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Abstract

We develop a dynamic Bayesian model for clickthrough and conversion probabilities of

paid search advertisements. These probabilities are subject to changes over time, due to

e.g. changing consumer tastes or new product launches. Yet, there is little empirical re-

search on these dynamics. Gaining insight into the dynamics is crucial for advertisers to

develop effective search engine advertising (SEA) strategies. Our model deals with dynamic

SEA environments for a large number of keywords: it allows for time-varying parameters,

seasonality, data sparsity and position endogeneity. The model also discriminates between

transitory and permanent dynamics. Especially for the latter case, dynamic SEA strategies

are required for long-term profitability.

We illustrate our model using a 2 year dataset of a Dutch laptop selling retailer. We find

persistent time variation in clickthrough and conversion probabilities. The implications of

our approach are threefold. First, advertisers can use it to obtain accurate daily estimates

of clickthrough and conversion probabilities of individual ads to set bids and adjust text ads

and landing pages. Second, advertisers can examine the extent of dynamics in their SEA en-

vironment, to determine how often their SEA strategy should be revised. Finally, advertisers

can track ad performances to timely identify when keywords’ performances change.

Key words: Clickthrough, Conversion, Search engine advertising, Dynamic, Endogeneity,

Time-varying parameters, Bayesian.
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1. Introduction

Search engine advertising (SEA) has become an important marketing channel for firms

(Ryan, 2016). SEA is an advertising form that allows firms to place advertisements on

the search results pages of search engines such as Google, Yahoo! and Bing. Search engines

select the ads to be shown based on an individual’s search, enabling advertisers to target

individuals. Most search engines use an auction to select the ads. In general, the advertiser

who sets the highest (quality adjusted) bid obtains the most prominent position. Usually,

up to three ads are shown both on top and on the bottom of the search results page for a

given search query.

In designing a SEA strategy, an advertiser has to create text ads and landing pages,

determine the search phrases for which an ad is eligible to show up (the keywords), and set

a bid on each keyword. When the performances of ads change over time, a SEA strategy

requires regular revision to be effective. Dynamics in ad performance can result from e.g.

the introduction of new products, changes in consumer tastes or populations, the entering

of new competitors, or seasonality. Yet, there is little empirical research on dynamics in ad

performance.

In this paper, we develop a dynamic Bayesian model for the performance of paid search

ads in Google. The proposed model is especially suited to deal with dynamic SEA environ-

ments. It allows for dynamics through seasonal effects and time-varying parameters, and

discriminates between permanent and transitory dynamics. Especially when shocks are long

lasting, dynamic SEA strategies are required for long-term profitability. In our empirical

application, we find evidence of substantial persistent time variation in ad performance,

emphasizing the importance of addressing dynamics in ad performance models.

We model ad performance in terms of the clickthrough and conversion probabilities of

keywords. In the context of SEA, the term “keyword” refers to a string of words, e.g. a

keyword can be quite generic (“laptop”) or more specific (“laptop acer vn7 571g”). An

advertiser links each of her ads to a set of keywords, and sets a bid on each keyword. When

a consumer’s search query matches a keyword, the associated ad will be eligible for the

auction. The clickthrough probability is the probability that a consumer who gets served an

ad due to the keyword, clicks on the ad. The conversion probability is the probability that

a consumer who has already clicked on the ad converts, that is, buys a product or service.

A number of studies have constructed models for clickthrough and conversion probabil-

ities of keywords (see Rutz & Bucklin, 2007, Ghose & Yang, 2009, Agarwal, Hosanagar, &

Smith, 2011, and Rutz, Bucklin, & Sonnier, 2012). Our study differs from these papers by
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Figure 1: Conservative 95% bounds of the observed proportion of clicks/conversions as a function of
the sample size on a logarithmic scale (true probability equals 1% (left) or 5% (right)).

focusing on the dynamics of keyword performance.

Despite the availability of advertiser-level ad performance data, a number of challenges

arise when estimating clickthrough and conversion probabilities of keywords. Next to the

challenge of potential dynamics in ad performance, a second challenge is data sparsity. The

majority of keywords in an advertiser’s portfolio generate only little traffic, that is, few users

search for that keyword. For these so-called sparse keywords, taking simple averages of

realized clicks and conversions in the past is insufficient to estimate the clickthrough and

conversion probabilities as these estimates can be highly inaccurate. We illustrate this in

Figure 1, which shows the proportion of clicks (conversions) we can expect to observe given a

certain sample size (number of impressions1 or clicks) for two realistic probabilities: 1% and

5%. The figure shows that one needs at least a couple of hundred impressions (clicks) for the

sample average to be a reliable estimator of the true clickthrough (conversion) probability. If

a keywords generates little traffic, it may take a long time before this number of impressions

and clicks are collected. Within this time frame the true probability may, in practical

situations, already have changed.

The third challenge is estimating the causal effect of ad position on ad performance, as

the position is endogenously related to clickthrough and conversion probabilities. There are

three sources of endogeneity:

i There is a potential reversed causality relationship due to strategic bidding behavior: an

advertiser might bid more for keywords with a high expected clickthrough and conversion

1The number of impressions is the number of times an ad is shown on the search results page.
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probability, to obtain a favorable position for these keywords.

ii There is a reversed causality relationship due to a quality adjustment in the keyword

auction (Google uses the so-called quality score): position might not only affect click-

through probabilities, but reversely, the previous clickthrough rates affect the position

through their impact on the quality adjustment.

iii There is a potential confounding factor: competition is likely to affect both keyword

performance and ad position, but is unobserved by the advertiser.

In this paper, we propose a dynamic model that addresses all above challenges by allowing

for explained and unexplained dynamics, data sparsity, missing data, position endogeneity

and unobserved heterogeneity across keywords. The model captures unexplained dynam-

ics through time-varying parameters that follow either stationary or nonstationary AR(1)

processes to distinguish between transitory and permanent dynamics. The model addresses

the sparsity problem by linking keywords to each other based on common factors such as

semantic keyword characteristics. Finally, the model accounts for position endogeneity in

the manner proposed by Ghose and Yang (2009). That is, we simultaneously model the

consumers’ clickthrough and conversion behavior, the search engine’s position allocating be-

havior, and the firm’s bidding behavior, and correlate the error terms of the equations with

each other.

The resulting model is estimated using a Bayesian approach. We develop an efficient

Gibbs sampler with Polya-Gamma data augmentation for the logit part of the model (Geman

& Geman, 1987, Tanner & Wong, 1987, Polson, Scott, & Windle, 2013) in which we draw the

time-varying parameters using the forward-filtering backward-sampling algorithm of Durbin

and Koopman (2002). This efficient approach is crucial to be able to use the methodology

at a daily frequency for a realistically large number of keywords. It also deals naturally with

missing data.

We illustrate the model using a unique dataset from a Dutch online retailer that sells

laptops and advertises on Google. The data consists of the historical performance of 14,710

keywords measured at a daily frequency over the period January 2014 until March 2016. We

find substantial time variation in clickthrough and conversion probabilities, indicating that

a dynamic SEA strategy is required. Furthermore, we find that shocks mostly have a per-

manent or highly persistent effect on clickthrough probabilities; this holds for market-level

shocks and most brand-level shocks. For conversion probabilities the shocks have different

effects on different type of ads. Whereas market shocks permanently affect conversion proba-
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bilities, most brand-level shocks have a more transitory effect. Finally, Bayes factors indicate

that the dynamic model is substantially better in forecasting ad performance than the static

model.

We also find evidence of position and bidding endogeneity, indicating that purely predic-

tive models are unable to capture causal relationships between ad position and clickthrough

and conversion probabilities.

The managerial implications of this paper are threefold. First, advertisers can use the

model to obtain accurate daily estimates of clickthrough and conversion probabilities of in-

dividual keywords. These estimates can be used to set bids, adjust text ads and landing

pages, and to identify keywords whose performance is divergent from similar keywords. Sec-

ond, advertisers can examine the extent of dynamics in their SEA environment, to determine

how often their bidding strategy should be revised. In doing so, advertisers can discrimi-

nate between keywords by using the persistence and influence of shocks on different types

of keywords. Finally, advertisers can use the model to track the performance of keywords to

timely identify when this performance changes.

The remainder of this paper is organized as follows. In Section 2 we discuss the back-

ground for this research. We explain how the mechanism underlying SEA works and discuss

related work on modeling clickthrough and conversion probabilities. In Section 3 we briefly

discuss the data generally made available by search engines to further discuss the context of

SEA. Section 4 is devoted to a detailed discussion of the methodology. We show empirical

results in Section 5 including an analysis of the model’s predictive performance against a

static model. Section 6 discusses the managerial implications of this research. We conclude

with a summary and a critical discussion. Finally, Appendix A documents our efficient Gibbs

sampler in detail.2

2. Background

2.1. The mechanism underlying search engine advertising

From the search engine’s perspective, much literature has focused on the mechanism design

of the keyword auction (see e.g. Borgs et al., 2007, Cary et al., 2007, Edelman, Ostrovsky,

& Schwarz, 2007, and Yao & Mela, 2011). The design Google and Yahoo! use is formally

known as a generalized, second-price, sealed-bid auction (Edelman et al., 2007).

