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Abstract

We investigate the effect of estimation error on backtests of (multi-period) expected shortfall

(ES) forecasts. These backtests are based on first order conditions of a recently introduced family

of jointly consistent loss functions for Value-at-Risk (VaR) and ES. We provide explicit expressions

for the additional terms in the asymptotic covariance matrix that result from estimation error,

and propose robust tests that account for it. Monte Carlo experiments show that the tests that

ignore these terms suffer from size distortions, which are more pronounced for higher ratios of out-

of-sample to in-sample observations. Robust versions of the backtests perform well, although this

also depends on the choice of conditioning variables. In an application to VaR and ES forecasts for

daily FTSE 100 index returns as generated by AR-GARCH, AR-GJR-GARCH, and AR-HEAVY

models, we find that estimation error substantially impacts the outcome of the backtests.
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1 Introduction

Research into financial risk management can nowadays be split into two strands. The first

and oldest strand investigates risk measures from both a theoretical and practical perspective

(see Emmer et al., 2015, for a recent example). The second, more recent strand investigates

what Cont et al. (2010) have coined the risk measurement procedure, i.e., the procedure with

which the forecast of the risk measure is generated. This encompasses the selection of the

model, the method and data selection to estimate or calibrate the model parameters, and the

forecasting method.1 This procedure is typically evaluated by a backtest, that is, a formal

statistical assessment of the quality of the risk forecasts by means of a loss function. Nolde

and Ziegel (2017) propose a framework to jointly backtest Expected Shortfall (ES) and Value-

at-Risk (VaR), motivated by the fact that ES is only elicitable in combination with VaR (see

also Gneiting, 2011; Fissler et al., 2016). Because they are based on the elicitability property,

the resulting backtests are not only suited to test the correctness of a given risk measurement

procedure, but can also be used to rank competing alternative procedures. Furthermore, Nolde

and Ziegel (2017) propose unconditional as well as conditional tests for correct specification.

In this paper, we focus on the effect that the estimation part of the risk measurement proce-

dure has on backtesting. Because the parameters of the model with which the risk forecasts are

generated are typically not known but estimated using a finite sample of historical observations,

the backtests are affected by estimation error. For a sound evaluation and comparison of risk

measurement procedures, this effect should be taken into consideration. We quantify this effect

for the tests of correct specification proposed by Nolde and Ziegel (2017), and propose robust

versions of these tests that account for it.

The theoretical foundation of our analysis follows from West (1996) and McCracken (2000)

who investigate the impact of estimation error on out-of-sample tests of predictive ability (see

also West, 2006). Because the tests of Nolde and Ziegel (2017) are derived from an identification

function implied by the family of jointly consistent loss functions for VaR and ES introduced

in Fissler et al. (2016), they fit into the general framework of McCracken (2000). We establish

that estimation error results in additional terms in the asymptotic covariance matrix of the

test statistics and find explicit expressions and consistent estimators for these terms. The extra

terms are functions of the estimation scheme, i.e. the choice of fixed, rolling, expanding window

1See Giacomini and White (2006) for a general discussion of these issues in forecasting. For an investigation
of choices of models and forecasting methods for Value-at-Risk, see, for example, Kole et al. (2017).
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estimation, and the (asymptotic) ratio of in-sample and out-of-sample observations, and they

apply to both single and multi-period forecasting. We then propose robust tests that use this

consistent estimator of the asymptotic covariance matrix.

Our analysis of the effect of estimation error on joint backtests of VaR and ES complements

earlier analyses for backtests of VaR and of ES in isolation. Escanciano and Olmo (2010)

examine the effect of estimation error on VaR backtests in a similar way as we do, though their

approach cannot deal with multi-period ahead forecasts. Du and Escanciano (2016) propose

new conditional tests for ES, and robust versions of these and the corresponding unconditional

test. These tests do not meet the conditions of Nolde and Ziegel (2017), and their derivation

of the impact of estimation error additionally requires an estimate of the complete conditional

distribution of the realization. We include the tests of Escanciano and Olmo (2010) and Du

and Escanciano (2016) in our analysis for comparison.

We conduct several Monte Carlo experiments to examine the effect of estimation error on

the size and power properties of the standard backtests, and to examine the extent to which the

proposed robustification corrects this. We evaluate conditional and unconditional joint tests

for VaR and ES forecasts with coverage levels of both 95 and 97.5%. The size experiments are

based on a standard AR-GARCH data generating process (DGP) with normal or Student’s t

distributed errors. In the power experiments, we consider deviations in terms of the specification

of the mean, the volatility or the error distribution.

Our results show that estimation error leads to considerable size distortions, in particular of

unconditional tests. The empirical rejection rate can become as high 0.36 when using critical

values that should theoretically lead to a rate of 0.05. The effect on conditional tests is smaller,

although as also pointed out by Nolde and Ziegel (2017) the choice of conditioning variables

can lead to tests for which both the standard and robust versions perform badly. Effects

of estimation error are largest when the ratio of out-of-sample to in-sample observations is

large. It does not vary much over the coverage levels of the VaR and ES forecasts, or the

error distribution. These results hold equally for the joint tests of VaR and ES of Nolde and

Ziegel (2017) as the separate tests of VaR and ES of Escanciano and Olmo (2010) and Du and

Escanciano (2016).

The robust versions of the tests correct well for estimation error, and have empirical rejection

rates that are much closer to the theoretical 0.05. The largest rejection rate we observe is now

0.15. The robust versions work well for both coverage levels, and only slightly worse when the
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errors stem from the fat-tailed Student’s t distribution instead of the normal one. We do not

observe differences between conditional and unconditional tests anymore. The size distortions

for the VaR tests of Escanciano and Olmo (2010) and the ES tests of Du and Escanciano (2016)

are a bit smaller than for the joint tests, but this may be related to the number of test conditions.

We find that the robust versions of the tests have less power than the standard tests, but

that the reduction is limited. The differences between the rejection rates of the two versions

are not larger than 0.10–0.15. The empirical rejection rates of both versions generally increase

when the DGP deviates more from the model used to obtain the risk forecasts. The joint tests

of Nolde and Ziegel (2017) have some power against joint VaR and ES forecasts that result from

misspecification of the error distribution and the mean, but perform less when the volatility is

misspecified. Though the tests of Du and Escanciano (2016) have less power for these first two

cases, their test that uses higher order autocorrelation of scaled ES distances has some power

when the volatility is misspecified.

In an empirical application we evaluate VaR and ES forecasts for the FTSE 100 index

returns, generated by AR-GARCH, AR-GJR-GARCH and AR-HEAVY models estimated on

rolling windows of 500, 1000 and, if possible, 2,500 observations. We conduct backtests for the

financial crisis period (June 2007 to June 2009) and a longer period (November 2009 to April

2019). We generally observe that estimation error has a non-negligible effect on the conclusions

that would likely be drawn based on the test outcome, in the sense that p-values often increase

from values below 0.05 or 0.10 to values well above these levels. This effect is largest when the

forecasts of the two GARCH models are evaluated over the longer period, and the correction

for estimation error leads to non-rejection of the hypothesis of correct forecasts. When the

crisis period is considered, increases in p-values are smaller, providing stronger evidence of

misspecification. In line with our simulation results, the effect of estimation error becomes

smaller for larger in-sample periods, keeping the out-of-sample period fixed. The effect of

estimation error is also smaller for the AR-HEAVY model, which may due to reduced estimation

error related to the higher precision of the realized volatility measure that this model uses.

Based on the results of our simulation study and empirical analysis, we conclude that back-

tests of VaR and ES should not ignore the effect of estimation error. Estimation error leads to

size distortions. We complement Escanciano and Olmo (2010) who analyze and propose correc-

tions for the effect of estimation error on VaR backtests, and Du and Escanciano (2016) who do

the same for ES in isolation. Because we use the framework of McCracken (2000), our results
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apply to single and multi-period ahead forecasts of ES. We extend Nolde and Ziegel (2017) by

showing how estimation error can formally be included in their testing framework, and by our

results for multi-period ahead forecasting.

Our results also carry practical relevance, because ES is gaining popularity at the expense

of VaR as the risk measure that the financial industry uses to assess market positions (BCBS,

2016). ES has better theoretical properties than VaR, because it is coherent (see Artzner

et al., 1999, 1997; Acerbi and Tasche, 2002, for elaborations). While tests for the correctness

of ES forecasts have been proposed before2, the discussion whether ES could theoretically be

backtested (see, for example Gneiting, 2011; Acerbi and Székely, 2014) has only recently been

solved by the work of Fissler et al. (2016); Nolde and Ziegel (2017). It means that financial

institutions can now design sound backtests to evaluate their risk measurement procedure with

ES. Our results show that estimation error in this procedure should be taken into account when

constructing backtests.

We discuss the methodology in Section 2, and the test specifications in Section 3. We set up

and study the results of our Monte Carlo experiments in Section 4, and an empirical application

in Section 5. Section 6 concludes.

2 Theory

Let Yt+τ denote the return generated by holding an asset from period t to t + τ , τ ≥ 1. Let

Wt = (Yt, Z ′
t, Yt−1, Z

′
t−1, . . .)′ denote the agent’s information set at time t, with Zt denoting a

vector of other relevant variables. Let Ft = σ(Wt) denote the σ-algebra generated by Wt, and

define Et[⋅] = E[⋅∣Wt].

Now (implicitly) define the Ft-measurable, τ -step ahead Value-at-Risk (VaR), denoted

VaRt,τ and Expected Shortfall (ES), denoted ESt,τ , at coverage level 1 − α ∈ (0,1) as

P (Yt+τ ≤ VaRt,τ ∣Wt) = α, (1)

and

ESt,τ =
1

α
Et[Yt+τ1{Yt+τ < VaRt,τ}] = Et[Yt+τ ∣Yt+τ < VaRt,τ ], (2)

2See McNeil and Frey (2000); Berkowitz (2001); Kerkhof and Melenberg (2004); Wong (2008, 2010).
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almost surely (a.s.), for all t, and where 1{⋅} denotes the indicator function that takes the value

one if the event within curly brackets is true and zero otherwise.

We consider a model of VaR and ES given by the parametric family of functions M =

{m(⋅, θ) ∶ θ ∈ Θ ⊂ Rp}, with p < ∞, and where m(⋅, θ) = (m1(⋅, θ),m2(⋅, θ))′ is some 2 × 1

vector. We let m1(⋅, θ) and m2(⋅, θ) be the VaR and ES forecasts, respectively, and write

mt(θ) = (mt,1(θ),mt,2(θ))′ = (m1(Wt, θ),m2(Wt, θ))′. Throughout we ignore dependence on α

for notational convenience.

We assume the existence of some true parameter vector θ0 ∈ Θ, with Θ some compact

parameter space, at which the model is correctly specified, i.e.

mt(θ0) = (mt,1(θ0),mt,1(θ0))
′ = (VaRt,τ ,ESt,τ)

′
a.s., for all t. (3)

We set up our testing framework to fit the out-of-sample testing theory in McCracken (2000)

and base the tests on the following 2 × 1 identification function proposed in Nolde and Ziegel

(2017):

gt,τ(θ) =
⎡⎢⎢⎢⎢⎢⎣

gt,1,τ(θ)

gt,2,τ(θ)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1{Yt+τ −mt,1(θ) < 0} − α

mt,2(θ) −mt,1(θ) − 1
α1{Yt+τ −mt,1(θ) < 0}(Yt+τ −mt,1(θ))

⎤⎥⎥⎥⎥⎥⎦
, (4)

where the first element gives a centered VaR violation, and the second element provides a

measure of the distance between the ES forecast and the return. The first element forms the

basis for the coverage tests of Kupiec (1995) and Christoffersen (1998). Nolde and Ziegel (2017)

also show that Et[gt,τ(θ)] is proportional, up to some Ft-measurable proportionality constant,

to the gradient of the conditional mean of any member of the family of joint consistent scoring

function for VaR and ES introduced in Fissler et al. (2016). Barendse (2017) proposes a joint

semi-parametric estimator of expected shortfall using Eq. (4).

