
 

 

TI 2019-030/VI 

Tinbergen Institute Discussion Paper  

 

 

 

Discounting the Future: on Climate 

Change, Ambiguity Aversion and 

Epstein-Zin Preferences 

 

 
Stan Olijslagers1 

Sweder van Wijnbergen1,2 

 

 
 

 

 

 

 

 

 

 
1 UvA 
2 CDPR, TI 



 

 

Tinbergen Institute is the graduate school and research institute in economics of 
Erasmus University Rotterdam, the University of Amsterdam and VU University 

Amsterdam. 
 
Contact: discussionpapers@tinbergen.nl  

 
More TI discussion papers can be downloaded at https://www.tinbergen.nl  

 
Tinbergen Institute has two locations: 

 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 

1082 MS Amsterdam 
The Netherlands 

Tel.: +31(0)20 598 4580 
 
Tinbergen Institute Rotterdam 

Burg. Oudlaan 50 
3062 PA Rotterdam 

The Netherlands 
Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
https://www.tinbergen.nl/


Discounting the Future: on Climate Change,
Ambiguity Aversion and Epstein-Zin preferences∗

Stan Olijslagers† Sweder van Wijnbergen‡

April 30, 2019

Abstract

We focus on the effect of preference specifications on the current day valuation of fu-
ture outcomes. Specifically, we analyze the effect of risk aversion, ambiguity aversion
and the elasticity of intertemporal substitution on the willingness to pay to avoid
climate change risk. The first part of the paper analyzes a general disaster (jump)
risk model with a constant arrival rate of disasters. This provides useful intuition in
how preferences influence valuation of long-term risk. The second part of the paper
extends this model with a climate model and a temperature dependent arrival rate.
Since the model yields closed form solutions up to solving an integral, our model does
not suffer from the curse of dimensionality of numerical IAMs with several state vari-
ables. Introducing Epstein-Zin preferences with an elasticity of substitution higher
than one and ambiguity aversion leads to much larger estimates of the social cost
of carbon than obtained under power utility. The dominant parameters are the risk
aversion coefficient and the elasticity of intertemporal substitution. Ambiguity aver-
sion is of second order importance.
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Executive summary

The consequences of climate risk will take place far in the future while if they are
to be avoided policies need to be implemented today. This has made the issue of
discounting future costs of climate change back towards today arguably the most
important element of the climate change debate and that is the subject of this paper.

Climate disasters are events that have a large impact on the economy, occur very
rarely and take place abruptly (Goosse, 2015). To model this feature, we add a jump
(Poisson) process to the endowment consumption stream in an otherwise standard
Lucas tree General Equilibrium asset pricing model. In the second part of this paper
we extend this model by adding an explicit climate dynamics model relating the jump
risk to temperature rises coming out of the climate model. We model the climate
dynamics similar to the DICE model (W. Nordhaus, 2014).

In the first part of this paper (Sections 4, 5 and 6) we study an asset pricing
model with constant disaster risk to bring the link between risk and the structure
of preferences in sharp focus. The economy is modeled as a pure exchange economy
with exogenous endowments. When a disaster arrives, a random variable determines
the damage of the climate disaster. We focus explicitly on risk until the last section
of the second paper where we add expected losses. But before that section we assume
that climate disasters do not decrease economic growth on average so as to completely
focus on the risk side of the problem.

Because these jumps have not actually occurred already, it is hard to estimate
the probability that a disaster occurs or its expected impact. Therefore we assume
that the agent does not know the exact probability distributions of the arrival rate of
climate shocks and the size of the shocks. There is so called ambiguity (or Knightian
uncertainty) about the characteristics of the jump risk component while the agent is
assumed to be averse to this ambiguity. Moreover we use the continuous time version
of Epstein-Zin utility (Stochastic Differential Utility), which allows us to separate
the intertemporal elasticity of substitution from the degree of risk aversion so we
can disentangle risk aversion effects (known probabilities), ambiguity aversion effects
(unknown probabilities) and substitution effects.

Solving the model yields closed form solutions for the interest rate, risk premium
and consumption-wealth ratio. These formulas give very useful insights in how prefer-
ences influence the key characteristics of the model. It is especially interesting to see
how jump risk in combination with non-expected utility yields much more realistic
interest rates in a general equilibrium model. The interest rate plays an important
role in discounting the future. We are also able to calculate in closed form how much
time 0 consumption an agent is willing to give up to reduce climate risk. This amount
is very sensitive to both ambiguity aversion and the elasticity of intertemporal sub-
stitution (EIS).

In the second part of the paper we extend the model by introducing a climate
model and a temperature-dependent disaster arrival rate. In this model we can ac-
tually calculate the social cost of carbon. The social cost of carbon measures the
cumulative future damage in dollar terms of emitting one ton of carbon today. We
derive an analytic expression for the social cost of carbon (SCC) in the climate risk
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extended variant where jump risks depend on temperature (Sections 7 and 8). The
SCC is represented by an integral over all future expected damages. The integrand
consists of two parts: a weighting function that determines how much weight one puts
on the future vs. today and a certainty equivalent. We show that risk aversion and
the elasticity of intertemporal substitution are the dominant preference parameters in
determining the SCC. Risk aversion increases the SCC through the certainty equiv-
alent: a more risk-averse agent dislikes risk more and therefore has a lower certainty
equivalent. The elasticity of intertemporal substitution affects the weighting func-
tion: it puts more weight on the (far) future and these are exactly the dates where
expected climate damages are large. Therefore a larger EIS yields a larger SCC.

Ambiguity aversion has an effect on both the certainty equivalent and the weight-
ing function. Increasing ambiguity aversion always leads to a lower certainty equiva-
lent, which would in turn leads to a higher SCC. But the effect of ambiguity aversion
on the weighting function depends on the elasticity of intertemporal substitution.
When the EIS is smaller than one, income effects dominate and increasing ambiguity
aversion leads to more weight on future dates. The alternative is true for values of the
EIS above one. In this case, a high ambiguity aversion leads to more weight on the
short-term. The certainty equivalent effect and the weighting effect work in opposite
directions when the EIS is larger than one. These results demonstrate the insights
to be gained from deriving analytical solutions to the model, the literature has so
far largely used computer simulations of special cases or analytical solutions using
logarithmic utility (EIS = 1).

Our numerical example using best estimates of the various parameters, ambiguity
aversion and especially preferences for early resolution of uncertainty yields a SCC
that is an order of magnitude larger than conventional approaches yields, namely a
SCC of $1256 per ton of carbon ($342 per ton of CO2). This result is mainly driven
by a higher elasticity of intertemporal subsitution (1.5) compared to power utility,
and by the fact that climate disasters are stochastic and therefore risk aversion (5)
plays an important role. Ambiguity aversion does play a role but the effect is small.

As mentioned before, the paper focuses specifically on risk. We have assumed
that on average, climate risk has no impact on economic growth and risk-neutrality
would imply a SCC of zero. In reality, climate change increases risk but also decreases
economic growth. Relaxing the assumption that climate change has on average no
effect on economic growth and including the expected loss, we obtain a much higher
estimate of the SCC. With the same calibration as the previous estimate, the SCC
almost doubles to $2178 per ton of carbon ($593 per ton of CO2).
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1 Introduction

Climate change is one of the main risks the economy will face in the upcoming decades
or possibly even centuries. However, there is still much uncertainty about climate
change. While (almost) all scientists agree on the fact that climate change will have
possibly dramatic negative consequences for the environment and economic growth,
we are still not able to accurately estimate the extent and timing of future damages
induced by climate change. But one thing we do know is that such consequences
will take place far in the future while if they are to be avoided policies need to be
implemented today. This has made the issue of discounting future costs of climate
change back towards today arguably the most important element of the climate change
debate and that is the subject of this paper. But rather than arguing about specific
numerical values for parameters such as time preference, we challenge the structure
of preferences commonly assumed to derive the appropriate discounting procedures
and discount rates1. Another extension in comparison to the traditional approaches
is that we model climate risk explicitly as disaster risk. We show that implementing
empirically supported deviations from time separable power utility and modeling
climate damages as rare disasters leads to estimates of the Social Cost of Carbon
that are orders of magnitude larger than have been derived so far using conventional
approaches to time discounting.

The impact of climate risk on the economy is often modeled using Integrated As-
sessment Models (IAMs). IAMs integrate the knowledge of different domains into one
model. In the case of climate change, the models combine economic factors (economic
growth, technological improvement, fossil fuel use), demographic changes (population
growth) and climate factors (atmospheric carbon concentration, temperature, ecosys-
tem)2. The three main IAMs are DICE (W. Nordhaus, 2014), PAGE (Hope, 2006)
and FUND (Tol, 2002)3. These models are, among others, used as policy tools for
cost-benefit analyses. They provide a conceptual framework to better understand
the complex problem of climate change by combining different fields and allowing for
feedback effects between those fields.

But IAMs also have major drawbacks. To quote Pindyck (2017): ”IAM-based
analyses of climate policy create a perception of knowledge and precision that is illu-
sory, and can fool policy-makers into thinking that the forecasts the models generate
have some kind of scientific legitimacy.” His critique is that the models are (1) very
sensitive to the choices of parameters and functional forms, especially the discount
rate. Besides, we know very little about (2) climate sensitivity and (3) damage func-
tions. Lastly, (4) IAMs don’t incorporate tail risk. He recommends simplifying the
problem by focusing on the catastrophic outcomes of climate change, instead of mod-
eling the underlying causes.

1For a very different (and strongly worded) view focusing on the social welfare aspects of the
rate of time preference rather than on individual preferences, see Chichilnisky, Hammond, and
Stern (2018); Stern (2015) who look at a positive rate of time preference as discrimination between
generations that happen to have been born at different moments in time.

2This list is not exhaustive, but is used to give an idea of the nature of an IAM.
3The references do not contain the most recent versions of the IAMs.
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The three main IAMs are deterministic, largely because stochastic models with
many state variables are more difficult to solve than deterministic models. To nev-
ertheless capture uncertainty, some authors perform a Monte Carlo-like approach by
analyzing several deterministic runs with different parameter values and then taking a
weighted average of all runs (W. D. Nordhaus (2014); Dietz (2011)). Such an analysis
is useful if we are interested in the sensitivity of the models to different parameter val-
ues. However, it is conceptually different from explicitly using stochastic variables,
since for each run all uncertainty is resolved at time 0. Crost and Traeger (2013)
compare the Monte Carlo approach to a model that actually uses random variables
and find find that the Monte Carlo approach underestimates the impact of climate
damages.

We propose an analytically solvable IAM (Integrated Assessment Model) that
addresses the critiques of Pindyck (2017) and Crost and Traeger (2013) on the use
of deterministic IAMs. This IAM is able to capture the climate dynamics of the
numerical IAMs very well. Since there is so little known about the damage functions,
we investigate the impact of both attitudes towards well defined measurable risks
and ambiguity aversion towards unmeasurable uncertainty on the willingness to pay
for avoiding climate risk. Furthermore we model climate risk as tail risk instead
of assuming that temperature increases generate a certain amount of damage every
year. The model is transparent due to the closed form solutions for the social cost of
carbon. Where stochastic numerical IAMs can take hours to be solved, solving this
model only requires numerical integration and is therefore solved within seconds.

The paper is divided into two parts. The first part studies an asset pricing model
with constant disaster risk. The economy is modeled as a pure exchange economy with
exogenous endowments. We extend the Consumption-based Capital Asset Pricing
Model (CCAPM) developed in Lucas Jr (1978). In the literature, this model is
widely used in conjunction with a lognormal distribution4. The diffusion component
of the endowment captures fluctuations in consumption. We take into account that
the nature of climate risk is different from ”normal” economic risk as captured by a
diffusion term. Climate disasters are events that have a large impact on the economy,
occur very rarely and take place abruptly (Goosse, 2015). To model this feature, we
add a jump process to the endowment consumption stream to capture the disaster
risk, explicitly modeling climate risk as tail risk.

Furthermore we explicitly take into account that it is hard to estimate the prob-
ability that a disaster occurs and its expected impact by assuming that the agent
does not know the exact probability distributions of the arrival rate of climate shocks
and the size of the shocks. There is so called ambiguity about the characteristics of
the jump risk component. And the agent is assumed to be averse to this ambiguity
or Knightian uncertainty. Finally we use the continuous time version of Epstein-Zin
utility, also called stochastic differential utility (SDU), which allows us to separate
the intertemporal elasticity of substitution from the degree of risk aversion. In the
widely used power utility specification risk aversion and elasticity of intertemporal
substitution (EIS) are captured by one parameter, they are equal to each other’s in-

4Although Lucas Jr (1978) doesn’t assume a specific distribution for the endowment stream.
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verse. There is strong empirical evidence placing the relative degree of risk aversion
in the range of 5 - 10 (Cochrane, 2009). Using such estimates in combination with
power utility then results in implied estimates for the EIS much lower than empiri-
cal estimates suggest. But especially for long term problems such as climate change
intertemporal choices play an important role and restricting parameters such as the
EIS is a severe limitation. The SDU preferences make it possible to separate risk
aversion and the elasticity of intertemporal substitution. We can therefore disentan-
gle risk aversion effects (known probabilities), ambiguity aversion effects (unknown
probabilities) and substitution effects. The Epstein-Zin preferences also allow for the
possibility that the agent has a preference for early resolution of risk, clearly of rele-
vance in a discussion on climate risks. We show that the specification of the agent’s
preferences in combination with stochastic disaster risk has large effects on how much
one is willing to pay to reduce risk.

The asset pricing model with constant disaster risk gives a very useful insight in
how our preference and risk specifications affect prices, interest rates and valuation
of risks. In the second part of the paper we extend this asset pricing model with
a climate model. We model carbon emissions, atmospheric carbon concentration
and temperature increases. The arrival rate of climate disasters is now increasing in
temperature instead of constant. Our analytic model is able to match the climate
dynamics of numerical IAMs and specifically matches the DICE model’s dynamics
very closely. Furthermore we explicitly focus on the valuation of climate risk and we
therefore do not analyse optimal abatement policies at this stage yet. A commonly
used measure for the cost of carbon emissions is the social cost of carbon (SCC), the
long term damage in dollar terms of emitting one ton of carbon today. Our base
calibration yields a sizable social cost of carbon. Similar to the numerical IAMs, the
SCC in our model is also very sensitive to the choice of the input parameters but
in addition we can explore the implications of ambiguity aversion, preferences for
early resolution of uncertainty and (related to that) a higher EIS than implied by
commonly accepted values for the degree of risk aversion. In spite of incorporating
all these generalizations we can still derive analytic expressions for the SCC, up to
an integral, in our core model setup, making it transparent how ambiguity aversion
and Epstein-Zin preferences influence the SCC. In our numerical example using best
estimates of the various parameters, ambiguity aversion and especially preferences for
early resolution of uncertainty yield a SCC that is an order of magnitude larger than
conventional approaches yield.

2 Related literature

This paper is related to two strands of literature. First, our methodology is related to
portfolio choice and consumption based asset pricing models with jump risk and/or
non-expected utility. And second, the paper is related to research on the impact of
climate change on the economy.

The model we develop is an extension of the Consumption Capital Asset Pricing
Model (CCAPM) by Lucas Jr (1978). Breeden (1979) derives a similar model in
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continuous time. Naik and Lee (1990) consider the pricing of options in a general
equilibrium consumption-based framework where asset prices follow a jump-diffusion
process. Mehra and Prescott (1985) point out that for plausible parameter values,
the CCAPM produces a way too low equity premium and correspondingly a too high
risk-free rate. These puzzles are called respectively the Equity Premium Puzzle and
the Risk-Free Rate Puzzle. Jump risk or disaster risk has been proposed as a possible
solution of these puzzles (Rietz (1988); Barro (2006); Pindyck and Wang (2013)). Ex-
tensions to the early disaster/jump risk models are the use of Stochastic Differential
Utility (SDU) instead of power utility, and the introduction of time-varying disas-
ter probabilities and multi-period (i.e. persistent) disasters (Barro (2009); Wachter
(2013); Tsai and Wachter (2015)). Climate change induced disasters fit in the rare
disaster literature since climate change is increasingly thought to give rise to large
and abrupt destructive changes in the Earth’s environment (Goosse, 2015) whose oc-
currence has a small probability at any given moment of time but with possibly large
negative effects on the economy.

Ambiguity aversion, aversion of unmeasurable or Knightian uncertainty, is the
second extension of the CCAPM we introduce to our climate model. Brock and
Hansen (2017) stress the importance of taking into account risk, ambiguity and model
misspecification in climate economics. Liu, Pan, and Wang (2004) consider a general
equilibrium model with rare disasters and ambiguity aversion5. The agent is only
concerned about misspecification of the jump process, a logical choice that we follow,
since the probability distribution of rare events is by their very nature much harder to
estimate compared to the diffusion component. Other papers on partial equilibrium
portfolio choice models with ambiguity aversion and jump-diffusion processes are Jin,
Luo, and Zeng (2017) and Branger and Larsen (2013). The first paper uses a non-
parametric approach to model ambiguity aversion in the jump component, the second
paper focuses on utility losses if ambiguity is ignored.

Our stochastic and preference structure combines the model of Liu et al. (2004)
with ambiguity aversion with respect to the parameters of the jump-risk component,
with the i.i.d. model of Tsai and Wachter (2015). This implies that the agent has
SDU preferences, the stochastic consumption process follows a jump diffusion process
and the representative agent is ambiguity averse with respect to the arrival rate and
the jump probability of the jump-risk component.

Risk aversion and ambiguity aversion are obviously important in a climate change
setting, but since abrupt climate change is anticipated to take place far into the future,
intertemporal choices play an important role as well. Power utility is therefore an
unsatisfactory framework since with that structure of preferences, risk aversion and
IES cannot be varied independently. This is the reason why we adopt the Stochastic
Differential Utility framework introduced by Duffie and Epstein (1992b) since with
SDU the risk aversion parameter and the elasticity of intertemporal substitution (EIS)
are no longer restricted to be each other’s inverse. Furthermore, we go beyond the
setting of Tsai and Wachter (2015) by introducing ambiguity aversion. This extension

5Liu et al. (2004) looked at the implication of disaster risk for option pricing and show how the
model can generate option smirks that are observed in the data.
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can also be relevant in the general disaster model, but is especially relevant in the
climate disaster model since there is no clear history of events on which we can base
our estimates of the damages.

The second strand in the literature our paper is related to is the literature on
climate change economics and especially to the part that considers non-expected
utility and the part that looks at analytic approaches to solve their models. Bansal,
Kiku, and Ochoa (2016) propose a climate model based on the Long-Run-Risk (LRR)
model of Bansal and Yaron (2004). In the LRR-model, the agent has Epstein-Zin
preferences and the consumption growth contains persistent shocks. Bansal et al.
(2016) model climate disasters as a jump process that affects both consumption itself
and the growth rate of consumption. They show that the outcomes of their model are
very sensitive to choices of the EIS. Non-expected utility can have a substantial effect
on the discount rate, which is obviously a very important parameter in climate models
since climate change is expected far into the future but countermeasures may well
have to be taken today. Of course it is not just the structure of preferences but also
the pure rate of time preference that has an impact on the discount rate. There is a
large debate on the choice of the pure rate of time preference in climate models (Stern
et al. (2006); Chichilnisky et al. (2018); W. D. Nordhaus (2007); Weitzman (2007)).
Traeger (2014) explicitly considers the effect of Epstein-Zin preferences and ambiguity
aversion on interest and discount rates. He models ambiguity aversion using the
smooth recursive preferences approach by Klibanoff, Marinacci, and Mukerji (2005);
we choose a different approach to modeling ambiguity aversion, which we discus below
in section 3.2.

