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Abstract

Given any α ∈ [0, 1], an α-constant-sum game on a finite set of players, N , is a
function that assigns a real number to any coalition S ⊆ N , such that the sum of
the worth of the coalition S and the worth of its complementary coalition N\S is
α times of the worth of the grand coalition. This class contains the constant-sum
games of Khmelnitskaya (2003, [3]) (for α = 1) and games of threats of Kohlberg
and Neyman (2018, [4]) (for α = 0) as special cases. An α-constant-sum game may
not be a classical TU cooperative game as it may fail to satisfy the condition that
the worth of the empty set is 0, except when α = 1. In this paper, we will build
a value theory for the class of α-constant-sum games, and mainly introduce the
α-quasi-Shapley value. We characterize this value by classical axiomatizations for
TU games. We show that axiomatizations of the equal division value do not work
on these classes of α-constant-sum games.
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j.r.vanden.brink@vu.nl (René van den Brink), hsun@nwpu.edu.cn (Hao Sun),
xugenjiu@nwpu.edu.cn (Genjiu Xu), z.zou@vu.nl (Zhengxing Zou).



1 Introduction

A cooperative game with transferable utility (TU game) describes situations
where players can earn certain payoffs by cooperating. It assigns a worth to
every subset of the player set, called coalition, which represents the value that
the players in the coalition can earn by cooperating. By definition, it assigns
zero worth to the empty set. A value for TU-games is a function that assigns
a single payoff vector to each TU game. The components of this payoff vector
reflect an assessment of the corresponding player’s gains for participating in
the game. The most widely studied value in TU games is the Shapley value
(Shapley 1953, [5]), which assigns to every player its expected marginal contri-
bution assuming that all possible orders of entrance of the players to the grand
coalition occur with equal probability. In Shapley’s paper, he proved that the
Shapley value is the unique value satisfying efficiency, symmetry, linearity and
the null player property. Young (1985, [9]) characterized the Shapley value by
efficiency, symmetry and marginality, while van den Brink (2001, [6]) also pro-
vided an axiomatization of the Shapley value using efficiency, the null player
property and a fairness property.

Khmelnitskaya (2003, [3]) showed that Young’s axiomatization is valid on
the class of constant sum-games , being TU games where the sum of the worths
of a coalition and its complement always equals the worth of the grand coali-
tion. Kohlberg and Neyman (2018, [4]) introduced the class of games of threats
where the worth of any coalition and its complement equals zero. Consequent-
ly, these need not be a subclass of TU-games, since the worth of the empty
set should be the negative of the worth of the grand coalition, implying that
the worth of the empty set does not need to be zero. However, the structure
of this class is similar to that of the class of constant-sum games.

In this paper, we show that both results mentioned above can be extended
to classes of, what we call, α-constant sum-games . These are games where the
worth of any coalition and its complement equals a fraction α ∈ [0, 1] from the
worth of the grand coalition. We show this by closely following the arguments
of Kohlberg and Neyman (2018, [4]). For α 6= 1, the α-constant-sum games
need not be TU games, as they may fail to satisfy the condition that the worth
of the empty set is zero. In this paper, we develop a value theory for the classes
of α-constant-sum games. We show that there is a unique value on these classes
that satisfies Shapley’s axiomatization system: efficiency, symmetry, linearity
and the null player property. The value owns a similar structure as the Shapley
value for TU games, and is called α-quasi-Shapley value.

Given any α ∈ [0, 1], we build a connection between the α-constant-sum
games and the classical TU games. The α-quasi-Shapley value of any α-
constant-sum game coincides with the Shapley value of the corresponding TU
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game. Based on this connection, Young and van den Brink’s axiomatization-
s for the Shapley value are also applied to characterize the α-quasi-Shapley
value. Further, we show that a similar analysis cannot be done for the equal
division value in the sense that on a class of α-constant-sum games, the axiom-
s of efficiency, symmetry, linearity and the nullifying player property, which
characterize the equal division value for TU games in van den Brink (2007,
[7]), do not give uniqueness on the class of α-constant-sum games. Finally, we
introduce an alternative way to balance the power in games of threats.

The paper is organized as follows. After discussing preliminaries in Section
2, Section 3 gives the definition of α-constant-sum games, while Section 4
introduces and characterizes the α-quasi-Shapley value by efficiency, symme-
try, linearity and the null player property. Section 5 builds the connection
between the α-constant-sum games and the classical TU games, and addition-
ally characterizes the α-quasi-Shapley value with Young and van den Brink’s
axiomatizations. In Section 6, we show that something similar cannot be done
for the equal division value. In Section 7, we consider an alternative efficiency
property, specifically for games where the worth of the empty set is nonzero.
Section 8 introduces an alternative to balancing threats. Finally, Section 9
concludes and develops some suggestions for future research.