It is easy to see that correct model specification (Eq. (3)) and unique quantiles together

imply that Et[gt,τ(θ)] is uniquely equal to zero at θ = θ0. A test of correct model specification

can therefore be based on the following null hypothesis:

H0 ∶ Et[gt,τ(θ0)] = 0, a.s. for all t. (5)

Under this null hypothesis {gt,τ(θ0),Ft} is a martingale difference sequence, such that we
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can employ the equivalence statement

Et[gt,τ(θ0)] = 0, a.s. ⇐⇒ E[gt,τ(θ0)h̃t] = 0, (6)

for all Ft-measurable functions h̃t and for all t (see, e.g. Giacomini and White (2006)). Like

Nolde and Ziegel (2017) we restrict our attention to a subset of these functions, namely those

that are differentiable (a.s.) in a neighbourhood Θ0 of θ0. More specifically, we employ the

Ft-measurable, l × 2 test matrix Ht(θ0), with elements referred to as Ht,i,j(θ0).

The smoothness assumption on Ht precludes usage of lags of (elements of) gt,τ(θ0) as con-

ditioning variables. This may ich seem restrictive because gt−1,1,τ(θ0) is commonly used in

conditional VaR tests, (e.g. Christoffersen, 1998; Escanciano and Olmo, 2010). However, Nolde

and Ziegel (2017) show convincingly that conditioning on lags in the joint (VaR,ES) test leads

to bad size properties, and advocate using smoother conditioning variables. We find similarly

bad size properties in simulation experiments during earlier stages of this research. Based on

these results, we argue that our framework is sufficiently general, even though we restrict Ht(θ0)

to be smooth.

We can test the following null hypothesis based on the l × 1 vector kt,τ(θ0) =Ht(θ0)gt(θ0):

H0,h ∶ E[kt,τ(θ0)] = 0 for all t, (7)

and Eq. (6) implies that a test ofH0,h provides a test ofH0. Under suitable regularity conditions,

at the true parameter vector θ0,

S0(R,P ) ≡ S0
P = 1√

P

T−τ

∑
t=R

kt,τ(θ0), (8)

converges to a multivariate normal random variable with zero mean and l× l asymptotic covari-

ance matrix

Σ = E[kt,τ(θ0)kt,τ(θ0)′] +
τ−1

∑
j=1

(E[kt−j,τ(θ0)kt,τ(θ0)′] +E[kt,τ(θ0)kt−j,τ(θ0)′]),

and testing can proceed using a standard Wald test. Our Assumptions 2, 3, and 6(a,b,d) are

sufficient, for instance. The additional terms in Σ are due to overlapping data, implying that

only for j ≥ τ we have E[kt−j,τ(θ0)kt,τ(θ0)′] = E[kt−j,τ(θ0) ×Et[kt,τ(θ0)′]] = 0 under H0.
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Usually we do not know θ0, and must estimate it instead. Let us consider a sample

{Yt, Z ′
t}Tt=1, T ≥ 1. We let the first R observations denote the first in-sample period, and the

subsequent P = T −R − τ + 1 observations denote the out-of-sample period minus the forecast

horizon. We will consider fixed, rolling, and recursive forecasting schemes, as in West and Mc-

Cracken (1998), McCracken (2000), and Escanciano and Olmo (2010). The schemes differ in the

observations that are used to estimate the unknown parameters. Consider an estimator θ̂t of θ0

at time t. The fixed scheme uses the first R observations for θ̂t for all t, i.e. the observations

at times 1, . . . ,R. The rolling scheme uses the R most recently observed observations, i.e. the

observations at times t −R + 1, . . . , t. The recursive scheme uses all observations up to time t,

i.e. the observations at times 1, . . . , t.

Returning to the testing problem, since the true parameter θ0 is generally unknown we must

instead of Eq. (8) consider

S(R,P ) ≡ SP = 1√
P

T−τ

∑
t=R

kt,τ(θ̂t). (9)

To obtain the asymptotic distribution of SP we utilize an asymptotic expansion that many

estimators in literature admit, including maximum likelihood estimators as well as a range

of GMM estimators (see, e.g., West (1996) and McCracken (2000) for elaborations). This

expansion, which in the fixed window case is given by θ̂t − θ0 = B(t)t−1∑ts=1 ls(θ0) + op(t−1/2),

B(t) a.s.ÐÐ→ B, depends on estimator-specific definitions of p×q matrices B(t) and B, and the q×1

vector lt(θ), and is defined fully in Assumption 1 in the Appendix. This approach is standard

in the analysis of estimation effects on statistical testing.

Under appropriate conditions we can then show that SP converges to a multivariate normal

distribution with zero mean and l × l asymptotic covariance matrix

Ω = Σ + λhl(ABρ + ρ′B′A′) + λllABV B′A′,

which has the particular structure of Ω as dictated by the theory of West (1996), McCracken

(2000), Escanciano and Olmo (2010), and where the different elements in the definition of Ω

are defined as the q × l matrix

ρ =
τ

∑
j=1

E[lt(θ0)kt−j,τ(θ0)′],
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q × q matrix V = E[lt(θ0)lt(θ0)′], and l × p matrix

A = At ≡ ∇E[gt,τ ] ≡ E
⎛
⎜⎜
⎝
Ht(θ0)

⎡⎢⎢⎢⎢⎢⎣

ft,τ(θ0) 0

0 1

⎤⎥⎥⎥⎥⎥⎦
Jt(θ0)

⎞
⎟⎟
⎠
, (10)

with Jt(θ0) = ∇θmt(θ)∣θ=θ0 the (a.s.) continuous Jacobian matrix of mt(θ) in a neighborhood of

θ0. The matrix B is used in the expansion discussed above and defined formally in Assumption

1 in the Appendix. Finally, let π = limT→∞ P /R, and λhl(π) and λll(π) be defined as:

λhl(π) λll(π)

fixed ∶ 0 π

rolling (π ≤ 1) ∶ π/2 π − π2/3

rolling (π > 1) ∶ 1 − (2π)−1 1 − (3π)−1

recursive ∶ 1 − π−1 log(1 + π) 2[1 − π−1 log(1 + π)].

(11)

The following theorem formalizes the convergence in distribution of SP to a normal limit

under the assumptions provided in Appendix A.

Theorem 1. Let Assumptions 1 to 6 in the Appendix be satisfied. It follows under H0,h that

SP
dÐ→ N(0,Ω). Moreover, if π = 0, then SP

dÐ→ N(0,Σ).

Proof: see Appendix B.

It is clear that using estimated parameters introduces additional terms in the asymptotic

covariance matrix of SP in case the in-sample size P grows proportionally with the out-of-sample

size R.

We can obtain a consistent estimator of the asymptotic covariance matrix Ω as

Ω̂P = Σ̂P + λ̂hl(π̂)(ÂP B̂P ρ̂P + ρ̂′P B̂′
P Â

′
P ) + λ̂ll(π̂)ÂP B̂P V̂P B̂′

P Â
′
P . (12)
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from the following consistent estimators of Σ, A, ρ, V , and π:

Σ̂P = 1

P

T−τ

∑
t=R

kt,τ(θ̂t)kt,τ(θ̂t)′+

1

P

τ−1

∑
j=1

T−τ

∑
t=R+j

(kt−j,τ(θ̂t)kt,τ(θ̂t)′ + kt,τ(θ̂t)kt−j,τ(θ̂t)′),
(13)

ÂP = 1

P

T−τ

∑
t=R

⎛
⎜⎜
⎝
Ht(θ̂t)

⎡⎢⎢⎢⎢⎢⎣

(2ĉP )−11(∣Yt+τ −mt,1(θ̂t)∣ < cP ) 0

0 1

⎤⎥⎥⎥⎥⎥⎦
Jt(θ̂t)

⎞
⎟⎟
⎠
, (14)

ρ̂P = 1

P

τ

∑
j=1

T−τ+1

∑
t=R

[lt−j(θ̂t)kt,τ(θ̂t)′], (15)

V̂P = 1

P

T−τ+1

∑
t=R

lt(θ̂t)lt(θ̂t)′, (16)

π̂P =P /R. (17)

These estimators, except for ÂP , are similar to those used in Escanciano and Olmo (2010).

ÂP is based on Powell (1986), and similar estimators are used in Engle and Manganelli (2004)

and Patton et al. (2019). In the definition of ÂP the sequence ĉP is a potentially stochastic

sequence that converges in probability to zero at a slower rate than P −1/2. A typical choice is

ĉP = P −1/3. Instead of V̂P above, we can also opt for an estimator of V provided by a statistical

computing package for the end-of-sample estimation of θ̂T−1, as long as we know this estimator

is consistent. A strongly consistent estimator B̂P of B can usually be obtained similarly. In

The following result states that Ω̂P is consistent, and that Ω̂
−1/2
P SP converges to a standard

normal random vector. Hence, we can derive tests that have standard critical values.

Corollary 1. Let Assumptions 1 to 6 in the Appendix be satisfied, let B̂P
a.s.ÐÐ→ B, and let

ĉP /cP
pÐ→ 1, where the nonstochastic cP satisfies cP = o(1) and c−1

P = o(P 1/2). Under Eq. (5) it

follows that Ω̂P
pÐ→ Ω, and Ω̂

−1/2
P SP

dÐ→ N(0, I).

Proof: see Appendix B.

3 Tests

We can now construct tests using the statistic TP = S′P Ω̂−1
P SP , where we reject the null hypoth-

esis H0 at a 100 ⋅q% significance level if TP exceeds χ2
l,1−q, with χ2

l,1−q denoting the 100 ⋅(1−q)%

quantile of the χ2-distribution with l degrees of freedom. We refer to robust versions of the

tests when we use π̂P in Ω̂P , and to standard versions of the tests when we assume π = 0, such
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that Ω̂P = Σ̂P . We study nine different tests in total. The first two are the classical tests for

VaR that are also considered in Escanciano and Olmo (2010). Next, we consider four joint tests

for VaR and ES that differ in the specification of Ht(θ0). The final three use a different test

specification, and are analyzed by Du and Escanciano (2016).

Escanciano and Olmo (2010) consider unconditional and conditional tests for VaR, and

introduce both standard and robust test statistics. In our framework the statistic of the uncon-

ditional test EO
(1)
P , follows from using

EO
(1)
P ∶Ht(θ0) = [1 0] .

It corresponds with the test for correct unconditional coverage proposed by Kupiec (1995);

Christoffersen (1998). The conditional VaR test is based on test statistic EO
(2)
P which follows

in our framework from

EO
(2)
P ∶Ht(θ0) = [gt−τ,1,τ(θ0) 0] .

It corresponds with the independence test proposed by Christoffersen (1998). Berkowitz et al.

(2011) base an alternative conditional test on the same sequence kt,τ(θ0) = Ht(θ0)gt,τ(θ0). We

use the robust tests proposed in Escanciano and Olmo (2010).3

The first two joint test statistics are straightforward generalizations of the two VaR tests.

We denote the unconditional test statistic by T
(1)
P , which uses

T
(1)
P ∶Ht(θ0) =

⎡⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎦
.

The conditional test statistic T
(2)
P uses

T
(2)
P ∶Ht(θ0) =

⎡⎢⎢⎢⎢⎢⎣

gt−τ,1,τ(θ0) 0

0 gt−τ,2,τ(θ0)

⎤⎥⎥⎥⎥⎥⎦
.