2The Supplementary Materials, containing all results of the empirical application as well as trace plots
and effective sample sizes of the MCMC output, are available upon request.
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This real-time keyword auction works as follows. Advertisers link their ads to keywords

and place a bid on each keyword. The bid indicates the maximum amount the advertiser

is willing to pay for a click. Some search engines such as Google also assign a quality score

to an ad, to adjust the bids for relevance of the advertised website. Next, when a consumer

enters the search query at a search engine, the engine considers all advertisers’ ads for which

the associated keywords match the consumer’s search. The available ad slots are allocated

according to the advertisers’ quality adjusted bids. The search engine only charges the

advertiser a fee when a consumer clicks on the ad; this fee is known as the cost-per-click

(CPC). The CPC is based on the bid of the ad that is ranked just below (the second price),

corrected for the quality scores of these two ads. The CPC is thus not necessarily equal to

the bid, but it is never higher.

The distinct feature of the generalized, second-price auction is that bidders pay a price

based on the bid of the advertiser ranked below. Hereby, search engines avoid that advertis-

ers use cycling bidding strategies to optimize profits, that is, that advertisers continuously

decrease their bids until they obtain a less prominent ad position after which they increase

their bids again (Borgs et al., 2007).

2.2. Modeling clickthrough and conversion probabilities of keywords

From the advertisers’ perspective, some literature has focused on modeling clickthrough and

conversion probabilities of keywords (see e.g. Ghose & Yang, 2009, Agarwal et al., 2011, and

Rutz et al., 2012). The key focus of these studies is addressing position endogeneity.

To better understand the sources of position endogeneity, we conceptualize the mechanism

underlying the keyword auction in Figure 2. Based on the inputs of the keyword auction (the

advertiser’s bid and quality score and the competitors’ bids and quality scores) the search

engine determines the ad position and the cost-per-click. The ad position then potentially

affects consumers’ clickthrough and conversion behavior.

There are three potential sources of endogeneity. First, competition can be a confounding

factor as it is unobserved and both enters the keyword auction to determine the ad position

as well as potentially affects clickthrough and conversion probabilities through consumer

behavior. Second, there is a potential reversed causality problem as some search engines,

including Google, use the past clickthrough rates to assign quality scores to keywords to

determine the ad position. Finally, there is a second potential reversed causality problem

due to strategic bidding behavior. An advertiser might set bids based on expected click-

through and conversion probabilities for different ad positions (we refer to this as bidding

6
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Figure 2: Conceptual model of keyword performance. QS denotes quality score, CPC denotes cost-
per-click, CTR denotes clickthrough rate, and CON denotes conversion rate. Solid lines represent
contemporary causal effects, dashed lines represent future causal effects.

endogeneity).

To correct for all these sources of endogeneity, the earlier mentioned studies use para-

metric simultaneous equations models of the clickthrough and conversion probabilities and

the ad’s position plus a specific strategy to solve for bidding endogeneity. Agarwal et al.

(2011) use data on randomized bids to explain the position. Alternatively, Rutz et al. (2012)

use latent instrumental variables (LIVs) to explain the position. In the LIV approach, the

endogenous variable (ad position) is split into a part that is uncorrelated with the error

terms of the clickthrough and conversion equations, the latent instruments, and a part that

is potentially correlated. Finally, Ghose and Yang (2009) simultaneously model the firm’s

bid with the clickthrough and conversion probabilities and the ad’s position.

In this paper we opt for the approach by Ghose and Yang (2009). Although randomized

bids as used by Agarwal et al. (2011) yield a better source of variation to identify the causal

impact of position, it is rare to find firms who actually practice randomized bidding. A

drawback of the LIV approach of Rutz et al. (2012) is that it relies on the existence of latent

“groups” that are correlated with position and uncorrelated with the unexplained parts of

the clickthrough and conversion probabilities. In general it is unknown whether such groups

exist.

The above mentioned studies find mixed results regarding the drivers of keyword perfor-

mance. Generally, they agree that the more prominent the position, the higher the click-

through probability (Ghose & Yang, 2009, Agarwal et al., 2011, and Rutz et al., 2012).

Furthermore, Agarwal et al. (2011) and Ghose and Yang (2009) find that profits are usually
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not highest in the top positions. Instead, profits increase until some position when going

down the search results page after which they decrease again. These studies ignore dynamics

other than day-of-the-week effects.

From the search engine’s perspective there is also literature on modeling clickthrough

probabilities. These models are used to estimate quality scores of ads to help allocate ads

on the search results pages. The models proposed in this literature are predictive models,

no steps are taken to account for position or bidding endogeneity. One such model that

allows for dynamic performance is proposed in Graepel, Candela, Borchert, and Herbrich

(2010), who develop a Bayesian model for clickthrough probabilities. This model allows for

dynamics by adjusting the parameters as new data comes in through a Bayesian learning

algorithm that gives higher weight to more recent observations.

3. General structure of data

Google provides advertisers with a number of ad performance metrics. These metrics are

aggregated on the level of the keyword and some time period, such as the hour of the day or

day of the week. The performance metrics include the number of obtained impressions, clicks,

and conversions, the average position over the impressions, and the average cost-per-click

(CPC). Google also provides four metrics related to the quality score: quality score (ranging

from 1 to 10), landing page experience, ad relevance, and expected clickthrough rate. The

quality score metric is, however, not the actual measure used by Google in real-time to assign

positions to ads.3

Based on the words in the keyword, an advertiser can construct semantic characteristics of

keywords. These characteristics might be useful in estimating keyword performance. They

can include the number of words in the keyword, or the specificity of the keyword (e.g.

generic, branded or retailer-specific search like in Ghose & Yang, 2009). In addition, the

advertiser knows the match type of each keyword. The match type of a keyword refers to

how “well” the keyword must match the consumers search in order to be eligible to show,

and is one of ‘exact’, ‘broad’, or ‘phrase’. The broader the match type, the more divergent

the search phrase and the keyword may be.

3For more information on the quality score, see https://support.google.com/google-
ads/answer/7050591?hl=en.
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4. Methods

In this section, we discuss the statistical model we propose for keyword performance. We

consider model specification, parameter identification, and model inference.

The model we propose is a dynamic Bayesian model of the consumers’ clickthrough

and conversion behavior, the search engine’s position allocating behavior, and the firm’s

bid behavior. The model is a time-varying parameters model, also known as a model in

state-space representation (e.g. Hamilton, 1994, Chapter 13).

4.1. Model specification

We index the keywords by i = 1, ..., N and time periods by t = 1, ..., T . We denote by

Iit, Nit, and Mit the number of impressions, clicks, and conversions of keyword i at time t,

respectively. By definition, Iit ≥ Nit ≥Mit. Furthermore, we denote by pCTRit the unobserved

clickthrough probability on keyword i at time t (the probability of a click given an impression)

and by pCONit the conversion probability (the probability of a conversion given a click). Let

POSit denote the average ad position over the impressions on keyword i at time t, BIDit the

bid, CPCit the cost-per-click, and QSit the quality score. Finally, let xi denote a (K × 1)

vector of (semantic) characteristics of keyword i, and st a vector of seasonal dummies.

We assume that, conditional on {pCTRit }Tt=1 and {pCONit }Tt=1, the impressions and clicks on

keyword i at time t are independent across ads served, and that the impressions and clicks

on keyword i are independent across time and independent of other keywords j 6= i. Then,

the number of clicks on keyword i at time t and the number of conversions are conditionally

binomially distributed. That is,

Nit|Iit, pCTRit ∼ BIN(Iit, p
CTR
it ),

Mit|Nit, p
CON
it ∼ BIN(Nit, p

CON
it ),

for i = 1, ..., N and t = 1, ..., T .

Next, we propose a dynamic simultaneous equations model of the clickthrough and con-
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version probabilities, the ad’s position, and the firm’s bid. The model is given by

pCTRit = Λ
(
αCTRi + x′iβ

CTR
t + λCTRi ln(POSit) + s′tγ

CTR + ηCTRit

)
, (1)

pCONit = Λ
(
αCONi + x′iβ

CON
t + λCONi ln(POSit) + s′tγ

CON + ηCONit

)
, (2)

ln(POSit) = αPOSi + x′iβ
POS
t + λPOSi ln(BIDit) + ψPOS ln(QSit) + s′tγ

POS + ηPOSit , (3)

ln(BIDit) = αBIDi + x′iβ
BID
t + q′itδ

BID
i + s′tγ

BID + ηBIDit , (4)

for keywords i = 1, ..., N and time periods t = 1, ..., T , where Λ(θ) ≡ 1/(1 + exp(−θ)) is the

standard logistic link function.

The key parts of the model are the clickthrough and conversion equations (1) and (2).

These two equations have an equivalent functional form with different parameters. The

logistic link function is used to map real-valued numbers to probabilities between 0 and

1. The baseline levels of the clickthrough and conversion probabilities are captured in the

keyword-specific intercepts αi, discussed in detail in Section 4.1.2. Stochastic dynamics are

captured in the term x′iβt, which captures the time variation in clickthrough and conversion

probabilities for different types of keywords. The process for βt captures the carryover effects

of shocks to subsequent periods, and is discussed in Section 4.1.1. Deterministic seasonal

effects are captured in the term s′tγ. The effect of ad position is captured in the keyword-

specific parameters λi and is discussed in Section 4.1.2.

The position equation (3) is included to correct for position endogeneity and the bid

equation (4) to correct for bidding endogeneity. For both equations we use a linear spec-

ification for the log transformed variables. They also deviate from the clickthrough and

conversion equations in that we let the position depend on the bid and quality score, and let

the bid depend on qit, a vector of instrumental variables not included in the other equations.