2 Preliminaries

Let N = {1, 2, . . . , n} be the set of players. A subset S ⊆ N is called
coalition. In particular, N is called the grand coalition. We denote the size of
coalition S as s.

A cooperative game with transferable utility (TU game) is a pair 〈N, v〉,
where v : 2N → R is the characteristic function assigning to each coalition
S ∈ 2N the worth v(S), with the convention that v(∅) = 0. For each coalition
S, the real number v(S) represents the reward that coalition S can guarantee
by itself without the cooperation of the other players. We denote by GN the
game space consisting of all TU-games with player set N .

A value on a subclass C ⊆ GN is a function that assigns a single payoff
vector to each TU game in C. The most widely studied value in TU games
is the Shapley value (Shapley 1953, [5]), which assigns to every player its
expected marginal contribution, assuming that all possible orders of entrance
of the players to the grand coalition occur with equal probability. Formally,
the Shapley value Sh on GN is defined by

Shi(N, v) =
∑

S⊆N, S3i

(s− 1)!(n− s)!
n!

[v(S)− v(S\{i})], (1)
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for any 〈N, v〉 ∈ GN and i ∈ N .

The most egalitarian value for TU games is the equal division value, Ed
which allocates the worth of the grand coalition equally over all players, and
thus is given by

Edi(N, v) =
v(N)

n
, for any 〈N, v〉 ∈ GN and i ∈ N. (2)

Khmelnitskaya (2003, [3]) considered the class of constant-sum games being
games 〈N, v〉 satisfying v(S) + v(N\S) = v(N) for all S ⊆ N . Kohlberg and
Neyman (2018, [4]) introduced the of games of threats , being pairs 〈N, d〉,
where d : 2N → R is a function that assigns a real number to any coalition,
S ⊆ N , such that d(S) = −d(N\S), i.e., d(S) + d(N\S) = 0. Notice that this
implies that games of threats need not be TU games since the empty set can
have a nonzero worth. In fact, it has nonzero worth if and only if the worth of
the grand coalition is nonzero. However, the class of games of threats have a
similar structure as the class of constant-sum games. Kohlberg and Neyman
(2018, [4]) interpreted the amount d(S) as the threat power of the coalition S.
The condition d(S) + d(N\S) = 0 implies that the threat powers of coalition
S and its complementary coalition N\S are contrary, and offset each other.
Following this interpretation, in a constant-sum game, the sum of the threat
powers of coalition S and its complementary coalition N\S are fixed as the
threat power of the grand coalition.

3 The α-constant-sum games

Given any α ∈ [0, 1], a α-constant-sum game is a pair 〈N,µ〉, where

• N = {1, 2, . . . , n} is a finite set of players;
• µ : 2N → R is a function such that µ(S) +µ(N\S) = αµ(N), for all S ⊆ N .

We denote by CNα , α ∈ [0, 1], the game space consisting of all α-constant-sum
games with player set N . In particular, CN1 is the class of constant-sum games,
and CN0 is the class of games of threats.

Example 1 Consider α = 0.8, N = {1, 2, 3}, and game 〈N,µ〉 ∈ CN0.8, given
by

µ(∅) = −2, µ({1}) = 2, µ({2}) = 4, µ({3}) = 5,

µ({1, 2}) = 3, µ({1, 3}) = 4, µ({2, 3}) = 6, µ({1, 2, 3}) = 10.
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By choosing, for every S ⊆ N , either S or N\S, we can describe any
〈N,µ〉 ∈ CNα by means of 2n−1 numbers, thereby identifying CNα with R2n−1

.
A convenient choice is to take any i ∈ N , and consider (µ(S))S3i. The worth-
s of the complementary coalitions S ⊆ N \ {i} follow by the definition of
α-constant sum game.

Example 2 Given α = 0.8, choosing i = 1, the above Example 1 is described
as follows:

µ({1}) = 2, µ({1, 2}) = 3, µ({1, 3}) = 4, µ({1, 2, 3}) = 10.

The worth of the other coalitions (without player 1) follow from the definition
of α-constant sum game.