Since Ht(θ) is not a.s. differentiable over a neighborhood of θ0 in this specification, it violates

Assumption 4, such that we cannot obtain a robust version of this test based on our theoret-

ical framework. We include this test however to show this intuitive specification suffers from

considerable size distortions. Nolde and Ziegel (2017) also note that using lagged elements of

3Alternatively, we could employ the bootstrap-based robust tests of Escanciano and Olmo (2011).
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gt,τ(θ0) can result in bad performance in small samples.

The next conditional test statistic, T
(3)
P , uses

T
(3)
P ∶Ht(θ0) =

⎡⎢⎢⎢⎢⎢⎣

σt(θ0) 0

0 σt(θ0)

⎤⎥⎥⎥⎥⎥⎦
,

with σt(θ0) denoting the conditional volatility of Yt. We use σt(θ0) as conditioning variable

because it is a good proxy for financial risk at time t and because it is smoother than lagged

elements of gt,τ(θ0). Assumption 4 may therefore hold for this specification depending on the

conditional volatility model under consideration. It holds, for example for the (exponentially

weighted) moving average (EWMA) estimator of the conditional variance.

Finally, we consider the conditional test statistic T
(4)
P based on

T
(4)
P ∶Ht(θ0) =

1

σt+τ
[m2,t(θ0) −m1,t(θ0)

α
1] .

This particular choice of Ht(θ0) follows Nolde and Ziegel (2017), who show that this choice

results in an approximation of the test of McNeil and Frey (2000), and who prefer this speci-

fication in their application. In practice we only use the information set up to and including

time t to estimate σt+τ(θ0).

For comparison, we consider the unconditional and conditional ES backtests of Du and

Escanciano (2016). These tests fall outside our framework, because their testing condition

cannot be written as in Eq. (7). Let D̂t = 1
α1(α ≤ ût)(α − ût), where ût = Gt−1(Yt, θ̂t), with

Gt−1(⋅, θ̂t) an estimator of the conditional cdf of Yt. The unconditional ES test of Du and

Escanciano (2016) is based on test statistic

DE
(1)
P =

⎛
⎝

1√
P
√
α(1/3 − α/4) + dU

T−τ+1

∑
t=R

(D̂t − α/2)
⎞
⎠

2

.

The conditional ES test uses test statistic

DE
(2)
P = (P − 1) (1 + dC)−1ξ̃2

P,1,

which includes a measure for autocorrelation in the D̂t sequence ξ̃P,j = γ̃P,j/γ̃P,0 with γ̃P,j =

(P − j)−1∑T−τ+1
t=R+j (D̂t − α/2)(D̂t−j − α/2). The terms dU and dC are additional terms in the

asymptotic covariance matrix due to estimation error further elaborated on in Du and Escan-
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ciano (2016). Both test statistics converge in distribution to a χ2
1-distributed random variable.

Du and Escanciano (2016) also consider conditional tests that include autocorrelations ξ̃P,j with

more distant lags, e.g. j = 5. We therefore also consider

DE
(3)
P = (P − 5) ξ′P,1∶5(Ij +DC)−1ξP,1∶5,

with ξP,1∶j = (ξP,1, . . . , ξP,j)′, Ij the j × j identity matrix, and where DC is given in Du and

Escanciano (2016).

4 Simulation study

4.1 Design

We investigate the finite sample performance of the VaR and ES tests by means of Monte Carlo

experiments. We report empirical rejection rates in 1,000 Monte Carlo samples for the tests at

the 5% significance level. Both the lengths of the in-sample window R and of the out-of-sample

window P can either be 500 or 2500. The resulting four combinations account for scenarios

that include short or long out-of-sample periods, as well as scenarios that are substantially or

only slightly impacted by estimation error. We consider one-step ahead VaR and ES forecasts

at coverage levels 1−α = 97.5% and 95%. The Basel committee requires evaluation of ES at the

97.5% coverage level. We include 95% to assess how size and power are affected by the coverage

level used.

Our simulation setup is similar to Du and Escanciano (2016). In all experiments, we consider

an AR(1)-GARCH(1,1) null model for Yt, (see Bollerslev, 1987) given by,

Yt = −a0Yt−1 + vt,

vt = σtεt,

σ2
t = ω0 + α0v

2
t−1 + β0σ

2
t−1,

such that our risk measure forecasts are equal to

VaRt(α) = −a0Yt−1 − σtF −1(α),

ESt(α) = −a0Yt−1 − σtE[εt∣εt ≤ F −1(α)]

13



where εt follows a standardized distribution, of which F−1(α) denotes its α-quantile. In partic-

ular, we consider the normal and the student’s t distribution with ν = 5 degrees of freedom.4

In the simulation study we focus on fixed window estimation, because rolling or expanding

window designs are too computationally costly. In each simulation we estimate θ0 by the one-

stage MLE estimator θ̂R over the first R observations.

We need several quantities to estimate the estimation error effects. Given the continuous

differentiability of mt(θ) we use numerical approximation to find Jt(θ̂R) for each t = R+1, . . . , T .

Moreover, in our setting lt(θ̂R) = ∂ log[f ((Yt − ât−1Yt−1)/σt(θ̂R))−σt(θ̂R)]/∂θ, with f denoting

the pdf of εt, and B̂P denotes a strongly consistent estimator of the asymptotic covariance matrix

of
√
R(θ̂R − θ0), for any t = R + 1, . . . , T , which can be obtained as the negative of the inverted

Hessian matrix, i.e., B̂P = [ − 1
R ∑

R
t=1 ∂

2 log[fν̂t−1
((Yt − ât−1Yt−1)/σt(θ̂R)) − σt(θ̂R)]/(∂θ∂θ′)]

−1
.

We employ numerical approximation to obtain them.

For the power analysis we consider three data generating processes.

� A1. AR(1)-GARCH(1,1) with mixed-normal innovations:

Yt = 0.05Yt−1 + vt,

vt = σtεt

σ2
t = 0.05 + 0.1v2

t−1 + 0.85σ2
t−1,

εt ∼ [ 1

1 + qN(0, q) + q

1 + qN(0,1/q)], q = 1 + 3

2
c;

� A2. AR(1)-GJR-GARCH(1,1):

Yt = 0.05Yt−1 + vt,

vt = σtεt

σ2
t = 0.05 + (0.1 − 0.1c)v2

t−1 + 0.2c1(εt−1 < 0)v2
t−1 + 0.85σ2

t−1,

εt ∼ t5;

4Specifically, E[εt∣εt ≤ F −1
(α)] = φ(Φ−1

(α))/α when εt ∼ N(0,1) with φ and Φ denoting its pdf and
cdf. When εt follows a standardized Student’s t distribution with ν degrees of freedom, E[εt∣εt ≤ F

−1
(α)] =

√
ν−2
ν

ν+(G−1ν (α))
2

ν−1

gν(G
−1
ν (α))
α

, with G−1
ν (α) the α-quantile of the standard t-distribution with ν degrees of free-

dom, and gν(x) =
Γ( ν+1

2
)

Γ( ν
2
)
√
πν

(1 + x2

ν
)
− ν+1

2 .
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� A3. AR(1)-GARCH(1,1)-in-Mean:

Yt = 0.05Yt−1 + 2.5c(σ2
t−1 − 1) + vt,

vt = σtεt,

σ2
t = 0.05 + 0.1v2

t−1 + 0.85σ2
t−1

εt ∼ t5.

Similar DGPs have been studied in Du and Escanciano (2016) and Escanciano and Olmo

(2010). In the simulation study we let the hyperparameter c vary over [0,1]. When c = 0

the DGP actually corresponds with the AR(1)-GARCH model used to obtain the VaR and

ES forecasts, whereas larger values of c indicate larger deviations from the null model. In

specification A1 the error distribution differs from the null model. As c increases the error

distribution becomes leptokurtic in a way that is not captured by the Student’s t-distribution.5

Having c = 1 results in a kurtosis of 3 + 27/10 = 5.7, which corresponds to values found in the

empirical literature. In specification A2 the volatility equation differs from the null model for

c ≠ 0 by introducing a leverage effect, corresponding with the GJR-GARCH model of Glosten

et al. (1993). The parameterization ensures stationarity. Specification A3 corresponds with

a GARCH-in-Mean model for c ≠ 0. Setting c = 1 results in a GARCH-in-Mean model with

coefficient 2.5 which is similar in magnitude to Du and Escanciano (2016), whereas smaller

values of c around 0.10 are more in line with estimates found in, e.g., Christensen et al. (2012).

We subtract the unconditional value of the variance, which is equal to 1, from σ2
t−1 in the mean

equation to impose that the unconditional mean of Yt remains zero, because the forecasting

model does not have an intercept term. If the tests detect deviations from the null, it indicates

that the tests can pick up deviations in the conditional mean equation. By studying these DGPs

we believe we cover the most important types of misspecification from the null model.

4.2 Results

Table 1 provides size properties of the tests for the null model with standard normal errors

and the different combinations of R and P . The standard versions of the tests generally lead

to rejection rates that exceed the nominal size of 5%. This result corresponds with findings

in Escanciano and Olmo (2010) and Du and Escanciano (2016). The rejection rates for the

5The kurtosis of εt in specification A1 equals 3(q − 1)2
/q + 3 = 27c2/(6c + 4) + 3.
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conditional VaR test EO
(2)
P and conditional ES test DE

(2)
P are only marginally larger than 5%.

They vary between 0.07 and 0.31 for the VaR test EO
(1)
P , the joint VaR and ES tests T

(1)
P and

T
(4)
P , and the ES tests DE

(1)
P and DE

(3)
P . The test T

(2)
P scores particularly bad, in line with the

findings of Nolde and Ziegel (2017). Test T
(3)
P also shows bad size properties, indicating that

the conditional volatility may not be a good instrument in testing.

[Table 1 about here.]

The robust tests that we propose have better size properties, with rejection rates that are

closer to 5%, in particular for EO
(1)
P , T

(1)
P , T

(4)
P , DE

(1)
P and DE

(3)
P . For these tests, rejection

rates are now all below 0.12, with many rates around 0.07, whereas we find rates as high as

0.31 and many around 0.15 for the standard versions. We cannot include a robust version of

T
(2)
P , because our framework does not allow for non-smooth Ht. The robust version of T

(3)
P

still suffers from substantial size distortions. It means that the robust versions of the tests are

also sensitive to the choice of conditioning variables, as the robust version of T
(4)
P has good size

properties.

Comparing the different combinations R/P of in-sample and out-of-sample window gives

some further insights in the performance of the tests. The difference in rejection rates of

the standard and robust tests show that the impact of estimation error is largest for R,P =

(500,2500), as suggested by the theory. Rejection rates are closest to 5% when both the in-

sample and ouf-of-sample windows are long. The robust tests still show large distortions for the

combination of R,P = (2500,500), which indicates that the statistics may not have completely

converged to the normal distribution when the out-of-sample window is short. We do not

observe a systematic effect of the coverage level.

Table 2 shows that the using the Student’s distribution with 5 degrees of freedom for the

errors leads to somewhat different results. The size properties of the standard VaR-tests are a

bit better. The joint tests for VaR and ES perform a bit worse, in particular for the (R,P ) =

(500,2500) combination. The changes in rejections rates for the DE-tests are mixed. However,

differences are small. The size distortions are again a lot smaller when the robust versions of

the tests are used. However, the size distortions for the T
(1)
P and T

(4)
P tests are larger than when

the error distribution is normal. The robust versions of the DE-tests perform equally well for

the normal as the Student’s t distribution for the errors. As before T
(3)
P does not work well.

The conditional ES and VaR tests are less affected by fat-tailedness of the standardized errors.
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Given that we only occasionally find standardized errors to be t-distributed with as low as five

degrees of freedom, these results suggest that the correction for estimation errors should work

fairly well in practice for the joint (VaR,ES) tests T
(1)
P and T

(4)
P .