We discuss these instruments in Section 4.1.3. Note that the position equation (3) can be

rewritten as

POSit = gPOSit QSψ
POS

it BID
λPOSi
it ,

where the multiplication factor gPOSit depends on xi, st and ηit in a potentially time-varying

way. Hence, we assume that the position depends on the bid and the quality score in a

multiplicative way. The parameters ψPOS and λPOS are elasticity parameters; if the bid

increases by 1%, then the position increases by λPOS%.

The key elements in correcting for position endogeneity are the keyword- and time-specific

error terms in ηit = (ηCTRit , ηCONit , ηPOSit , ηBIDit )′. We assume that ηit is multivariate normally
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distributed for keyword i and time t and independent across keywords and time. That is,

ηit ∼MVN(0,Ση), (5)

where all elements of the positive definite matrix Ση are allowed to be non-zero.

Even when no position endogeneity is present, it is important to include ηit into the

clickthrough and conversion equations. The model is based on the aggregation of choices

on the keyword- and time-level. The parameter ηit captures keyword- and time-specific

deviations that are not captured by other model parameters. In case a keyword i receives

many observations and clicks in a given time period t, the likelihood of pCTRit and pCONit given

the observed data is highly peaked at the observed fractions of clicks/conversions. Hence, the

estimation procedure will model the clickthrough and conversion probabilities to be (almost)

equal to the realized proportions in the data. In case ηCTRit and ηCONit are included, they can

capture potential deviations between expected and realized proportions. In case they are

not included, the estimates of the parameters will become such that they mainly fit these

few observations with many impressions, instead of representing general patterns across the

whole set of keywords.

4.1.1. Time-varying parameters: the dynamic impact of shocks

The impact of changes in the environment on ad performance is captured in the time-varying

parameters βt = (βCTR
′

t , βCON
′

t , βPOS
′

t , βBID
′

t )′. Changes in the environment can result from

changes in macroeconomic conditions, in the firm (e.g. changing reputation), in the market

competitiveness (e.g. new competitor or the launch of a new product), in the search engine’s

position-allocating mechanism, or in consumers (e.g. changing tastes and attitudes). The

effect of changes on ad performance can be transitory or permanent.

To capture the dynamics in SEA environments, we take independent AR(1) processes for

the time-varying parameters. That is,

βt+1 = Φβt + νt, νt ∼MVN(0,Σβ), β1 ∼MVN(0, 5Σβ), (6)

for t = 1, ..., T , where Φ and Σβ are (4K × 4K) diagonal matrices. These AR(1) processes

can capture a wide variety of paths for the time-varying parameters (Van Heerde, Mela, &

Manchanda, 2004).

The autoregressive parameters {φk}4K
k=1 on the diagonal of Φ measure the persistence of

the impact of shocks on future values of βkt. In case φk = 1, shocks are permanent. In case
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φk = 0, shocks do not impact future clickthrough and conversion probabilities, and a static

model would do. In case 0 < φk < 1, the effects of shocks carry over to next periods but the

process is mean-reverting: shocks die out geometrically with decay rate φk.

The AR(1) processes in Equation (6) have no intercept. If the βt series is stationary, an

intercept captures the unconditional mean of the series. If the series is nonstationary, the

intercept would either capture the level at time t = 1 (in deviation-from-mean form), or a

drift parameter (in regular form). We move this intercept to the mean of the αi parameter as

will be explained next. This ensures that we can interpret the intercept as in the deviations-

from-mean form and thus have equal interpretation of the parameter in case of stationarity

and nonstationarity of the βt series. Moreover, it helps improve the mixing rates of the

sampler.

4.1.2. Unobserved heterogeneity across keywords

The model captures unobserved heterogeneity across keywords through the keyword-specific

parameters αi = (αCTRi , αCONi , αPOSi , αBIDi )′ and λi = (λCTRi , λCONi , λPOSi )′. We shrink αi

and λi to common means across similar keywords.

The parameters in αi capture common baseline levels of ad performance as well as

keyword-specific deviations. We take αi to be independently normally distributed across

keywords,

αCTRi

αCONi

αPOSi

αBIDi


∼MVN





x′iα̃
CTR

x′iα̃
CON

x′iα̃
POS

x′iα̃
BID


,



σ2
α,CTR 0 0 0

0 σ2
α,CON 0 0

0 0 σ2
α,POS 0

0 0 0 σ2
α,BID




, (7)

for i = 1, ..., N , where α̃ = (α̃CTR,α̃CON ,α̃POS,α̃BID) captures the common baseline levels.

The parameters in λi capture the impact of ad position on clickthrough and conversion

probabilities (λCTRi , λCONi ), and the effect of bid on ad position (λPOSi ). We take λi to be

independently normally distributed across keywords. That is,
λCTRi

λCONi

λPOSi

 ∼MVN



x′iλ̃

CTR

x′iλ̃
CON

x′iλ̃
POS

 ,


σ2
λ,CTR 0 0

0 σ2
λ,CON 0

0 0 σ2
λ,POS


 , (8)
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for i = 1, ..., N .

4.1.3. Instrumental variables

The instruments qit in the bid equation (4) are necessary for identification of the dynamic

simultaneous equations model. They must be excluded from the other equations (1)-(3). A

researcher can take any set of valid instruments: the instruments should be correlated with

the bid, but uncorrelated with ad position and clickthrough and conversion probabilities

after correcting for bid/position.

We propose to use previous performance indicators as instruments, as these indicators

capture the potential strategic bidding behavior of advertisers that causes the bidding endo-

geneity. We consider the previous clickthrough rate and the previous number of impressions

obtained.4 For the previous clickthrough rate to be a valid instrument, we assume that

the quality score measure we include in the position equation is a sufficient statistic for the

previous clickthrough rate in explaining ad position.

To allow for heterogeneity in the effect of the instruments we consider keyword-specific

parameters

δBIDi ∼MVN(x′iδ̃
BID,ΣBID

δ ), (9)

where ΣBID
δ is a positive definite diagonal matrix.

4.2. Parameter identification

To ensure that the parameters in the model in (1)-(9) are identified, we have to consider two

issues. First, for the stochastic dynamics part x′iβt, a researcher may wish to include many

characteristics such that the matrix X = (x1, x2, x3, ..., xN)′ is not of full column rank. For

example, a researcher may want to include an intercept and all dummies for a categorical

variable, to distinguish between market-level shocks and the lower level shocks for different

categories. In this case, where X is not of full column rank, identification restrictions need to

be imposed. More specifically, a set of variables k∗ has to be selected, such that the matrix

X without the columns corresponding to these variables in k∗ is of full column rank. For

these variables in k∗, the following restrictions are sufficient for identification: (i) β1 = 0, (ii)

α̃ = 0, and (iii) λ̃ = 0. Note that these variables will still have a non-zero effect for t > 1.

Second, the simultaneous equations model in (1)-(4) is identified as the model is a tri-

4Ghose and Yang (2009) use the lagged ad position as instrument in the bid equation. Exogeneity of this
instrument depends on the assumption that the error terms in the position equation are serially uncorrelated.
This assumption might very well be unrealistic, rendering lagged ad position invalid as instrument.
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angular system (Greene, 2012, Ghose & Yang, 2009): the bid equation depends only on

exogenous variables, the position equation depends only on the endogenous variable bid,

and the clickthrough and conversion equations depend only on the endogenous variable ad

position. Identification in this triangular system is ensured through the exclusion restric-

tions that the instrumental variables in the bid equation are excluded in the clickthrough,

conversion, and position equations, and the bid variable in the position equation is excluded

in the clickthrough and conversion equations. Hence, the model is identified and we do not

need to impose restrictions on the covariance matrix Ση.

4.3. Bayesian inference

We perform Bayesian inference for the dynamic simultaneous equations model in (1)-(9).

We use Markov Chain Monte Carlo (MCMC) techniques and rely on a Gibbs sampler with

Polya-Gamma data augmentation (Geman & Geman, 1987, Tanner & Wong, 1987, Polson

et al., 2013). The advantage of using a Bayesian estimation approach is that we can use

informative priors for keyword characteristics that are very rare. The Gibbs sampler also

deals naturally with missing values.

The Polya-Gamma data augmentation scheme is suitable for binomial logistic regres-

sion models (Polson et al., 2013). It allows for exact inference by introducing one layer of

Polya-Gamma distributed latent variables, where the latent variables are drawn at the level

of the keyword and time period. Alternative MCMC approaches for Bayesian inference for

logistic regression models are (i) data augmentation schemes where the logistic distributed

error terms are approximated by mixtures of normals (Holmes & Held, 2006, Frühwirth-

Schnatter & Frühwirth, 2010) or (ii) an independence or random walk Metropolis-Hastings

(MH) algorithm without data augmentation (Rossi, Allenby, & McCulloch, 2005). The dis-

advantages of the alternative data augmentation schemes are that they are not exact, require

two layers of auxiliary variables, and require much more memory storage as augmentation is

performed on the level of an impression or click and not on the total number of impressions

and clicks (this is especially relevant for the SEA application). The disadvantage of the

MH algorithms is that they often have poor mixing rates and that tuning may be required

(Frühwirth-Schnatter & Frühwirth, 2010). This is especially important when dynamic states

are involved.