The three IAMs that were mentioned in the introduction are all solved using
numerical methods. However, since it has become clear that the choice of the input
parameters has a large influence on the results, we think it is useful to know how these
parameters exactly influence the outcomes and therefore opt for models allowing
for analytical solutions. There are a few very recent papers that also focused on
obtaining analytic solutions. Golosov, Hassler, Krusell, and Tsyvinski (2014) were
the first to obtain closed form solutions in an IAM. However, this required quite
strict assumptions such as logarithmic utility and full depreciation of capital every
decade. Bretscher and Vinogradova (2018) develop a stylized production-based model
where emissions directly enter the damage function and obtain closed form solutions
for the optimal abatement policy. Bremer and van der Ploeg (2018) consider a rich
stochastic production-based model with Epstein-Zin preferences, convex damages,
uncertainty in state variables, correlated risks and skewed distributions to capture
climate feedbacks. Since the model is too complex to obtain exact analytic solutions,
they obtain closed form approximate solutions using perturbation methods.

The Analytic Climate Economy (ACE) model of Traeger (2018) is closest to our
setup. He extends the model of Golosov et al. (2014). Where in other models either
carbon emissions (Bretscher & Vinogradova, 2018) or atmospheric carbon concentra-
tion (Golosov et al., 2014) directly enter the damage function, ACE explicitly models
the effect of carbon concentration on temperature while the damages are induced by
an increasing temperature. The model is able to match the climate dynamics of the
numerical IAM models. Traeger (2018) also considers the effect of uncertainty in
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state variables. Our approach is closely related to ACE, we model the dynamics of
our state variables in a similar way. However, we consider an endowment economy in
continuous time instead of a production economy in discrete time because continuous
time allows us to sharply distinguish abrupt jumps from smooth diffusion stochastics,
a difference that is blurred in discrete time frameworks. Furthermore, in our frame-
work damages enter the consumption process using a Poisson process (disaster risk),
in line with the climate scientists’ discussion of abrupt changes, where in ACE, dam-
ages enter by decreasing the output every time period, equivalent to through the drift
term in a continuous time setting. But our main extension is that we obtain solutions
with SDU preferences and ambiguity aversion, where ACE only solves the model for
a specific case of Epstein-Zin utility, namely with a unit EIS. When the EIS is equal
to one, the problem vastly simplifies since income and substitution effects cancel out.
But that simplification comes at a cost: there is empirical evidence that the EIS is
well above one (Van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez
(2012); Vissing-Jørgensen and Attanasio (2003)), which as we will demonstrate, has a
major impact on the SCC. Also in the finance literature (Bansal et al. (2016); Barro
(2009)) and in climate change models with recursive preferences (Jensen and Traeger
(2014); Cai, Judd, and Lontzek (2015)) values of the EIS between 1.5 and 2 are often
used. Given the large impact of changes in the EIS given risk aversion on intertempo-
ral choice it seems to us important to study how deviating from unit elasticity affects
intertemporal choices and the long term stochastic discount factor.

3 Methodology

In this section we discuss several choices regarding the model setup and utility speci-
fication. In order to do so we first outline the setup for the economy. Since we do not
consider mitigation policies in this paper, we opt for assuming a pure exchange econ-
omy, where agents are endowed with an exogenous stochastic income stream. Agents
can buy risky stocks, which give a claim on the endowment. Consumption goods are
perishable, transferring wealth to the future is only possible by buying stocks. The
income stream can intuitively be seen as a tree that produces an uncertain amount of
fruit every time period. All agents can buy stocks, which are shares in the tree. The
fruit is non-storable, so it must be consumed at the period of the endowment. This
implies that aggregate endowment equals aggregate consumption at every moment in
time. It is assumed that all agents have identical preferences and endowments, so the
separate agents can be replaced by one representative agent. That agent then wants
to maximize utility from consumption.

The aggregate endowment process follows a geometric Brownian motion with an
additional jump component that represents climate disasters. Suppose we have a
probability space (Ω,F ,P) on which a standard Brownian motion Zt, a Poisson pro-
cess Nt with arrival rate λ and a random variable Yt are defined. Jump amplitudes
are assumed to be independent over time. The three types of shocks, namely Brown-
ian motions, Poisson arrivals and jump magnitudes, are assumed to be independent.
Assume there is a filtration F = {Ft : t ≥ 0}. We will use the following notation:
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Et[.] = E[.|Ft]. Consider the following process for aggregate endowments:

dCt = (µ− λm)Ctdt+ σCtdZt + YtCt−dNt (1)

The endowment follows the usual geometric Brownian motion dynamics, with an
additional jump process. Ct− denotes aggregate consumption just before the jump
(Ct− = limh↓0Ct−h). Clearly, in equilibrium aggregate consumption must equal ag-
gregate endowment and therefore the process is also referred to as the aggregate
consumption process. The growth rate µ ≥ 0 and the volatility σ > 0 are constant.
When a jump arrives at time t, the jump size is controlled by the random variable Yt.
Assume that Yt = eWt − 1 where Wt follows a normal distribution with mean µJ < 0
and variance σJ . Yt can be seen as the percentage change of aggregate consumption
after a jump. The expected jump size equals E[Yt] = m = eµJ+ 1

2
σ2
J − 1. In line

with the subject of climate disasters, we assume that m < 0. To compensate for the
expected effect of the jumps, the term λm is subtracted from the drift (i.e. we use a
compensated compound Poisson process). We use a compensated compound Poisson
process because this allows us to to focus specifically on the welfare effects of risk re-
duction: once the correction term is included, the expected effect of a jump is zero. A
similar assumption is made in the LRR model with climate change disasters (Bansal
et al., 2016). This implies that climate disasters increase risk rather than decreasing
expected aggregate consumption. It is relatively straightforward to later on add the
expected value of the compensation terms to look at results without compensation.
Although the focus of the paper is on risk, we will later on shortly look at the impact
of leaving out the compensation term on the outcome.

3.1 Utility Specification

The representative agent maximizes his utility of consumption over an infinite plan-
ning horizon. We consider the continuous time version of the Epstein-Zin prefer-
ences (Epstein & Zin, 1989), first developed by Duffie and Epstein (1992b). Ep-
stein and Zin (1989) consider the following class of preferences in discrete time:

Vt = [(1 − β)C
1−1/ε
t + βµt(Vt+1)1−1/ε]

1
1−1/ε where ε = EIS, β is the time preference

parameter and µt(.) is a certainty equivalent function. When considering a determin-
istic consumption program, Vt is a constant elasticity of substitution (CES) utility
function. In the other extreme case where only a static gamble is considered, there
are no intertemporal choices and the utility is entirely determined by the certainty
equivalent function µt(.). The certainty equivalent function (or risk aggregator) that

is widely used throughout the literature is µt(Vt+1) = Et(V
1−γ
t+1 )

1
1−γ where γ is the

relative risk-aversion coefficient. This specification of µt(.) yields a special case of the
preferences studied by Kreps and Porteus (1978) and is therefore also called Kreps-
Porteus utility. Static gambles are evaluated as if the agent has power utility, but
in a dynamic stochastic setting EIS and risk aversion are decoupled under SDU: this
specification allows to separate risk aversion γ from the elasticity of intertemporal
substitution ε.
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One property of this utility specification is that the agent has preferences for
early resolution of uncertainty if ε > 1

γ
. Consider a consumption program with

consumption in two periods: c0 and c1. In consumption program cA, at time t0,
two coins (0 and 1) are tossed, one for each period. When a coin i yields a head,
consumption at time i equals H. When a coin i yields a tail, consumption equals
L < H. Consumption program cB is similar, except for the timing of the coin tosses.
Instead of tossing both coins at time t0, now coin 0 is tossed at time t0 and coin 1
is tossed at t1. So in terms of risk, both consumption programs are identical. When
considering expected utility, both consumption programs have equal utility. However,
when considering Epstein-Zin utility with ε > 1

γ
, the agent has preferences for early

resolution for uncertainty and prefers cA over cB. Knowing the outcomes earlier yields
a higher utility. It must be noted that even when the agent is not able to improve
planning when the outcomes are known earlier, he still prefers to know the outcomes
earlier.

We consider a special case of SDU, namely the continuous time equivalent of
Kreps-Porteus utility described above. In fact, instead of using Kreps-Porteus utility
itself, we use an ordinally equivalent utility process. Similar to the discrete time
case, SDU can be represented by a combination of an aggregator f that determines
the the degree of intertemporal substitution and a certainty equivalent operator m.
In the case of Kreps-Porteus utility, f(C, V ) = β

1−1/ε
C1−1/ε−V 1−1/ε

V −1/ε and m(∼ V ) =

[E(V 1−γ)]
1

1−γ . In this case the drift of the value function consists of the aggregator
f(C, V ) and a variance multiplier A that belongs to m. Duffie and Epstein (1992b)
show that there exists an ordinally equivalent utility process with aggregator f as in
(2). In this case m(∼ V ) = E(V ) and the variance multiplier A that belongs to m
is zero. This yields a simplification and is easier to work with. For more details, we
refer to Duffie and Epstein (1992b). The agent’s utility or value function equals:

Vt = Et

[ ∫ ∞
t

f(Cs, Vs)ds
]

where

f(C, V ) =
β

1− 1/ε

C1−1/ε −
(
(1− γ)V

) 1
ζ(

(1− γ)V
) 1
ζ
−1

for ε 6= 1

with ζ =
1− γ

1− 1/ε
.

(2)

Throughout this paper, we refer to this utility specification as stochastic differential
utility (SDU) although Duffie and Epstein (1992b) actually consider a more general
class of utilities under that label. Similar to the discrete time counterpart, γ denotes
risk-aversion, ε is the elasticity of intertemporal substitution and β equals the time
preference parameter. We will focus on the case where ε 6= 1 and therefore will derive
our results only for this case. For the case ε = 1 we can take the limit ε→ 1 or follow

the same derivation but with f(C, V ) = β(1 − γ)V
(

logC − 1
1−γ log

(
(1 − γ)V

))
. If

γ = 1
ε
, the utility specification reduces to standard power utility.
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3.2 Ambiguity

There is much uncertainty regarding the arrival rate and magnitude of climate disas-
ters. And, as stressed by Pindyck (2017), we know very little about the damage func-
tions. Where consumption growth and volatility can be estimated more accurately
from historical data, the estimation of the jump parameters will be much harder since
jumps do not happen that often. In fact in the context of climate change, abrupt
changes have only taken place in the very far past (Goosse, 2015). It is fair to state
that we simply do not know the exact distribution of climate damages. We consider
it therefore desirable to account for the possibility that the ‘best estimate’ model is
not the true model: there is ambiguity. We assume that the representative agent is
ambiguity averse.

It is important to stress the difference between risk and ambiguity. When we
are talking about risk, an agent knows the probabilities and possible outcomes of all
events. When the agent has to deal with ambiguity, the probabilities to certain events
are unknown. The distinction between risk and ambiguity is already extensively
discussed in Knight (1921), which is why ambiguity is often referred to as Knightian
uncertainty. Ellsberg (1961) shows using the famous Ellsberg Paradox that people
are ambiguity averse, i.e. they prefer known probabilities over unknown probabilities.

3.2.1 Overview of methods to model (parameter) ambiguity

There are several different approaches that are commonly used in the literature to
model ambiguity about parameters. A widely used approach in the static setting is
the maxmin approach of Gilboa and Schmeidler (1989). Assume the agent does not
know the actual distribution of a certain random variable. The idea is to first specify
a set of reasonable probability measures Q. The agent is ambiguity averse and given
this set of measures he considers the worst case measure. Utility is then of the form
Vt = minQ∈P EQ[U(Ct)] for some utility specification U(.).

It is not straightforward to extend the Gilboa-Schmeidler maxmin preferences to
a dynamic setting. We will discuss two approaches that have been proposed by Chen
and Epstein (2002) and by Hansen, Sargent, Turmuhambetova, and Williams (2001)
in the setting of our model.

Consider the agent’s problem. In the setting without ambiguity, the value function
is given by:

Vt = Et

[ ∫ ∞
t

f(Cs, Vs)ds
]

(3)

However, in the model with ambiguity the agent takes into account the fact that he
is not certain about the true value of the arrival rate λ and the jump size m.

Hansen et al. (2001) propose two approaches to model ambiguity: the multiplier
approach and constraint approach. We first consider the multiplier approach. The
‘best estimate’ model or reference model is the agent’s most reliable model with
measure P. But he also takes into account other, alternative models. The alternative
models have measure Qa,b, the jump arrival rate becomes λQt = eatλ and the jump
size parameter becomes mQ

t = eµJ+btσ2
J+ 1

2
σ2
J − 1. Deviating from the reference model
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is penalized since the agent does not choose the ‘best estimate’ model. The size of
the penalty is proportional to d(at, bt), which represents the distance between the
alternative model and the reference model. An alternative model that has a large
distance to the reference model is considered less likely to be true and therefore using
it receives a larger penalty. The distance function should satisfy d(at, bt) ≥ 0 ∀(at, bt)
and d(0, 0) = 0. Therefore using the reference model carries a zero penalty. The
penalty is scaled by θ, which is the ambiguity aversion parameter. This parameter
controls the importance of the penalty term. Then the agent solves the following
problem:

Vt = min
{as,bs}s≥t

EQ
t

[ ∫ ∞
t

(
f(Cs, Vs) + e−β(s−t)θd(as, bs)

)
ds
]

(4)

EQ
t denotes the expectation under the alternative model with parameters λQt and mQ

t .
The expected utility of consumption is lower for high at and low bt. We see that
the agent faces a trade-off between how likely a combination of (as, bs) is in terms of
distance to the reference model and how bad it is in terms of expected utility. This
trade-off results in optimal values of as and bs.

The constraint approach is closely related to the multiplier approach. Instead of
adding a penalty function, the agent can put a constraint on the distance function
d(at, bt). Then the problem becomes:

Vt = min
{as,bs}s≥t

EQ
t

[ ∫ ∞
t

f(Cs, Vs)ds
]

s.t.

∫ ∞
t

e−β(s−t)d(as, bs)ds ≤ η

(5)

So in this approach, η to controls the size of the set of alternative models that seem
reasonable to him. η can again be seen as an ambiguity aversion parameter. A high
η implies a large set of priors and therefore corresponds to high ambiguity aversion.
Given the constraint the worst-case model is chosen. This approach is very similar to
the penalty approach and the two problems are related via Lagrangian optimization
where θ can be seen as the Lagrange multiplier.

Hansen and Sargent (2001) consider how the penalty and constraint approaches
are related. They show that when the consumption process follows a pure geometric
Brownian motion (i.e. no jumps), there exists an η for the constraint approach and
a θ for the multiplier approach such that both problems yield the same optimal
outcome. The constraint approach is directly motivated from the Gilboa-Schmeidler
maxmin utility. Since the multiplier approach is weakly related to the constraint
approach, these approaches are indirectly also motivated by the static maxmin utility.
Furthermore, the multiplier utility is axiomatized by Strzalecki (2011).

A disadvantage of both these approaches is that utility is not homothetic. Maen-
hout (2004) proposes to use a state-dependent Lagrange-multiplier θ(Vt) in the frame-
work of the multiplier approach to obtain homothetic utility. This approach is also
adopted by Liu et al. (2004). However, by assuming that the ambiguity aversion
parameter θ can be state dependent, the relation with the constraint preferences is
lost. Pathak (2002) gives an extensive discussion about this issue. He argues that
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the main motivation of the multiplier approach by Hansen et al. (2001) is through
the constraint approach. But with the state-dependent ambiguity aversion parameter
this new utility specification cannot be seen anymore as a dynamic extension of the
Gilboa-Schmeidler utility. Furthermore, the axiomatic foundation is not valid any-
more. Pathak (2002) proposes an alternative method to model ambiguity: recursive
multiple priors utility developed in continuous time by Chen and Epstein (2002).

We adopt the advise of Pathak (2002) and in contrast to Liu et al. (2004) we
choose to use the approach of Chen and Epstein (2002). The approach is closely
related to the constraint approach of Hansen et al. (2001), but does preserve the
homotheticity of the preferences. Consider the following problem:

Vt = min
{as,bs}s≥t

EQ
t

[ ∫ ∞
t

f(Cs, Vs)ds
]

s.t. d(at, bt) ≤ θt ∀t
(6)

The main difference compared to the constraint approach of Hansen et al. (2001)
is that not the lifetime distance between the reference measure and the alternative
measure is bounded, but at every time period t the distance between the measures
is bounded. This approach leads to more tractable solutions. The recursive multiple
priors utility is axiomatized by Epstein and Schneider (2003).

Lastly we will briefly discuss the smooth ambiguity model, since it is often used
in the literature as well. In this approach the agent first constructs a probability
distribution that reflects his beliefs on λ and m. Define p(x, y) = P (λ = x,m = y).
To incorporate ambiguity aversion, he then transforms this distribution to put more
weight on the events that give him low utility and less weight on the events that give
high utility. This results in the following problem:

Vt =

∫ 0

−1

∫ ∞
0

(
p(x, y)φ

(
Et

[ ∫ ∞
t

f(Ct, Vt)ds
∣∣∣λ = x,m = y

]))
dxdy (7)

Here the function φ controls the ambiguity aversion of the agent. When φ is a concave
function, the agent is ambiguity averse. This approach was introduced by Klibanoff
et al. (2005). This may be a matter of taste, but we think that the assumption
of probabilities attached to the different priors is in fact at variance with the basic
assumption that ambiguity is about unmeasurable processes, i.e. we cannot map
events to probability densities, or in this case priors to model probabilities. And
since the recursive multiple priors utility is intuitive and leads to tractable results,
we chose not to move in the direction of the smooth ambiguity model.

3.2.2 Distance measure: Relative Entropy

We have not defined the distance measure d(at, bt) yet. To measure the distance
between the reference model P and an alternative model Qa,b we use the concept of
relative entropy, a metric for the distance between two measures. Relative entropy
is calculated in equation (12) in the next section. Hansen and Sargent (2008) give
two reasons why relative entropy is suitable to measure the distance between two
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models. First, relative entropy yields tractable outcomes. And second it is statistically
interpretable. To illustrate the concept of statistical interpretability, consider the
following example: denote by f(x) the probability density function (pdf) of a random
variable X under P and denote by fQ(x) the pdf of X under Q. Assume that we have
a random sample of n observations of X, namely x1, ..., xn. Consider the following
hypothesis:

H0 : P is true vs. H1 : Q is true (8)

We want to know whether, based on our sample, we can conclude that Q is the most
likely model of the two. The test can have two outcomes: it either rejects H0 and
therefore concludes that Q is more likely than P, or it does not reject H0. We can

define the likelihood ratio: Λ(x) =
∏n

1 f
Q(xi)∏n

1 f(xi)
. The Neyman-Pearson lemma says that

the most powerful test for this problem is to reject H0 if Λ(x) > k or equivalently
log(Λ(x)) > log(k). Then k is chosen such that the probability that we make the
wrong decision (rejecting H0 if actually H0 is true) is very small. Here we see that
the log-likelihood ratio determines the outcome of the test. So the question whether
one model fits the data better than the other, can be answered using the log-likelihood
ratio.

Measuring the distance between two probability densities using the concept of
relative entropy, then comes down to taking the expectation of the log likelihood
ratio under the alternative measure. Instead of using a random sample, as in the test
case, one determines the ratio assuming the alternative model is true.

4 The model

In this section we derive an analytic expression for the value function based on the
choices made in the previous section. We then present expressions for the pricing
kernel, the equilibrium rate of interest, the risk premium and the consumption-to-
wealth ratio. This completes the environment whitin which we will introduce the
climate change model in Sections 7 and 8. We start by implementing the recursive
multiple priors approach for ambiguity.