[Table 2 about here.]

To compare the power of the different standard and robust tests, we calculate empirical

rejection rates for the three DGPs A1 to A3, as we let c take values on an equally spaced, five-

point grid of [0,1]. As c increases the deviation from the null model increases as well. We focus

on the results for R/P = 2500/2500, because the size experiments suggest that the distribution

of the robust statistics is close to normal when P = 2,500. Our choice for R = 2,500 is guided

by the size distortions of the standard tests that are not too large to make a comparison with

the robust tests irrelevant. When risk is measured on a daily basis, 2,500 observations roughly

correspond with 10 years, which is easily attainable for many financial time series. We cover the

tests T
(1)
P , T

(4)
P , DE

(1)
P , and DE

(3)
P , because we are mostly interested in the power properties

of the joint (VaR,ES) tests, and the robust versions we propose. We include DE
(1)
P and DE

(3)
P

as benchmarks.

We present the power curves of the different tests for the different DGPs in Fig. 4. As can

be expected, the robust versions of the test have less power than the standard versions, but the

difference is generally limited with rejection rates of robust tests being 0.10-0.15 lower. The

performance of the tests shows quite some variation over the different DGPs, meaning that

there is not a clear (robust) test that works well in all the cases of misspecification that we

consider.

[Figure 1 about here.]

The power curves in Fig. 1a show that both the standard and robust versions of T
(1)
P and

T
(4)
P detect the mixed-normal alternative A1 well. This result holds in paricular for values of

c > 0.5, which corresponds with kurtosis exceeding 27/28 + 3 ≈ 4. The rejection rates of both

versions of DE
(1)
P increase only slightly for c > 0.5, but stay below 0.2, whereas the rejection

rates of DE
(3)
P do not seem to increase at all.

The results for the AR-GJR-GARCH alternative A2 in Fig. 1b show that the only test with

some power against it is DE
(3)
P , both in the standard and robust version. However, for a value

of c = 1, in which only negative innovations affect the volatility in the next period, the rejection
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rates do not exceed 0.35 (standard) and 0.30 (robust). Apparently, the misspecification of the

volatility equation in the null model leads to autocorrelation in the scaled ES distances on

which test DE
(3)
P is based. The unconditional tests T

(1)
P and DE

(1)
P do not have much power

against this specification, and neither has test T
(4)
P . These results are in line with Du and

Escanciano (2016), who note that the conditional tests have more power against AR-ARCH(2)

and AR-EGARCH alternatives, which also only differ in terms of the volatility equation.

The analysis of the GARCH-in-Mean alternative A3 in Fig. 1c shows that predominantly

T
(1)
P has some power in detecting the conditional mean misspecification. The rejection rate of

the standard version rises from 0.13 at c = 0 (so it is oversized) to 0.47, and the robust version

shows an increase from 0.07 to 0.3. Perhaps surprisingly, the conditional tests DE
(3)
P and T

(4)
P

are not able to detect the misspecification in the mean equation well. Under this specification,

an increase in the variance at t − 1 leads to a wider density that is shifted to the right. In the

left tail, these effects cancel to some extent, which may explain the low power of these tests.

The rejection rates of both versions of DE
(1)
P also do not rise beyond 0.2. Our result that

DE
(1)
P and DE

(3)
P do not have much power against the GARCH-in-Mean alternative A3 differs

from the findings in Du and Escanciano (2016). This might be caused by our parameterization

that keeps the unconditional mean at zero, whereas the previous authors do not impose this

restriction. In separate simulations we indeed find that without imposing this restriction the

tests do have some power.

We conclude that the robust versions of the tests perform quite well compared to the stan-

dard versions, and that their better size properties come at the expense of only limited reductions

in power. For two out of the three cases of misspecification, the unconditional test T
(1)
P performs

well. We find that tests T
(4)
P and DE

(3)
P work well in one of the three cases, whereas DE

(1)
P

does not seem to detect any of the misspecifications. Our results for the other combinations

of R and P in Appendix D confirm these conclusions. Both test versions have less power for

out-of-sample window size P = 500. Conform the theoretical result that the effect of estimation

error is larger when the in-sample window R is shorter, the difference in power is larger for the

combination R/P = 500/2500.
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5 Empirical analysis

In our empirical application we evaluate VaR and ES forecasts for daily returns on the FTSE 100

index as produced by three different models: AR-GARCH, AR-GJR-GARCH, and AR-HEAVY.

All three models make use of an AR(1) specification for the conditional mean,

Yt = a0Yt−1 + vt (18)

vt = σtεt, (19)

where the innovations εt follow a standardized Student’s t distribution with degrees of freedom

parameter ν which is also estimated. The models differ in the specification of the conditional

volatility σt. For the AR-GJR-GARCH model, this is given by

σ2
t = ω0 + α0v

2
t−1 + γ0v

2
t−11{vt−1 < 0} + β0σ

2
t−1. (20)

When γ0 = 0 is imposed, the AR-GARCH model results. The HEAVY model is a GARCH-type

model that incorporates high-frequency estimates for the volatility in the conditional volatility

specification,

σ2
t = ω0 + δ0RMt−1 + β0σ

2
t−1, (21)

where RMt−1 is the realized measure calculated for the previous period. We follow Shephard

and Sheppard (2010) and use the realized kernel of Barndorff-Nielsen et al. (2008).

We consider two distinct sample periods. The first sample is defined by its out-of-sample

period that runs from July 30, 2007 to July, 30, 2009, so it contains the financial crisis. We

use 500 and 1,000 observations prior to July 30, 2007 as in-sample period (corresponding with

starting dates July 7, 2005, and July 11, 2003). The second sample runs from January 5, 2000

to April 17, 2019 (4865 observations). We split the sample at November 8, 2009, creating in-

and out-of-sample periods of similar length of approximately 2,500 observations. We refer to it

as the long sample.

We obtain the returns on the FTSE 100 index as well as the realized measure from the

Realized Library of the Oxford-Man Institute (Heber et al., 2009). Table 3 contains descriptive

statistics for the crisis and the long samples, which shows that they differ substantially. The

crisis sample has negative mean and median returns, higher volatility, and different skewness
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and kurtosis properties.

[Table 3 about here.]

We estimate the models by maximum likelihood using rolling windows of different sizes and

construct one-period-ahead forecasts, i.e. τ = 1. Table 4 provides summary statistics of the

parameter estimates for the AR-GARCH, AR-GJR-GARCH, and AR-HEAVY models using a

rolling window of 1,000 observations. The first rolling window ends at November 7, 2009, the

last at April 16, 2019. We notice that there is substantial variation in the parameter estimates

over this period, as shown by the relatively large standard deviation. The small estimates for a0

indicate weak autocorrelation of the daily returns in all specifications. The other parameters in

the AR-GARCH model fluctuate around their typical values. The introduction of the leverage

parameter in the AR-GJR-GARCH model shows that negative returns have a larger effect on

conditional volatility, as γ0 is positive. The AR-HEAVY model has smaller β0 estimates than

the GARCH models, consistent with Shephard and Sheppard (2010) who note that β0 about

0.6 is common in empirical applications. The degrees of freedom parameter ν0 is generally quite

large, suggesting that the FTSE 100 index returns are not very fat-tailed. The correction for

estimation effects should therefore work well, as suggested by the simulation study results in

Table 1.

[Table 4 about here.]

Panel A of Table 5 shows the sample fraction of daily VaR for the coverage level 1−α = 0.975,

α̂ = 1

P

T−1

∑
t=R

1[Yt+1 < V̂aRt,1], (22)

with V̂aRt,1 =mt,1(θ̂t).

All models produce too optimistic VaR forecasts, as all fractions of VaR violations exceed

the nominal 2.5%. In particular during the crisis period, the ratio of VaR violations ranges from

4.5 to 8.1%. The shorter estimation window of R = 500 leads to better violation frequencies than

R = 1,000. The AR-GJR-GARCH specification performs worst. Over the long sample period,

the violation ratios are still too large, but closer to 2.5%. The simple AR-GARCH model has

the lowest ratios, but differences are small. The differences for the different window lengths are

also small.
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[Table 5 about here.]

To evaluate the ES forecasts, we calculate the mean ES error (MESE) conditional on a VaR

violation,

MESE = 1

α̂P

T−1

∑
t=R+1

(Yt − ÊSt,1)1[Yt < V̂aRt,1)], (23)

with α̂ as in Eq. (22) and ÊSt,1 =mt,2(θ̂t). If a model is correctly specified, its MESE should be

close to zero. Positive values for MESE indicate that the ES forecast is too negative. Panel B of

Table 5 shows large deviations from zero for both GARCH models, but reasonable performance

for the AR-HEAVY model. When the estimation window consists of 500 observations, the

mean error is only 0.003% for the AR-HEAVY model, whereas the AR-GARCH model has a

mean error of 0.330%. Both AR-GARCH models generally provide too liberal ES forecasts on

average. Over the long sample the models perform much better, but without a clear winner.

Neither do we see a clear pattern related to the estimation window.

Table 6 shows the results of the standard and robust versions of the tests of Section 3

applied to the forecasts of the AR-GARCH model. We do not apply test T
(2)
P because we cannot

construct a robust version. For the crisis sample, the standard versions of the tests indicate that

the null of correct VaR and ES forecasts should be rejected. Only the conditional VaR test EO
(2)
P

and ES test DE
(2)
P do not reject the null hypothesis. However, this conclusion changes when we

account for estimation error, in particular when an in-sample window of R = 500 observations

is used and unconditional tests are applied. The p-value for EO
(1)
P increases from 0.02 to 0.12,

for T
(1)
P from 0.06 to 0.19 and for DE

(1)
P from 0.01 to 0.04. Hence, correct specification of VaR

forecasts is no longer rejected when accounting for estimation error. This is different for ES

based on tests T
(3)
P , T

(4)
P , DE

(1)
P and DE

(3)
P . When R = 1,000, p-values increase a bit for the

robust tests compared to the standard versions, but here the conclusion remains unchanged.

[Table 6 about here.]

For the long sample period, the quality of the forecasts is better. The deviations from

the theoretical values in Table 5 are much smaller than for the crisis period. Still, estimation

uncertainty has a large impact on the evaluation of these forecasts. The standard versions of

the tests give reasonable evidence to reject correct specification, but the robust versions much

less so. For R = 500, standard versions of tests EO
(1)
P , T

(3)
P , DE

(1)
P and DE

(3)
P have p-values

below 0.05. For R = 1,000, this is only the case for DE
(3)
P , with EO

(1)
P , DE

(1)
P and DE

(2)
P below
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0.10. For R = 2,500, only T
(3)
P and T

(4)
P lead to p-values above 0.10, T

(1)
P has p = 0.06 and

all others are below 0.05. The robust versions lead again to sizable increases of the p-values,

with no tests having p-values below 0.05 when R = 500, and only the p-value for DE
(3)
P below

0.05 when R = 1,000 or R = 2,500. When R = 2,500 tests EO
(1)
P , DE

(1)
P and DE

(2)
P now only

provide mild evidence against the null hypothesis.

Table 7 shows the results for the tests of the AR-GJR-GARCH forecasts. For the crisis

period, we see a similar picture emerging from the standard version of the tests, as they mostly

indicate rejection. However, in this case, estimation uncertainty has only a small effect on the

EOP and TP tests, but a large effect on DE
(1)
P and to a lesser extent DE

(3)
P , both when R = 500

and R = 1,000. For the long sample period, the findings also are similar to the AR-GARCH

model. The evidence against correct specification becomes weaker when the robust tests are

used. With standard tests, we generally reject based on EO
(1)
P , T

(1)
P , DE

(1)
P and DE

(3)
P . Moving

to robust tests, only the p-value for EO
(1)
P when R = 2,500 remains below 0.05. The increase

in p-values is again particularly large for the unconditional DE
(1)
P but not so much for the

conditional DE
(3)
P . Overall, only EO

(1)
P and DE

(3)
P provide (mild) evidence against correct

specification.