The Gibbs sampler we use is outlined in Appendix A. In this Gibbs sampler, we subse-

quently draw the auxiliary variables from the Polya-Gamma distribution, the time-varying

parameters from a multivariate normal distribution using the forward-filtering backward-
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sampling (FFBS) algorithm (Carter & Kohn, 1994, Frühwirth-Schnatter, 1994) of Durbin

and Koopman (2002) and collapsed filtering (Durbin & Koopman, 2012, Jungbacker & Koop-

man, 2015), the time-invariant parameters from multivariate normal distributions, and the

covariance matrices from inverse Wishart distributions. Specialized code is written in R

(R Core Team, 2013) and C++ to enhance computation speed using the R package Rcpp

(Eddelbuettel & François, 2011).

5. Empirical application

In this section, we apply the proposed dynamic Bayesian model to data of a Dutch online

retailer. We present the data in Section 5.1 and discuss the in-sample results in Section 5.2.

Finally, in Section 5.3, we compare the performance of our dynamic model to a static model

without time-varying parameters.

5.1. Data

The data contains the historical performance of 14,710 keywords related to laptops measured

at the daily frequency over the period January 1, 2014 until March 31, 2016.5 The data

contains information on the daily number of impressions, clicks, and conversions6, and the

daily average cost-per-click, ad position, and quality score7. We consider all data for model

inference. In total, the keywords obtained 47.0 million impressions, 1.6 million clicks and 33.0

thousand conversions. The average clickthrough rate was 3.4% and the average conversion

rate was 2.0%. Moreover, the top 5% of keywords based on impressions accounted for 92.5%

of total impressions, whereas the bottom 50% accounted for 0.2% of total impressions.

We also use semantic characteristics of keywords. Each keyword is assigned to one of

four categories indicating the specificity of the keyword: (i) ‘generic’, (ii) ‘brand only’, (iii)

‘brand and series’, or (iv) ‘retailer’. The ‘brand only’ keywords are keywords that include

the brand name of a laptop but not the name of a specific series or model (e.g. ‘asus laptop’),

5Google provides data aggregated on the device used by the consumer (computer, tablet, or mobile
device). We only include data on searches made via the computer, as consumer behavior might differ for the
three electronic devices and the comparative usage of the three devices might have changed over time.

6Conversions are measured based on the keyword associated with the last clicked ad by the consumer
as tracked by Google. Conversions are counted when the consumers makes a purchase within 30 days of
clicking on the last clicked ad.

7We do not have data on the landing page experience, ad relevance, and expected clickthrough rate.
Furthermore, we impute missing quality scores with a 6. Quality scores are missing when there were in-
sufficient previous impressions and clicks for Google to determine the quality score. In these cases, Google
uses a quality score of 6 in the keyword auction, see https://searchengineland.com/google-adwords-keyword-
quality-score-reporting-update-226355.
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whereas the ‘brand and series’ keywords include at least a brand’s series name (e.g. ‘asus

vivobook’). We divide the keywords in the ‘brand only’ and ‘brand and series’ categories

into the eight brands available at the retailer: Acer, Apple, Asus, HP, Lenovo, Microsoft,

MSI, and Toshiba.

Furthermore, we know the match type of the keyword, which is either broad or exact,

and the number of words in the keyword. For these two variables we consider time-invariant

parameters, that is, βt = 0. We include seasonal dummies for the day of the week.

As instruments, we use the previous clickthrough rate and the natural logarithm of the

previously obtained number of impressions. We compute the previous clickthrough rate by

taking the realized clickthrough rate over the previous month.8 Once the advertiser has

implemented the model to set the bid, the previous clickthrough rate can be estimated using

Equation (1) instead. Furthermore, for the previous impressions we consider the average

daily number of impressions obtained on a keyword in the previous month.

Finally, we use the CPC as a proxy for the bid as done in Ghose and Yang (2009) and

Skiera and Abou Nabout (2013). Data on historical bids are not provided by Google, and

have not been stored by the retailer. Using the CPC instead of the bid is justified for com-

petitive keywords, where the difference between the CPC and the bid is small (Abou Nabout,

Skiera, Stepanchuk, & Gerstmeier, 2012). A disadvantage is that we do not always observe

the CPC when we observe the position. We therefore impute the missing CPCs for explaining

position, using a stochastic local level model.9

5.2. Baseline results

In this section, we discuss the in-sample results for the proposed dynamic Bayesian model.

Posterior results are obtained using 35.000 simulations after 5.000 burn-in draws. We keep

every 4th draw to deal with the correlation in the chain. Here, we show the most important

results.

We find that clickthrough and conversion probabilities have substantially changed over

time. Figure 3 shows illustrative examples of the smoothed estimates and 95% pointwise

highest posterior density intervals (HPDIs) of the time-varying parameters. For the brand

8In case a keyword obtained at least 5,000 impressions in the previous month, we take the clickthrough
rate (CTR) of that specific keyword. Otherwise, we take the CTR over the campaign group the keyword
was assigned to or, if that campaign group received less than 5,000 impressions in the previous month, the
specificity category the keyword was assigned to.

9The local level model is given by CPCi,t+1 = µit with µi,t+1 = µit + εit, µi1 ∼ N(CPC, 0.5), and
εit ∼ N(0, σ2

ε), where CPC is the mean of all CPCs in the dataset and we estimate σ2
ε with maximum

likelihood (σ̂2
ε = 0.007 based on a set of popular keywords). We use the smoothed estimates of CPCit.
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only keywords, we find that clickthrough probabilities have substantially decreased over time,

whereas conversion probabilities have increased. The conversion performance of Apple key-

words was stable, whereas the clickthrough performance was volatile. For Microsoft laptops,

introduced at the retailer in August 2014, we see quite some time variation in ad performance

with alternating periods of high and low clickthrough and conversion probabilities.

(a) CTR - Brand only (b) CTR - Apple (c) CTR - Microsoft

(d) CON - Brand only (e) CON - Apple (f) CON - Microsoft

Figure 3: Posterior means and 95% highest posterior density intervals of {βt}Tt=1 + α̃ for the brand only
keywords, retailer-specific keywords, and Microsoft keywords. For both the clickthrough (CTR) and
conversion (CON) probabilities.

The 95% HPDIs in Figure 3 are quite wide. This is not so much caused by uncertainty in

the dynamics in the time-varying parameter series (as the different smoothed draws follow

similar dynamics), but is mainly caused by uncertainty in how the absolute levels should be

attributed to the higher-level brand only effect and the lower-level brand effects (e.g. Apple,

Microsoft). Adding the brand only effect to any of the brand effects, we find much smaller

95% HPDIs.

To assess the persistence of shocks — how long shocks carryover to next periods — we

consider the posterior results for the autoregressive parameters in Φ in Table 1. We also

compute the half-life of shocks. The half-life is the number of weeks before the effect of

the shock is below 50% from its original value.10 For both the clickthrough and conversion

probabilities, we find that shocks at the specificity level are permanent or highly persistent.

10The half-life of shocks (in days) d can be computed by equating φd = 0.5, that is, d = ln(0.5)/ ln(φ)
where φ is the posterior mean of the autoregressive parameter.
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CTR CON

2.5th 97.5th Half-life 2.5th 97.5th Half-life

Mean percentile percentile (in weeks) Mean percentile percentile (in weeks)

Generic 1.00 0.99 1.00 - 1.00 0.98 1.00 -

Brand only 1.00 0.99 1.00 - 1.00 0.98 1.00 -

Brand & series 1.00 0.99 1.01 - 1.00 0.99 1.00 -

Retailer 1.00 0.99 1.00 - 0.99 0.96 1.01 10.1

Microsoft 0.99 0.97 1.00 11.6 0.98 0.94 1.01 4.6

Toshiba 0.99 0.97 1.00 7.2 0.30 -0.83 1.00 0.1

HP 1.00 0.99 1.00 - 0.75 -0.54 1.01 0.3

Acer 0.97 0.92 1.00 3.2 0.52 -0.73 1.01 0.2

Asus 0.68 -0.11 1.01 0.3 0.43 -0.74 1.00 0.1

Apple 0.99 0.98 1.00 11.5 0.30 -0.82 1.00 0.1

Lenovo 0.99 0.98 1.00 14.8 0.35 -0.70 0.99 0.1

MSI 0.99 0.96 1.00 6.9 0.35 -0.84 1.00 0.1

Table 1: Posterior means, 95% highest posterior density intervals, and the half-life of shocks (based on
the posterior means) for the autoregressive parameters Φ in the AR(1) process for {βt}Tt=1 in Equation
(6) for the clickthrough (CTR) and conversion (CON) probabilities.

The brand-level shocks on clickthrough performance are generally also persistent, with per-

manent shocks for HP ads and a half-life ranging from 0.3 weeks for Asus ads to 14.8 weeks

for Lenovo ads. The effects of brand-level shocks on the conversion performance are more

transitory; the half-life ranges from 0.1 weeks to 4.6 weeks.

To compare the relative performance of keywords, in Figure 4 we plot the time-varying pa-

rameter series including baseline levels for the different specificity groups (left) and brands

(right). Clickthrough probabilities are highest for retailer-specific keywords, followed by

generic, brand only, and brand & series keywords. Conversion probabilities are also highest

for retailer-specific keywords followed by brand & series, generic and brand only keywords.

The clickthrough probabilities of different brands are volatile, whereas the conversion proba-

bilities are relatively stable. Conversion probabilities are lowest for Apple keywords, followed

by Microsoft, MSI, and Toshiba keywords. All graphs again show quite some time variation.