4.1 Implementation of the recursive multiple priors utility

The first step is to determine the set of admissible priors given the relative entropy
constraint. In order to do so, for each a = (at)t≥0 and b = (bt)t≥0 we define the measure

Qa,b which is equivalent to P and has Radon-Nikodym derivative dQa,b
dP |Ft = ξa,bt where

ξa,bt follows:

dξa,bt = −(λQt − λ)ξa,bt dt− λQt m
Q
t − λm
σ

ξa,bt dZt +
(
eat+btWt−btµJ− 1

2
b2tσ

2
J − 1

)
ξa,bt− dNt (9)

and ξa,b0 = 1. Here m = eµJ+ 1
2
σ2
J − 1 is the mean jump size under P, mQ

t =

eµJ+btσ2
J+ 1

2
σ2
J − 1 is the mean jump size under Qa,b and λQt = eatλ is the arrival
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rate under Qa,b. ξa,bt is chosen such that the jump distribution under Qa,b has the
characteristics described in the following proposition.

Proposition 1. Under the measure Qa,b, Ct follows:

dCt =
(
µ− λQt mQ

t

)
Ctdt+ σCtdZ

Q
t + YtCt−dNt (10)

where ZQ
t is a Brownian motion, Nt is a Poisson process with arrival rate λQt = eatλ

and Yt = eWt − 1 where Wt follows a normal distribution with mean µJ + btσ
2
J and

variance σ2
J .

Proof. See Theorem 11.6.7 of Shreve (2004).

In words this implies that under the measure Qa,b the arrival rate of the Poisson
process becomes λQt = eatλ and the mean jump size changes to mQ = eµJ+ 1

2
σ2
J+btσ2

J−1.
Clearly, a larger at leads to a higher arrival rate and a smaller bt leads to a more
negative jump size, both leading to a lower utility.

The Radon-Nikodym derivative ξa,bt that we have specified is actually the ratio
between the alternative measure Qa,b and the reference measure P. We can use
it to determine the relative entropy RE between the two measures. The relative

entropy between Qa,b and P over time unit ∆ is defined as EQ
t [log(

ξa,bt+∆

ξa,bt
)]. Here EQ

t

denotes the expectation with respect to the alternative measure Qa,b. Then divide
by ∆ and let ∆ → 0 to obtain the instantaneous relative entropy: RE(at, bt) =

lim∆→0
1
∆
EQ
t

[
log
(
ξa,bt+∆

ξa,bt

)]
.

Applying Itô’s lemma for jump processes to ξa,bt
6, we obtain the following dynamics

for log(ξa,bt ):

d log(ξa,bt ) =
(
− (λQt − λ)− 1

2σ2
(λQt m

Q
t − λm)2

)
dt− λQt m

Q
t − λm
σ

dZt

+
(
at + btWt − btµJ −

1

2
b2
tσ

2
J

)
dNt

(11)

Now we can calculate (instantaneous) relative entropy at time t. We use here that
under Qa,b, Nt is a Poisson process with arrival rate eatλ, Wt is a normal random

variable with mean µJ + btσ
2
J and variance σ2

J and dZt = dZQ
t −

λQt m
Q
t −λm
σ

dt where

dZQ
t is a Brownian motion under Qa,b.

RE(at, bt) = lim
∆→0

1

∆
EQ
t

[
log
(ξa,bt+∆

ξa,bt

)]
=

− (λQt − λ) +
1

2σ2
(λQt m

Q
t − λm)2 + λQt

(
at +

1

2
b2
tσ

2
J

) (12)

If we take a look at the relative entropy, it is clear that if (at, bt) = (0, 0), the
relative entropy equals zero. When one or both of the two variables deviate from 0,

6See e.g. Shreve (2004), Theorem 11.5.1.
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Figure 1: Relative entropy

The contour lines show the value of relative entropy for different values of at and bt. Input
parameters are σ = 0.03, µJ = −10%, σJ = 10% and λ = 0.01.

the relative entropy increases. Every contour in figure 1 gives a set of combinations
(at, bt) that yields the same relative entropy.

We can now define the admissible set of priors. Define the set of priors by Pθ =
{Qa,b : RE(at, bt) ≤ θt ∀t} = {Qa,b : (at, bt) ∈ Θt ∀t}. The utility is then defined by:

Vt = min
Q∈Pθ

V Q
t (13)

where V Q
t is the SDU utility process given the measure Q:

V Q
t = EQ

t

[ ∫ ∞
t

f(Cs, V
Q
s )ds

]
(14)

Following Chen and Epstein (2002) we impose a property on the set Pθ that they
call rectangularity. In a loose sense, rectangularity implies invertibility between the
set of multiple priors and the instantaneous actions following from the minimax op-
timization based on that set at any possible node Ft in the filtration F. At every
node Ft, P generates a set of conditional probabilities for the ”one-step ahead” state
variables. Conversely each time/event pair can be associated with a set of measures
for the states in the next period. Define the collection of these sets by P ′. Rectan-
gularity requires P to coincide with P ′. If this is the case, we can replace the global
minimization problem with a local minimization problem at every time t.

The parameter θt captures the ambiguity aversion of the agent at time t. We
assume that this parameter is constant over time. The parameter θ then determines
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the admissible set of priors in each time period. Since the parameters are constant
over time as well, the set of admissible priors is the same for every t. A large θ
then implies that the agent has a high ambiguity aversion and he therefore considers
a larger set of priors. Given this set of priors, the agent chooses the worst case
measure. θ = 0 implies that Pθ = {P} and the agent only considers one measure,
namely the reference measure. There is no ambiguity aversion in this case. Where
the risk aversion parameter γ can be seen a parameter that is relevant for any risky
bet, the parameter θ captures intrinsic ambiguity aversion (one person might be more
ambiguity averse than another) but it is also source dependent. If there is a lot of
information and data available about a process, the set of admissible priors will be
smaller compared to a process of which not much is known.

It is not necessary to have a constant θ. One could for example incorporate learn-
ing by assuming that θt is a decreasing function over time. The agent obtains more
information about a process over time and therefore the set of priors is shrinking over
time. However, there does not (yet) seem to exist a decent framework to determine
how the set of priors should shrink over time based on observations. Similar to Chen
and Epstein (2002) we will therefore focus on the case with a constant θ.

4.2 Solving for the value function

We first derive for each measure Qa,b the corresponding Hamilton-Jacobi-Bellman
(HJB) equation and find an expression for the value function V Q

t . At the end of
the section we derive the solution for the value function with ambiguity aversion:
Vt = minQ∈Pθ V

Q
t .

Proposition 2. The value function V Q
t satisfies the following Hamilton-Jacobi-Bellman

equation.

0 = f(Ct, V
Q
t ) + V Q

C

(
µ− λQt mQ

t

)
Ctdt+

1

2
V Q
CCσ

2C2
t

+ λQt E
Q
t

[
V Q((1 + Y )Ct−

)
− V Q(Ct−)

] (15)

Proof. See appendix A

Here V Q
C denotes the first derivative of V Q with respect to Ct. Similar notation is

used for the second derivative. We can compare the HJB-equation with the baseline
model without jumps and with power utility. There are several differences. Firstly,
the utility u(C) is replaced by f(C, V ). Furthermore, there is an additional term
that captures the expected jump in the value function. We also see the compensation
term in the drift. Since we look at an infinite time horizon, V Q

t only depends on
the state variable Ct and not directly on time. Therefore, from now on we can write
V Q
t = V Q(Ct).

The HJB equation is a partial differential equation. We need to find a more
specific form of V Q

t to solve the equation. We first show that V Q
t is homogeneous of

degree 1− γ.

Proposition 3. V Q(Ct) is homogeneous of degree 1− γ.
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Proof. Conjecture that V Q(kCt) = k1−γV Q(Ct). We verify that this is indeed the
case. Then:

V Q(kCt) = EQ
t

[∫ ∞
t

β

1− 1/ε

(kCs)
1−1/ε −

(
(1− γ)V Q(kCs)

) 1
ζ(

(1− γ)V Q(kCs)
) 1
ζ
−1

ds

]

= Et

[∫ ∞
t

β

1− 1/ε

(kCs)
1−1/ε −

(
(1− γ)k1−γV Q(Cs)

) 1
ζ(

(1− γ)k1−γV Q(Cs)
) 1
ζ
−1

ds

]

= EQ
t

[∫ ∞
t

k1−1/ε

kγ−1/ε

β

1− 1/ε

(Cs)
1−1/ε −

(
(1− γ)V Q(Cs)

) 1
ζ(

(1− γ)V Q(Cs)
) 1
ζ
−1

ds

]
= k1−γV Q(Ct)

(16)

Proposition 4. The value function under the measure Qa,b is of the following form:

V Q(Ct) = g
C1−γ
t

1− γ
(17)

where g is a constant.

Proof. By Proposition 3, we have that V Q(Ct) = kγ−1V Q(kCt). Now let k = 1/Ct
This gives V Q(Ct) = V Q(1)C1−γ

t . V Q(1) does not depend on consumption anymore.
Define the constant g: g = (1 − γ)V Q(1). Replacing V Q(1) by g/(1 − γ) yields the
form of V Q(Ct) given above.

We can now substitute the form of the value function into the HJB-equation.
Furthermore we can calculate the expectation. This gives the following HJB-equation.

Proposition 5. The function g satisfies the following HJB-equation:

0 =
β

1− 1/ε

(
g−

1
ζ − 1

)
+
(
µ− λQt mQ

t

)
− γ

2
σ2 + λQt

e(1−γ)(µJ+btσ2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
(18)

Proof. See Appendix B.

From this equation we are able to derive the constant g for every measure Qa,b.
Now let us return to the problem with ambiguity. We are not interested in the solution
for every single measure Qa,b, but we want to find the solution to Vt = minQ∈Pθ V

Q
t .

Since we impose rectangularity on the set Pθ, we can replace the global minimization
problem of (13) by an instantaneous optimization problem at every time period t.
The HJB-equation of the problem with ambiguity then becomes.

0 = min
(at,bt)∈Θt

{ β

1− 1/ε

(
g−

1
ζ − 1

)
+µ−λQt mQ

t −
γ

2
σ2 +λQt

e(1−γ)(µJ+btσ2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ

}
(19)

19



4.3 Optimal control variables

From the HJB-equation we can then calculate the optimal control variables a∗ and b∗.
Note that since both the parameters of the model and the budget θ are constant over
time, both a∗ and b∗ are constant over time as well. In section 7 we extend the model
with a climate model and model the arrival rate of climate disasters as a function of
temperature. In that case, a∗ and b∗ are not constant anymore.

The minimization problem in the HJB-equation can be reduced to:

min
(at,bt)∈Θt

{
λQt

(e(1−γ)(µJ+btσ2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−mQ

t

)}
(20)

Now we can determine the optimal a and b. This is a constrained optimization
problem with Lagrangian:

L(at, bt, lt) = λQt

(e(1−γ)
(
µJ+btσ2

J+ 1
2

(1−γ)σ2
J

)
− 1

1− γ
−mQ

t

)
− lt

(
RE(at, bt)− θ

)
(21)

Here lt is the Lagrange multiplier.

Proposition 6. a∗ and b∗ and the Lagrange-multiplier lt are the solutions to the
following first order conditions:

∂

∂at
L(at, bt, lt) = λQt

(e(1−γ)
(
µJ+btσ2

J+ 1
2

(1−γ)σ2
J

)
− 1

1− γ
−mQ

t

)
− ltλQt

( 1

σ2
mQ
t (λQt m

Q
t − λm) + at +

1

2
b2
tσ

2
J

)
= 0

∂

∂bt
L(at, bt, lt) = λQt σ

2
J

(
e(1−γ)

(
µJ+btσ2

J+ 1
2

(1−γ)σ2
J

)
− eµJ+ 1

2
σ2
J+btσ2

J

)
− ltλQt σ2

J

(
bt +

1

σ2
(λQt m

Q
t − λm)eµJ+ 1

2
σ2
J+btσ2

J

)
= 0

∂

∂lt
L(at, bt, lt) = θ + (λQt − λ)− 1

2σ2
(λQmQ

t − λm)2 − λQ
(
at +

1

2
b2
tσ

2
J

)
= 0

(22)

Figure 2 illustrates the optimization problem. Given an entropy budget θ, one
can determine the feasible set of (a, b). Figure 1 shows the feasible set for several
budgets. A contour plot of the objective function for several (a, b) combinations is
given in subfigure 2a. Clearly combinations in the bottom right corner (high a, low
b) give the lowest objective function. The goal is to minimize this function, given the
relative entropy constraint. Subfigure 2b shows how the optimal combination (a∗, b∗)
is determined. The point where objective function touches the feasible region is the
optimal solution. From now on we use the following notation for the optimal arrival
rate and jump size: λ∗ = λea

∗
and m∗ = eµJ+ 1

2
σ2
J+b∗σ2

J .
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Figure 2: Selection of the optimal a and b.

(a) Contour plot of the objective function of the
constrained minimization problem for different
values of a and b.

(b) Illustration of selection of optimal (a,b).
The yellow line gives the admissible values for a
and b that are within the relative entropy bud-
get. Purple line is the objective function.

4.4 The risk-free interest rate, risk premia and the consumption-
wealth ratio

Since we know the optimal a∗ and b∗ we can now solve the HJB equation (19) to
obtain g.

g =

(
1 +

(1/ε− 1)

β

(
µ− γ

2
σ2 − λ∗m∗ + λ∗

e(1−γ)(µJ+b∗σ2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ

))−ζ
(23)

Furthermore, we now explicitly specify the asset market and a pricing kernel to
obtain interest rates and risk premia. Assume that the representative agent has the
possibility to invest in two assets, namely a risk-free asset and a risky stock. The
risk-free asset with price Bt pays a fixed continuously compounded interest rate r.
The stock pays continuous dividends at a rate Ct and has ex-dividend price St. We
denote the cum-dividend stock price by Sdt . Since all dynamics of the model are not
time-dependent, we conjecture that the consumption to wealth ratio is constant. We
will later verify this conjecture. This implies that kSt = Ct for some constant k, since
in equilibrium total wealth must be equal to the aggregate claim on consumption and
thus the stock price. Under the reference measure P the assets have the following
distribution.

dBt = rdt

dSdt = dSt + Ctdt =
(
µ− λm+ k

)
Stdt+ σStdZt + YtSt−dNt

(24)

Duffie and Epstein (1992a) derive that the pricing kernel with stochastic differen-

tial utility equals πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt). However, the pricing kernel
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has to be adjusted for the ambiguity aversion preferences. Chen and Epstein (2002)
show that the pricing kernel in the ambiguity setting should be multiplied by the
Radon-Nikodym derivative ξa

∗,b∗

t of the measure corresponding to the optimal a∗ and
b∗. ξa,bt is defined in (9).

We can derive an explicit stochastic differential equation for the pricing kernel.
Using this pricing kernel, it is possible to calculate the endogenous risk-free rate and
the endogenous risk premium of the stock. The risk premium of an asset equals
the expected excess return of that asset compared to investing in the risk-free asset.
Lastly, we obtain an expression for the consumption-wealth ratio. The following
proposition summarizes these results.

Proposition 7. The pricing kernel equals:

dπt =
{
− r − λ(ea

∗−γ(µJ+b∗σ2
J−

1
2
γσ2
J ) − 1)

}
πtdt+

{
− γσ − λ∗m∗ − λm

σ

}
πtdZt

+
(
ea
∗+(b∗−γ)Wt−b∗µJ− 1

2
(b∗)2σ2

J − 1
)
πt−dNt

(25)

The interest rate r is then given by:

r = β +
1

ε
(µ− λ∗m∗)−

(
1 +

1

ε

)γ
2
σ2 −

(
γ − 1

ε

)
λ∗
e(1−γ)(µJ+b∗σ2

J+ 1
2

(1−γ)σ2
J ) − 1

1− γ
− λ∗(e−γ(µJ+b∗σ2

J−
1
2
γσ2
J ) − 1)

(26)

Furthermore, the risk premium for the dividend paying stock equals:

γσ2 + λ∗m∗ − λ∗e(1−γ)(µJ+b∗σ2
J+ 1

2
(1−γ)σ2

J ) + λ∗e−γ(µJ+b∗σ2
J−

1
2
γσ2
J ) (27)

Lastly, the consumption-wealth ratio is given by:

k = βg−
1
ζ = β + (1/ε− 1)

(
µ− γ

2
σ2 − λ∗m∗ + λ∗

e(1−γ)(µJ+b∗σ2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ

)
(28)

Proof. See appendix C.

5 The impact of different preferences on asset prices

and the consumption-wealth ratio

Since we include both ambiguity aversion and stochastic differential utility in our
model, we have three preference parameters. Therefore it is useful to look at the
results of proposition 7 in more detail before integrating the model with a climate
dynamics model which we will do in section 7 . In this section, we use the power utility
case as a benchmark to compare the general outcomes with the outcomes if either
ambiguity aversion or stochastic differential utility is not present and when both are
not present. The first situation is obtained by letting θ → 0, the second situation
by setting 1

ε
= γ. In order to be able to compare different preference settings, we
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make some additional assumptions on the parameters. In particular, for this section
we assume that both γ > 1 and ε > 1

γ
when we consider stochastic differential utility,

which is in line with empirical evidence (Epstein and Zin (1989), Van Binsbergen et
al. (2012)).7

5.1 The safe rate of interest

Consider first the equilibrium interest rate in more detail. In the climate change
debate, the equilibrium interest rate is important since it plays a crucial role in
discounting future damages. Therefore it is useful to decompose the interest rate and
see how differences in the structure of preferences influence it.

Let us start with the simplest interest rate possible. Without any risk (λ = 0, σ =
0), the interest rate would equal β+ 1

EIS
µ where EIS is the elasticity of intertemporal

substitution. This is the well-known Ramsey equation (Ramsey, 1928). In the case
of power utility, the EIS equals 1

γ
, in the stochastic differential utility case it equals

ε.
If we add Brownian risk to the exogenous consumption stream (λ = 0, σ > 0),

the interest rate goes down by (1 + 1
EIS

)γ
2
σ2. So a higher relative risk aversion γ

decreases the interest rate. This is an intuitive result: higher risk aversion increases
demand for the safe asset and therefore its price, or, equivalently, lowers the safe rate
of interest. The effect of the EIS depends on whether µ > γ

2
σ2. It is plausible that

this holds as one can see by simply looking at the consumption process. A higher
EIS decreases the interest rate, similar to what happens in the Ramsey case. This
is again intuitive, since a higher EIS implies higher propensity to save and therefore
also increases demand for the risk-free asset.

If we compare the stochastic differential utility with power utility preferences, we
see that the interest rate is lower for the stochastic differential utility case. Now define
the interest rate without jumps in the power utility case and the stochastic differential
utility (SDU) case by respectively rPow and rSDU . Then rPow = β + γµ− (1 + γ)γ

2
σ2

and rSDU = β + 1
ε
µ− (1 + 1

ε
)γ

2
σ2.

To isolate the impact of the various deviations from the standard time separable
power utility case, we vary them in turn. Consider the four situations described

7Although empirical evidence seems to offer compelling support for ε > 1 > 1/γ, the EZ approach
has not gone unchallenged. In particular Epstein, Farhi, and Strzalecki (2014) argue that this
condition, if fulfilled, leads to implausible values for the willingness to pay for early resolution of
uncertainty. These values do depend on strong persistence in the stochastic structures however. It
seems fair to argue that the jury is still out on EZ preferences.
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above:

1. Power utility, no ambiguity aversion

r1 = rPow − γλm− λ(e−γ(µJ− 1
2
γσ2
J ) − 1)

2. SDU utility, no ambiguity aversion

r2 = rSDU − 1

ε
λm−

(
γ − 1

ε

)
λ
e(1−γ)(µJ+ 1

2
(1−γ)σ2

J ) − 1

1− γ
− λ(e−γ(µJ− 1

2
γσ2
J ) − 1)

3. Power utility, ambiguity aversion

r3 = rSDU − γλ∗m∗ − λ∗(e−γ(µJ+b∗σ2
J−

1
2
γσ2
J ) − 1)

4. SDU utility, ambiguity aversion

r4 = rSDU − 1

ε
λ∗m∗ −

(
γ − 1

ε

)
λ∗
e(1−γ)(µJ+b∗σ2

J+ 1
2

(1−γ)σ2
J ) − 1

1− γ
− λ∗(e−γ(µJ+b∗σ2

J−
1
2
γσ2
J ) − 1)

Start with power utility and no ambiguity aversion (case one): including jump
risk adds two additional terms to the interest rate. Since the drift of the consumption
stream is compensated for the expected loss of disasters, including jump risk also
changes the drift of the consumption stream. The first additional term is present
because of this compensation. The second term is present because of the risk-aversion
of the agent. When the agent is more risk-averse, the demand for the risk-free asset
is higher and in equilibrium this leads to a lower interest rate. Jump risk always
decreases the interest rate and the effect is larger for a larger risk aversion γ. To
verify this, we can write the jump terms as:

− λ
(
γ(ec1 − 1) + (e−γc3 − 1)

)
= λγ

∞∑
k=1

((−γ)k−1ck3 − ck1
k!