[Table 7 about here.]

The results for the AR-HEAVY model also show a milder effect of estimation uncertainty.

For the crisis period, the largest increase of a p-value is from 0.05 to 0.16 for DE
(1)
P . The

rejections by EO
(1)
P , T

(1)
P , T

(3)
P , DE

(1)
P and DE

(3)
P mostly remain when we replace the standard

versions by the robust versions. For the longer period, the largest increase in p-value is from 0.3

to 0.43 for DE
(2)
P . While some of the p-values increase from below typical thresholds of 0.05 or

0.10 to above, the conclusions derived from the tests are less impacted by estimation error in

this setting.

[Table 8 about here.]

Overall, we conclude that estimation error has a non-trivial impact on the test outcomes.

For many tests, we observe that accounting for estimation error increases p-values to such

an extent that the null hypothesis is no longer rejected. This effect occurs for long and short

estimation and evaluation windows, and is not restricted to the crisis period. Though estimation

uncertainty affects all tests that we consider, the effect seems smallest for the DE
(3)
P test, which
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is in line with the simulation result that this test has good power against misspecification of the

volatility dynamics. Finally, our finding that tests suffer less from estimation uncertainty when

forecasts by the AR-HEAVY model are evaluated may be related to the fact that this model

uses a realized volatility measure, which is more precise than the squared return used by the

two GARCH models.

6 Concluding remarks

In this paper we examine the impact of estimation error on joint backtests for Value-at-Risk

(VaR) and Expected Shortfall (ES) forecasts as proposed by Nolde and Ziegel (2017). Building

on the general framework of McCracken (2000), we demonstrate that estimation error leads to

additional terms in the asymptotic covariance matrix, which depend on the estimation scheme,

the forecast horizon, and the ratio of in-sample to out-of-sample observations. We formulate

robust tests that account for estimation error.

Using Monte Carlo simulations we show that standard tests may suffer from substantial

size distortions due to estimation error, with empirical rejection frequencies exceeding nominal

significance levels by a large margin. Robustifying the backtests generally corrects this issue

quite successfully, with the caveat that the size properties of conditional tests also depends on

the conditioning variables used. We find that the robust tests have somewhat less power than

the standard tests, but the reduction is quite modest, not exceeding 10-15%. The empirical

application to daily VaR and ES forecasts for the FTSE 100 index illustrates that the effect of

estimation error is not only a theoretical issue but also bears practical relevance. We find that

estimation error has a substantial impact on the outcomes of the backtests, with p-values often

increasing from below 0.05 to above when we switch from standard to robust versions of the

backtests. The impact that estimation error potentially has on backtests means that financial

institutions should take this into account when developing and evaluating risk measurement

procedures for ES. Because it has better theoretical properties, ES is about to replace VaR.

Ignoring the estimation uncertainty in the risk measurement procedure may actually lead to

false rejections and may hinder the further development of these procedures.
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A Assumptions

Before we state the assumptions we need to introduce some additional notation. Let Ft,τ(y) =

P (Yt+τ < y∣Wt) denote the conditional distributions, for some τ ≥ 1, and let ft,τ(y) denote the

associated densities. Moreover, for any matrix B, let ∣B∣ denote the max norm of B, let ∥ ⋅ ∥Q

denote the LQ norm for Q ∈ [0,∞) and the essential supremum if Q = ∞, and let supt denote

supR≤t≤T . Finally, define

vt(θ) = [(kt,τ(θ) −Ekt,τ(θ))′, lt(θ)]′. (24)

Assumption 1. The estimate θ̂t satisfies the expansion θ̂t − θ0 = B(t)M(t) + oP (t−1/2), with

B(t) a p×q matrix of rank p, and M(t) a q×1 vector, with (a) B(t) a.sÐ→ B, B a matrix of rank

p, (b) M(t) = t−1∑ts=1 ls(θ0), M(t) = R−1∑ts=t−R+1 ls(θ0), and M(t) = R−1∑Rs=1 ls(θ0), for the

recursive, rolling, and fixed forecasting schemes, respectively, and (c) Et−1[lt(θ0)] = 0, almost

surely, for all t = R, . . . , T .

Many estimators in the literature satisfy Assumption 1, including maximum likelihood esti-

mators and a range of GMM estimators. For instance, if θ̂t is the OLS estimator of a regression

of Yt on Zt in a fixed forecasting scheme, then

θ̂t − θ0 = B(t) 1

R

R

∑
s=1

ZsYs,

with B(t) = ( 1
R ∑

R
t=1ZtZ

′
t)
−1 a.sÐ→ (E[ZtZ ′

t])
−1

= B.

Chapter 3 of Newey and McFadden (1994) discusses similar expansions for M-estimators

and GMM estimators. For some estimators such an exact expansion does not exist. However,

it can often be shown that the expansion is accurate up to a oP (t−1/2) term. This is the case

for many non-smooth estimators. For, instance, the quantile regression estimator admit such

an approximate expansion (see, e.g. Theorem 4 of Ruppert and Carroll (1980)). Chapter 7

of Newey and McFadden (1994) provides an elaboration on such approximate expansions for

non-smooth M-estimators and GMM estimators.

Assumption 2. R,P →∞ as T →∞, and limT→∞
P
R → π, 0 ≤ π <∞.

Assumption 2 is equivalent to Assumption 2 in McCracken (2000) and allows the out-of-

sample period to grow proportionally to the in-sample period. Notice that both the in-sample
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and out-of-sample sizes must diverge simultaneously.

Assumption 3. For some r > 1, (a) (Yt, Z ′
t) is strong mixing with coefficients of size −2r/(r−1),

(b) vt(θ0) is covariance stationary, and (c) Ω is positive definite.

Assumption 3 is equivalent to Assumption 3 in McCracken (2000). Covariance stationarity

is primarily assumed for simplification of the algebra in the proofs establishing the consistency

of estimators of A, V , and ρ.

Assumption 4. For each t, let (a) Ht(θ) be (a.s.) continuously differentiable in some open

neighborhood Θ0 ⊂ Θ of θ0 with partial derivatives ∂Hi,j,k,t ≡ ∂Ht,i,j(θ)/∂θk, for all i = 1, . . . , l,

j = 1,2, and k = 1, . . . , p. Let (b) mt(θ) be (a.s.) continuously differentiable on Θ0 with Jacobian

matrix Jt(θ) ≡ ∇mt(θ), respectively. Let (c) E[lt(θ)] be continuously differentiable on Θ0 with

Jacobian matrix ∇E[lt(θ)], and for Θ(ε) = Θ(θ0, ε) ≡ {θ ∈ Rp ∶ ∣θ − θ0∣ < ε}, let there exist finite

constants C, φ > 0, and Q ≥ 2r such that for all Θ(ε) ⊂ Θ0 lt(θ) satisfies the Lipschitz condition

supt∥supθ∈Θ(ε) lj,t(θ)− lj,t(θ0)∥Q ≤ Cεφ, for j = 1, . . . ,m. Finally, let (d) G = Gt ≡ ∇E[lt(θ)]∣θ=θ0
and A = At, with

At ≡ E
⎛
⎝
Ht−1(θ0)

⎡⎢⎢⎢⎢⎢⎣

ft−1,τ(m1,t,τ(θ0)) 0

0 1

⎤⎥⎥⎥⎥⎥⎦
Jt(θ0)

⎞
⎠
.

Assumption 4 imposes (a.s.) differentiability on Ht(θ), mt(θ), and E[lt(θ)] on some neigh-

bourhood Θ of θ0, and a Lipschitz condition on lt(θ), as required in the theory of McCracken

(2000).

Assumption 5. For each t, let the conditional cdf Ft,τ(⋅) have (a.s.) continuous conditional

density ft,τ(⋅). Moreover, let ft,τ(⋅) be uniformly bounded, i.e. supt supy∈R ft,τ(y) < Cf < ∞,

and ∣ft,τ(y) − ft,τ(y′)∣ ≤ L∣y − y′∣, for all y, y′ ∈ R and each t, and some constant L <∞.

Assumption 5 imposes conditions on the conditional distribution of Yt+τ that are similar to

those imposed in Escanciano and Olmo (2010).

Assumption 6. For constants cH ∈ [1,∞] and cg ∈ [1,∞], such that 1/cH +1/cg = 1, we impose

the following moment conditions, for some arbitrary constant C <∞: (a) supt ∥Yt∥cgQ < C; (b)

supt ∥ supθ∈Θ0
∣mt(θ)∣∥cgQ < C; (c) supt ∥ supθ∈Θ0

∣Jt(θ)∣∥cgQ < C; (d) supt ∥ supθ∈Θ0
∣Ht(θ)∣∥cHQ <

C; (e) supt ∥ supθ∈Θ0
∣∂Hi,j,k,t(θ)∣∥cHQ < C, for all i = 1, . . . , l, j = 1,2, and k = 1, . . . , p; (f)

supt ∥ supθ∈Θ0
∣lt(θ)∣∥Q < C; and (g) supt supθ∈Θ0

∣∇E[lt(θ)]∣ < C.
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Assumption 6 imposes moment conditions on the relevant quantities. Notice that if ∣Ht(θ)∣

and ∣∂Hi,j,k,t(θ)∣ are uniformly bounded on Θ0 (e.g. when Ht = I2), we can set cH = ∞ and

cg = 1, such that we effectively impose 2r-moment conditions on Yt, mt(θ), Jt(θ), and lt(θ)

when we set Q = 2r.

B Proofs

B.1 Proof of Theorem 1

The result follows by application of Theorem 2.3.1 in McCracken (2000). We need to establish

that our framework satisfies the five assumptions required for Theorem 2.3.1, which we denote

MC1-MC5. MC3-MC5 are included in section C for completeness.

Conditions (a) and (b) of Assumption 1 are identical to conditions (a) and (b) of Assumption

MC1. Meeting MC1(c) follows from Assumption 1(c) by the Law of Iterated Expectation.

Finally, notice that we impose the equality θ̂t − θ0 = B(t)M(t) + oP (t−1/2), whereas McCracken

(2000) impose θ̂t − θ0 = B(t)M(t). This does not change the theory, as it only results in

additional oP (1) term in the proofs of McCracken (2000)’s Lemma A.1 and Lemma 2.3.2.

Assumption 2 is identical to Assumption MC2.

Conditions (a), (b), and (d) of Assumption MC3 are imposed as conditions (a), (b), and (c)

of Assumption 3(a,b,c). We will establish that MC3(c), MC4, and MC5 hold in the following.