Table 2 displays day-of-the-week effects and the effects of keyword length and match

type. Clickthrough probabilities are highest on Mondays to Wednesdays and for shorter and

exact keywords. Conversion probabilities are lowest on Saturdays, and highest for longer

and exact keywords. The posterior estimates for the standard deviations σα show that there

is substantial variation across keywords in the baseline level of clickthrough and conversion
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Retailer →
Generic →

Brand only →

Brand & series →

(a) CTR - Specificity groups (b) CTR - Brands

Microsoft

Retailer →

Brand & series →

Generic →

Brand only →

(c) CON - Specificity groups (d) CON - Brands

← Acer
← Toshiba

← MSI

← Microsoft

← Apple

Figure 4: Plots of the series {βt}Tt=1 + α̃ for the specificity and brand series, for the clickthrough (CTR)
and conversion (CON) probabilities.

probabilities.

Next, we consider the effect of ad position. Table 3 displays the estimated effect of ad po-

sition (columns 2 and 3) and of bid/CPC (column 4). We find that the more prominent the

ad — the lower the position number — the higher the clickthrough probability. This holds

in general for all types of keywords, although the relationship is strongest for retailer-specific

and exact keywords, and weakest for Apple, HP, and MSI keywords. For the conversion

probabilities we do not find strong evidence that ad position affects conversion probabilities

in general. Furthermore, high bids/CPCs are mostly associated with more prominent ads.

This holds strongest for long and Microsoft keywords. The estimates for the standard devi-

ations σλ show that the effect of position on clickthrough and conversion probabilities varies

substantially over similar keywords.

Table 3, columns 5 and 6, show the posterior results for the instruments in the bid

equation. The results indicate that the bid/CPC is associated with past performance. The

instruments seem strong enough to identify the other parameters. In general, the advertiser

sets higher bids on keywords that previously obtained a high number of impressions and a

high clickthrough rate. Given the size of the variance across keywords (σδ), the reverse rela-

tionship also seems to hold for a number of keywords. This implies that the advertiser may
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CTR CON

Tuesday 0.00 (0.01) 0.01 (0.03)

Wednesday -0.01 (0.01) -0.03 (0.03)

Thursday -0.02 (0.01) -0.03 (0.03)

Friday -0.03 (0.01) -0.01 (0.04)

Saturday -0.06 (0.01) -0.05 (0.03)

Sunday -0.06 (0.01) -0.03 (0.03)

ln (# words) -0.04 (0.02) 0.16 (0.04)

Exact match 0.48 (0.02) 0.25 (0.04)

σα 0.65 (0.01) 0.43 (0.02)

Table 2: Posterior means and standard deviations (in parentheses) for the seasonal effects (γ), the
time-invariant parameters in α̃ and σα (the square root of the diagonal of Σα).

Impact POS on Impact BID/CPC on Impact lagged CTR on Impact lagged IMP on

CTR CON POS BID BID

Intercept -1.01 (0.04) 0.07 (0.07) -0.04 (0.02) 0.02 (0.00) 0.07 (0.01)

Brand only -0.15 (0.05) 0.06 (0.11) 0.05 (0.02) -0.01 (0.01) 0.03 (0.02)

Brand & series 0.03 (0.04) -0.05 (0.10) 0.15 (0.02) -0.01 (0.01) -0.03 (0.01)

Retailer -0.46 (0.11) -0.05 (0.15) 0.22 (0.05) -0.01 (0.01) -0.22 (0.03)

Microsoft 0.08 (0.08) 0.29 (0.15) -0.14 (0.03) -0.02 (0.01) 0.00 (0.02)

Toshiba -0.02 (0.04) 0.02 (0.12) -0.08 (0.02) -0.02 (0.01) 0.04 (0.01)

HP 0.12 (0.04) -0.04 (0.10) -0.01 (0.01) 0.00 (0.01) 0.04 (0.01)

Asus 0.09 (0.04) -0.16 (0.10) -0.01 (0.01) 0.02 (0.01) 0.01 (0.01)

Apple 0.21 (0.05) 0.07 (0.13) -0.04 (0.02) -0.01 (0.01) -0.03 (0.02)

Lenovo 0.00 (0.04) -0.30 (0.11) -0.02 (0.02) 0.03 (0.01) 0.05 (0.01)

MSI 0.14 (0.06) 0.17 (0.17) 0.02 (0.02) -0.03 (0.01) 0.01 (0.01)

ln(# words) -0.02 (0.03) 0.03 (0.06) -0.07 (0.01) 0.00 (0.00) 0.00 (0.01)

Exact match -0.22 (0.02) 0.07 (0.05) -0.05 (0.01) -0.01 (0.00) -0.01 (0.01)

σλ/σδ 0.43 (0.01) 0.18 (0.02) 0.28 (0.00) 0.05 (0.00) 0.13 (0.00)

Table 3: Posterior means and standard deviations (in parentheses) for the position parameters in the
clickthrough and conversion equations (columns 2-3), the bid parameters in the position equation (λ̃)
(column 4), the instruments in the bid equation (δ̃) (columns 5-6) and σλ and σδ (the square root of
diagonal of Σλ and Σδ respectively). Base categories are specificity ‘Generic’, brand ‘Acer’ and match
type ‘Broad’.
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not always bid strategically based on previous clickthrough rates and impressions obtained.

Table 4 shows the posterior mean of the covariance matrix of the error terms, Ση: the

variances are displayed on the diagonal, the covariances on the upper diagonal, and the

correlations on the lower diagonal. Position endogeneity seems present, as the unexplained

parts of the clickthrough probabilities are positively correlated with the unexplained parts of

ad position. For conversion probabilities we find no strong evidence of position endogeneity.

CTR CON POS BID/CPC

CTR 0.137 -0.003 0.027 0.003

0.002 0.004 0.002 0.001

CON -0.045 0.026 0.005 -0.003

0.067 0.005 0.005 0.003

POS 0.222 0.099 0.106 -0.030

0.016 0.103 0.000 0.001

BID 0.018 -0.048 -0.240 0.144

0.008 0.049 0.010 0.001

Table 4: Posterior means and standard deviations (in parentheses) for the variances (diagonal), covari-
ances (upper diagonal) and correlations (lower diagonal) of ηit

.

Finally, bidding endogeneity also seems present, as there is a negative correlation of -

0.240 between the position and bid error terms. Part of this correlation can be explained

because we use the CPC to proxy the bid; the ad position and CPC are both influenced by

unobserved competitive behavior. These findings reinforce that it is important to account

for these forms of endogeneity.

5.3. Model comparison

In this section, we compare the performance of the dynamic model to a static model with

seasonality, that is, setting all βt = 0. We compute log Bayes factors to evaluate the models’

in-sample and out-of-sample performance. In case the log Bayes factor is greater than log(3)

we have sufficient evidence to favor the null model (the static model), in case it is smaller

than log(1/3) we have evidence to favor the alternative model (the dynamic model) (Kass

& Raftery, 1995).

We compute the in-sample log Bayes factors with the Savage-Dickey density ratio, using

the estimates obtained from the dynamic model only (Dickey, 1971).11 We compute the

11The in-sample log Bayes factor of the static model against the dynamic model can be computed by the
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predictive Bayes factors using predictions from both the dynamic and the static model for

a full year. For these predictions we use a moving window of 26 weeks; after each window

we make predictions for each day in the next week and then we move the window one week

further. This also allows the parameters of the static model to change. We make predictions

for each day in the period March 30, 2015 until March 27, 2016. For each model, we use

8.000 simulations after 2.000 burn-in draws and we keep each 4th draw.

CTR CON

In-sample log Bayes factor -474 364 -39 710

Predictive log Bayes factor -6 790 -87

Table 5: Log Bayes factors for the dynamic model (alternative model) against a static model with βt = 0
(null model).

Table 5 shows the log Bayes factors separately for the clickthrough and conversion equa-

tion. The log Bayes factors are all highly negative and much smaller than log(1/3) (= −0.48).

Hence, the dynamic model is superior to a static model in terms of both in- and out-of-sample

performance. There is thus substantial evidence of dynamics in the clickthrough and conver-

sion probabilities in the dataset, indicating that a dynamic SEA strategy is to be preferred

over a static strategy.

Illustrative examples of the dynamic and static models’ predictions are given in Figure

5. The clickthrough predictions are given in the top three figures, the conversion predictions

in the bottom three figures. Overall, the predictions of the dynamic model (solid lines) are

more volatile than those of the static model (dashed lines). For retailer-specific keywords

we find that the dynamic model’s clickthrough forecasts fluctuate around the static model’s

forecasts. Hence, where the dynamic model is able to capture short-term fluctuations, the

static model with a moving window is not. For the conversion predictions we find that, in

the period April 2015 until July 2015, the dynamic predictions are substantially higher than

Savage-Dickey density ratio
lnBF = ln p(Φ|y)|Φ=O − ln p(Φ)|Φ=O, (10)

where p(Φ|y) denotes the posterior marginal pdf of Φ from the dynamic model, and p(Φ) denotes the prior
pdf of Φ. We approximate the first term on the right hand side in Equation (10) using Rao-Blackwellization
based on the full conditional posterior distribution of Φ (Gelfand & Smith, 1990). That is,

ln p(Φ|y)|Φ=O ≈ ln

(
1

S

S∑
s=1

p(Φ|β(s),Σ
(s)
β )|Φ=O

)
, (11)

where S is the number of Monte Carlo simulations, and β(s) and Σ
(s)
β are the parameter draws at the sth

simulation.
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the static predictions. The reason is reflected in Figure 4, where we see a substantial increase

in the conversion rates of all specificity groups in the period October 2014 until April 2015.

