-strength.

Logical independence of the axioms is shown in Section 5.

4.2 Power Measures, Solutions for Games with a Permission

Structure and Permission Values

The conjunctive permission value satisfies efficiency and linearity11. Although the conjunc-

tive permission value does not satisfy the weak hierarchical strength axiom, it satisfies a

version of the p-strength axiom, where in the unanimity game of the ‘grand coalition’, the

payoffs are allocated equally over the players, i.e. proportional to the equal power measure

where all players have equal power in any digraph.12

Equal-strength For every (N,D) ∈ D and every i, j ∈ N , it holds that fi(N, uN , D) =

fj(N, uN , D).

The conjunctive permission value does not satisfy the null player property, irrelevant player

independence and the irrelevant player property13. However, it satisfies similar properties.

Instead of irrelevant player independence, the conjunctive permission value satisfies inessen-

tial player independence, requiring that payoffs of essential players do not depend on the

presence of inessential players (instead of requiring that payoffs of relevant players do not

depend on the presence of irrelevant players). Let Iness(N, v,D) be the set of inessential

players in (N, v,D).

10Similarly, the irrelevant player property is superfluous in Theorem 3.4.
11For games with a permission structure, these axioms are defined the same as for games under prece-

dence constraints, by simply replacing the domain GPC by the domain GPS in the definitions in the previous

sections.
12This is a weaker version of necessary player symmetry used by van den Brink et al. (2015) for the

more specific permission tree games, requiring that all necessary players in the game earn the same payoff

irrespective of their position in the digraph.
13Also stating these axioms for games with a permission structure, we can simply replace the domain

GPC by the domain GPS , but we also need to redefine what is a null player as a player whose marginal

contribution is zero to any coalition in 2N .
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Inessential player independence For every (N, v,D) ∈ GPS, it holds that fi(N, v,D) =

fi(N
′, vN ′ , D(N ′)) for i ∈ N ′, with N ′ = N \ Iness(N, v,D).

In a similar way, the irrelevant player property can be modified. This gives the inessential

player property that requires that a null player whose subordinates are all null players, earns

a zero payoff. Similar as in Proposition 4.3, efficiency and inessential player independence

imply the inessential player property.

Note that, similar as the irrelevant player property, the inessential player property

is weaker than the null player property. The null player property deals with all players

who are null players in the game, while the inessential player property only takes care

of the null players whose subordinates are also null players. For permission tree games,

van den Brink et al. (2015) deal with this by the axiom which requires that the payoff

distribution does not change if a predecessor i becomes necessary for its successor j in the

sense that the marginal contribution of player j to every coalition that does not contain

player i becomes zero. For game (N, v) and players i, j ∈ N , the game (N, vij) is defined

by vij(S) = v(S \ {j}) for all S ⊆ N \ {i}, and vij(S) = v(S) otherwise.

Predecessor necessity For every (N, v,D) ∈ GPS and i, j ∈ N such that (i, j) ∈ D, it

holds that f(N, v,D) = f(N, vij, D).

Although predecessor necessity is used for axiomatization on permission tree games, it is

also satisfied for all games with an acyclic permission structure.

Next, we give a new characterization of the conjunctive permission value that uses

similar axioms as used to characterize the precedence Shapley value and the hierarchical

solution for games under precedence constraints.

Theorem 4.5 A solution for games with acyclic permission structure is equal to the con-

junctive permission value ϕc if and only if it satisfies efficiency, linearity, inessential player

independence, predecessor necessity and equal-strength.

Proof:

It is straightforward to verify that the conjunctive permission value satisfies the five axioms.

To prove uniqueness, suppose that solution f for games with an acyclic permission structure

satisfies the five axioms. Consider any (N,D) ∈ D and ∅ 6= T ⊆ N .

Efficiency and inessential player independence imply the inessential player property, and

thus

fi(N, uT , D) = 0 for all i ∈ N \ (T ∪ P̂D(T )). (4.11)

Repeated application of predecessor necessity implies that f(N, uT , D) = f(N, uT∪P̂D(T ), D).
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Inessential player independence implies that for all i ∈ T ∪ P̂D(T )

fi(N, uT∪P̂D(T ), D) = fi(T ∪ P̂D(T ), uT∪P̂D(T ), D(T ∪ P̂D(T ))). (4.12)

Equal strength implies that there is an α ∈ IR such that

fi(T ∪ P̂D(T ), uT∪P̂D(T ), D(T ∪ P̂D(T ))) = α for all i ∈ T ∪ P̂D(T ). (4.13)

Efficiency then implies that α = 1

|T∪P̂D(T )|
.