MC3(c):

We establish MC3(c). Notice that

sup
t

∥ sup
θ∈Θ0

vt(θ)∥2r

≤ sup
t

∥
l

∑
i=1

sup
θ∈Θ0

kt,i,τ(θ) +
l

∑
i=1

sup
θ∈Θ0

E[kt,i,τ(θ)] +
p

∑
j=1

lj,t(θ)∥2r

≤
l

∑
i=1

sup
t

∥ sup
θ∈Θ0

kt,i,τ(θ)∥2r +
l

∑
i=1

sup
t

∥ sup
θ∈Θ0

E[kt,i,τ(θ)]∥2r +
p

∑
j=1

sup
t

∥ sup
θ∈Θ0

lj,t(θ)∥2r

≤ 2
l

∑
i=1

sup
t

∥ sup
θ∈Θ0

kt,i,τ(θ)∥2r +
p

∑
j=1

sup
t

∥ sup
θ∈Θ0

lj,t(θ)∥2r,

where the second inequality follows from the Triangle Inequality, and the third inequality follows

from Hölder’s Inequality (specifically E∣ ⋅ ∣ ≤ ∥ ⋅∥2r, r > 1/2, for scalar random variables). We can

thus establish (c) elementwise.
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Notice that gt,1,τ(θ) ≤ 1, and supθ∈Θ0
∣gt,2,τ(θ)∣ ≤ C(supθ∈Θ0

∣m(Wt−1, θ)∣ + ∣Yt∣). Moreover,

∥ sup
θ∈Θ0

kt,i,τ(θ)∥2r ≤ ∥ sup
θ∈Θ0

Ht,i,1(θ) sup
θ∈Θ0

gt,1,τ(θ)∥2r + ∥ sup
θ∈Θ0

Ht,i,2(θ) sup
θ∈Θ0

gt,1,τ(θ)∥2r

≤ ∥ sup
θ∈Θ0

∣Ht,i,1(θ)∣∥2cHr × ∥ sup
θ∈Θ0

∣gt,1,τ(θ)∣∥2cgr + ∥ sup
θ∈Θ0

∣Ht,i,2(θ)∣∥2cHr

× ∥ sup
θ∈Θ0

∣gt,2,τ(θ)∣∥2cgr

≤ C(1 + ∥ sup
θ∈Θ0

∣mt(θ)∣∥2cgr + ∥Yt∥2cgr) <∞,

where the first inequality follows from Minkowski’s Inequality, the second inequality follows from

Hölder’s Inequality, since under Assumption 6 cH ∈ [1,∞] and cg ∈ [1,∞), and 1/cH + 1/cg = 1.

Moreover, by Hölder’s Inequality we have under Assumption 6 that supt ∥ supθ∈Θ0
Ht,i,j(θ)∥2cHr <

C, ∥Yt∥2cgr < C, supt ∥ supθ∈Θ0
∣mt(θ)∣∥2cgr < C, and supt ∥ supθ∈Θ0

lj,t(θ)∥2r < C. The result

follows.

MC4:

We establish Assumption MC4. Again we can work elementwise in terms of kt,τ(θ) and lt(θ).

By Assumption 4 E[lt(θ)] is continuously differentiable on Θ0. By the Mean Value Theorem we

obtain the expansion E[li,t(θ)] = E[li,t(θ0)]+(∂E[li,t(θ̃)]/∂θ)(θ−θ0), for some θ̃ between θ and

θ0 (elementwise). Additionally, under Assumption 6 we have supt supθ∈Θ0
∣∂E[li,t(θ)]/∂θ∣ < C,

and G = Gt.

Now notice

E[kt,i,τ(θ)] = E[Ht,i,j(θ)Et[gt,j,τ(θ)]].

Under Assumption 4 Hi,j,t−1(θ) is (a.s) differentiable on Θ0, and under the conditions on

Ft(⋅) in Assumption 5 Et[gt,j,τ(θ)] is (a.s.) differentiable on Θ0 with derivative

∂Et[gt,1,τ(θ)]/∂θ = ft,τ(mt,1(θ)) × ∂mt,1(θ)/∂θ,

∂Et[gt,2,τ(θ)]/∂θ = ∂mt,2(θ)/∂θ.

Hence, employing Leibniz’ Integral Rule, we can obtain the mean value expansions

E[kt,i,τ(θ)] = E[kt,i,τ(θ0)] + (∂E[kt,i,τ(θ̃)]/∂θ)(θ − θ0),
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with

∂E[kj,t,τ(θ)]/∂θ = E[∂kj,t,τ(θ)/∂θ]

= E[Ht,i,j(θ) × ∂Et[gt,j,τ(θ)]/∂θ + ∂Ht,i,j(θ)/∂θ ×Et[gt,j,τ(θ)]].

That suptE[ supθ∈Θ0
∣∂kt,i,τ(θ)/∂θ∣] < C follows if supt ∥ supθ∈Θ0

∣∂Ht−1,i,j(θ)/∂θ∣∥cH < C,

and supt ∥ supθ∈Θ0
∣∂Jk,l,t,τ(θ)/∂θ∥cg < C, and these conditions are imposed in Assumption 6.

Finally, notice that Et[gt,τ(θ)]∣θ=θ0 = 0 (a.s) under H0, such that we find the specification of

At in (10). That A = At follows under Assumption 4. The result follows.

MC5:

We establish MC5, by showing (i) supt∥supθ∈Θ(ε) kt,i,τ(θ) − kt,i,τ(θ0)∥Q ≤ Cεφ, for all i =

1, . . . , l, and (ii) supt∥supθ∈Θ(ε) lj,t(θ) − lj,t(θ0)∥Q ≤ Cεφ, for all j = 1, . . . , p. Condition (ii) is

imposed under Assumption 4.

To establish (ii) notice that

∥ sup
θ∈Θ(ε)

gt,j,τ(θ) − gt,j,τ(θ0)∥Q

≤ ∥ sup
θ∈Θ(ε)

Ht,i,j(θ)(gt,j,τ(θ) − gt,j,τ(θ0)) + gt,j,τ(θ0)(Ht,i,j(θ) −Ht,i,j(θ0))∥Q

≤ ∥ sup
θ∈Θ(ε)

Ht,i,j(θ)(gt,j,τ(θ) − gt,j,τ(θ0))∥Q + ∥ sup
θ∈Θ(ε)

gt,j,τ(θ0)(Ht,i,j(θ) −Ht,i,j(θ0))∥Q

≤ ∥ sup
θ∈Θ

Ht,i,j(θ)∥cHQ × ∥ sup
θ∈Θ(ε)

gt,j,τ(θ) − gt,j,τ(θ0)∥cgQ

+ ∥ sup
θ∈Θ(ε)

Ht,i,j(θ) −Ht,i,j(θ0)∥cHQ × ∥ sup
θ∈Θ

gt,j,τ(θ)∥cgQ

That supt ∥ supθ∈Θ(ε)Ht,i,j(θ)∥cHQ < C and supt ∥ supθ∈Θ(ε) gt,j,τ(θ)∥cgQ < C follows from As-

sumption 6 and applying steps as in the preceding.

By (a.s.) differentiability ofHt,i,j(θ) on Θ0 under Assumption 4 we have ∥ supθ∈Θ(ε)Ht,i,j(θ)−

Ht,i,j(θ0)∥cHQ < ∥ supθ∈Θ0
∣∂Ht,i,j(θ)/∂θ∣∥cHQ supθ∈Θ(ε) ∣θ − θ∣ < Cε, where the last inequality fol-

lows under Assumption 6.

Now notice that, for any ξ > 1, ∣gt,1,τ(θ)−gt,1,τ(θ0)∣ξ ≤ ∣gt,1,τ(θ)−gt,1,τ(θ0)∣, since ∣gt,1,τ(θ)∣ ≤ 1.

Hence ∥gt,1,τ(θ) − gt,1,τ(θ0)∥cgQ ≤ (E∣gt,1,τ(θ) − gt,1,τ(θ0)∣)
1/(cgQ)

.
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By monotonicity of the indicator function, it follows that (a.s.)

sup
θ,θ′∈Θ(ε)

∣gt,1,τ(θ) − gt,1,τ(θ′)∣ = gt,1,τ (θmax(Wt)) − gt,1,τ (θmin(Wt)) ,

where θmax(Wt) maximizes m1(Wt−1, ⋅) and θmin(Wt) minimizes m1(Wt−1, ⋅) over Θ(ε), for

a given Wt. Moreover, we have Et[gt,1,τ (θmax(Wt)) − gt,1,τ (θmin(Wt))] = Ft,τ(θmax(Wt)) −

Ft,τ(θmin(Wt)) ≤ Cf supθ∈Θ ∣Jt(θ)∣×2ε, with Cf <∞ the upperbound imposed in Assumption 5.

Hence,

∥ sup
θ∈Θ(ε)

gt,1,τ(θ) − gt,1,τ(θ0)∥
cgQ

≤ (E sup
θ∈Θ(ε)

∣gt,1,τ(θ) − gt,1,τ(θ0)∣)
1/(cgQ)

≤ (E[Et−1[gt,1,τ((θmax(Wt)) − gt,1,τ((θmin(Wt)])]
1/(cgQ)

≤ (2Cf)1/(cgQ)E[sup
θ∈Θ0

∣Jt(θ)∣]1/(cgQ) × ε1/(cgQ)

That suptE[supθ∈Θ0
∣Jt(θ)∣] < ∞ is implied by supt ∥ supθ∈Θ0

∣Jt(θ)∣∥cgQ, as imposed in As-

sumption 6.

Finally, it is easy to see that for all θ ∈ Θ(ε) gt,2,τ(θ) safisfies the Lipschitz condition

∣gt,2,τ(θ) − gt,2,τ(θ0)∣ ≤ ∣mt(θ) −mt(θ0)∣ ≤ supθ∈Θ0
∣Jt(θ)∣∣θ − θ0∣ (a.s.), with the second inequality

following from the Mean Value Theorem.

Hence, supt ∥ supθ∈Θ(ε) ∣gt,2,τ(θ)−gt,2,τ(θ0)∣∥cgQ ≤ supt ∥ supθ∈Θ0
∣Jt(θ)∣∥cgQ×ε, which is bounded

under Assumption 6. The result follows.

B.2 Proof of Corollary 1

We first consider ÂP . The result follows from similar steps as in the proof of Theorem 3 in

Engle and Manganelli (2004). For completeness we include the proof for a specific term in the

definition of ÂP :

âP = 1

P

T−τ+1

∑
t=R

Ht,i,j(θ̂t)(2ĉP )−11(∣Yt+τ −mt,1(θ̂t)∣ < ĉP )Jk,l,t(θ̂t).

The proof for other terms contained in ÂP follow along similar lines, since conditions imposed

on all elements of Ht(⋅) and Jt(⋅) are equivalent.
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Define

ãP = 1

P

T−τ

∑
t=R

Ht,i,j(θ0)(2cP )−11(∣Yt+τ −mt,1(θ0)∣ < cP )Jk,l,t(θ0),

and

aP = E[ 1

P

T−τ

∑
t=R

Ht,i,j(θ0)ft,τ(mt,1(θ0))Jk,l,t(θ0)].

We will first establish âP = ãP + oP (1), and subsequently ãP = aP + oP (1).

Also define

ε̂t = Yt+τ −mt,1(θ̂t),

ε0,t = Yt+τ −mt,1(θ0),

and

δt(θ) =mt,1(θ) −mt,1(θ0).

Then,

∣âP − ãP ∣

≤ cP
ĉP

RRRRRRRRRRR
(2PcP )−1 ×

T−τ

∑
t=R

⎧⎪⎪⎨⎪⎪⎩
[1(∣ε̂t∣ < ĉP ) − 1(∣ε0,t∣ < cP )]Ht,i,j(θ̂t)Jk,l,t(θ̂t)

+ 1(∣ε0,t∣ < cP )(Ht,i,j(θ̂t) −Ht,i,j(θ0))Jk,l,t(θ̂t))

+ 1(∣ε0,t∣ < cP )(Jk,l,t(θ̂t) − Jk,l,t(θ0))Ht,i,j(θ0)

+ cP − ĉP
cP

1(∣ε0,t∣ < cP )Ht,i,j(θ0)Jk,l,t(θ0)
⎫⎪⎪⎬⎪⎪⎭

RRRRRRRRRRR
,
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such that we have, for P sufficiently large, (a.s.) bounds

∣âP − ãP ∣

≤ cP
ĉP

(2PcP )−1 ×
T−τ

∑
t=R

⎧⎪⎪⎨⎪⎪⎩
{1(∣ε0,t − cP ∣ < ∣δt(θ̂t)∣ + ∣ĉP + cP ∣)

+ 1(∣ε0,t + cP ∣ < ∣δt(θ̂t)∣ + ∣ĉP + cP ∣)} sup
θ∈Θ0

∣Ht,i,j(θ)∣ sup
θ∈Θ0

∣Jk,l,t(θ)∣)

+ 1(∣ε0,t∣ < cP ) sup
θ∈Θ0

∣∂Ht,i,j(θ)/∂θ∣ × ∣θ̂t − θ0∣ × sup
θ∈Θ0

∣Jt(θ)∣

+ 1(∣ε0,t∣ < cP ) sup
θ∈Θ0

∣∂Jk,l,t(θ)/∂θ∣ × ∣θ̂t − θ0∣ × sup
θ∈Θ0

×∣Ht(θ)∣

+ cP − ĉP
cP

1(∣ε0,t∣ < cP ) sup
θ∈Θ0

∣Ht(θ)∣ × sup
θ∈Θ0

∣Jt(θ)∣
⎫⎪⎪⎬⎪⎪⎭

≡ cP
ĉP

(A1 +A2 +A3 +A4),

(25)

by the Mean Value Theorem, and Assumptions 4 and 6 (see Engle and Manganelli (2004) for

elaboration).