)
=

λγ
(
c3 − c1︸ ︷︷ ︸

<0

+
−γc2

3 − c2
1

2︸ ︷︷ ︸
<0

+
γ2c3

3 − c3
1

6︸ ︷︷ ︸
<0

+
−γ3c4

3 − c4
1

24︸ ︷︷ ︸
<0

+...
)
< 0

(29)

with c1 = µJ + 1
2
σ2
J < 0, c3 = µJ − 1

2
γσ2

J < 0 and c3 < c1. We use c1 and c3 here on
purpose, c2 will be defined later. Note that m = ec1 − 1. With the assumption that
γ > 1, clearly all terms are negative. The total sum is decreasing in γ.

Consider next the SDU case, but still without ambiguity aversion (case 2). This
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time we can write the jump terms as:

− 1

ε
λ(ec1 − 1)−

(
γ − 1

ε

)
λ
e(1−γ)c2 − 1

1− γ
− λ(e−γc3 − 1) =

λ
1

ε

∞∑
k=1

((1− γ)k−1ck2 − ck1
k!

)
+ λγ

∞∑
k=1

((−γ)k−1ck3 − (1− γ)k−1ck2
k!

)
=

λ
1

ε

(
c2 − c1︸ ︷︷ ︸

<0

+
(1− γ)c2

2 − c2
1

2︸ ︷︷ ︸
<− 1

2
c21

+
(1− γ)2c3

2 − c3
1

6︸ ︷︷ ︸
<− 1

6
c31

+...
)

+ λγ
(
c3 − c2︸ ︷︷ ︸

<0

+
−γc2

3 + (γ − 1)c2
2

2︸ ︷︷ ︸
<0

+
γ2c3

3 − (1− γ)2c3
2

6︸ ︷︷ ︸
<0

+...
)
< 0

(30)

where c1 and c3 are already defined, c2 = µJ + 1
2
(1 − γ)σ2

J < 0 and c3 < c2 < c1.
For γ > 1, both sums are negative and therefore jump risk decreases the interest
rate (r2 < rSDU). Increasing γ decreases both sums, which implies that a higher γ
amplifies the flight to safety effect. Increasing ε increases the first sum, which implies
that r2−rSDU is increasing in ε. However, note that ε also affects rSDU , so the overall
effect of increasing ε will be a lower interest rate. Comparing case one and two, we
have for plausible parameter choices that r2 < r1

8. Due to the additional term we also
have that r2 − rSDU > r1 − rPow. This implies that jump risk decreases the interest
rate in both cases, but has a larger effect (lowers the interest rate more) in the power
utility case.

Effectively, ambiguity aversion increases the arrival rate λ and decreases the jump
size parameter µJ . We did not assume a particular value for λ and µJ yet. Therefore,
all the results from case 1 and 2 carry over to the ambiguity aversion cases, but the
effects are somewhat stronger in case 3 and 4. The higher the ambiguity aversion
parameter θ, the higher a∗ and the lower b∗.

Now we go back to power utility but introduce ambiguity aversion (case 3): when
the representative agent is ambiguity averse, introducing jump risk again lowers the
interest rate. To analyze the interest rate in case 3 we can replace λ by λ∗ and c1 and
c3 in (29) by c∗1 = µJ + b∗σ2

J + 1
2
σ2
J and c∗3 = µJ + b∗σ2

J − 1
2
γσ2

J . Clearly, for a∗ > 0,

λ∗ > λ. We see that for b∗ < 0, c∗3 − c∗1 = c3 − c1 but
−γ(c∗3)2−(c∗1)2

2
<
−γc23−c21

2
and

this holds for the higher order terms as well. Overall we can therefore conclude that
r3 < r1 when ambiguity aversion θ > 0.

Finally consider the combination of SDU with ambiguity aversion (case 4): sim-
ilar to the situation without ambiguity aversion, we have that r4 < r3 for plausible
parameter values9. So introducing SDU also leads to lower interest rates when start-
ing with ambiguity aversion but without SDU, just like the impact of introducing
SDU starting from just power utility, but in addition to this inequality, we also have:

8Specifically, r2 < r1 when µ− λm > γ
2σ

2 − λ e
(1−γ)(µJ+1

2
(1−γ)σ2J )−1

1−γ .

9Specifically, r4 < r3 when µ− λ∗m∗ > γ
2σ

2 + e(1−γ)(µJ+b∗σ2J−λ∗ 1
2
(1−γ)σ2J )−1

1−γ .
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r4 − rSDU > r3 − rPow. This implies that SDU and Ambiguity aversion do not rein-
force each other, the impact of introducing SDU without ambiguity aversion present
is larger than the impact of introducing SDU when ambiguity aversion is already
present. We discuss this issue in more detail later in this section.

5.2 The risk premium

The risk premium of the stock only depends on the risk and ambiguity aversion of
the agent. The EIS plays no role, as a consequence the risk premium is the same for
both power utility and SDU. That reduces our four cases to two:

1./2. No ambiguity aversion

rS − r = γσ2 + λm− λe(1−γ)(µJ+ 1
2

(1−γ)σ2
J ) + λe−γ(µJ− 1

2
γσ2
J )

3./4. Ambiguity aversion

rS − r = γσ2 + λ∗m∗ − λ∗e(1−γ)(µJ+b∗σ2
J+ 1

2
(1−γ)σ2

J ) + λ∗e−γ(µJ+b∗σ2
J−

1
2
γσ2
J )

The risk premium can be divided in a diffusive part (γσ2) and a jump part.
The diffusive part is the standard formula under power utility and remains the same
under SDU. Without jump risk, ambiguity aversion plays no role, but with jump risk
it obviously does play a role. The two cases show the impact of the introduction of
jump risk without and with ambiguity aversion. Using a similar method as for the
interest rates, we can analyse the risk premium.

λ(ec1 − 1)− λe(1−γ)c2 + λe−γc3 = λ
∞∑
k=1

(ck1 − (1− γ)kck2 + (−γ)kck3
k!

)
= λ

(
c1 − c2︸ ︷︷ ︸

>0

+ γ(c2 − c3)︸ ︷︷ ︸
>0

+
c2

1 − (1− γ)2c2
2 + γ2c2

3

2︸ ︷︷ ︸
>0

+
c3

1 − (1− γ)3c3
2 − γ3c3

3

6︸ ︷︷ ︸
>0

+...
)
> 0

(31)
c1, c2 and c3 where defined in the previous section where c3 < c2 < c1 < 0. It is
obvious that a higher γ also increases the jump risk premium.

In fact the ambiguity aversion parameter θ does not directly influence the risk
premium, but does so via a∗ and b∗. A higher θ leads to a higher optimal value for
a and a lower optimal value for b; the agent becomes as it were more pessimistic
with higher ambiguity aversion. Since the jump risk premium is linear in λ it is
straightforward to verify that a∗ > 0 increases the jump risk premium. For the
ambiguity aversion case, define c∗2 = µJ + b∗σ2

J + 1
2
(1 − γ)σ2

J . c∗1 and c∗3 are already
defined in the previous subsection. Then the following inequalities hold: c∗3 < c3,
c∗2 < c2, c∗1 < c1 and c∗3 < c∗2 < c∗1 < 0. One can verify that c∗1 − c∗2 = c1 − c2

and c∗2 − c∗3 = c2 − c3, but for the second term we have
(c∗1)2−(1−γ)2(c∗2)2+γ2(c∗3)2

2
>

c21−(1−γ)2c22+γ2c23
2

. Similar inequalities hold for higher order terms and therefore the
equity premium is larger when ambiguity aversion is present (θ > 0).
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5.3 The consumption-to-wealth ratio

We look at a stationary problem (i.e. the processes and parameters do not change
over time), so the consumption-to-wealth ratio k is constant over time. We can use
the expression for the consumption to wealth ratio in equation (28) to derive the ex-
pression for the consumption-to-wealth ratio for the same four cases we distinguished
before:

1. Power utility, no ambiguity aversion

k1 = β + (γ − 1)
(
µ− γ

2
σ2 − λm+ λ

e(1−γ)(µJ+ 1
2

(1−γ)σ2
J ) − 1

1− γ

)
2. SDU utility, no ambiguity aversion

k2 = β + (1/ε− 1)
(
µ− γ

2
σ2 − λm+ λ

e(1−γ)(µJ+ 1
2

(1−γ)σ2
J ) − 1

1− γ

)
3. Power utility, ambiguity aversion

k3 = β + (γ − 1)
(
µ− γ

2
σ2 − λ∗m∗ + λ∗

e(1−γ)(µJ+b∗σ2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ

)
4. SDU utility, ambiguity aversion

k4 = β + (1/ε− 1)
(
µ− γ

2
σ2 − λ∗m∗ + λ∗

e(1−γ)(µJ+b∗σ2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ

)
(32)

Without jump risk, all the variants yield the traditional expression; for example,
with logarithmic utility (γ = 1), consumption equals wealth times the time pref-
erence parameter β. Introducing jump risk under power utility (case 1) lowers the
consumption wealth ratio for risk aversion larger than one. This is the case since:

− λ(ec1 − 1) + λ
e(1−γ)c2 − 1

1− γ
= λ

∞∑
k=1

((1− γ)k−1ck2 − ck1
k!

)
= λ

(
c2 − c1︸ ︷︷ ︸

<0

+
(1− γ)c2

2 − c2
1

2︸ ︷︷ ︸
<− 1

2
c21

+
(1− γ)2c3

2 − c3
1

6︸ ︷︷ ︸
<− 1

6
c31

+...
)
< 0.

(33)

And there is of course overwhelming empirical evidence in favor of γ > 1 (Cochrane,
2009). But that leads to another empirical puzzle. There is also empirical evidence in
favor of a negative effect of jump risk on asset prices which would lead one to expect
a higher ratio of consumption to wealth (Berkman, Jacobsen, & Lee, 2011).

But note that in our general equilibrium framework, jump risk not only influences
the price of risk but also the interest rate. As we have seen in subsection 5.1, jump
risk decreases the interest rate and a lower interest rate leads to higher asset prices.
The total effect of jump risk on asset prices is a combination of a negative risk effect
and a positive interest rate effect. We see from (32) that as long as EIS < 1, as
is implied by power utility in combination with the empirically strongly supported
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assumption that γ > 1, the interest rate effect will dominate and prices will increase
when jump risk is included, which is a counterfactual prediction.

But the puzzle can be resolved by switching to SDU (case 2). Under SDU, the
EIS and the risk aversion parameter γ can be chosen independently so we are able to
have both a realistic risk aversion γ > 1 and an overall positive effect of jump risk on
the consumption wealth ratio, which requires EIS > 1. In fact we can interpret the
empirical results of Berkman et al. (2011) as support for SDU and the assumption of
EIS > 1.

Furthermore we see that introducing ambiguity aversion (case 3) has the same
impact on the introduction of jump risk: introducing ambiguity aversion also leads
to a lower consumption to wealth ratio in the presence of jump risk when γ > 1.
Similar to the analysis with the safe rate of interest and the equity premium, we can
use c∗1 and c∗2 here to show this. Remember that c∗2 < c2, c∗1 < c1 and c∗2 < c∗1 < 0.
When γ > 1, the consumption wealth ratio under ambiguity aversion is even lower
than the consumption wealth ratio under power utility (k3 < k1). This is the case

since c∗2 − c∗1 = c2 − c1 and
(1−γ)(c∗2)2−(c∗1)2

2
<

(1−γ)c22−c21
2

. This inequality also holds
for all terms for which the power is even. For the third term and the other odd
terms the sign depends on the input parameters. For γ > 2 it is easy to verify that
(1−γ)2(c∗2)3−(c∗1)3

6
<

(1−γ)2c32−c31
6

. For 1 < γ < 2 this is not directly clear, but since the
second term dominates the third term the result will still be that k3 < k1. The
main reason for this is that the interest rate effect dominates when γ > 1, and with
ambiguity aversion the interest rate is even lower which implies that the interest rate
effect is stronger compared to power utility. The interest rate effect becomes stronger
for a higher level of ambiguity aversion.

The results of the combination of SDU and ambiguity aversion (case 4) depend
on whether the EIS is larger or smaller than one. The empirically relevant case is
the case where jump risk decreases prices and therefore increases the consumption
to wealth ratio. This is the case when the EIS > 1. Using similar reasoning as
in case 3, we obtain the following result for case 4. When the EIS > 1, k4 > k2.
So the impact of introducing ambiguity aversion actually adds to the effect of using
SDU with EIS > 1 in assessing the impact of the introduction of jump risk on the
consumption-wealth ratio.

In fact we can go further than just stating that ambiguity aversion adds to the
magnification effect triggered by SDU, we can show that the two reinforce each other.
To do so compare the incremental effect of adding ambiguity aversion with and with-
out SDU. Label the first ∆1 and the second ∆0. If we can prove ∆1 > ∆0, we have
established that the two (SDU and AA) not only are additive but that they reinforce
each other. We get for the incremental effect of introducing ambiguity aversion for
power utility, ∆0:

∆0 = (k3 − k1) = (γ − 1)
(
− λ∗m∗ + λ∗

e(1−γ)c∗2 − 1

1− γ
+ λm− e(1−γ)c2 − 1

1− γ

)
(34)
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Similar calculations yield for ∆1:

∆1 = (k4 − k2) = (
1

ε
− 1)

(
− λ∗m∗ + λ∗

e(1−γ)c∗2 − 1

1− γ
+ λm− e(1−γ)c2 − 1

1− γ

)
(35)

Combining equations (34) and (35) gives us after some rearranging of terms the
amplification effect, the difference between the incremental impact of introducing
AA in an SDU environment with i.e. ε, γ > 1 (∆1) and the incremental impact of
introducing AA for power utility, i.e. with ε = 1/γ (∆0):

∆1 −∆0 = (
1

ε
− γ)

(
− λ∗m∗ + λ∗

e(1−γ)c∗2 − 1

1− γ
+ λm− e(1−γ)c2 − 1

1− γ

)
= (

1

ε
− γ)︸ ︷︷ ︸
<0

( (1− γ)
(

(c∗2)2 − c2
2

)
− (c∗1)2 + c2

1

2︸ ︷︷ ︸
<0

+
(1− γ)2

(
(c∗2)3 − c3

2

)
− (c∗1)3 + c3

1

6︸ ︷︷ ︸
<0 if γ>2

+...
)
> 0

(36)

So introducing Ambiguity Aversion and an SDU environment simultaneously in-
deed has a larger impact than the sum of the impacts of introducing SDU and Ambigu-
ity Aversion separately: there truly is a reinforcement effect. For the case 1 < γ < 2,
the second term does not have to be negative. However, since the absolute value of
all the c’s is smaller than one, the first term will dominate and the overall effect will
still be the same. A similar argument works for the higher order terms.

5.4 The value of resolving risk

As we explained in the introduction, this model is not set up to estimate how costly
it will be to reduce disaster risk in terms of the welfare costs of the policy actions
required to do so. However, we can calculate how much an agent would be willing
to pay in terms of reduced consumption to reduce the risk. Consider the following
example. Assume that an ambiguity averse agent has the choice between the situation
with climate risk and the same situation but without climate risk. Eliminating the
risk is costly (think of abatement policies such as carbon taxes or closure of coal
fueled electricity generating plants). The question we can answer using our model is:
how much is the agent willing to give up in terms of consumption as the price for
eliminating the climate risk. Comparing the utility of the representative agent in the
case with jump risk with the case without jump risk allows us to calculate how much
consumption reduction would make the agent indifferent between the situation with
and the situation without jump risk.

Define utility in the situation without climate risk as V0 = gC0
1−γ

1−γ . Here g =(
1 − (1−1/ε)

β

(
µ − γ

2
σ2
))−ζ

. Then the agent is indifferent if V0 = V0. Normalize
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consumption at time t = 0 to one (C0 = 1). Then we can calculate for which C0 < 1
the agent is indifferent:

C0 =
(g
g

) 1
1−γ

(37)

Maybe it is more realistic to assume that we cannot eliminate climate risk com-
pletely, but that we can at least reduce it: assume that we are able to reduce the
expected shock size and/or volatility by increasing µJ to µJ or by decreasing σJ
to σJ or both. The new expected jump size becomes m = eµJ+ 1

2
σJ

2 − 1 and in
the ambiguity case m∗ = eµJ+b

∗
σ2
J+ 1

2
σJ

2 − 1. Furthermore, we assume that it is
also possible to reduce the arrival rate from λ to λ. The arrival rate with am-
biguity aversion becomes λ

∗
= λea

∗
. Note that a∗ and b∗ depend on µJ , λ and

σJ and therefore also change. We can again calculate C0 using (37) with g =(
1 − (1−1/ε)

β

(
µ − γ

2
σ2 − λ∗m∗ + λ

∗ e(1−γ)(µJ+b
∗
σ2
J+ 1

2 (1−γ)σJ
2)−1

1−γ

))−ζ
. It is more intuitive

to write the expression for C0 as a function of the consumption-wealth ratio in both

cases. Using g = ( k
β
)−ζ = ( k

β
)−

1−γ
1−1/ε we obtain:

C0 =
(k
k

) 1
1−1/ε

(38)

As mentioned in the previous subsection, when ε < 1, the interest rate effect domi-
nates the consumption-wealth ratio and k > k. Since 1

1−1/ε
< 0, we obtain C0 < 1.

For ε > 1, the consumption-wealth ratio decreases when risk increases and therefore
k < k. However, since 1

1−1/ε
> 0 in this case we again find C0 < 1. It is not directly

clear what the effect of ε and θ are on C0, since ε and θ affect both k and k. In the next
section we will present a numerical example to get a better idea of the implications
of parameter choices.

6 The impact of different preferences on asset prices

and the consumption-wealth ratio: a numerical

example

Next we present numerical examples to quantify the implications of jump risk, stochas-
tic differential utility and ambiguity aversion on the outcomes of the model and the
extent to which doing so resolves well known asset pricing puzzles. In the previous
section, we analysed the sensitivity of model solutions to the choices made for some
key parameters. Closed form solutions are useful for that, but often multiple effects
play a role and it is hard to determine which effect dominates without choosing spe-
cific parameter values. A numerical example then helps to illustrate the relations
between endogenous variables and input parameters and gives a sense of magnitudes.
These examples also help with the calibration of the utility parameters in the climate
model that we will introduce in the next section.
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We start off with the model without jumps. If we set λ = 0, we obtain the
standard Consumption-based Capital Asset Pricing Model (CCAPM) developed in
Lucas Jr (1978). Mehra and Prescott (1985) found that this model is not consistent
with empirical data, coining the by now well known term ‘Equity Premium Puzzle’.
Using data from the US between 1889 and 1978 they estimated the average growth
rate of consumption to be roughly 2% and the consumption volatility to be roughly
3.5%, although in later years the consumption volatility seems to have decreased. We
match those numbers by choosing µ = 0.02 and σ = 0.03, which is similar to Bansal
and Yaron (2004). Furthermore Mehra and Prescott (1985) find a sample average
risk-free rate of around 1% and a sample average risk premium of roughly 6%. In a
more recent and more global analysis Dimson, Marsh, and Staunton (2011) estimate
the global equity premium to be around 3 to 3.5%, still much higher than the basic
CCAPM produces.