With (4.12) it then follows for all i ∈ T ∪ P̂D(T ),

fi(N, uT∪P̂D(T ), D) = fi(T ∪ P̂D(T ), uT∪P̂D(T ), D(T ∪ P̂D(T ))) =
1

|T ∪ P̂D(T )|
.

(4.14)

With (4.11) then f(N, uT , D) is determined.

Since efficiency and inessential player independence imply the inessential player property,

for a null game v0(S) = 0 for all S ⊆ N , and thus we have that fi(N, v
0, D) = 0 for all

i ∈ N and (N,D) ∈ D.

Since f satisfies linearity, the solution f(N, v,D) is uniquely determined and coincides with

the conjunctive permission value, for any (N, v,D) ∈ GPS.

Now, an obvious next question is if we can generalize the equal strength to p-strength

also in this context. This can be done, and it yields the following class of solutions where

the Harsanyi dividends in the conjunctive restricted game are allocated proportional to a

network power measure.

Definition 4.6 For positive power measure p, the p-permission value is the solution for

games with a permission structure given by

Ĥp
i (N, v,D) =

∑
S⊆N

i∈S

pi(S,D(S))∑
j∈S pj(S,D(S))

∆rcv,D
(S)

(4.15)

=
∑

S∈Φc(N,D)

i∈S

pi(S,D(S))∑
j∈S pj(S,D(S))

∆rcv,D
(S) for all i ∈ N.

A main difference with the precedence power solutions is that now we consider the Harsanyi

dividends in the conjunctive restricted game rcv,D instead of the original game v on the

domain.
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Theorem 4.7 A solution for games with an acyclic permission structure is equal to the

p-permission value Ĥp if and only if it satisfies efficiency, linearity, inessential player

independence, predecessor necessity and p-strength.

The proof of uniqueness follows straightforward from the proof of Theorem 4.5 by replacing

(4.13), which followed from equal strength, applying p-strength:

pi(N,D)fj(N, , uN , D) = pj(N,D)fi(N, uN , D),

when (N,D) = (T ∪ P̂D(T ), D(T ∪ P̂D(T ))). Together with efficiency, this determines the

payoffs in f(T∪P̂D(T ), uT∪P̂D(T ), D(T∪P̂D(T ))). We will refer to the solutions characterized

in Theorem 4.7 as permission power solutions . Logical independence of the axioms is again

shown in Section 5.

An interesting question is now also to see which precedence power solution on GPC
satisfies equal strength, i.e. the p-strength axiom with the equal power measure that is

used to characterize the conjunctive permission value on GPS in Theorem 4.5. It turns out

that this gives essentially the Shapley value, i.e. the solution S̃h on GPC that to every game

under precedence constraints assigns the Shapley value of the unrestricted game (extended

to the power set of N), i.e.

S̃hi(N, v,D) = Sh(N, v) for all (N, v,D) ∈ GPC ,

where v ∈ GN is given by ∆v(S) = ∆D
v (S) if S ∈ Φp(N,D), and ∆v(S) = 0 if S 6∈ Φp(N,D).

5 Logical Independence

In this section, we present alternative solutions for games with a hierarchy, that show

logical independence of the axioms in the main theorems in Section 4.

5.1 Logical Independence of the Axioms in Theorem 4.4

The following alternative solutions each satisfy all but one of the axioms in Theorem 4.4.

1. Consider the solution f zero on GPC that always assigns zero payoff to every player in

every game under precedence constraint, i.e.

f zeroi (N, v,D) = 0 for all i ∈ N and (N, v,D) ∈ GPC .

This solution satisfies all axioms of Theorem 4.4 except efficiency.
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2. For positive power measure p, consider the solution f on GPC that allocates the

dividend of every coalition proportional to the power measure p among all relevant

players, i.e., for all i ∈ N and (N, v,D) ∈ GPC

fi(N, v,D) = Hp
i (N, v(N)u⋃

{T∈Φp(N,D),∆D
v (T )6=0} T

, D).

This solution satisfies all axioms of Theorem 4.4 except linearity.

3. For positive power measure p, consider the solution f on GPC that allocates the

dividends of every coalition in every game under precedence constraints proportional

to the power values p(N,D), i.e. for positive power measure p,

fpi (N, v,D) =
∑

S∈Φp(N,D)

i∈S

pi(N,D)∑
j∈S pj(N,D)

∆D
v (S) for all i ∈ N.