For P sufficiently large we can pick any d > 0, such that eventually ∣cP − ĉP ∣/cP < d, and

c−1
P supt ∣θ̂t − θ0∣ < d, where the latter inequality follows from Lemma A.1 in McCracken (2000),

which holds under the assumptions imposed in our Theorem 1. Given the inequality in (25),

we can show E[Ai] = O(d), for i = 1, . . . ,4, such that we obtain ∣âP − ãP ∣ = oP (1) from Markov’s

inequality.

We will show E(A1) = O(d), with the other equalities following from similar steps.
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Notice,

E[A1]

≤ (2PcP )−1 ×
T−τ

∑
t=R

E

⎧⎪⎪⎨⎪⎪⎩
{1(∣ε0,t − cP ∣ < sup

θ∈Θ0

∣Jt(θ)∣ × ∣θ̂t − θ0∣ + ∣ĉP + cP ∣)

+ 1(∣ε0,t + cP ∣ < sup
θ∈Θ0

∣Jt(θ)∣ × ∣θ̂t − θ0∣ + ∣ĉP + cP ∣)}

× sup
θ∈Θ0

∣Ht,i,j(θ)∣ sup
θ∈Θ0

∣Jk,l,t(θ)∣)
⎫⎪⎪⎬⎪⎪⎭

≤ (2PcP )−1 ×
T−τ

∑
t=R

E{4dCfcP (sup
θ∈Θ0

∣Jt(θ)∣ + 1) × sup
θ∈Θ

∣Ht(θ)∣ × sup
θ∈Θ0

∣Jt(θ)∣}

≤ P −1
T−τ

∑
t=R

4dCf∥(sup
θ∈Θ0

∣Jt(θ)∣ + 1) × sup
θ∈Θ0

∣Ht(θ)∣ × sup
θ∈Θ0

∣Jt(θ)∣∥
1

≤ 4dCf sup
t

∥(sup
θ∈Θ0

∣Jt(θ)∣ + 1) × sup
θ∈Θ0

∣Ht(θ)∣ × sup
θ∈Θ0

∣Jt(θ)∣∥
1

≤ 4dCfK,

with K some finite constant, and where the first inequality follows from noting that, e.g.,

Et[1(∣ε0,t−cP ∣ < y)] = Ft,τ(y+cP )−Ft,τ(−y+−cP ) ≤ Cf ∣y+cP ∣, for all y ∈ R, and Ht(θ) and Jt(θ)

are Ft-measurable functions, and the last inequality follows from the bounds in Assumption 6

and Hölder’s Inequality. For instance, notice

∥sup
θ∈Θ

∣Ht(θ)∣ × sup
θ∈Θ

∣Jt(θ)∣2∥1

≤ ∥sup
θ∈Θ

∣Jt(θ)∣2∥cg × ∥ sup
θ∈Θ

∣Ht(θ)∣∥cH

≤ (∥sup
θ∈Θ

∣Jt(θ)∣∥cgQ)
2
× ∥ sup

θ∈Θ
∣Ht(θ)∣∥cH <∞,

where the first inequality follows from 1/cH + 1/cg = 1, the second inequality from Q > 2 as

imposed in Assumption 4, and the third inequality from Assumption 6.

That E[Ai] = O(d), for i = 2,3,4, follows from the bounds in Assumption 6.

Now we establish ãP = aP + oP (1).
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Rewrite

∣ãP − aP ∣

= (2PcP )−1
T−τ+1

∑
t=R

{[1(∣ε0,t∣ < cP ) −Et[1(∣ε0,t∣ < cP )]]Ht,i,j(θ0)Jk,l,t(θ0)}

+ P −1
T−τ+1

∑
t=R

{(2cP )−1[Et[1(∣ε0,t∣ < cP )] −Et[ft,τ(mt,1(θ0))]]Ht,i,j(θ0)Jk,l,t(θ0)}

The first term has zero mean by a martingale difference sequence property, and has variance

equal to

(2PcP )−2E{
T−τ+1

∑
t=R

[1(∣ε0,t∣ < cP ) −Et[1(∣ε0,t∣ < cP )]]Ht,i,j(θ0)Jk,l,t(θ0)}
2

≤ (4Pc2
P )−1 sup

t
E[sup

θ∈Θ0

∣Ht(θ)∣2 sup
θ∈Θ0

∣Jt(θ)∣2] = o(1),

where the first inequality follows from the cross-terms being zero by the martingale difference

sequence property, and the equality in the last display follows from Hölder’s Inequality and the

moment bounds in Assumption 6. Hence, the first term converges to zero in mean-square, and

therefore in probability.

To show convergence in probability to zero of the second term note that

∣(2cP )−1[Et[1(∣ε0,t∣ < cP )] −Et[ft,τ(mt,1(θ0))]]∣

≤ ∣(2cP )−1∫
cP

−cP
ft,τ(y)dy − ft,τ(mt,1(θ0))∣

≤ ∣(2cP )−12cP ft,τ(y∗) − ft,τ(mt,1(θ0))∣

≤ L∣cP ∣ = oP (1),

where y∗ = argmaxy∈[−cP ,cP ]ft,τ(y), and the third inequality follows from Assumption 5. By

substituting, and noting that P −1∑T−τ+1
t=R Ht,i,j(θ0)Jk,l,t(θ0) converges in probability to a finite

limit by a LLN for mixing sequences (see White (2001, Cor. 3.48)) under Assumptions 3 and 6.
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C McCracken (2000) assumptions

Assumption MC3. For some r > 1, (a) (Yt, Z ′
t) is strong mixing with coefficients of size

−2r/(r − 1), (b) vt(θ0) is covariance stationary, and (c) for an open neighborhood Θ of θ0,

supt ∥ supθ∈Θ vt(θ)∥2r <∞, (d) Ω is positive definite.

Assumption MC4. For each i ∈ {1, . . . , l + q}: (a) E[vi,t(θ)] is continuously differentiable in

the neighborhood Θ of θ0 admitting a mean value expansion E[vi,t(θ)] = E[vi,t(θ0)+(∂E[vi,t(θ̃)]

/∂θ)(θ − θ0)], with vi,t(θ̃) a scalar, θ a p × 1 vector, and θ̃ on the line between θ and θ0, (b)

there exists a finite constant D such that supt supθ∈Θ∣∂E[vi,t(θ)]/∂θ∣ < D, and (c) for all t,

G = Gt ≡ ∂E[lt(θ)]/∂θ∣θ=θ0 and F = Ft ≡ ∂E[kt,τ(θ)]/∂θ∣θ=θ0.

Assumption MC5. Let Θ(ε) = Θ(θ0, ε) ≡ {θ ∈ Rp ∶ ∣θ − θ0∣ < ε}. There exist finite constants

C, φ > 0, and Q ≥ 2r such that for all Θ(ε) ⊂ Θ, supt∥supθ∈Θ(ε)(vt(θ) − vt(θ0))∥Q ≤ Cεφ.

D Additional power plots

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]
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Figure 1: Empirical rejection rates for DGPs A1, A2, and A3. R/P = 2500/2500.
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This figure plots the empirical rejection rates of the standard and robust versions of tests T
(1)
P ,

T
(4)
P , DE

(1)
P and DE

(3)
P as a function of c which determines the deviation from the null model.

The alternative models are specified as A1, A2 and A3. We calculate VaR and ES for a coverage
level of 1 − α = 97.5%, and use an in-sample and out-of-sample window of R = P = 2,500. We
evaluate the test statistic with a 5% significance level and use 1,000 simulations.
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Figure 2: Empirical rejection rates for DGPs A1, A2, and A3. R/P = 500/500.
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This figure plots the empirical rejection rates of the standard and robust versions of tests T
(1)
P ,

T
(4)
P , DE

(1)
P and DE

(3)
P as a function of c which determines the deviation from the null model.

The alternative models are specified as A1, A2 and A3. We calculate VaR and ES for a coverage
level of 1 − α = 97.5%, and use an in-sample and out-of-sample window of R = P = 500. We
evaluate the test statistic with a 5% significance level and use 1,000 simulations.
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Figure 3: Empirical rejection rates for DGPs A1, A2, and A3. R/P = 2,500 /500.
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This figure plots the empirical rejection rates of the standard and robust versions of tests

T
(1)
P , T

(4)
P , DE

(1)
P and DE

(3)
P as a function of c which determines the deviation from the null

model. The alternative models are specified as A1, A2 and A3. We calculate VaR and ES for a
coverage level of 1 − α = 97.5%, and use an in-sample and out-of-sample window of R = 2,500
and P = 500, respectively. We evaluate the test statistic with a 5% significance level and use
1,000 simulations.

40



Figure 4: Empirical rejection rates for DGPs A1, A2, and A3. R/P = 500 /2,500.
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This figure plots the empirical rejection rates of the standard and robust versions of tests

T
(1)
P , T

(4)
P , DE

(1)
P and DE

(3)
P as a function of c which determines the deviation from the null

model. The alternative models are specified as A1, A2 and A3. We calculate VaR and ES for
a coverage level of 1 − α = 97.5%, and use an in-sample and out-of-sample window of R = 500
and P = 2,500, respectively. We evaluate the test statistic with a 5% significance level and use
1,000 simulations.
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Table 1: Empirical rejection rates in the size experiments with normal errors

Panel A: Standard Tests

VaR tests Joint (VaR,ES) tests ES tests

Unc. Cond. Unc. Cond. Unc. Cond.

R/P EO
(1)
P EO

(2)
P T

(1)
P T

(2)
P T

(3)
P T

(4)
P DE

(1)
P DE

(2)
P DE

(3)
P

Coverage level 1 − α = 97.5%

500/500 0.13 0.06 0.20 0.45 0.41 0.09 0.14 0.07 0.14

2500/500 0.07 0.06 0.15 0.44 0.36 0.08 0.09 0.06 0.12

500/2500 0.25 0.07 0.27 0.52 0.35 0.13 0.25 0.08 0.14

2500/2500 0.10 0.05 0.13 0.56 0.20 0.07 0.11 0.05 0.09

Coverage level 1 − α = 95%

500/500 0.13 0.05 0.16 0.42 0.27 0.09 0.13 0.06 0.09

2500/500 0.08 0.04 0.13 0.40 0.26 0.08 0.08 0.06 0.09

500/2500 0.26 0.11 0.31 0.26 0.36 0.18 0.29 0.09 0.15

2500/2500 0.10 0.07 0.12 0.28 0.16 0.08 0.11 0.05 0.07

Panel B: Robust tests

Coverage level 1 − α = 97.5%

500/500 0.06 0.05 0.11 - 0.21 0.04 0.07 0.05 0.11

2500/500 0.06 0.05 0.12 - 0.26 0.06 0.07 0.05 0.11

500/2500 0.05 0.04 0.08 - 0.12 0.06 0.06 0.04 0.10

2500/2500 0.05 0.03 0.07 - 0.10 0.05 0.06 0.04 0.08

Coverage level 1 − α = 95%

500/500 0.06 0.03 0.07 - 0.12 0.05 0.06 0.03 0.07

2500/500 0.04 0.03 0.10 - 0.18 0.07 0.06 0.05 0.08

500/2500 0.05 0.05 0.09 - 0.11 0.08 0.06 0.03 0.09

2500/2500 0.05 0.04 0.06 - 0.08 0.06 0.05 0.04 0.05

This table presents empirical rejection rates of the tests introduced in Section 3 for the AR-GARCH model with
standard normal errors as in specification A1 with c = 0. The rejection rates are calculated using 1,000 Monte
Carlo experiments. Results are presented for coverage levels 1 − α = 97.5% and 95%, as well as combinations of
in-sample size R and out-of-sample size P .
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Table 2: Empirical rejection rates in the size experiments with Students t-errors

Panel A: Standard Tests

VaR tests Joint (VaR,ES) tests ES tests

Unc. Cond. Unc. Cond. Unc. Cond.