Using power utility and the plausible assumption that the risk aversion coefficient
γ should be at most 10, Mehra and Prescott (1985) show that it is not possible to
produce a realistic risk-free rate and equity premium at the same time. These two
puzzles are called the Risk-Free Rate Puzzle and the Equity Premium puzzle. For
values values of γ below 1, it is possible to produce a low risk-free rate close to 1%.
However, this results in a very low equity premium. On the other hand, choosing
γ close to 10 results in a higher equity premium. The equity premium equals γσ2.
Therefore, even for γ = 10 we obtain an equity premium that is far below 6% (1.6%),
even below the low value that Dimson et al. (2011) find. And this also results in a
very high risk-free rate. These puzzles are known as the equity premium puzzle and
the risk-free rate puzzle.

Table 1 gives an overview of all parameter values that are used for the examples.
We set γ = 5 and β = 0.02. Other parameter values are set to roughly match the
values in Mehra and Prescott (1985). If we consider the CCAPM situation with power
utility and without jump risk, we see that indeed the model produces a too high risk-
free rate (10.7%) and a too low equity premium (0.45%). Now let us take a look what
happens if we include jump risk, ambiguity aversion and stochastic differential utility.
We assume climate disasters take place on average every 62.5 years (λ = 0.016) and
the expected jump size equals -9% (µJ = −10%, σJ = 10%). In the next section we
will look at a model where the arrival rate is temperature dependent. The calibration
of the model with temperature-dependent arrival rate is such that an arrival rate
of 0.016 corresponds with the temperature anomaly of 2◦C compared to the pre-
industrial level. This arrival rate is particularly interesting to study since the target
of the Paris climate agreement is to keep global warming well below 2◦C.

6.1 Interest rate

Figure 3 shows the interest rates for different values of the elasticity of intertemporal
substitution ε and the ambiguity aversion parameter θ. Subfigure 3a shows the interest
rate as a function of ε in the case of SDU without ambiguity aversion (Case 2.).
Subfigure 3b shows r as a function of θ in the power utility case with ambiguity
aversion (Case 3.). The special case with power utility and no ambiguity aversion
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Table 1: Exogenous Parameters

Variable Description Value
γ Risk Aversion 5
β Pure Time Preference 0.02
µ Endowment Growth Rate 0.02
σ Endowment Volatility 0.03
λ Jump Arrival Rate 0.016
µJ Jump Size Parameter -0.1
σJ Jump Size Parameter 0.1

(Case 1.) is obtained by either putting ε = 1
γ

= .2 in subfigure 3a or setting θ = 0 in

subfigure 3b. In this special case, we see that r = 10%. So including jump risk already
reduces the interest rate with approximately 0.7%. It can be seen that increasing the
EIS has the largest effect on the interest rate. The graph is convex, so small increases
of ε from 0.2 already has quite some effect. If ε > 1, which is in line with the
empirical findings of Berkman et al. (2011) that prices go down when disaster risk is
increasing, the difference in r between the power utility and SDU is even more than
6%. Ambiguity aversion also lowers the interest rate, but has a smaller impact than
choosing ε > 1.

Combining both cases gives the subfigures 3c (Contour plot) and 3d (Surface plot)
where the interest rate r as function of both ε and θ is presented. Also here it can
be seen that the interest rate is more sensitive to changes in ε than changes in θ.
The contour plot shows that for several (ε, θ) combinations the model produces quite
realistic risk free rates. The interest rate is still above 1% but a combination of ε = 1.5
and θ = 0.01 yields an interest rate of 2.2%.

The difference in the value of an uncertain cash-flows can be huge if the risk-free
rate is 2% instead of 10%. Climate disasters in the future can be seen as uncertain
cash-flows. A widely used measure for the impact of climate change is the social
cost of carbon (SCC), which is defined as the present value of the long-term damage
done by an extra emission of one ton CO2. We will later show in more detail the
implications of discount rates on the valuation of climate damages.

6.2 Risk premium

Figure 4 shows the risk premium for different values of θ. The risk premium can be
split in a diffusion risk and jump risk part. The risk premium does not depend on the
EIS, so we obtain cases 1. and 2. by setting θ = 0. We see that around two-thirds
of the risk premium consists of diffusion risk premium and the total risk premium
equals 0.7%. Increasing ambiguity aversion of course increases the risk premium. We
see that the model is not able to solve the equity premium puzzle since even with
high ambiguity aversion the risk premium is at most around 1.5% which is well below
3%.

So it is clear that climate disasters that arrive on average every 62.5 years with a
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Figure 3: Interest rates for different values of ε and θ.

(a) Interest rate as function of elasticity of in-
tertemporal substitution ε.

(b) Interest rate as function of ambiguity aver-
sion parameter θ.

(c) Interest rate as function of both ε and θ,
contour plot.

(d) Interest rate as function of both ε and θ,
surf plot.

Figure 4: Risk premium as function of ambiguity aversion parameter θ.
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Figure 5: Consumption wealth ratio for different values of ε and θ.

(a) Consumption wealth ratio for different val-
ues of ε.

(b) Consumption wealth ratio as function of
ambiguity aversion parameter θ.

(c) Consumption wealth ratio as function of
both ε and θ, contour plot.

(d) Consumption wealth ratio as function of
both ε and θ, surf plot.

mean size of −9% are not enough to generate a reasonable equity premium. But it
is still likely that we are not going to manage to stay below 2 ◦C, and more global
warming would lead to a higher risk premium. But it is clearly necessary to consider
different extensions to explain the equity premium puzzle, climate risk with an arrival
rate that is constant over time alone is not enough.

Our model is not set up to perfectly match market data. However, we propose
two possible ways to obtain a more realistic equity premium. One way is to introduce
another Poisson process that captures damages from non-climate related disasters.
One can think of wars or large crises such as the Great Depression. Furthermore, it
is possible to introduce leveraged assets in the model (Abel, 1999). Instead of a stock
that pays Ct as dividends, one can introduce assets that pay Cx

t as dividends with
x > 1. Then the risk premium of those leveraged assets is higher. Leverage is for
example used in Wachter (2013) and Bansal and Yaron (2004) to explain the equity
premium and risk-free rate puzzles. We will not consider these extensions.
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6.3 The Consumption wealth ratio

As discussed before, whether jump risk increases or decreases prices depends on the
EIS. Subfigure 6a shows that the consumption wealth ratio is very sensitive to the
choice of ε. The value of the stock is around 8 times as much for ε = 2 compared
to ε = 0.2. Subfigure 6b illustrates the effect of ambiguity aversion on prices in the
power utility case. Compared to the effect of ε, the effect of ambiguity aversion on
prices is small. Subfigures 6c and 6d illustrate a similar result. The surf plot shows
that the consumption wealth ratio is insensitive to changes in θ. This implies that
intertemporal choices are dominant in determining future prices in this case, climate
risk is too small for ambiguity aversion to have large effects.

6.4 The value of resolving risk

Lastly, let us again consider the example of subsection 5.4. Assume that the represen-
tative agent can choose between a world with climate risk (µJ = −10%, σJ = 10%)
and without climate risk (µJ = σJ = 0). Then we can calculate what percentage of
initial consumption C0 the agent would be willing to give up if that would get him/her
from the case with to the case without climate risk. The results are presented in figure
6. In contrast to the previous subsections, both ε and θ have in magnitude a similar
impact. With power utility and without ambiguity aversion, the agent is indifferent
for an initial consumption C0 of 98.9%. Increasing the EIS from 0.2 to 1.5 already
implies that the agent is willing to give up almost 6% extra: C0 = 93.1%. If we
consider subfigure 6c, we see that the impact of ambiguity aversion is also quite large,
choosing θ = 0.01 leads to C0 = 96.3%. Combining SDU with ambiguity aversion
shows that the impact of the preferences on C0 can indeed be large. As said before,
C0 = 98.9% with power utility and without ambiguity aversion, but when we set
(ε, θ) = (1.5, 0.01) we obtain C0 ≈ 80.6%, which is quite a difference.

Similarly, it is possible to obtain graphs for the case where climate risk can not be
eliminated but only reduced. In that situation, the graphs will have similar shapes
but will be flatter. Obviously, in reality it is not possible to (partly) eliminate climate
risk within a short time period, but this example does illustrate the sensitivity of the
outcomes to different parameter choices.
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Figure 6: Initial consumption C0 for which the agent is indifferent between (µJ , σJ) =
(−0.1, 0.1) with C0 = 1 and (µJ , σJ) = (0, 0) with C0.

(a) C0 for different values of ε
(b) C0 as function of ambiguity aversion param-
eter θ

(c) C0 as function of both ε and θ, contour plot. (d) C0 as function of both ε and θ, surf plot.
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7 Climate Change, the social cost of carbon and

the structure of preferences

So far we have focused on the asset price implications of disaster risks with a constant
arrival rate. This allowed us to explore the dynamics of the model analytically and
the consequences of parameter choices, specifically those affecting the structure of
preferences. This has helped to form intuition about the likely impact of introducing
EZ preferences and ambiguity aversion once we introduce an integrated assessment
model or similar climate dynamics modeling, which is what we do in this section
where we add a climate sub-model. We make some simplifying assumptions to still
be able to obtain analytic solutions of the model. The main requirement is that the
state variables of the climate submodel are deterministic, an assumption we will relax
in follow up work. The key characteristic of climate change we do focus on is the time
dimension: emissions today have effects in the far future. In such a setting several
additional dynamics play a role. An increase of atmospheric carbon concentration
takes decades or even centuries to be reversed. Furthermore, given an amount of
atmospheric carbon concentration, the increase of surface temperature will in turn be
a delayed response to the amount of atmospheric carbon concentration. So emissions
today will keep warming the earth for decades to come and possible damages will
occur into the far future. As a consequence choices about the structure of preferences
with respect to time and the dynamics of uncertainty choices play an important role
in how these future damages are valued today. Specifically, we will calculate the social
cost of carbon (SCC), which is defined as the long-term damage of emitting on ton
of carbon emissions today in dollar terms.

We base the climate equations of our model on the widely used DICE model
(W. Nordhaus, 2014). Note that although we use a similar climate model as DICE,
there are still several differences. In our setup, we use a stochastic endowment econ-
omy with climate disasters. Preferences are modeled by multiple priors recursive
utility. In this paper, we focus on climate risk, not on expected losses, hence the
use of compensated Poisson processes, as we discussed extensively in Sections 4 and
510. So climate change increases risk but in our setup does not change the expected
growth of the economy due to the compensation terms in the Poisson processes11.
Furthermore, we do not explicitly model population growth. Finally our model setup
is designed to focus on the benefit side of the cost-benefit analysis. The purpose of the
model is to calculate how much one is willing to pay to reduce climate risks. Therefore
we only look at the so called Business-As-Usual (no policy measures) scenario but we
do not (yet) explicitly incorporate optimal or for that matter suboptimal abatement
policies.

The DICE model is formulated in discrete time so we have to transform all their

10See Shreve (2004), Ch. 11 for precise definitions.
11To avoid misunderstanding, we do this because we want to focus on the value of risk reduction,

not because we think that expected losses are unimportant in themselves. Thus our value of the
SCC should be extended by incorporating the effect of these expected losses to get a more complete
assessment. We will show in an example in the last section what the effect is of including the
expected losses on the SCC.
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equations to adjust them to our continuous time setting. Preferences are modeled
using power utility in DICE and population growth is explicitly modeled. DICE uses
a production-based economy without uncertainty. Technology grows at an exogenous
rate, output is Cobb-Douglas in capital and labour. Every period the representative
agent can choose to spend output on investment in capital, consumption and abate-
ment. Damages are quadratically increasing in the temperature and are modeled
as a certain reduction of output each period. DICE considers a Business-As-Usual
scenario, but also optimal and suboptimal abatement scenarios.

7.1 A climate model

Preferences of the agent and the consumption dynamics are similar to and based on
what we analysed in the first part of the paper, sections 3-5:

dCt = (µ− λtm)Ctdt+ σCtdZt + YtCt−dNt (39)

where Nt is again a Poisson process. The size of the disaster has the same distribution
as in the first part of the paper: Yt = eWt − 1 where Wt follows a normal distribution
with mean µJ and variance σ2

J . The main difference is that the arrival rate now is
temperature-dependent. Similar to the DICE model we assume that damages are
quadratically increasing in temperature: λt = λTT

2
t .

Industrial emissions (from fossil fuel burning) are usually modeled as the product
of the carbon intensity of aggregate output and aggregate output (or aggregate con-
sumption) itself. Of course in addition to industrial emissions, land-use change such
as deforestation also causes carbon emissions12. We simplify the problem by mod-
eling emissions as exogenous, which in the current setting is not all that important
because output growth itself is not yet endogenized. Thus we directly model total
emissions, which are the sum of industrial emissions and emissions caused by for ex-
ample land-use change. This simplification is necessary to keep the state variables
deterministic, which in turn is necessary for analytical solvability. If we would not
make this assumption, emissions are stochastic and this would make it impossible to
solve the model analytically. We therefore assume that emissions are growing at a
rate gEt . The growth rate itself is moves towards the long-run equilibrium gE∞ at a rate
δgE . By assuming that gE∞ < 0, this specification allows us to have growing emissions
today, but in the long run the growth rate will then become negative and emissions
will go to zero. This is a logical assumption since there is a point where the stock of
fossil fuels will be depleted. This gives us the following process for emissions:

dEt = gEt Etdt

dgEt = δgE(gE∞ − gEt )dt
(40)

In our setup, it is not a great loss to lose the direct connection between the economy
and the carbon emissions since we use a Lucas-tree model where the economy already

12For an extensive report on the relation between land-use change and emissions we refer to the
special IPCC report (Noble, Bolin, Ravindranath, Verardo, & Dokken, 2000).
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has an exogenous growth rate. We do not analyse optimal policy and therefore the
causes of economic growth and emissions are not of first order importance. What is
important for the valuation of the risk is that the climate dynamics of the model are
matching the dynamics of other climate models such as DICE. In the next section
we show that this specification is able to match the DICE model surprizingly well in
spite of the much greater simplicity of our stylized model.

We do admit that specifying emissions as an exogenous process also means that we
implicitly assume that there is no correlation between climate risk and the economy.
In reality, emissions are low when the economy is in a recession and vice-versa. There
is a substantial correlation between economic growth and worldwide carbon emissions.
However, due to thermal inertia temperature reacts very slowly on emissions and the
contemporaneous correlation between consumption and temperature will be much
lower. When climate risk is high in good states, one would be willing to pay less to
reduce the risk. So the correlation between climate risk and the consumption process
does play a role in the valuation of damages. However, since the correlation between
aggregate consumption and climate risk is not very large due to thermal inertia we
expect that this does not play a large role.

Following DICE we consider three carbon reservoirs: atmospheric carbon Mat
t ,

carbon in the upper oceans and biosphere Mup
t and carbon in the deep oceans M lo

t .
Carbon moves between these reservoirs. The parameters δa→b capture the rate at
which carbon moves from reservoir a to reservoir b. The carbon cycle is given by:

dMat
t =

(
− δat→upMat

t + δup→atM
up
t + Et

)
dt

dMup
t =

(
δat→upM

at
t − (δup→at + δup→lo)M

up
t + δlo→upM

lo
t

)
dt

dM lo
t =

(
δup→loM

up
t − δlo→upM lo

t

)
dt

(41)

The next step is to model the impact of carbon concentration on temperature.
This requires modeling what is called radiative forcing: radiative forcing is the dif-
ference between energy absorbed by the earth from sunlight and the energy that is
radiated back to space. A higher atmospheric carbon concentration strengthens the
greenhouse effect and therefore leads to higher radiative forcing. Following W. Nord-
haus (2014) we propose a logarithmic relation between atmospheric carbon concen-
tration and radiative forcing.

Ft = κ1

log(Mat
t /M

at
pre)

log(2)
(42)

When Mat
t = 2Mat

pre, we obtain Ft = κ1. κ1 can therefore be interpreted as the equilib-
rium forcing when the atmospheric carbon concentration is twice the pre-industrial
level. Further we include radiative forcing from other greenhouse gases, aerosols,
ozone and other factors. We call all these effects together exogenous forcing. The
state variable that captures exogenous forcing is assumed to grow over time to the
asymptotic level EF∞.

dEFt = κ2(EF∞ − EFt)dt (43)
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In the DICE model, exogenous radiative forcing is linearly increasing until 2100 and
after that it stays constant. In our model, exogenous forcing is also increasing and
converges to some pre-specified level. Define total radiative forcing by F tot

t = Ft+EFt.
The final step moves from F tot

t to the actual surface temperature Tt. Tt is the
difference between the actual temperature compared to the pre-industrial temperature
level. The change in surface temperature is a delayed response to radiative forcing.
Call the heat capacity of the surface and the upper layers of the ocean τ1 while τ2

equals the equilibrium temperature impact of a doubling of carbon concentration
in the atmosphere compared to the pre-industrial level. τ3 captures the speed of
temperature transfer between the upper layers and the deep layers of the ocean. τ4

equals the heat capacity of the deeper layers of the ocean.

dTt =
1

τ1

(
F tot
t −

κ1

τ2

Tt −
τ4

τ3

(Tt − T oct )
)
dt

dT oct =
1

τ4

τ4

τ3

(Tt − T oct )dt
(44)

From this equation, one can verify that the long run equilibrium temperature for a
given level of radiative forcing equals: T eqt = τ2

κ1
F tot
t . Therefore we can rewrite the

first equation to:

dTt =
1

τ1

(κ1

τ2

(T eqt − Tt)−
τ4

τ3

(Tt − T oct )
)

(45)

This equation is more intuitive, since it captures the fact that the temperature moves
towards its equilibrium level at a rate proportional to T eqt −Tt. The second part shows
that the oceans are delaying this convergence. It takes time for T oct to adjust towards
Tt and this will also delay the convergence of Tt towards the equilibrium level T eqt .

7.2 Ambiguity

In section 4.3 we derived the first order conditions to calculate the optimal a∗ and
b∗. These two parameters where constant since the ambiguity parameter θ and the
jump parameters λ and m where constant as well. However, in the climate setting
we assume that λt is time-varying. This implies that the optimal parameters a∗t and
b∗t are also time-varying, since the relative entropy is a function of λt. Since a∗t and
b∗t are a function of λt, they are implicitly a function of temperature Tt as well.

We again assume that θ is constant over time. Figure 7 shows the optimal a∗t and
b∗t as a function of λt. For each λt one finds the corresponding a∗t and b∗t by solving the
first order conditions, similar as in the constant λ case. A constant relative entropy
budget implies that at is decreasing in λt and bt is increasing in λt. From now on we
define λ∗t = ea

∗
tλt and m∗t = eµJ+b∗t σ

2
J+ 1

2
σ2
J − 1.

The idea behind the decreasing parameters is illustrated in the following example.
Assume θ = 0.01. At time t, the arrival rate equals 0.02 and at time t′ the arrival rate
equals 0.04. At every time point the following equality must hold at the optimum:
RE(at, bt, λt) = θ. For λt = 0.02 the optimal parameters are (a∗t , b

∗
t ) = (0.3,−6.7)

and RE(0.3,−6.7, 0.02) = 0.01. Now consider time t′ with arrival rate 0.04. If we
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Figure 7: Optimal parameters at and bt with time-varying arrival rate λt and constant
ambiguity aversion parameter θ. Input parameters: θ = 0.01, σ = 0.03, µJ = −0.1,
σJ = 0.1, γ = 5.