The dynamic model timely captures this increase whereas the static model lags behind.

(a) CTR - Generic, broad, 1 word ———
—– —–

(b) CTR - Retailer, broad, 1 word ———
—– —–

(c) CTR - Apple, brand & series, exact,
—— -3 words

(d) CON - Generic, broad, 1 word ——
——– —–

(e) CON - Retailer, broad, 1 word ——
——– —–

(f) CON - Apple, brand & series, exact,
—— -3 words

Figure 5: Posterior mean of predictions for clickthrough (a)-(c) and conversion (d)-(f) probabilities for
three keywords for dynamic model (solid lines) and static model (dashed lines) using a moving window
of 26 weeks. Ad position is set to 1.

6. Managerial implications

The managerial implications of this paper are threefold. First, advertisers can use the model

to obtain accurate daily estimates of clickthrough and conversion probabilities of individual

ads. These estimates can be used to set bids and test the performance of text ads and landing

pages. These estimates can also be used to identify keywords of which the performance is

divergent from similar keywords.

Second, advertisers can use the model to examine the extent of dynamics in their SEA

environment. The more dynamic the environment and the higher the persistence of shocks,

the more often the SEA strategy should be revised. Moreover, advertisers that manage large

ad portfolios can prioritize their focus on keywords based on the expected influence and

persistence of shocks on the keywords’ performance.

Finally, advertisers can use the model to track the performance of ads to timely identify
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when the performance of keywords changes. An advertiser can then analyze the causes of

these changes and adjust, for example, the text ad, landing page, product pricing, or bid

accordingly.

As a final remark, the model’s predictions of clickthrough and conversion probabilities are

insufficient to determine the optimal bid per keyword. To set the optimal bid, an advertiser

has to know the value of each obtained impression, click and conversion, using additional

information on spillover effects to future searches (see Rutz & Bucklin, 2011, Rutz, Trusov, &

Bucklin, 2011, Agarwal et al., 2011), substitution effects across marketing channels (see Yang

& Ghose, 2010, Dinner, Van Heerde, & Neslin, 2014, and Blake, Nosko, & Tadelis, 2015),

and branding profits of keywords (see Ghose & Yang, 2008). Combining the information

from these sources requires the formation of an attribution strategy like in Li and Kannan

(2014). An alternative is to use a bidding heuristic as given in Skiera and Abou Nabout

(2013). We therefore consider the determination of the optimal bid to be outside the scope

of this paper.

7. Summary and conclusions

In this article, we propose a dynamic Bayesian model for clickthrough and conversion prob-

abilities of paid search advertisements. Clickthrough and conversion probabilities can be

subject to changes over time, due to, for example, changes in the tastes and attitudes of con-

sumers or the launch of a new product. Gaining insight into the dynamics of ad performance

is crucial for advertisers to develop effective search engine advertising strategies.

Our main contribution is the development of a model that is especially suited to deal

with dynamic SEA environments: the model allows for time-varying parameters, seasonal

effects, data sparsity, missing data, position endogeneity and unobserved cross-sectional het-

erogeneity. Moreover, we propose AR(1) processes for the time-varying parameters, thereby

allowing for shocks on different types of ads (e.g. brand-specific versus generic ads) to have

different dynamic effects on ad performance (e.g. permanent versus transitory).

In the empirical application, we find evidence of substantial persistent time variation

in ad performance, emphasizing the importance of addressing dynamics in SEA ad perfor-

mance models. We also find evidence of position and bidding endogeneity, indicating that

purely predictive models are unable to capture causal relationships between ad position and

clickthrough and conversion probabilities.

We note several limitations of this study. First, a drawback of the proposed method is the

large computation time involved. Especially drawing the auxiliary Polya-Gamma variables
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is time-consuming, due to the large number of impressions and clicks in the dataset. Second,

in the empirical application we use the cost-per-click (CPC) to proxy the bid. The actual

bid may contain more information on the resulting ad position than the CPC. Finally, data

could be missing not at random. For example, an advertiser might not bid on keywords that

are expected to perform poorly. In this case, the results of the model might not hold for the

non-selected keywords.

We note two interesting ways in which this study can be extended. First, one can add

correlation across the time-varying parameters of the clickthrough and conversion equations.

Such correlations can capture the idea that some shocks affect both clickthrough and conver-

sion probabilities. On the downside, allowing for these correlations will substantially increase

computation time as the time-varying parameter series for the two equations then need to be

drawn jointly. Finally, one can use latent factors to explain ad performance instead of pre-

specified keyword characteristics. Such an analysis will aid understanding of which factors

drive the difference in ad performance across keywords and will help advertisers in designing

effective ad campaigns. Again, this will substantially increase computation time.
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A. Gibbs sampler

To obtain posterior results of the dynamic Bayesian model, we use a Gibbs sampler with

Polya-Gamma data augmentation (Geman & Geman, 1987, Tanner & Wong, 1987, Polson et

al., 2013). The Polya-Gamma data augmentation scheme is suitable for binomial likelihoods

(Polson et al., 2013). This scheme involves introducing one layer of auxiliary latent variables

that follows a Polya-Gamma distribution. Conditional on these latent variables, the posterior

distribution of the parameters of interest has the same functional form as the posterior

distribution of parameters from a linear regression model with normally distributed error

terms. This approach is similar to the data augmentation scheme for probit models of

Albert and Chib (1993), but requires less memory storage as latent variables are drawn for

each observation (keyword times day) instead of for each impression or click. In a SEA

application this is crucial as the number of daily impressions and clicks can be very large.

The Polya-Gamma data augmentation scheme works as follows. Suppose that we have

a binomially distributed variable y ∼ BIN(N, 1/(1 + exp(−θ))). Introduce an auxiliary

random variable ω that follows the Polya-Gamma distribution PG(N, 0). The likelihood
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function p(y|θ) can be written as

p(y|θ) =

(
1

1 + exp(−θ)

)y (
1

1 + exp(θ)

)N−y
=

∫
p(y|θ, ω)p(ω)dω,

where Polson et al. (2013) have showed that the conditional distribution p(y|θ, ω) is propor-

tional to the likelihood kernel of a linear regression model

p(y|θ, ω) ∝ exp
{
−ω

2
(z − θ)2

}
,

with pseudo-observations z ≡ (y − N/2)/ω, signal θ, and independently distributed er-

ror terms with variances 1/ω. Thus, the full conditional distribution of θ, p(θ|ω, y) ∝
p(y|θ, ω)p(θ), becomes standard. That is, the full conditional distribution of θ is the same as

if we have the linear regression model z = θ + ν, ν ∼ N(0, 1/ω) with prior p(θ). Moreover,

the full conditional distribution p(ω|θ, y) is also a Polya-Gamma distribution, and ω can thus

be easily sampled along in the Gibbs sampler (Polson et al., 2013).

For our dynamic model in Equations (1)-(4), we have that conditional on the auxiliary

latent Polya-Gamma distributed variables for the clickthrough and conversion equations

(denoted by ωCTRit and ωCONit , respectively) we have the multivariate linear regression model

zCTRit = αCTRi + x′iβ
CTR
t + λCTRi ln(POSit) + s′tγ

CTR + ηCTRit + ξCTRit , (12)

zCONit = αCONi + x′iβ
CON
t + λCONi ln(POSit) + s′tγ

CON + ηCONit + ξCONit , (13)

ln(POSit) = αPOSi + x′iβ
POS
t + λPOSi ln(BIDit) + ψPOS ln(QSit) + s′tγ

POS + ηPOSit , (14)

ln(BIDit) = αBIDi + x′iβ
BID
t + q′itδ

BID
i + s′tγ

BID + ηBIDit , (15)

with zCTRit ≡ (Nit − Iit/2)/ωCTRit , zCONit ≡ (Mit − Nit/2)/ωCONit , ξCTRit ∼ N(0, 1/ωCTRit ), and

ξCONit ∼ N(0, 1/ωCONit ). The equations are related through ηit ∼MVN(0,Ση).

Now, for ease of representation, we replace the names CTR, CON, POS and BID by the

numbers 1 to 4, respectively, and rename the variables and parameters to obtain the specific

blocks for the Gibbs sampler. That is, we rewrite Equations (12)-(15) as

z1it = w′1itπ1i + x′iβ1t + s′1itγ1 + η1it + ξ1it, (16)

z2it = w′2itπ2i + x′iβ2t + s′2itγ2 + η2it + ξ2it, (17)

z3it = w′3itπ3i + x′iβ3t + s′3itγ3 + η3it, (18)

z4it = w′4itπ4i + x′iβ4t + s′4itγ4 + η4it, (19)
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where
z1it

z2it

z3it

z4it

 =


zCTRit

zCONit

ln(POSit)

ln(BIDit)

 ,

w′

1it

w′
2it

w′
3it

w′
4it

 =


1 ln(POSit)

1 ln(POSit)

1 ln(BIDit)

1 q′it

 ,

π′
1i

π′
2i

π′
3i

π′
4i

 =


αCTRi λCTRi

αCONi λCONi

αPOSi λPOSi

αBIDi δ′BIDi

 ,

β1t

β2t

β3t

β4t

 =


βCTRt

βCONt

βPOSt

βBIDt

 ,
and

s′1it

s′2it

s′3it

s′4it

 =


s′t

s′t

s′t ln(QSit)

s′t

 ,

γ′1

γ′2

γ′3

γ′4

 =


γ′CTR

γ′CON

γ′POS ψPOS

γ′BID

 ,

η1it

η2it

η3it

η4it

 =


ηCTRit

ηCONit

ηPOSit

ηBIDit

 ,
[
ξ1it

ξ2it

]
=

[
ξCTRit

ξCONit

]
.