R/P EO
(1)
P EO

(2)
P T

(1)
P T

(2)
P T

(3)
P T

(4)
P DE

(1)
P DE

(2)
P DE

(3)
P

Coverage level 1 − α = 97.5%

500/500 0.11 0.06 0.21 0.49 0.43 0.13 0.12 0.06 0.13

2500/500 0.08 0.05 0.19 0.45 0.45 0.10 0.09 0.06 0.11

500/2500 0.24 0.06 0.31 0.49 0.42 0.21 0.29 0.07 0.15

2500/2500 0.09 0.05 0.14 0.51 0.28 0.10 0.10 0.06 0.08

Coverage level 1 − α = 95%

500/500 0.12 0.05 0.18 0.37 0.34 0.12 0.12 0.06 0.09

2500/500 0.07 0.05 0.15 0.38 0.33 0.11 0.07 0.06 0.09

500/2500 0.26 0.09 0.36 0.30 0.45 0.27 0.29 0.08 0.12

2500/2500 0.09 0.04 0.11 0.31 0.22 0.10 0.10 0.04 0.07

Panel B: Robust tests

Coverage level 1 − α = 97.5%

500/500 0.05 0.04 0.13 - 0.23 0.07 0.07 0.04 0.11

2500/500 0.06 0.04 0.15 - 0.36 0.08 0.07 0.04 0.11

500/2500 0.06 0.04 0.13 - 0.18 0.12 0.08 0.04 0.10

2500/2500 0.05 0.04 0.09 - 0.19 0.09 0.06 0.05 0.08

Coverage level 1 − α = 95%

500/500 0.04 0.03 0.10 - 0.17 0.08 0.05 0.04 0.07

2500/500 0.04 0.04 0.11 - 0.25 0.09 0.05 0.05 0.08

500/2500 0.04 0.04 0.15 - 0.17 0.18 0.05 0.03 0.08

2500/2500 0.03 0.04 0.06 - 0.13 0.08 0.04 0.03 0.06

This table presents empirical rejection rates of the tests introduced in Section 3 for the AR-GARCH models with
Student’s t distributed errors with ν = 5 degrees of freedom as in specification A2 with c = 0. The rejection rates
are calculated using 1,000 Monte Carlo experiments. Results are presented for coverage levels 1 −α = 97.5% and
95%, as well as several combinations of in-sample size R and out-of-sample size P .
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Table 3: Descriptive statistics of FTSE 100 index returns

Full sample Crisis sample

No. obs 2386 507

Mean 0.02 -0.08

Median 0.04 -0.07

Std. dev. 0.93 1.96

Skewness -0.22 0.08

Kurtosis 5.33 6.75

Max. 4.51 9.48

10% -1.07 -2.29

5% -1.51 -3.08

1% -2.74 -5.71

Min. -4.95 -8.93

This table provide descriptive statistics of the daily returns (in %) on the FTSE 100 index. The long sample
runs from November 8, 2009 to April 17, 2019. The crisis sample runs from June 30, 2007 to June 30, 2009.
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Table 4: Summary statistics of parameter estimates

AR-GARCH AR-GJR-GARCH AR-HEAVY

Mean Median St.dev. Mean Median St.dev. Mean Median St.dev.

a0 0.004 0.003 0.022 0.002 0.000 0.023 0.006 0.003 0.023

ω0 0.029 0.030 0.012 0.053 0.055 0.010 0.043 0.048 0.019

α0 0.109 0.096 0.029 0.014 0.014 0.014 - - -

δ0 - - - - - - 0.414 0.410 0.130

γ0 - - - 0.143 0.149 0.047 - - -

β0 0.863 0.882 0.044 0.844 0.849 0.037 0.585 0.553 0.125

ν 9.432 10.000 2.885 13.048 13.171 4.310 13.668 13.402 6.310

Note: This table provides summary statistics for the parameter estimates of the AR-GARCH, AR-GJR-GARCH,
and AR-HEAVY models, estimated using rolling windows of 1,000 observations. The first estimation window
runs until November 7, 2009, the last until 16 April 2019 (2,386 windows).
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Table 5: Sample fraction of VaR violations and mean ES errors for a coverage level of 2.5%

Panel A: Sample fraction of VaR violations

R Crisis sample Long sample

AR-GARCH

500 0.047 0.033

1000 0.059 0.031

2500 - 0.034

AR-GJR-GARCH

500 0.069 0.038

1000 0.081 0.032

2500 - 0.035

AR-HEAVY

500 0.045 0.038

1000 0.055 0.036

2500 - 0.036

Panel B: Sample mean of ES error (in %) given a VaR violation

R Crisis sample Long sample

AR-GARCH

500 -0.330 -0.012

1000 -0.234 0.026

2500 - -0.002

AR-GJR-GARCH

500 -0.179 -0.006

1000 -0.170 -0.019

2500 - -0.044

AR-HEAVY

500 0.003 -0.026

1000 -0.038 0.023

2500 - -0.034

Note: The AR-GARCH AR-GJR-GARCH, and AR-HEAVY models are estimated over a rolling window of R
observations. Panel A reports the sample fraction of VaR violations defined in Eq. (22). Panel B reports the
mean ES error given a VaR violation, which is defined in Eq. (23). We consider the coverage level 1−α = 97.5%.
The crisis and long samples contain 507 and 2386 out-of-sample observations.
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Table 6: p-values of VaR and ES tests applied to forecasts generated by the AR-GARCH model

Panel A: Crisis sample

R VaR tests Joint (VaR,ES) tests ES tests

Unc. Cond. Unc. Cond. Unc. Cond.

EO
(1)
P EO

(2)
P T

(1)
P T

(3)
P T

(4)
P DE

(1)
P DE

(2)
P DE

(3)
P

Standard tests

500 0.02 0.39 0.06 0.00 0.05 0.01 0.54 0.01

1000 0.00 0.88 0.00 0.00 0.13 0.00 0.54 0.01

Robust tests

500 0.12 0.39 0.19 0.00 0.04 0.04 0.54 0.01

1000 0.02 0.90 0.05 0.01 0.13 0.01 0.54 0.02

Panel B: Long Sample

Standard tests

500 0.04 0.80 0.12 0.02 0.93 0.03 0.10 0.02

1000 0.08 0.23 0.16 0.56 0.59 0.08 0.09 0.01

2500 0.02 0.03 0.06 0.31 0.90 0.02 0.02 0.01

Robust tests

500 0.31 0.81 0.60 0.04 0.94 0.17 0.12 0.07

1000 0.16 0.37 0.26 0.60 0.59 0.17 0.10 0.02

2500 0.06 0.15 0.15 0.43 0.90 0.06 0.05 0.01

Note: This table presents p-values for the standard and robust versions of the tests introduced in Section 3. The
VaR and ES forecasts are generate by the AR-GARCH model estimated over rolling windows of R observations.
We consider coverage level 1−α = 97.5%. In panel A we report results for the crisis sample, whose out-of-sample
period runs from June 30, 2007 to June 30, 2009 and the long sample whose ouf-of-sample period runs from
November 8, 2009 to April 17, 2019.
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Table 7: p-values of VaR and ES tests applied to forecasts generated by the AR-GJR-GARCH
model

Panel A: Crisis sample

R VaR tests Joint (VaR,ES) tests ES tests

Unc. Cond. Unc. Cond. Unc. Cond.

EO
(1)
P EO

(2)
P T

(1)
P T

(3)
P T

(4)
P DE

(1)
P DE

(2)
P DE

(3)
P

Standard tests

500 0.00 0.77 0.00 0.00 0.10 0.00 0.76 0.07

1000 0.00 0.87 0.00 0.00 0.09 0.00 0.94 0.14

Robust tests

500 0.03 0.79 0.02 0.00 0.14 0.64 0.77 0.11

1000 0.00 0.90 0.00 0.01 0.09 0.45 0.97 0.25

Panel B: Long sample

Standard tests

500 0.00 0.57 0.01 0.87 0.90 0.00 0.67 0.09

1000 0.05 0.67 0.13 0.70 0.62 0.02 0.42 0.04

2500 0.01 0.83 0.03 0.25 0.36 0.00 0.16 0.06

Robust tests

500 0.06 0.77 0.16 0.96 0.91 0.06 0.83 0.10

1000 0.11 0.67 0.28 0.73 0.64 0.61 0.46 0.05

2500 0.03 0.83 0.08 0.29 0.43 0.78 0.21 0.07

Note: This table presents p-values for the standard and robust versions of the tests introduced in Section 3.
The VaR and ES forecasts are generate by the AR-GJR-GARCH model estimated over rolling windows of R
observations. We consider coverage level 1−α = 97.5%. In panel A we report results for the crisis sample, whose
out-of-sample period runs from June 30, 2007 to June 30, 2009 and the long sample whose ouf-of-sample period
runs from November 8, 2009 to April 17, 2019.
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Table 8: p-values of VaR and ES tests applied to forecasts generated by the AR-HEAVY model

Crisis sample

In-sample length R VaR tests Joint (VaR,ES) tests ES tests

Unc. Cond. Unc. Cond. Unc. Cond.

EO
(1)
P EO

(2)
P T

(1)
P T

(3)
P T

(4)
P DE

(1)
P DE

(2)
P DE

(3)
P

Standard tests

500 0.03 0.39 0.07 0.00 0.84 0.05 0.52 0.00

1000 0.00 0.94 0.01 0.01 0.57 0.01 0.51 0.01

Robust tests

500 0.07 0.40 0.13 0.00 0.84 0.16 0.52 0.00

1000 0.01 0.94 0.03 0.01 0.57 0.04 0.51 0.01

Panel B: Long sample

Standard tests

500 0.00 0.26 0.01 0.59 0.47 0.00 0.20 0.15

1000 0.00 0.19 0.01 0.55 0.82 0.02 0.30 0.15

2500 0.01 0.18 0.02 0.52 0.28 0.00 0.07 0.13

Robust tests

500 0.01 0.28 0.04 0.61 0.47 0.02 0.22 0.17

1000 0.04 0.29 0.05 0.63 0.83 0.10 0.43 0.19

2500 0.02 0.19 0.07 0.53 0.29 0.02 0.08 0.14

Note: This table presents p-values for the standard and robust versions of the tests introduced in Section 3. The
VaR and ES forecasts are generate by the AR-HEAVY model estimated over rolling windows of R observations.
We consider coverage level 1−α = 97.5%. In panel A we report results for the crisis sample, whose out-of-sample
period runs from June 30, 2007 to June 30, 2009 and the long sample whose ouf-of-sample period runs from
November 8, 2009 to April 17, 2019.
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