(a) Optimal at as function of λt. (b) Optimal bt over time with constant θ

would use the same optimal parameters as at time t, the relative entropy exceeds the
budget: RE(0.3,−6.7, 0.04) > 0.01. In our setup the relative entropy is increasing
in λt. For a larger arrival rate, an x% increase in the arrival rate generates a larger
relative entropy or ‘distance’ between the two measures. Therefore the optimal at and
bt must adjust to make sure that the relative entropy remains within the constant
budget. At time t′, the optimal parameters become: (a∗t , b

∗
t ) = (0.19,−4.53).

7.3 Consumption strips

It is typically not possible to solve the partial differential equation of the problem with
climate state variables (except when the highly restrictive assumption assumption of
a unit EIS is made). However we are able to obtain exact solutions for the value
function and the consumption-to-wealth ratio without making restrictive assumptions
like EIS = 1, and the consumption-to-wealth ratio is what we need for assessing
the SCC. We use the solution method proposed in Tsai and Wachter (2018); The
details are described in appendix D, but we sketch the approach here. Similar to the
case with a constant arrival rate, we can derive the pricing kernel for this problem.
We then obtain an expression that depends on an unknown function g(Xt), where
Xt = [gEt , Et,M

at
t ,M

up
t ,M lo

t , EFt, Tt, T
oc
t ] is a vector of all the state variables of the

climate model. But by substituting the HJB-equation into the pricing kernel we
obtain an expression that only depends on known parameters. The step-by-step
elaboration is in Appendix D.

As an intermediate step it is helpful to introduce the concept of consumption
strips. A consumption strip is an asset that pays a unit of aggregate consumption
Cs at time time s > t. Call its value at time t: Ht(Ct, Xt, u), where u denotes the
time to maturity; u = s − t. We can define a stock that yields an infinite collection
of these consumption strips. The value of such a stock then obviously becomes:
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St =

∫ ∞
0

H(Ct, Xt, u)du (46)

The value of aggregate wealth Wt equals St in equilibrium. Dividing Ct by Wt gives
the consumption-wealth ratio.

The price of a consumption strip paying out at time s > t equals:

Ht = H(Ct, Xt, u)

= Et

[πs
πt
Cs

] (47)

We can use the fact that every asset multiplied by the pricing kernel must be a
martingale to calculate the value of such an asset. We then get for Ht the following
expression:

Proposition 8. The price of a consumption strip at time t that pays aggregate con-
sumption Cs and has time to maturity u = s− t equals:

Ht = Ct exp
{
− ku︸︷︷︸

A

− (1/ε− 1)︸ ︷︷ ︸
B

∫ t+u

t

λ∗s

(e(1−γ)(µJ+b∗sσ
2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−m∗s

)
ds︸ ︷︷ ︸

C

}
(48)

where λ∗t = λT e
a∗tT 2

t , Tt = T (Xt), m∗t = eµJ+b∗t σ
2
J+ 1

2
σ2
J and k = β + (1/ε− 1)

(
µ−

γ
2
σ2
)

.

Proof. See Appendix D

Consider first the case without any temperature risk, i.e. with the arrival rate in-
dependent of temperature: λT = 0; equation (48) then simplifies to Ht = Ct exp(−ku)
where k is the consumption-wealth ratio in the absence of climate risk. When there is
no jump risk, λT = 0 and thus only term A plays a role in the value of the consump-
tion strip, the terms B and C in the exponential function drop out in this particular
case. In words, with λT = 0 the value today of a consumption strip in the future
declines exponentially at a rate equal to the consumption-wealth ratio, which can
thus be interpreted as the discount rate for the risky consumption strip. Under the
plausible assumption that µ − γ

2
σ2 > 0, the consumption-wealth ratio is decreasing

in ε, and therefore the price of the consumption strip is increasing in ε.
Assume now that temperature risk does play a role; the value of the consumption

strip then becomes state dependent. The additional two terms in (48) have a clear
interpretation. Term B determines whether climate risk, whatever the magnitude
of its impact, leads to a higher or lower consumption-to-wealth ratio. See below for
further discussion.

Term C captures the effect of climate damages on the consumption strip. Total cli-
mate risk is determined by the disaster arrival rate λ∗t and the expected jump size. It is
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important to note that the Poisson process that triggers the climate disasters is com-
pensated, so the expected value of climate disasters is zero. In our model, disasters do
not damage the economy on average (because of the compensation term in the drift)
but rather increase the variability of the aggregate consumption process. If we would
not (or only partially) compensate the Poisson process, such that on average disasters
have a negative impact, the social cost of carbon will obviously become commensu-

rately larger. m∗t equals the expected jump size under Qa∗,b∗ . e(1−γ)(µJ+b∗sσ
2
J+ 1

2 (1−γ)σ2
J )−1

1−γ
can be interpreted as the certainty equivalent of the climate shock. The difference
between the actual expectation and the certainty equivalent determines how damages
are valued. Term C is equal to zero when the agent is risk-neutral. Since the disasters
are compensated, climate related risks do not matter for the agent if he/she is risk
neutral. Temperature plays a role through the arrival rate λ∗t . It is important to
note that not only Tt+u matters for the price of the consumption strip that pays off
at time t + u, but the whole path of Ts between t and t + u. All climate disasters
that possibly occur within this period affect aggregate consumption at time t + u.
Therefore the integral over the damages determines the magnitude of climate risk.
The other climate state variables and parameters do not show up in the formula but
do influence Tt and therefore indirectly also influence asset prices.

As discussed in the previous paragraph, the term C determines the impact of
total climate risk on the value of a consumption strip. In section 5.3 we already saw
that how risk affects prices ultimately depends on whether ε is larger or smaller than
one. We see a similar result here. When ε > 1, term B is negative which implies
that climate risk decreases the price of the consumption strip. Now consider what
happens if ε is increased. On the one hand, this implies that term B becomes more
negative, so that the same amount of climate risk has a more negative impact on
prices. On the other hand, k is decreasing in ε13 and therefore term A will be smaller.
The latter effect normally dominates, which gives the intuitive result that the price
of the consumption strip is increasing in the elasticity of intertemporal substitution.

When ε < 1, term B is positive and additional risk increases asset prices. Increas-
ing ε has a different effect now. Term B will become smaller, which implies that a
certain amount of climate risk increases the price by a smaller amount. k is again de-
creasing in ε. Overall, the effect of ε on k will normally again dominate and therefore
Ht is increasing in this situation as well. If ε = 1, the price of the consumption strip
reduces to Ht = Ct exp(−βu). Risk plays no role in the price, since the interest rate
effect and the risk effect cancel out. In that case the price of the consumption strip
in the future is simply the value of the consumption strip today discounted with the
pure rate of time preference β.

We already defined an asset paying a continuous stream of dividends Ct at time t
as a stock with price St. Aggregate wealth must be equal to the total value of all such
stocks in equilibrium. Denote aggregate wealth by: W (Ct, Xt). The state-dependent
consumption-wealth ratio therefore equals the inverse of the Wealth-to-Consumption
ratio St:

13This is the case for plausible parameter values, i.e. if µ− γ
2σ

2 > 0.
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k(Xt) =
Ct

W (Ct, Xt)
=

Ct∫∞
0
H(Ct, Xt, u)du

(49)

When there is no climate risk (λT = 0), the expression in equation (49) simplifies to

k(Xt) =
( ∫∞

0
exp(−ku)du

)−1

= k.

Using the expression for the consumption-wealth ratio, we can calculate the value
function. At the optimum (see for example Munk (2015), Ch. 17), we have the con-
dition that fC = VW . Furthermore, we conjecture

V (Ct, Xt) =
g(Xt)C

1−γ
t

1− γ
(50)

Using the chain rule we get:

VW = VC
∂C

∂W
= VCk(Et,Mt, T̃t)

= g(Xt)C
−γ
t k(Xt)

(51)

Also we have for the intertemporal aggregator:

fC = βg(Xt)
1/ε−γ
1−γ C−γt (52)

Together this gives us:

g(Xt) =
(k(Xt)

β

)− 1−γ
1−1/ε

(53)

Inserting this expression for g(Xt) into equation (50) then yields the expression for
the value function.

7.4 Social cost of carbon

Given the value function, we can calculate the social cost of carbon, which we define as
the marginal cost (in terms of reduced welfare) of increasing carbon emissions by one
ton carbon scaled by the marginal welfare effect of one additional unit of consumption
to obtain the social cost of carbon in ”dollar” terms (i.e. in terms of the price of time
t consumption units). Simple differentiation of equation (50) gives:

SCCt = −∂Vt/∂Et
∂Vt/∂Ct

= −
∂
∂Et

g(Xt)

(1− γ)g(Xt)
Ct = −

∂
∂Et

(k(Xt)
β

)−
1−γ

1−1/ε

(1− γ)(k(Xt)
β

)−
1−γ

1−1/ε

Ct = − Ct
1/ε− 1

∂
∂Et

k(Xt)

k(Xt)

= −Ct
∫ ∞

0

∫ t+u

t

∂

∂Et
(λ∗s)︸ ︷︷ ︸
A

(e(1−γ)(µJ+b∗sσ
2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−m∗s

)
︸ ︷︷ ︸

B

ds
(H(Ct, Xt, u)

Wt

)
︸ ︷︷ ︸

C

du

(54)

44



We will first discuss the general formula and then the implications of different pref-
erences.

Equation (54) shows that the social cost of carbon is proportional to Ct, the
aggregate consumption level: when the current aggregate consumption level doubles,
the SCC doubles as well. For given consumption level, the SCC depends on the
product of three terms, labeled A, B and C respectively. Term A captures the
marginal effect of emitting one unit of carbon at time t on the arrival rate λs =
λT e

a∗sT 2
s at time s. This term implicitly depends on the other state variables of

the climate model through the temperature Tt. It takes into account the fact that
emitting one ton of carbon at time t has effects on the temperature in the far future.

This marginal effect of one unit of carbon emissions on the arrival rate is then

multiplied by term B,
(
e(1−γ)(µJ+b∗sσ

2
J+ 1

2 (1−γ)σ2
J )−1

1−γ −m∗s
)

, which captures how the dam-

ages are valued. This term can be seen as the difference between the expected damage
of a disaster and the certainty equivalent. The total climate risk over the time pe-
riod t to t + u is then obtained by integrating the product of term A and B over
this time period. This can be seen as the cumulative additional climate risk due to
emitting one unit or carbon at time t. For each time to maturity u, this cumulative
additional climate risk is then multiplied by the ratio of the price of the consumption
strip Ht(Ct, Xt, u) strip paying out at time u over total wealth Wt (term C). Since
Wt =

∫∞
0
Ht(Ct, Xt, u)du, this fraction determines the weight of each maturity u. The

weights integrate to one. The relative importance of each maturity u is determined
by the derivative of Ht with respect to u. When Ht is declining very fast in u, much
weight is on the short term, which are the periods where climate risk is small. When
Ht declines slowly, more weight is on the long maturities which will therefore also
lead to a higher SCC.

Now consider the impact of preferences on the SCC. Once again we consider
four polar cases: (1) Power Utility without ambiguity aversion, the benchmark case;
(2) SDU, but still no ambiguity aversion; (3) Back to Power Utility, but now with
Ambiguity Aversion; and (4) Both SDU and Ambiguity Aversion.
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1. Power utility, no ambiguity aversion

SCCt = −Ct
∫ ∞

0

∫ t+u

t

∂

∂Et
(λs)

(e(1−γ)(µJ+ 1
2

(1−γ)σ2
J ) − 1

1− γ
−m

)
ds
( H1(Ct, Xt, u)∫∞

0
H1(Ct, Xt, u)du

)
du

where

H1(Ct, Xt, u) = Ct exp
{
− k1u− (γ − 1)

∫ t+u

t

λs

(e(1−γ)(µJ+ 1
2

(1−γ)σ2
J ) − 1

1− γ
−m

)
ds
}
,

k1 = β + (γ − 1)
(
µ− γ

2
σ2
)
and λt = λTT

2
t .

2. SDU utility, no ambiguity aversion

SCCt = −Ct
∫ ∞

0

∫ t+u

t

∂

∂Et
(λs)

(e(1−γ)(µJ+ 1
2

(1−γ)σ2
J ) − 1

1− γ
−m

)
ds
( H2(Ct, Xt, u)∫∞

0
H2(Ct, Xt, u)du

)
du

where

H2(Ct, Xt, u) = Ct exp
{
− k2u− (1/ε− 1)

∫ t+u

t

λs

(e(1−γ)(µJ+ 1
2

(1−γ)σ2
J ) − 1

1− γ
−m

)
ds
}
,

k2 = β + (1/ε− 1)
(
µ− γ

2
σ2
)
and λt = λTT

2
t .

3. Power utility, ambiguity aversion

SCCt = −Ct
∫ ∞

0

∫ t+u

t

∂

∂Et
(λ∗s)

(e(1−γ)(µJ+b∗sσ
2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−m∗s

)
ds
( H3(Ct, Xt, u)∫∞

0
H3(Ct, Xt, u)du

)
du

where

H3(Ct, Xt, u) = Ct exp
{
− k3u− (γ − 1)

∫ t+u

t

λ∗s

(e(1−γ)(µJ+b∗sσ
2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−m∗s

)
ds
}
,

k3 = β + (γ − 1)
(
µ− γ

2
σ2
)
and λ∗t = ea

∗
tλTT

2
t .

4. SDU utility, ambiguity aversion

SCCt = −Ct
∫ ∞

0

∫ t+u

t

∂

∂Et
(λ∗s)

(e(1−γ)(µJ+b∗sσ
2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−m∗s

)
ds
( H4(Ct, Xt, u)∫∞

0
H4(Ct, Xt, u)du

)
du

where

H4(Ct, Xt, u) = Ct exp
{
− k4u− (1/ε− 1)

∫ t+u

t

λ∗s

(e(1−γ)(µJ+b∗sσ
2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−m∗s

)
ds
}
,

and k4 = β + (1/ε− 1)
(
µ− γ

2
σ2
)
.
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Before we discuss the first case, it is useful to consider the following proposition
on the relation between ε and the maturity weighting functions defined in proposition
9 below.

Proposition 9. Consider two cases. In case one we assume that the EIS = ε1 and
in the second case we assume EIS = ε2 > ε1. Then there exists a maturity u∗ for
which the maturity weighting functions H(Ct,Xt,u)∫∞

0 H(Ct,Xt,u)
in both cases are equal. For all

u < u∗, the weighting function in case 1 is larger. For u > u∗, the weighting function
in case 2 is larger.

Proof. See appendix E.

Consider the case of power utility (case 1). Assume that γ > 1. An increase in risk

aversion then implies that
(
e(1−γ)(µJ+ 1

2 (1−γ)σ2
J )−1

1−γ − m
)

becomes more negative which

leads to a higher SCC. On the other hand, a larger γ also leads to a smaller EIS.
Proposition 9 shows that a decrease of the EIS leads to a shift of weights from large
maturities to small maturities. The additional damage of emitting one ton of carbon
today is increasing with the maturity u, the largest damages will occur in the (far)
future. However, with a low EIS the weight of a maturity u is very close to zero in the
(far) future. So there is not much weight at the time period where the large damages
occur and therefore the integral will not be very large. To sum up, power utility γ
captures both the risk aversion and willingness to substitute over time. A higher γ
yields a higher risk aversion, which leads to a higher social cost of carbon. However,
this also implies that the EIS goes down, which yields a lower weight on maturities
in the far future and therefore the climate damages in the future will not have a high
value. These two effects work in opposite direction which explains why the SCC will
not be very large when considering power utility for all reasonable choices of γ.

SDU utility enables the disentangling of risk aversion and the elasticity of intertem-

poral subtitution (case 2.). Increasing risk aversion again makes
(
e(1−γ)(µJ+ 1

2 (1−γ)σ2
J )−1

1−γ −

m
)

more negative. Risk aversion thus leads to a higher discrepancy between the ex-

pected damage and the certainty equivalent. Risk aversion also has an effect on k2,
but since σ2 is small this effect is almost negligible. Therefore the SCC is increasing in
risk aversion. The EIS now only plays a role in the weighting function H2(Ct,Xt,u)∫∞

0 H2(Ct,Xt,u)du
.

When ε increases, weights shift from short-term maturities to long-term maturities.
Since climate damages are larger in the future, putting more weight on the long-term
maturities leads to a higher SCC, so a higher ε given γ leads to a higher SCC.

To analyse the cases with ambiguity aversion, we need the following proposition.

Proposition 10. Consider two cases. In case one we assume that ambiguity aversion
θ = θ1 and in the second case we assume θ = θ2 > θ1. Then there exists a maturity
u∗ for which the maturity weighting functions H(Ct,Xt,u)∫∞

0 H(Ct,Xt,u)
in both cases are equal. If

the EIS < 1, we have that for all u < u∗, the weighting function in case 1 is larger.
For u > u∗, the weighting function in case 2 is larger. When EIS > 1, the opposite
is true. For u < u∗, the weighting function in case 2 is larger and for u > u∗ the
weighting function in case 1 is larger.
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Proof. See appendix E.

Assume that again the agent has power utility preferences, but he is ambiguity
averse (case 3.). We assume that γ > 1, which directly implies that EIS < 1.
Ambiguity aversion again influences both the climate risk and the weighting function.

Since λ∗t is increasing in θ and
(
e(1−γ)(µJ+b∗t σ

2
J+ 1

2 (1−γ)σ2
J )−1

1−γ − m∗t

)
is decreasing in θ,

ambiguity aversion increases climate risk. Furthermore, from proposition 10 we derive
that increasing θ implies that more weight will be on the long-term maturities. Both
effects lead to a higher SCC and therefore the SCC is increasing in θ.

In the last case both ambiguity aversion and SDU are present (case 4.). Increasing
the EIS leads to the same (qualitative) effects as we derived in case 2. The effect
of ambiguity aversion now depends on the EIS. Irrespective of the EIS, ambiguity
aversion still increases λ∗t and it also increases the discrepancy between the expected
disaster size and the risk- and ambiguity-adjusted disaster size. This climate risk
effect leads to a higher SCC. However, θ also affects the weighting function. When
EIS < 1, we are in the same situation as case 3. A higher θ leads to more weight on
long-term maturities which in turn leads to a higher SCC. When EIS = 1, ambiguity
has no effect on the weighting function since the price of a consumption strip is
just Ht = Ct exp(−βu). If ε > 1, several signs change. Increasing θ now leads to
more weight on short-term maturities. These are the maturities where the damages
of emitting a unit of carbon are smaller. The effect of ambiguity on the weighting
function therefore leads to a lower SCC. Therefore increasing ambiguity aversion has
two offsetting effects in this case.

8 Climate Change, the social cost of carbon and

the structure of preferences: numerical results

8.1 Calibration

In appendix F, the calibration of the climate model is given. Several parameters are
based on the DICE-2016 calibration. Since the DICE model uses a time step of five
years, several parameters are calibrated on that time step. In our model, it is most
intuitive to express growth and decline rates per year. Therefore we transform all
parameters to yearly parameters. Since our model uses a continuous time framework,
there will still be some differences between continuous and discrete compounding.
The parameters that are not obtained from DICE are calibrated to match the DICE
model.

Figure 8 shows the results of the comparison of our climate model with the DICE
model. We compare our results with the base case of the DICE model, which can
be seen as the Business-As-Usual case. Except from the emissions specification, our
model replicates the DICE climate dynamics. Figure 8a shows that the exogenous
emissions in our model are very similar to the emissions in the DICE model. The
emissions peak at the end of the century. Given these emissions, also the other climate
variables are almost identical to the DICE model.
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Figure 8: Trajectories of our climate model and the damage calibration compared
with the DICE model.