Compared to the precedence power solutions, these solutions allocate the dividend of

coalition S proportional to the power values p(N,D) in the original digraph instead

of the power values p(S,D(S)) in the subgraphs on S. This solution satisfies all

axioms of Theorem 4.4 except irrelevant player independence.

4. Let the equal network power measure γ be given by γi(N,D) = 1
|N | for all i ∈ N

and (N,D) ∈ D. For p 6= γ, consider the solution S̃h = Hγ on GPC . This solution

satisfies all axioms of Theorem 4.4 except p-strength. For p = γ, the hierarchical

solution satisfies all axioms of Theorem 4.4 except γ-strength.

5.2 Logical Independence of the Axioms in Theorem 4.7

The following alternative solutions each satisfy all but one of the axioms in Theorem 4.7.

1. Solution f zero assigning zero payoff to every player in every game with a permission

structure, satisfies all axioms of Theorem 4.7 except efficiency.

2. For positive power measure p, consider the solution f for games with a permission

structure that allocates the dividend of every coalition in the conjunctive restricted

game proportional to the power measure p among all essential players, i.e. for all

i ∈ N and (N, v,D) ∈ GPS,

fi(N, v,D) = Ĥp
i (N, v(N)u⋃

{T⊆N,∆rc
v,D

(T )6=0} T
, D).

This solution satisfies all axioms of Theorem 4.7 except linearity.
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3. For positive power measure p, consider the solution f for games with a permission

structure that allocates the dividends of every coalition in the conjunctive restricted

game proportional to the power values p(N,D), i.e. for positive power measure p,

fpi (N, v,D) =
∑
S⊆N

i∈S

pi(N,D)∑
j∈S pj(N,D)

∆rcv,D
(S) for all i ∈ N.

This solution satisfies all axioms of Theorem 4.7 except inessential player indepen-

dence.

4. For positive power measure p, consider the solution that allocates the dividend of

every coalition S in the original game proportional to the power measure p(S,D(S))

in the subgraph on S, i.e.

H̃p
i (N, v,D) =

∑
S⊆N

i∈S

pi(S,D(S))∑
j∈S pj(S,D(S))

∆v(S) for all i ∈ N.

This solution satisfies all axioms of Theorem 4.7 except predecessor necessity.

5. For p 6= γ, the conjunctive permission value satisfies all axioms of Theorem 4.7 except

p-strength. For p = γ, the p-permission power value with p = h being the hierarchical

strength, satisfies all axioms of Theorem 4.7 except γ-strength.

6 Conclusions

The goal of this chapter is to review and compare two well-known approaches to games

with a hierarchy in the literature: the permission structure approach and the precedence

constraint approach. Moreover, by a new axiomatization of the conjunctive permission

value, we could extend this solution and its axiomatization to define the new class of

permission power solutions which is characterized by axioms that make it comparable with

the class of precedence power solutions.

There are several extensions of the model that can be considered. For example,

instead of digraphs other combinatorial structures might represent some relational struc-

ture among the players. A ‘natural’ extension of games with a permission structures are

games on antimatroids see Algaba et al. (2003, 2004b). Antimatroids are combinatorial

structures introduced by Dilworth (1940), see also Edelman and Jamison (1985) which,

besides permission structures, also generalize other models such as ordered partition voting

where players are partitioned into levels, and a coalition in a certain level can be active

only if a majority of players in higher levels approve. Since antimatroids are union closed
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(i.e. the union of any two feasible coalitions is also feasible), a similar approach for games

with a permission structure can be followed by defining a restricted game that assigns to

every coalition the worth of its largest feasible subset in the original game, and applying

the Shapley value (or any other TU-game solution) to this restricted game. Different ex-

tensions of the Shapley value for games on union closed systems are considered in van den

Brink et al. (2011b). An even more general model are games on union stable systems,

see Algaba et al. (2000, 2001a), and Algaba et al. (2001b, 2004a), where feasibility of

the union of two feasible coalitions is only required if the two coalitions have a non-empty

intersection, which reflects the communication feature. In this framework, Algaba et al.

(2015) applied power measures to distribute dividends in games on union stable systems

extending some results given in Algaba et al. (2012) about the Myerson and position val-

ues. Network structures taking into account both hierarchical and communication features

have been introduced in Algaba et al. (2018). A ’natural’ structure to extend games un-

der precedence constraints are augmenting systems (see Bilbao (2003) and Algaba et al.