4 The α-quasi-Shapley value

Consider any α ∈ [0, 1], and any α-constant-sum game 〈N,µ〉 ∈ CNα . Two
players i, j ∈ N are symmetric in 〈N,µ〉 if, for every coalition S ⊆ N\{i, j},
µ(S ∪ {i}) = µ(S ∪ {j}). A player i ∈ N is a null player in 〈N,µ〉 if, for
every coalition S ⊆ N\{i}, µ(S ∪ {i}) = µ(S). For any pair of α-constant-
sum games 〈N,µ〉, 〈N, ν〉 ∈ CNα and a, b ∈ R, the game aµ + bν is given as
(aµ+ bν)(S) = aµ(S) + bν(S), for all S ⊆ N .

A value on CNα is a function φ : CNα → RN that associates with each α-
constant-sum game, a vector of payoffs φ(N,µ) ∈ RN to the players. Following
Shapley (1953, [5]), we consider the following properties.

• Efficiency : For any α-constant-sum game 〈N,µ〉 ∈ CNα ,
∑
i∈N φi(N,µ) =

µ(N).
• Symmetry : For any α-constant-sum game 〈N,µ〉 ∈ CNα , if players i, j ∈ N

are symmetric, then φi(N,µ) = φj(N,µ).
• Linearity : For any pair of α-constant-sum games 〈N,µ〉, 〈N, ν〉 ∈ CNα and
a, b ∈ R, φ(N, aµ+ bν) = aφ(N,µ) + bφ(N, ν).
• Null player property : For any α-constant-sum game 〈N, v〉 ∈ CNα , if player
i ∈ N is a null player, then φi(N,µ) = 0.

Notice that these are the usual efficiency, symmetry, linearity and null player
axioms, except that they are defined on subclasses CNα .

It turns out that, for every α ∈ [0, 1], there exists a unique value on CNα that
satisfies the above defined classical axioms on this class.

Theorem 4.1 Take any α ∈ [0, 1]. There is a unique value on CNα that sat-
isfies efficiency, symmetry, linearity and the null player property. This value
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is, for every 〈N,µ〉 ∈ CNα and i ∈ N , given by

SHα
i (N,µ) =

∑
S⊆N, S3i

(
(s− 1)!(n− s)!

n!
· 1

2− α
[µ(S)− µ(N\S)]

)
. (3)

For every α ∈ [0, 1], we refer to the corresponding value SHα on CNα as the
α-quasi-Shapley value. For α = 1, this is the ‘classical’ Shapley value on the
class of constant-sum games CN1 as characterized in Khmelnitskaya (2003, [3]).
For α = 0, this is the Shapley type value on the class of games of threats
CN0 as characterized in Kohlberg and Neyman (2018, [4]). Notice also that, for
α = 0, Theorem 4.1 boils down to Theorem 1 of Kohlberg and Neyman (2018,
[4]). Before proving Theorem 4.1, we introduce basis games for the classes of
α-constant-sum games.

Definition 1 Consider any α ∈ [0, 1] and T ⊆ N , T 6= ∅. The unanimity
α-constant-sum game, 〈N, uαT 〉 ∈ CNα , is defined by

uαT (S) =


2

2−α , if S ⊇ T ;

2α−2
2−α , if S ⊆ N\T ;

α
2−α , otherwise.

(4)

For α = 1, these are twice the type of unanimity game used in Khmelnitskaya
(2003, [3]), while for α = 0, these are 1

|T | times the type of unanimity game

used by Kohlberg and Neyman (2018, [4]).

Proposition 4.2 Consider any α ∈ [0, 1], and take any i ∈ N . The unanimity
α-constant-sum games, {〈N, uαT 〉}T⊆N, T3i, span the class of α-constant-sum
games, CNα , i.e., for every 〈N,µ〉 ∈ CNα , there exist numbers aT ∈ R, i ∈ T ⊆
N , such that µ =

∑
T⊆N, T3i aTu

α
T .

Proof. Consider any α ∈ [0, 1], and let i0 ∈ N . It is sufficient to show
that the 2n−1 unanimity α-constant-sum games, {〈N, uαT 〉}T⊆N,T3i0 , are lin-
early independent. On the contrary, suppose that there exist numbers aj, j =
1, . . . , 2n−1, such that

2n−1∑
j=1

aju
α
Tj

= 0, (5)

where (Tj)j=1,...,2n−1 , is such that i0 ∈ Tj and Tj 6= Tk for all j, k ∈ {1, . . . , 2n−1}, j 6=
k.

Since, for j 6= k, we have Tj 6= Tk and Tj ∩ Tk ⊇ {i0} 6= ∅, neither set is
contained in the other’s complement and therefore, using the fact that Tk ⊇
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Tj ⇔ N \ Tk ⊆ N \ Tj,

uαTj(Tk) =


2

2−α , Tk ⊇ Tj;

α
2−α , otherwise,

and uαTj(N\Tk) =


2α−2
2−α , Tk ⊇ Tj;

α
2−α , otherwise.