(a) Industrial emissions (b) Atmospheric carbon concentration

(c) Radiative forcing (d) Surface temperature

(e) Ocean temperature (f) Expected damages over a period of 5 years
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Table 2: Parameters for the economic model

Par. Description Value
Ct Initial consumption level (in trillion $) 105
µ Growth rate of consumption (per year) 0.02
σ Volatility of consumption (per year) 0.03
γ Risk aversion 5
ε Elasticity of substitution 1.5
θ Ambiguity aversion 0.01
β Pure rate of time preference 0.02
λT Arrival rate parameter (per year) 0.004
µJ Disaster size parameter -0.1
σJ Disaster size parameter 0.1
m Expected disaster size -0.09

The calibration of the economic parameters is given in table 2. The expected
disaster size and the arrival rate parameter of disasters are also chosen to match the
DICE model. We assume that the expected disaster size m is -9% and that the arrival
rate parameter λT equals 0.04. This corresponds to an arrival rate of 0.0029 today,
but the arrival rate increases to 0.016 for Tt = 2◦C and 0.1 for Tt = 5◦C. To be
able to compare these numbers to the DICE model we look at the expected disaster
damages over a period of 5 years. This specification yields expected disaster damages
of 0.7% per 5 years for a temperature increase of 2 degrees and 4.5% for a temperature
increase of 5 degrees. For a given temperature level, the expected damages over a
period of 5 years are equal to 5λ(Tt)m = 5λTT

2
t (eµJ+ 1

2
σ2
J − 1). A comparison between

our expected damages and the damages of the DICE model are given in figure 8f.
Further we set risk aversion equal to 5 and the EIS equal to 1.5. An EIS of 1.5

is common in the literature for Epstein-Zin preferences. Generally there is strong
empirical evidence of an EIS larger than one (Van Binsbergen et al. (2012); Vissing-
Jørgensen and Attanasio (2003)). Our risk aversion can even be seen as conservative14.
However, it must be noted that these parameters are often calibrated to match mar-
ket data (risk premia, interest rates). Ambiguity aversion also lowers the interest
rate and increases the risk premium of the stock. We set the ambiguity aversion
parameter equal to 0.01. We use this value for our base calibration, but we show
that ambiguity aversion is of second order importance for the social cost of carbon.
The optimal a∗t and b∗t were already illustrated in figure 2. This implies that today
λ∗t = 1.82λt = 0.0053 and m∗t = −0.2376. For Tt = 2◦C and Tt = 5◦C we obtain
respectively (λ∗t ,m

∗
t ) = (0.0225,−0.1568) and (λ∗t ,m

∗
t ) = (0.1092,−0.1133). We use

these estimates for the base calibration, but will later present the social cost of carbon
for a whole range of values for ε and θ to illustrate the effect of preferences on the
SCC. This calibration yields an equilibrium interest rate of 2.5% today and a risk
premium of 1% today15. So climate risk and ambiguity are not enough to solve the

14For an overview of several parameter choices in the literature, see Cai et al. (2015) Ch. 3.3.
15The formulas for the time dependent interest rate rt and the risk premium rSt − rt. are in
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equity premium puzzle in this setup. Note that the interest rate is decreasing over
time and that the risk premium is increasing over time since climate risk is small
today but will increase in the future. DICE uses a risk aversion parameter of 1.45,
but the main reason for this low value is that the risk aversion also determines the
EIS in the DICE model. The pure rate of time preference equals 0.02, which can be
considered conservative compared to the DICE model which uses β = 0.015.

8.2 Social cost of carbon

Our base calibration yields a social cost of carbon of $1256 per ton of carbon ($ 342
per ton of CO2). In what follows all numbers for the social cost of carbon will be
expressed in dollars per ton carbon 16. Figure 9 shows the social cost of carbon for
different choices of ε and θ. The figure shows that the SCC is very sensitive to the
choice of ε, but much less sensitive to the ambiguity aversion parameter θ. When we
would assume that the representative investor has power utility preferences, the SCC
is much lower: $13. This is about 100 times less than it is in our base calibration.
The social cost of carbon in most sensitive to the choice of the EIS. We saw in the
previous section that the social cost of carbon takes into account all future damages.
How future damages are valued depends ultimately on the discount rate, it is clear
from our analysis that the EIS plays a large role in the effective discount rate.

Figure 9 confirms that the effect of ambiguity aversion on the SCC depends on the
EIS. When ε < 1, the SCC is increasing in ambiguity aversion. When ε = 1/γ = 0.2,
choosing θ = 0.01 doubles the SCC compared to power utility. However, when ε > 1
as discussed two offsetting effects play a role. On the one hand ambiguity increases the
discrepancy between the expected value and the certainty equivalent of the damages,
but on the other hand it also influences the weighting function that plays a role in
the social cost of carbon. A high ambiguity aversion in combination with ε > 1 leads
to more weight on short term maturities which in turn leads to a lower SCC. For
ε = 1.5 we see that the SCC is actually decreasing in θ. Overall we can conclude that
ambiguity aversion has a second order effect only on the social cost of carbon.

Overall, these numbers are substantially higher than the estimates of the social
cost of carbon from the DICE model. W. D. Nordhaus (2017) estimates the social
cost of carbon in the DICE-2016R model to be equal to $114. Our model directly
illustrates the reason for this lower value. With power utility the EIS is calibrated
way below the value that is empirically supported and this in turn generates a very
low social cost of carbon. The reason is that discount rates are very large when
considering power utility for plausible parameter values. The fact that damages are
modeled as disaster risk instead of reducing the output by a certain amount every
time period also generates a larger SCC.

Several IAMs find that effect of the risk aversion parameter γ on the SCC is of
second order importance as well when considering Epstein-Zin preferences. But we
find that the SCC is very sensitive to the choice of γ. The reason for the difference is

Appendix D.
16To obtain the SCC in dollars per ton CO2, the SCC per ton of carbon has to be divided by 3.67.
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that we model climate risk by increasing the variability of the consumption process
instead of decreasing the level or growth rate of output. The social cost of carbon
is zero when γ = 0 and it is therefore very dependent on the choice of γ. Figure
10 shows the effect of combinations of (γ, ε) on the SCC when there is no ambiguity
aversion.

8.3 The Total SCC: Adding in Expected Losses

In this paper, the focus is on climate risk, not on the expected loss component of
the SCC. This approach is chosen to illustrate that it actually matters a lot whether
damages are stochastic or deterministic. In order to focus on risk, the jump process
is compensated such that on average climate disasters do not decrease economic
growth. In reality of course there will be both a risk component and an expected
loss component in the SCC: climate change does have an impact on the growth of the
economy. It is relatively straightforward to solve our model without the compensation
term if we assume that the agent is not ambiguity averse (θ = 0). If the agent would
be ambiguity averse, the relative entropy changes when the compensation term is left
out. This changes the dynamics of the model and is beyond the scope of this paper.

To add in the expected loss component, we solve exactly the same problem, with
the following exogenous endowment stream:

dCt = µCtdt+ σCtdZt + YtCt−dNt (55)

Calculating the social cost of carbon with our base calibration from table 2 (with
θ = 0 instead of θ = 0.01) yields a SCC of $2178 per ton of carbon. So if we relax
the compensation assumption and include expected losses, the SCC almost doubles.

9 Conclusions

Climate change will beyond reasonable doubt have a large impact on economic growth
in the future. Because of the complex nature of the problem and the lack of data, it is
not possible to accurately estimate the timing and extent of its impact. But one thing
we do know is that potentially large and irreversible consequences are likely to take
place unless mitigating policies are implemented, but that these changes will happen
far into the future, while mitigating policies are under consideration right now. That
discrepancy puts the discussion on discounting at the center of the debate about
the social cost of carbon and what we should do about climate change: to compare
future damages with costs today those future damages need to be discounted back
towards today. The debate has largely zeroed in on the rate of time preference; the
problem there is that to be consistent with capital market data, discount rates must
be relatively high which in turn does not leave much once climate change consequences
a century out are discounted back towards today (cf Weitzman (2007) for a very lucid
overview of this debate). In this paper we squarely focus on the discounting question,
but we take a different approach. Rather than discussing numerical values of certain
parameters given the standard discounting framework (time separable expected utility
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Figure 9: Social cost of carbon in dollars per ton carbon for different values of ε and
θ.

(a) Social cost of carbon as function of ε.
(b) Social cost of carbon as function of ambigu-
ity aversion parameter θ.

(c) Social cost of carbon as function of both ε
and θ, contour plot.

(d) Social cost of carbon as function of both ε
and θ, surf plot.

Figure 10: Social cost of carbon as function of ε for different values of the risk aversion
parameter γ (no ambiguity).
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maximization, or what we call power utility), and its rigid link between the degree
of risk aversion (γ) and (the inverse of) the intertemporal substitution elasticity, we
explore alternative specifications of preferences, and will report SCC values orders of
magnitudes larger than obtained using the conventional discounting framework.

We choose to focus on the effect of Epstein-Zin recursive preferences on outcomes
of the model and on the presence of unmeasurable risk (”ambiguity”). Both the
extensions of stochastic differential utility (the continuous time implementation of
Epstein-Zin preferences), breaking the link between γ and the EIS and ambiguity
aversion are conceptually relevant in the climate change setting. The first extension
is relevant because climate change problems have a very long horizon and therefore
the elasticity of intertemporal substitution (EIS) is very likely to play an important
role. Second, conceptually ambiguity aversion is a logical extension, since we have
no accurate estimation of climate damages nor in particular of their probability den-
sity function in the future. The assumption of unmeasurable risk then is a natural
framework (unmeasurable risk is often referred to as ”Knightian uncertainty”).

In the first part of the paper we propose a disaster asset pricing model and present
closed-form solutions for interest rates, risk premia and wealth consumption ratios.
The solutions show that the effect of the two preference extensions on interest rates
and wealth consumption ratios is substantial. Especially the effect of different EIS-
choices is large. These outcomes give us intuition in how these variables interact with
the valuation of damages, which is useful for the second part of the paper. In that
second part, we extend the asset pricing approach of the first part by adding a climate
risk model designed to mimic the dynamics of much larger climate models.

We then propose an analytic IAM by extending the disaster risk model with a
climate change model and a temperature dependent arrival rate. This IAM is able
to capture the climate dynamics of the numerical IAMs very well. Furthermore we
model climate risk as tail risk instead of assuming that temperature increases generate
a certain amount of damage every year. The model is transparent due to the closed
form solutions for the social cost of carbon. Where stochastic numerical IAMs can
take hours to be solved, solving this model only requires numerical integration and is
therefore solved within seconds.

Our base calibration generates a substantial social cost of carbon of $1256 per
ton of carbon (which increases to $2178 per ton of carbon once expected losses are
added in). This is an order of magnitude higher than for example the estimate of
$114 that is obtained using the DICE-2016R model (W. D. Nordhaus, 2017). Our
model highlights how the calibration of preference parameters changes the SCC. The
elasticity of intertemporal substitution and risk aversion are the dominant parameters
in determining this amount. The effect of ambiguity aversion depends on the elasticity
of intertemporal substitution and turns out to be of second order importance.

With power utility, the parameter γ has two offsetting effects on the social cost
of carbon. On the one hand, increasing risk aversion leads to a larger SCC. However,
since γ equals the inverse of the elasticity of intertemporal substitution as well, a high
γ also leads to a representative agent that is focused on the short-term. Long-term
damages have little effect on utility and will lead to a low SCC. When the restriction of
γ = 1

EIS
is released, both increasing γ and the EIS lead to a higher SCC. Introducing
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Epstein-Zin utility with an EIS > 1, in line with empirical evidence, therefore leads
to a much larger value for the SCC.

Analysing the effect of ambiguity aversion on the SCC is a bit more involved since
multiple effects play a role. Ambiguity aversion has both an effect on the certainty
equivalent (more ambiguity aversion leads to a lower certainty equivalent) and on the
discounting component. The effect of ambiguity aversion on discounting depends on
the EIS. When EIS < 1, increasing ambiguity aversion leads to a smaller effective
discount rate on climate damages. For the interesting case EIS > 1, the opposite
is true and therefore increasing ambiguity aversion has two offsetting effects on the
SCC. This is the reason that the influence of ambiguity aversion on the SCC is not
very large when EIS > 1. An interesting extension of the model is to assume that
the state-variables are stochastic as well. Traeger (2018) shows that introducing
randomness in the carbon cycle and the temperature response to radiative forcing
can have substantial effects on the SCC. In reality the exact flows of carbon between
the reservoirs and the temperature response to atmospheric carbon concentrations
are uncertain so this is a useful direction for future research.
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A Proof of Proposition 2

We will first derive the Hamilton-Jacobi-Bellman equation for every measure Qa,b.
Duffie and Epstein (1992b) show that the HJB-equation for stochastic differential
utility equals:

0 = f(Ct, V
Q
t ) +DVQ (56)

Here DVQ is the drift of the value function. In order to calculate the drift of the
value function, we will apply Itô’s lemma. The derivative of V Q

t with respect to C is
denoted by V Q

C . Similar notation is used for the second derivative. By Itô’s lemma
for jump processes we have:

dV Q
t = V Q

C

((
µ−λQt mQ

t

)
Ctdt+σCtdZ

Q
t

)
+

1

2
V Q
CCσ

2C2
t dt+

(
V Q((1+Yt)Ct−

)
−V Q(Ct−)

)
dNt

(57)
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Then the drift under Qa,b equals:

DVQ = V Q
C

(
µ− λQt mQ

t

)
Ct +

1

2
V Q
CCσ

2C2
t + λQt E

Q
t

[
V Q((1 + Yt)Ct−

)
− V Q(Ct−)

]
(58)

This gives the following Hamilton-Jacobi-Bellman equation:

0 = f(Ct, V
Q
t ) + V Q

C

((
µ− λQt mQ

t

)
Ctdt+

1

2
V Q
CCσ

2C2
t

+ λQt E
Q
t

[
V Q((1 + Yt)Ct−

)
− V Q(Ct−)

] (59)

B Proof of Proposition 5

First we calculate the derivatives that we need to solve this equation. The first and
second derivative of V Q(Ct) with respect to Ct equal:

V Q
C = gC−γt , V Q

CC = −γgC−γ−1
t (60)

Furthermore, we can substitute V Q(Ct) =
gC1−γ

t

1−γ into f(C, V ):

f(Ct, V
Q(Ct)) =

β

1− 1/ε

C1−1/ε − (gC1−γ
t )

1
ζ

(gC1−γ
t )

1
ζ
−1

=
β

1− 1/ε

C1−1/ε − g
1
ζC

1−1/ε
t

g
1
ζ
−1C

γ−1/ε
t

=
β

1− 1/ε

(
g1− 1

ζC1−γ
t − gC1−γ

t

)
=

β

1− 1/ε

(
g−

1
ζ − 1

)
gC1−γ

t

(61)

Now we can substitute (60) together with (61) into the HJB-equation. Further-

more we use that EQ
t

[
V Q
(
(1 + Yt)Ct−

)
− V Q(Ct−)

]
= e(1−γ)(µJ+btσ

2
J+ 1

2 (1−γ)σ2
J )−1

1−γ gC1−γ
t .

This gives us the following equation:

0 =
β

1− 1/ε

(
g−

1
ζ − 1

)
gC1−γ

t +
(
µ− λQmQ

t

)
gC1−γ

t − γ

2
σ2gC1−γ

t

+ λQt
e(1−γ)(µJ+btσ2

J+ 1
2

(1−γ)σ2
J ) − 1

1− γ
gC1−γ

t

(62)

Then we divide (62) by gC1−γ
t to obtain:

0 =
β

1− 1/ε

(
g−

1
ζ − 1

)
+
(
µ− λQmQ

t

)
− γ

2
σ2 + λQ

e(1−γ)(µJ+btσ2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
(63)

C Proof of Proposition 7

C.1 Pricing Kernel

We will start with deriving the explicit stochastic differential equation of the pricing

kernel. We have that πt = ξa
∗,b∗

t exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt). First we calculate
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the derivatives of f(Ct, Vt) with respect to Ct and Vt.

fC(Ct, Vt) =
βC−1/ε(

(1− γ)V
) 1
ζ
−1

(64)

fV (Ct, Vt) = βζ
{(

1− 1

ζ

)(
(1− γ)Vt

)− 1
ζ
C1−1/ε − 1

}
(65)

Substituting Vt = g
C1−γ
t

1−γ into fC(Ct, Vt) and fV (Ct, Vt) we obtain:

fC(Ct, Vt) = βg1− 1
ζC−γt (66)

fV (Ct, Vt) = βζ
{
g−

1
ζ

(
1− 1

ζ

)
− 1
}

(67)

This gives:

πt = ξa
∗,b∗

t exp

(∫ t

0

βζ
(
g−

1
ζ
(
1− 1

ζ

)
− 1
)
ds

)
βg1− 1

ζC−γt (68)

We take the logarithm and rewrite (68) towards a stochastic differential equation.

d log(πt) = βζ
(
g−

1
ζ
(
1− 1

ζ

)
− 1
)
dt− γd log(Ct) + d log(ξa

∗,b∗

t ) (69)

Calculating and substituting log(Ct) and log(ξa
∗,b∗

t ) gives:

d log(πt) =
{
βζ
(
g−

1
ζ
(
1− 1

ζ

)
− 1
)
− γ
(
µ− λm− σ2

2

)
+ λ− λ∗
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2σ2
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dt+
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σ
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dZt
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a∗ + (b∗ − γ)Wt − b∗µJ −

1

2
(b∗)2σ2

J

)
dNt

(70)

Applying Ito’s lemma once more to log(πt) we obtain:

dπt =
{
βζ
(
g−

1
ζ
(
1− 1

ζ

)
− 1
)
− γ
(
µ− λ∗m∗ − (γ + 1)

σ2

2

)
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πtdt

+
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σ
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(b∗)2σ2
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(71)
Substituting g into (71) gives:

dπt =
{
− β − 1

ε
(µ− λ∗m∗) +

(
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1

ε

)γ
2
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(
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ε
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2

(1−γ)σ2
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)
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σ
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C.2 Interest rate

By the no-arbitrage argument, r should be such that πtBt is a martingale. Now write
dπt = µππtdt+ σππtdZt + Jπ(Wt)πt−dNt.

dπtBt = (r + µπ)πtBtdt+ σππtBtdt+ Jπ(Wt)πt−BtdNt (73)

This is a martingale if r+µπ +λEt[Jπ(Wt)] = r+µπ +λ(ea
∗−γµJ−γb∗σ2

J+ 1
2
γ2σ2

J −1) = 0.
Therefore the interest rate equals:

r =− µπ − λ(ea
∗−γµJ−γb∗σ2

J+ 1
2
γ2σ2

J − 1)

= β +
1

ε
(µ− λ∗m∗)−

(
1 +

1

ε

)γ
2
σ2 −

(
γ − 1

ε

)
λ∗
e(1−γ)(µJ+b∗σ2

J+ 1
2

(1−γ)σ2
J ) − 1

1− γ
− λ∗(e−γ(µJ+b∗σ2

J−
1
2
γσ2
J ) − 1)

(74)
Substituting r into the pricing kernel gives:

dπt =
{
− r − λ(ea

∗−γ(µJ+b∗σ2
J−

1
2
γσ2
J ) − 1)

}
πtdt+

{
− γσ − λ∗m∗ − λm

σ

}
πtdZt

+
(
ea
∗+(b∗−γ)Wt−b∗µJ− 1

2
(b∗)2σ2

J − 1
)
πt−dNt

(75)

C.3 Risk premium and consumption wealth ratio

Using a similar argument as for the bond, by no-arbitrage the discounted dividend
paying stock price should a martingale. Using the Ito product rule for jump processes,
we find:

dπtS
d
t =
(
µ− λm+ k − r − λ(ea

∗−γ(µJ+b∗σ2
J−

1
2
γσ2
J ) − 1)− γσ2 − (λ∗m∗ − λm)

)
πtS

d
t dt

+ (σ − γσ − λ∗m∗ − λm
σ

)πtS
d
t dZt +

(
ea
∗+(b∗−γ+1)Wt−b∗µJ− 1

2
(b∗)2σ2

J − 1
)
πt−S

d
t−dNt

(76)
This is a martingale when:

µ−λ∗m∗+k−r−λ(ea
∗−γ(µJ+b∗σ2

J−
1
2
γσ2
J )−1)−γσ2+λ(ea

∗+(1−γ)(µJ+b∗σ2
J+ 1

2
(1−γ)σ2

J )−1) = 0
(77)

From this equation, we obtain that the consumption wealth ratio k equals:

k = βg−
1
ζ (78)

Lastly, we can calculate the risk premium for the stock. Define the expected return
of the dividend paying stock as: rS = µ + k. Then the risk premium is the excess
return of the stock over a risk-free bond:

rS−r = µ+k−r = γσ2+λ∗m∗−λ∗e(1−γ)(µJ+b∗σ2
J+ 1

2
(1−γ)σ2

J )+λ∗e−γ(µJ+b∗σ2
J−

1
2
γσ2
J ) (79)
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D Solution method for the problem with state vari-

ables

In this appendix we propose a solution method to find the value function of the agent
in the climate change economy. The idea of the method is the following. We first
derive the HJB equation. Then we calculate the pricing kernel and substitute the
HJB equation into this pricing kernel. This gives us an explicit expression for the
pricing kernel in terms of parameters, we can use this to price consumption strips.
The integral over all future consumption strips equals the stock price and is therefore
equal to total wealth. Given the stock price and the value of a consumption strip,
we can calculate the wealth consumption ratio. From the wealth consumption ratio,
we can calculate g(Xt) and the value function. This in turn enables us to obtain an
expression for the social cost of carbon.