Equations (6)-(9) are also rewritten in terms of j:

βj,t+1 = Φjβjt + νjt, νjt ∼MVN(0,Σβ,j), βj1 ∼MVN(0, 5Σβ,j), for j = 1, ..., 4,

αji ∼ N(x′iα̃j, σ
2
α,j), for j = 1, ..., 4,

λji ∼ N(x′iλ̃j, σ
2
λ,j), for j = 1, ..., 3,

δji ∼MVN(x′iδ̃j,Σδ,j), for j = 4.

For computational efficiency, in the Gibbs sampler we draw the parameters of each of the

four model equations separately by conditioning on the ηit of the other equations. This also

helps deal with missing values. For this, we compute

η̄jit ≡ E[ηjit|η−j,it] = Ση(j,−j)Σ
−1
η(−j,−j)η−j,it,

σ̄2
η,j ≡ Var(ηjit|η−j,it) = Ση(j,j) − Ση(j,−j)Σ

−1
η(−j,−j)Ση(−j,j),

for j = 1, ..., 4. Here we denote by η−j,it all elements in ηit except for the jth element and any

missing elements, and by Ση(j,−j) all elements of Ση related to row j and all columns except

for the jth. Then, we can rewrite each of the Equations (16)-(19) as a univariate regression

model conditional on η−j,it, as given by

zjit = w′jitπji + x′iβjt + s′jitγj + η̄jit + ζjit, (20)

for j = 1, ..., 4, where the introduction of η̄jit ensures that the error terms ζjit are independent
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of each other
ζ1it

ζ2it

ζ3it

ζ4it

 ∼



0

0

0

0

 ,

σ2
ζ,1it ≡ 1/ω1it + σ̄2

η,1 0 0 0

0 σ2
ζ,2it ≡ 1/ω2it + σ̄2

η,2 0 0

0 0 σ2
ζ,3it ≡ σ̄

2
η,3 0

0 0 0 σ2
ζ,4it ≡ σ̄

2
η,4


 .

Hence, after drawing the parameters of a single equation j, we update the ηj of that equation,

and condition on the new ηj in drawing the parameters of the next equations.

A.1. Overview Gibbs sampler

We use the rewritten model in Equation (20) to construct the Gibbs sampler. To improve

the mixing rates of the sampler, we (i) jointly sample ηjit and the parameters in (αji, βjt,

λji, δji, γj), and (ii) jointly sample η and Ση. Because of sampling jointly, we need to draw

η twice within a single Gibbs step.

The Gibbs steps are given by

1. For j = 1, ..., 4 do

i. Sample ωjit| Iit, Nit, Mit, πji, βjt, γj, ηjit (if j ∈ {1, 2}, for i = 1, ..., N , t = 1, ..., T ).

ii. Compute zjit| ωjit, Iit, Nit, Mit (if j ∈ {1, 2}, for i = 1, ..., N , t = 1, ..., T ).

iii. Compute η̄jit, σ̄
2
η,j| η−j,it, Ση (for i = 1, ..., N and t = 1, ..., T ).

iv. Sample πji = (αji, λji, δji)| zji, ωji, βj, γj, α̃j, λ̃j, δ̃j, η̄ji, σ2
α,j, σ

2
λ,j, Σδ,j, σ̄

2
η,j (for

i = 1, ..., N).

v. Sample {βjt}Tt=1| zj, ωj, πj, γj, η̄j, Σβ,j, Φj, σ̄
2
η,j.

vi. Sample γj| zj, ωj, πj, βj, η̄j, σ̄2
η,j.

vii. Sample ηjit (for i = 1, ..., N and t = 1, ..., T ):

a. If j ∈ {1, 2}, sample ηjit| zjit, ωjit, πji, βjt, γj, η−j,it, Ση.

b. If j ∈ {3, 4}, compute ηjit| zjit, πji, βjt, γj.

2. Sample α̃| α, Σα, sample λ̃| λ, Σλ, and sample δ̃| δ, Σδ .

3. Sample Σα| α, α̃, sample Σλ| λ, λ̃, and sample Σδ| δ, δ̃.

4. Sample Φ| β, Σβ.

5. Sample Σβ| β, Φ.
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6. Sample Ση| z, ω, π, β, γ.

7. Compute η̄jit, σ̄
2
η,j| η−j,it, Ση (for j = 1, ..., 4, i = 1, ..., N and t = 1, ..., T ).

8. Sample ηjit| zjit, ωjit, πji, βjt, γj, η−j,it, Ση (for j = 1, 2, i = 1, ..., N and t = 1, ..., T ).

A.2. Priors

We choose conjugate priors to ensure that the model parameters can be drawn using Gibbs

steps. For the logit equations (clickthrough and conversion) we take slightly informative

priors, for the normal equations (position and bid) we take rather uninformative priors. First,

for the means of the keyword-specific parameters (α̃, λ̃, and δ̃) we take multivariate normal

prior distributions with mean 0 and covariance matrix I (for clickthrough and conversion

equations) or 100I (for position and bid equations). Second, for the variances of the keyword-

specific parameters (diagonal elements of Σα, Σλ, and Σδ) we take inverse Gamma-2 prior

distributions with shape parameter κ0 = 5 and scale parameter κ1 = 5× 0.1.

Third, for the time-varying parameters we take a multivariate normal prior for Φ with

mean Φ̂0 = 0.5ι and covariance matrix ΣΦ0 = 0.5I, where ι represents a vector of ones.

For the diagonal elements of Σβ we take inverse Gamma-2 prior distributions with shape

parameter κβ,0 = 5 and scale parameter κβ,1 = 5 × 0.001. Fourth, for the time-invariant

parameters in (γ, ψPOS) we take a multivariate normal prior distribution with mean 0 and

covariance matrix I (for clickthrough and conversion equations) or 100I (for position and

bid equations).

Finally, for the covariance matrix Ση we take an inverse Wishart prior with 8 degrees of

freedom and scale matrix 8× 0.1I.

A.3. Initialization

We take the following initialization. For the baseline level, we set Σα = 0.1I and α̃ = 0 except

for the intercept in α̃ which we set to −3 for the clickthrough and conversion equations, to 1

for the position equation, and to −1 for the bid equation. For the time-varying parameters,

we set {βt}Tt=1 = 0, Φ = 0.5I, and Σβ = 0.001I. Furthermore, we initialize γ = 0, ψPOS = 0,

λ̃ = 0, and Σλ = 0.1I. For the instruments, we set δ̃ = 0 and Σδ = 0.1I. Finally, for the

keyword- and time-specific shocks, we initialize Ση = 0.1I, ηCTRit and ηCONit to 0 for all i and

t and compute ηPOSit and ηCPCit based on the other initializations.
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A.4. Steps Gibbs sampler

A.4.1. Sampling Polya-Gamma variables ω

The full conditional posterior distribution of the auxiliary latent Polya-Gamma variables ω1it

(ω2it) are independent Polya-Gamma distributions with parameters Iit (Nit) and θ1it (θ2it)

for i = 1, ..., N and t = 1, ..., T where Iit (Nit) denotes the number impressions (clicks), and

θjit = w′jitπji + x′iβjt + s′tγj + ηjit,

for j = 1, 2. We draw the Polya-Gamma variables using the R package BayesLogit (Windle,

Polson, & Scott, 2014a). For computational efficiency, we approximate the Polya-Gamma

variable ω1it (ω2it) by normal variables in case Iit > 170 (Nit > 170) (Windle, Polson, & Scott,

2014b). In this approximation, we set the first and second moment of the normal distribution

equal to the first and second moment of the associated Polya-Gamma distribution.

After drawing the Polya-Gamma variables, we compute the pseudo data points for the

clickthrough and conversion equations

z1it = (Nit − Iit/2) /ω1it,

z2it = (Mit −Nit/2) /ω2it.

A.4.2. Sampling αi, λi, and δi

To sample αji, λji, and δji (collected in πji) for i = 1, ..., N , note that we can write Equation

(20) as the univariate normal regression model

yπ,jit ≡ zjit − x′iβjt − s′jitγj − η̄jit = w′jitπji + ζjit, ζjit ∼ N(0, σ2
ζ,jit),

for t = 1, ..., T , with a normal prior for πji ∼MVN(π̄j0,Σπj0) where

π̄j0 =

x′iα̃j
x′iλ̃j

 , Σπj0 =

σ2
α,j 0

0 σ2
λ,j,

 .
When j = 4, the elements λ̃j and σ2

λ,j are replaced by δ̃j and Σδ,j.

We draw πji from MVN(π̂ji, Σ̂πji)

Σ̂πji =
(∑T

t=1
wjitw

′
jit/σ

2
ζ,jit + Σ−1

πj0

)−1

, π̂ji = Σ̂πji

(∑T

t=1
wjityπ,jit/σ

2
ζ,jit + Σ−1

πj0
π̄0

)
,
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for i = 1, ..., N .