(2010)) and regular set systems (see Honda and Grabisch (2006) and Lange and Grabisch

(2009)).

In this chapter, (i) we recall one axiomatization of the conjunctive permission value,

and one from the precedence Shapley value from the literature, (ii) we applied network

power measures to define two classes of solutions from them, and (iii) developed these

axiomatizations further into two comparable axiomatizations of these two classes. Further

work can be done to see if other types of axioms can be part of comparable axiomatizations,

such as axiomatizations using some type of fairness axiom (see van den Brink (1997) for

games with a permission structure, Algaba et al. (2003) for games on antimatroids, and

Algaba et al. (2001a) for games on union stable systems). Further research will include the

introduction and analysis of the disjunctive permission approach in the context of games

under precedence constraints.

The connection between game theoretic payoff allocation and social network power

measures gives insight in different solutions which might be helpful in applications. In

this chapter, on one hand, within each of these two classes of solutions, different network

power measures yield different solutions from the class. But on the other hand, taking one

specific power measure we obtain two solutions, one from each class.

In this chapter, we applied power measures to define solutions for cooperative games

with a hierarchical network structure. The other way around, solutions for games on

(directed or undirected) networks can be used to measure power or centrality in networks.

Taking a (symmetric) game and applying a solution for graph games yields such a power

measure. For example, Gómez et al. (2003) apply the Myerson value for communication

graph games to certain symmetric games restricted on an undirected graph in the sense of
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Myerson (1977), measuring different types of centrality in undirected graphs. Similar, we

can apply the precedence power or permission power solutions to games with a hierarchical

structure to obtain power measures for acyclic digraphs. Obviously, when we use the

unanimity game of the grand coalition, we get the same power measure that we use for the

solution. But, as done in Gómez et al. (2003) for undirected graphs, other games can be

used.

Without going into power measurement, notice that network centrality has a very

different effect in the precedence approach than in the permission approach. Consider a

strict hierarchical network that is represented by a linear order {(ik, ik+1) | k = 1, . . . n−1}.
Both in the permission as well as the precedence approach, the top player i1 is ‘powerful’ in

obtaining a share in the worth of the game. However, there is a difference considering the

networks Φc(N,D) and Φp(N,D). Since Φc(N,D) = {{i1, . . . , il} | l = 1, . . . , n}, the top

player i1 can be considered to be the most central since it belongs to every feasible coalition.

However, since Φp(N,D) = {{il, . . . , in} | l = 1, . . . , n}, in the precedence approach the

top player i1 seems to be the least central since the only feasible coalition it belongs to

is the grand coalition. On the other hand, the bottom player in seems to be the most

central and belongs to every feasible coalition. Notice that in the precedence approach,

being a bottom player means that you are feasible as a singleton, but then you can be

the first player to enter in an admissible permutation, and if you have a predecessor in

the hierarchy, you will never be the last to enter which is disadvantageous in, for example,

convex games. On the other hand, being in few feasible coalitions means that you more

often enter as the last player, which in many games (in particular in convex games) gives

you a benefit.
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[3] Algaba, E., Bilbao, M. López, J. (2001b) A unified approach to restricted games. Theory

and Decision 50, 333-345.

[4] Algaba, E., Bilbao, M., van den Brink, R, Jiménez-Losada, A. (2003) Axiomatizations
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[26] Gómez D., González-Arangüena, E., Manuel, C., Owen, G. del Pozo, M., Tejada, J.

(2003) Centrality and power in social networks: a game theoretic approach. Mathemat-

ical Social Sciences 46, 27-54.

[27] Harsanyi, J.C. (1959) A bargaining model for cooperative n-person games. In: Tucker,

A.W., Luce, R.D. (eds.): Contributions to the Theory of Games IV, pp. 325-355. Prince-

ton University Press, Princeton, NJ.

[28] Honda, A., Grabisch, M. (2006) Entropy of capacities on lattices and set systems.

Information Sciences 176, 3472-3489.

[29] Lange, F., Grabisch, M. (2009) Values on regular games under Kirchhoff’s laws. Math-

ematical Social Sciences 58, 322-340

25



[30] Myerson, R. B. (1977) Graphs and cooperation in games. Mathematics of Operations

Research 2, 225-229.

[31] Shapley, L.S. (1953) A Value for n-Person Games. In: Kuhn, H.W., Tucker, A.W.

(eds.): Contributions to the Theory of Games Vol.2, pp.307-317, Princeton UP, Prince-

ton.

26