D.1 HJB equation

Similar to proposition 2, we can obtain the HJB equation for the problem with a
climate model. This time, several state variables will enter the HJB equation. Xt

is a column vector of n state variables. Furthermore, there is no uncertainty in the
state variables. The state variables then follow: dXt = µX(Xt)dt. The arrival rate
is state dependent: λt = λ(Xt), λ

Q
t = eatλt. The growth rate and the volatility of

consumption are still constant. Denote by V Q
X the row vector of partial derivatives

of the value function V Q
t with respect to the vector of state variables Xt, V

Q
X =[

∂V Q(Ct,Xt)
∂X1t

... ∂V Q(Ct,Xt)
∂Xnt

]
. Under the measure Qa,b, we obtain the following HJB

equation:

0 = f(Ct, V
Q
t ) + VC

(
µ− λQt mQ

t

)
Ctdt+

1

2
V Q
CCσ

2C2
t + VXµX(Xt)

+ λQt E
Q
t

[
V Q((1 + Yt)Ct−, Xt

)
− V Q(Ct−, Xt)

] (80)

Conjecture again that V Q(Ct, Xt) =
g(Xt)C

1−γ
t

1−γ , the only difference with the con-
stant λ case is that the function g is now state dependent. Substituting our conjecture

V Q(Ct, Xt) =
g(Xt)C

1−γ
t

1−γ into f(Ct, Vt) gives:

f(Ct, V
Q(Ct, Xt)) =

β

1− 1/ε

C
1−1/ε
t −

(
g(Xt)C

1−γ
t

) 1
ζ

(
g(Xt)C

1−γ
t

) 1
ζ
−1

=
β

1− 1/ε

(
g(Xt)

1
ζ
−1C1−γ

t − g(Xt)C
1−γ
t

)
= βζ

(
g(Xt)

− 1
ζ − 1

)
V Q(Ct)

(81)
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The partial derivatives of V are given by:

V Q
C = g(Xt)C

−γ
t , V Q

CC = −γg(Xt)C
−γ−1
t

V Q
X =

gX(Xt)C
1−γ
t

1− γ
(82)

Here gX denotes the row vector with partial derivatives to each of the state variables,
similar to V Q

X . Substituting f(Ct, V
Q(Ct, Xt)) together with the partial derivatives of

V Q
t into (80) yields the following equation.

0 =
β

1− 1/ε

(
g(Xt)

− 1
ζ − 1

)
g(Xt)C

1−γ
t +

(
µ− λQt mQ

t

)
g(Xt)C

1−γ
t

− γ

2
σ2g(Xt)C

1−γ
t +

gX(Xt)C
1−γ
t

1− γ
µX(Xt)

+ λQt
e(1−γ)(µJ+btσ2

J+ 1
2

(1−γ)σ2
J ) − 1

1− γ
g(Xt)C

1−γ
t

(83)

Dividing by g(Xt)C
1−γ
t gives:

0 =
β

1− 1/ε

(
g(Xt)

− 1
ζ − 1

)
+
(
µ− λQt mQ

t

)
− γ

2
σ2 +

gX(Xt)

g(Xt)(1− γ)
µX(Xt)

+ λQt
e(1−γ)(µJ+btσ2

J+ 1
2

(1−γ)σ2
J ) − 1

1− γ

(84)

This is the HJB-equation given the measure Qa,b. If we look at the problem with am-
biguity aversion, we consider multiple measures. The HJB-equation for that problem
becomes:

0 = min
(at,bt)∈Θt

{ β

1− 1/ε

(
g(Xt)

− 1
ζ − 1

)
+
(
µ− λQt mQ

t

)
− γ

2
σ2 +

gX(Xt)

g(Xt)(1− γ)
µX(Xt)

+ λQt
e(1−γ)(µJ+btσ2

J+ 1
2

(1−γ)σ2
J ) − 1

1− γ

}
(85)

We can again use proposition 6 to determine the optimal at and bt. However, note
that λt is not constant anymore. Therefore, a∗t and b∗t are also time dependent. Define

λ∗t = ea
∗
tλt and m∗t = eµJ+b∗t σ

2
J+ 1

2
σ2
J − 1. Given the optimal control variables a∗t and b∗t

and after rearranging we obtain the following equation:

gX(Xt)

g(Xt)(1− γ)
µX(Xt) =

β

1− 1/ε

(
1− g(Xt)

− 1
ζ

)
−
(
µ− λ∗tm∗t

)
+
γ

2
σ2

− λ∗t
e(1−γ)(µJ+b∗t σ

2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ

(86)
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D.2 Pricing kernel

Similar to Appendix C we now derive the pricing kernel for this problem. (68) is still
valid if we replace the constant function g by the state dependent function g(Xt).

πt = ξa
∗,b∗

t exp

(∫ t

0

βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
ds

)
βg(Xt)

1− 1
ζC−γt (87)

Take the logarithm and write as a differential equation:

d log(πt) = βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
dt− γd log(Ct) + d log(ξa

∗,b∗

t )

+ (1− 1

ζ
)d log

(
g(Xt)

) (88)

Apply Ito’s lemma to log(Ct), log(ξa
∗,b∗

t ) and log
(
g(Xt)

)
and substitute the result

gives the following differential equation.

d log(πt) =
{
βζ
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}
dt

+
{
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σ
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dZt +

(
a∗t + (b∗t − γ)Wt − b∗µJ −

1

2
(b∗t )

2σ2
J

)
dNt

(89)
After applying Ito’s lemma to log(πt) we find

dπt =
{
βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
− γ
(
µ− λ∗tm∗t − (γ + 1)

σ2

2

)
+ λt − λ∗t

+ (1/ε− γ)
gX(Xt)

g(Xt)(1− γ)
µX(Xt)

}
πtdt+

{
− γσ − λ∗tm

∗
t − λtmt

σ

}
πtdZt

+
(
ea
∗
t+(b∗t−γ)Wt−b∗tµJ−

1
2

(b∗t )2σ2
J − 1

)
πt−dNt

(90)

We can now substitute the HJB equation (86) into the pricing kernel. Several terms
cancel out and we are left with:

dπt =
{
− β − 1

ε

(
µ− λ∗tm∗t

)
+
(

1 +
1

ε

)γ
2
σ2 +

(
γ − 1

ε

)(
λ∗t
e(1−γ)(µJ+b∗t σ

2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ

)
+ λt − λ∗t

}
πtdt+

{
− γσ − λ∗tm

∗
t − λtmt

σ

}
πtdZt

+
(
ea
∗
t+(b∗t−γ)Wt−b∗tµJ−

1
2

(b∗t )2σ2
J − 1

)
πt−dNt

(91)

Similar to subsection C.2, we have that the interest rate rt = −µπt−λt(ea
∗
t−γµJ−γb∗t σ2

J+ 1
2
γ2σ2

J−
1). This gives the following time-dependent interest rate.

rt = β +
1

ε
(µ− λ∗tm∗t )−

(
1 +

1

ε

)γ
2
σ2 −

(
γ − 1

ε

)
λ∗t
e(1−γ)(µJ+b∗t σ

2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
− λ∗t (e−γ(µJ+b∗t σ

2
J−

1
2
γσ2
J ) − 1)

(92)
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D.3 Consumption strips

Let Ht = H(Ct, Xt, s−t) = Et

[
πs
πt
Cs

]
be the price of an asset that pays out the aggre-

gate consumption at time s. Ht is also called a consumption strip. Conjecture that

H(Ct, Xt, u) = Ct exp
{
−ku−(1/ε−1)

∫ t+u
t

(
e(1−γ)(µJ+b∗sσ

2
J+ 1

2 (1−γ)σ2
J )−1

1−γ −m∗s
)
λ∗(Xs)ds

}
.

u denotes the time to maturity of the consumption strip and k = β+(1/ε−1)(µ− γ
2
σ2)

is the consumption-wealth ratio in the absence of climate risk. Remember that a∗t
and b∗t are implicit functions of Xt since they depend on time only through λ(Xt).

Therefore we can write: H(Ct, Xt, u) = Ct exp
{
− ku− (1/ε− 1)

∫ t+u
t

f(Xs)ds
}

with

f(Xt) =
(
e(1−γ)(µJ+b∗t σ

2
J+ 1

2 (1−γ)σ2
J )−1

1−γ − m∗t

)
λ∗(Xt). Clearly, H(Ct, Xt, 0) = Ct. If we

can verify that Ht multiplied by the pricing kernel is indeed a martingale, by the
no-arbitrage condition Ht must be the price of the asset. Applying Ito’s lemma to Ht

gives:

dHt = HCdCt +HXdXt −
∂Ht

∂u
dt =

1

Ct
HtdCt

− (1/ε− 1)
∂

∂Xt

(∫ t+u

t

f(Xs)ds

)
µX(Xt)Htdt

+ k + (1/ε− 1)
∂

∂u

(∫ t+u

t

f(Xs)ds

)
Htdt

(93)

We can calculate both derivatives:

∂

∂Xt

(∫ t+u

t

f(Xs)ds
)
µX(Xt) =

∂

∂t

(∫ t+u

t

f(Xs)ds
) ∂t

∂Xt

µX(Xt)

=
∂

∂t

(∫ t+u

t

f(Xs)ds
)

= f(Xt+u)− f(Xt)

(94)

.
∂

∂u

(∫ t+u

t

f(Xs)ds
)

= f(Xt+u) (95)

Therefore dHt becomes:

dHt =
{
µ− λtmt + k + (1/ε− 1)λ∗(Xt)

(e(1−γ)(µJ+b∗t σ
2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−m∗t

)}
Htdt

+ σHtdZt + YtHt−dNt

(96)
Now define dπt = µππtdt + σππtdZt + Jπ(Wt)πt−dNt and dHt = µHHtdt + σHtdZt +
YtHt−dNt. Now we can verify that πtHt is martingale.

dπtHt = (µπ + µH + σσπ)πtHtdt+ (σ + σπ)πtHtdZt

+
(
Yt + Jπ(Wt) + YtJπ(Wt)

)
πt−Ht−dNt

(97)

We can calculate the expectation of the jump term.

Et[Yt + Jπ(Wt) + YtJπ(Wt)] = Et[e
a∗t+(b∗t−γ+1)Wt−b∗tµJ−

1
2

(b∗t )2σ2
J − 1]

= ea
∗
t+(1−γ)(µJ+b∗t σ

2
J+ 1

2
(1−γ)σ2

J ) − 1
(98)
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Therefore πtHt is a martingale if:

0 = µπ + µH + σσπ + λ
(
ea
∗
t+(1−γ)(µJ+b∗t σ

2
J+ 1

2
(1−γ)σ2

J ) − 1
)

(99)

Calculation yields:

µπ + µH = γσ2 + λ∗tm
∗
t − λtmt − λt(ea

∗
t+(1−γ)(µJ+b∗t σ

2
J+ 1

2
(1−γ)σ2

J ) − 1) (100)

Since σσπ = −γσ2 − λ∗tm∗t + λtmt, πtHt is a martingale.

D.4 Equity premium

To calculate the equity premium, note that St = Ct
k(Xt)

.

dSdt = dSt + Ctdt =
1

k(Xt)
dCt −

Ct
k(Xt)2

dk(Xt) + k(Xt)Stdt

=
(
µ− kX(Xt)

k(Xt)
µX(Xt) + k(Xt)− λm

)
Stdt+ σStdZt + YtSt−dNt

(101)

The expected return on the stock equals rSt = µ − kX(Xt)
k(Xt)

µX(Xt) + k(Xt). By sub-
tracting the interest rate we then find the equity premium. Using the HJB-equation
and equation (92) we find that:

rSt − rt = µ− kX(Xt)

k(Xt)
µX(Xt) + k(Xt)− rt = γσ2 + λ∗tm

∗
t − λ∗t e(1−γ)(µJ+b∗t σ

2
J+ 1

2
(1−γ)σ2

J )

+ λ∗t e
−γ(µJ+b∗t σ

2
J−

1
2
γσ2
J )

(102)

E Proof of propositions 9 and 10

E.1 Proposition 9

We first make an assumption on some parameter values. This assumption bounds
the climate risk, to make sure that a higher elasticity of subtitution leads to higher
future prices. The assumption is:

(µ− γ

2
σ2)u+

∫ t+u

t

λ∗s

(e(1−γ)(µJ+b∗sσ
2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−m∗s

)
ds > 0 ∀u (103)

This assumption is not very restrictive and is satisfied for reasonable parameter values.
Given this assumption, H(Ct, Xt, u) is increasing in ε. Then we can take the derivative
of H(Ct, Xt, u) with respect to the maturity u.

∂

∂u
H(Ct, Xt, u) =

{
− β − (1/ε− 1)(µ− γ

σ2
)

− (1/ε− 1)λ∗t+u

(e(1−γ)(µJ+b∗t+uσ
2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−m∗t+u

)}
H(Ct, Xt, u)

(104)
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Given the assumption we made in this proposition and that ∂H(Ct,Xt,u)
∂ε

> 0 it is clear

that ∂H(Ct,Xt,u)
∂u

is increasing in ε.
For this proof we will use the shorthand notation H(u; ε). Now consider two cases:

H(u; ε1) and H(u; ε2) where the only difference between the two is that in the latter
case the EIS is larger (ε2 > ε1). Since the derivative of H(u; ε) with respect to ε
is strictly positive and H(0; ε) = Ct for all ε we have that H(u; ε2) > H(u; ε1) if

u > 0. The weight per maturity in the SCC equals H(u;ε1)∫∞
0 H(u;ε1)du

in the first case and
H(u;ε2)∫∞

0 H(u;ε2)du
. Clearly,

∫∞
0
H(u; ε2)du >

∫∞
0
H(u; ε1)du. Therefore:

H(0; ε2)∫∞
0
H(u; ε2)du

=
Ct∫∞

0
H(u; ε2)du

<
H(0; ε1)∫∞

0
H(u; ε1)du

(105)

There must be a maturity u for which the opposite is true. This can be proven by
contradiction. Assume that this is not the case. Then H(u;ε2)∫∞

0 H(u;ε2)du
< H(0;ε1)∫∞

0 H(u;ε1)du
for

every u. But integrating over all possible maturities then yields:

1 =

∫ ∞
0

H(Ct, Xt, u; ε2)∫∞
0
H(Ct, Xt, u; ε2)du

du <

∫ ∞
0

H(Ct, Xt, u; ε1)∫∞
0
H(Ct, Xt, u; ε1)du

du = 1 (106)

By contradiction, there is a maturity u for which H(u;ε2)∫∞
0 H(u;ε2)du

> H(u;ε1)∫∞
0 H(u;ε1)du

. Since

H(u; ε) is continuous, this implies that there exists a u∗ for which the weights are the
same in both cases.

Since ∂H(u;ε)
∂u

is increasing in ε, we also know that ∂H(u;ε2)
∂u

> ∂H(u;ε1)
∂u

. Therefore,
u∗ is the only maturity at which the two weighting functions intersect. For u < u∗,

H(u;ε2)∫∞
0 H(u;ε2)du

< H(u;ε1)∫∞
0 H(u;ε1)du

and for u > u∗ we have the opposite inequality.

E.2 Proposition 10

Note that b∗t is decreasing in θ and a∗t is increasing in θ. Assume ε < 1, then
∂H(Ct,Xt,u)

∂θ
> 0. We discussed this feature before, namely that additional risk (or

ambiguity in this case) increases prices when ε < 1. Now take a look at the derivative
if H(Ct, Xt, u) with respect to u:

∂

∂u
H(Ct, Xt, u) =

{
− β − (1/ε− 1)(µ− γ

σ2
)

− (1/ε− 1)λ∗t+u

(e(1−γ)(µJ+b∗t+uσ
2
J+ 1

2
(1−γ)σ2

J ) − 1

1− γ
−m∗t+u

)}
H(Ct, Xt, u)

(107)

This derivative is increasing in θ. The proof of the proposition then follows using
similar reasoning as in proposition 9.

When ε > 1, we obtain the opposite case. Additional ambiguity decreases prices
and ∂H(Ct,Xt,u)

∂θ
< 0. Besides, ∂H(Ct,Xt,u)

∂u
is now decreasing in θ. Using similar reasoning

as proposition 9 again yields the proposition for ε > 1.
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F Calibration

Table 3: Parameters for the Climate model

Par. Description Value
Et Initial level of total emissions (in GtC, 2015) 10.45*
gEt Initial growth rate of emissions (per year) 0.017
gE∞ Long-run growth rate of emissions (pear year) -0.02
δgE Speed of convergence of growth rate of emissions (per year) 0.0075
Mat

t Initial atmospheric carbon concentration (in GtC, 2015) 851*
Mup

t Initial carbon concentration upper layer (in GtC, 2015) 460*
Mat

t Initial carbon concentration lower layer (in GtC, 2015) 1740*
Mat

pre Pre-industrial atmospheric carbon concentration (in GtC) 588*
δat→up Carbon flow rate from atmosphere to upper layer (per year) 0.0252*
δup→at Carbon flow rate from upper layer to atmosphere (per year) 0.0412*
δup→lo Carbon flow rate from upper layer to lower layer (per year) 0.0014*
δlo→up Carbon flow rate from lower layer to upper layer (per year) 0.0003*
κ1 Equilibrium forcing of CO2 doubling (in W/m2) 3.68*
EFt Initial level of exogenous forcing (in W/m2) 0.5*
EF∞ Long-run level of exogenous forcing (in W/m2) 1*
κ2 Speed of convergence exogenous forcing (per year) 0.02
Tt Initial surface temperature compared to pre-industrial (in ◦C, 2015) 0.85*
T oct Initial ocean temperature compared to pre-industrial (in ◦C, 2015) 0.0068*
τ1 Thermal inertia parameter of the upper layer (in Wyears/m2/◦C ) 47.71*
τ2 Equilibrium temperature impact of CO2 doubling (in ◦C) 3.1*
τ3 Temp. transfer coefficient between upper and deep ocean (in years) 197.99*
τ4 Thermal inertia parameter of the deep ocean (in Wyears/m2/◦C) 17.42*

*Based on the DICE 2016 calibration: https://sites.google.com/site/williamdnordhaus/dice-rice.
All parameters that depend on the time step of the model are transformed to yearly.
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