A.4.3. Sampling βt

To sample {βjt}Tt=1, note that we can write Equation (20) as the univariate normal regression

model

yβ,jit ≡ zjit − w′jitπji − s′jitγj − η̄jit = x′iβjt + ζjit, ζjit ∼ N(0, σ2
ζ,jit),

with

βj,t+1 = Φjβjt + νjt, νjt ∼MVN(0,Σβ,j), βj1 ∼MVN(0, 5Σβ,j).

We sample {βjt}Tt=1 using the simulation smoother of Durbin and Koopman (2002) (as ex-

plained in Durbin and Koopman (2012), section 4.9.2). To speed up computations, we per-

form collapsed filtering (Durbin and Koopman 2012, Chapter 6.5, Jungbacker and Koopman

2015).

Collapsed filtering works as follows. We have the (N × 1) vector yβ,jt and the (N ×K)

matrix X, with K >> N . We can compute a (K ×N) matrix A∗jt such that we can obtain

the correct smoothed estimates by using the observation equation with (K × 1) observation

vector

A∗jtyβ,jt = A∗jtX + A∗jtζjt,

where the covariance matrix of ζjt is a diagonal matrix with elements σ2
ζ,jit. Hence, this

procedure allows for much lower computation times because the altered observation vector

is of much smaller dimension than the original observation vector, while the covariance

matrix remains diagonal. We take the ith column of A∗jt equal to

A∗jit =


(∑N

n:Int≥1
1

σ2
ζ,jnt

xnx
′
n

)−1/2

xi/σ
2
ζ,jit, if j = 1, 3,(∑N

n:Nnt≥1
1

σ2
ζ,jnt

xnx
′
n

)−1/2

xi/σ
2
ζ,jit, if j = 2, 4,

where for the matrix in the first terms on the right hand sides we first take the Cholesky

decomposition (upper triangular) and then the inverse. This A∗ is chosen because then

A∗jtζjt ∼MVN(0, I).

In case X is not of full column rank (see Section 4.2) the above procedure needs to be

slightly altered. That is, let X̃ be the (N ×K2) matrix with columns of X such that X̃ is

of full column rank and has the same columnn space as X. Then, we compute A∗jt using the

rows of X̃ instead of X.

Finally, we have to deal with missing values, which in the collapsed case refers to time
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periods in which there is a variable k∗ in xi which has the same value over all i. In other words,

that time period has no keywords with impressions/clicks that have a specific characteristic

in xi. When such missings occur, we set element k∗ in A∗jtyβ,jt to zero, and the elements in

the k∗(th) row and column of A∗jtX equal to zero.

A.4.4. Sampling γ

To sample γj note that we can write Equation (20) as the univariate normal regression model

yγ,jit ≡ zjit − w′jitπji − x′iβjt − η̄jit = s′jitγj + ζjit, ζjit ∼ N(0, σ2
ζ,jit).

We draw γj from MVN(γ̂j, Σ̂γj) where

Σ̂γj =
(∑N

i=1

∑T

t=1
sjits

′
jit/σ

2
ζ,it + Σ−1

γj0

)−1

, γ̂j = Σ̂γj

(∑N

i=1

∑T

t=1
sjityγ,jit/σ

2
ζ,it

)
,

where Σγj0 is the diagonal covariance matrix of the normal prior for γ.

A.4.5. Sampling η

Next we sample {{ηjit}Ni=1}Tt=1. In case j ∈ {3, 4} (position and bid equations), we see from

Equations (18) and (19) that we can directly compute ηjit:

ηjit = zjit − w′jitπji − x′iβjt − s′jitγj. (21)

In case j ∈ {1, 2} (clickthrough and conversion equations), we sample ηjit. Note that we can

write both Equations (16) and (17) as the univariate normal regression model

yη,jit ≡ zjit − w′jitπji − x′iβjt − s′jitγj = ηjit + ξjit, ξjit ∼ N(0, 1/ωjit),

with a normal prior ηjit ∼ N(η̄jit, σ̄
2
η,j). We draw ηjit for i = 1, ..., N and t = 1, ..., T from

N(η̂jit, Σ̂ηjit) where

Σ̂ηjit =
(
ωjit + 1/σ̄2

η,j

)−1
, η̂jit = Σ̂ηjit

(
ωjityη,jit + η̄jit/σ̄

2
η,j

)
.
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A.4.6. Sampling α̃, λ̃, and δ̃

To sample α̃, note that Equation (7) is a multivariate regression model given {αi}Ni=1 and

Σα. We draw α̃ from MVN( ˆ̃α, Σ̂α̃) where

Σ̂α̃ =
(∑N

i=1
(I4 ⊗ x′i)′Σ−1

α (I4 ⊗ x′i) + Σ−1
α̃0

)−1

, ˆ̃α = Σ̂α̃

(∑N

i=1
(I4 ⊗ x′i)′Σ−1

α αi

)
,

where Σα̃0 is the covariance matrix of the normal prior for α̃, and ⊗ denotes the Kronecker

product.

To sample λ̃, note that Equation (8) is a multivariate regression model given {λi}Ni=1 and

Σλ. We draw λ̃ from MVN(ˆ̃λ, Σ̂λ̃) where

Σ̂λ̃ =
(∑N

i=1
(I3 ⊗ x′i)′Σ−1

λ (I3 ⊗ x′i) + Σ−1

λ̃0

)−1

, ˆ̃λ = Σ̂λ̃

(∑N

i=1
(I3 ⊗ x′i)′Σ−1

λ λi

)
,

where Σλ̃0
is the covariance matrix of the normal prior for λ̃.

To sample δ̃, note that Equation (9) is a multivariate regression model given {δi}Ni=1 and

Σδ. We draw δ̃ from MVN(ˆ̃δ, Σ̂δ̃) where

Σ̂δ̃ =
(∑N

i=1
Σ−1
δ + Σ−1

δ̃0

)−1

, ˆ̃δ = Σ̂δ̃

(∑N

i=1
Σ−1
δ δi

)
,

where Σδ̃0
is the covariance matrix of the normal prior for δ̃.

A.4.7. Sampling Σα, Σλ, and Σδ

To sample Σα, Σλ, and Σδ,j, note that these covariance matrices are diagonal. Therefore, we

separately draw each diagonal element.

To sample σ2
α,j, note we have a univariate regression model for αji ∼ N(x′iα̃j, σ

2
α,j) for

i = 1, ..., N . We therefore draw σ2
α,j from the inverse Gamma distribution

σ2
α,j ∼ IG

(∑N
i=1(αji − x′iα̃j)2 + κ1

2
,
N + κ0

2

)
,

for j = 1, ..., 4, with prior parameters κ0 and κ1.

To sample σ2
λ,j, note we have a univariate regression model for λji ∼ N(x′iλ̃j, σ

2
λ,j) for

36



i = 1, ..., N . We therefore draw σ2
λ,j from the inverse Gamma distribution

σ2
λ,j ∼ IG

(∑N
i=1(λji − x′iλ̃j)2 + κ1

2
,
N + κ0

2

)
,

for j = 1, ..., 3, with prior parameters κ0 and κ1.

To sample Σδ,j,kk, for j = 4, note we have a univariate regression model for δki ∼
N(x′iδ̃jk,Σδ,j,kk) for i = 1, ..., N . We therefore draw Σδ,kk from the inverse Gamma dis-

tribution

Σδ,j,kk ∼ IG

(∑N
i=1(δjki − δ̃jk)2 + κ1

2
,
N + κ0

2

)
,

for k = 1, 2, with prior parameters κ0 and κ1.

A.4.8. Sampling Φ

To sample Φ, note that Equation (6) is a multivariate regression model given β and Σβ. We

draw Φ from MVN(Φ̂, Σ̂Φ) where

Σ̂Φ =
(∑T

t=2
βt−1Σ−1

β βt−1 + Σ−1
Φ0

)−1

,

Φ̂ = Σ̂Φ

(∑T

t=2
βt−1Σ−1

β βt + Σ−1
Φ0

Φ̂0

)
,

where Φ̂0 is the mean vector and ΣΦ0 is the covariance matrix of the normal prior for Φ.

A.4.9. Sampling Σβ

To sample Σβ, note that Φ is a diagonal matrix and we can therefore draw each kth diagonal

elements separately. For the kth element, we have the univariate regression model

βk,t+1 = Φkkβkt + νkt, νkt ∼ N(0,Σβ,kk), βk1 ∼ N(0, 5Σβ,kk).

We therefore draw Σβ,kk from the inverse Gamma distribution

Σβ,kk ∼ IG

(∑T
t=2 (βkt − Φkkβk,t−1)2 + β2

k1/5 + κβ,1
2

,
T + κβ,0

2

)
,

with prior parameters κβ,0 and κβ,1.
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A.4.10. Sampling Ση

To sample Ση in a computationally efficiently manner, we use an independence Metropolis-

Hastings (MH) step (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953, Hastings,

1970). For this purpose, we first reparameterize Ση into elements that are unconstrained, us-

ing a Cholesky decomposition. Next, we draw a candidate for the unconstrained parameters

from a multivariate normal distribution with as mean the posterior mode, and as covariance

matrix the negative of the inverse of the Hessian of the log posterior at the posterior mode.

To find the posterior mode and Hessian, we perform an optimization using the analytic gra-

dient and an approximated Hessian from the outer-product-of-gradients (BHHH) method.

Details are in the Supplementary Materials.12

12Available upon request.
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