Hence,

uαTj(Tk)− u
α
Tj

(N\Tk) =

 2, Tk ⊇ Tj;

0, otherwise.
(6)

Among the Tj choose one, say Tm, with a minimum number of players among
those coalitions in the sequence (Tj)j=1,...,2n−1 with aj 6= 0, i.e., am 6= 0 and
Tj ⊂ Tm implies that aj = 0. Then for any j 6= m with aj 6= 0, it holds that
Tm + Tj and therefore, by equation (6),

uαTj(Tm)− uαTj(N\Tm) = 0. (7)

Thus,

0 =
∑2n−1

j=1 aju
α
Tj

(Tm)−∑2n−1

j=0 aju
α
Tj

(N\Tm)

=
∑2n−1

j=1 aj[u
α
Tj

(Tm)− uαTj(N\Tm)]

= am[uαTm(Tm)− uαTm(N\Tm)]

= 2am,

where the first equality follows from Equation (5), the third equality follows
from Equation (7) and the assumption that aj = 0 if Tj ⊂ Tm, and the
last equality follows from Equation (6). Thus, we have a contradiction with
am 6= 0. 2

Now, we can prove the main theorem.

Proof of Theorem 4.1

We first prove the uniqueness. Given any α ∈ [0, 1], let φ : CNα → RN be a
value on CNα that satisfies efficiency, symmetry, linearity and the null player
property. We prove that the value φ is uniquely determined on CNα .

Let T ⊆ N , T 6= ∅. In the unanimity α-constant-sum game, 〈N, uαT 〉 ∈ CNα ,
for any i, j ∈ T and all S ⊆ N\{i, j}, we have

uαT (S ∪ {i}) = uαT (S ∪ {j}) =
α

2− α
,

7



showing that all players i ∈ T are symmetric. Further, for any i /∈ T and all
S ⊆ N\{i}, we have

uαT (S ∪ {i}) = uαT (S),

showing that all players i /∈ T are null players in 〈N, uαT 〉.

According to φ satisfying the null player property, the players i 6∈ T earn
zero payoff in 〈N, uαT 〉. By efficieny and symmetry of the function φ, and the
fact that uαT (N) = 2

2−α , we obtain

φi(N, u
α
T ) =


2

t(2−α) , if i ∈ T ;

0, if i /∈ T .

With linearity, the function φ is uniquely determined on CNα .

For any α ∈ [0, 1], we now prove that the α-quasi-Shapley value SHα, de-
fined in (3), satisfies efficiency, symmetry, linearity and the null player prop-
erty.

The α-quasi-Shapley value SHα satisfying symmetry, linearity and the null
player property follows directly from the following equivalent representation:
for any 〈N,µ〉 ∈ CNα ,

SHα
i (N,µ) =

∑
S⊆N,S3i

(
(s− 1)!(n− s)!

n!
· 1

2− α
[µ(S)− µ(N\S)]

)

=
∑

S⊆N,S3i

(
(s− 1)!(n− s)!

n!
· 1

2− α
[µ(S)− µ(S\{i})]

)
. (8)

To prove efficiency, for any i ∈ N , we define a function Ii : 2N → {0, 1} by

Ii(S) =

 1, if S 3 i;

0, otherwise.
(9)

For any S ⊆ N , denote rn(S) := (s−1)!(n−s)!
n!

. It follows from (3) that

∑
i∈N

SHα
i (N,µ) =

∑
i∈N

∑
S⊆N,S3i

(
(s− 1)!(n− s)!

n!
· 1

2− α
[µ(S)− µ(N\S)]

)

=
1

2− α
∑
i∈N

∑
S⊆N,S3i

rn(S)[µ(S)− µ(N\S)]

=
1

2− α
∑
i∈N

∑
S⊆N

Ii(S)rn(S)[µ(S)− µ(N\S)]
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=
1

2− α
∑
S⊆N

∑
i∈N

Ii(S)rn(S)[µ(S)− µ(N\S)]

=
1

2− α
∑
S⊆N

∑
i∈S

rn(S)[µ(S)− µ(N\S)]

=
1

2− α
∑

S⊆N,S 6=∅
s · rn(S)[µ(S)− µ(N\S)]

=
1

2− α
∑

S⊆N,S 6=∅

1(
n
s

) [µ(S)− µ(N\S)]. (10)

Note that, in case S ( N , S 6= ∅, then N\S ⊆ N , N\S 6= ∅, while
(
n
s

)
=
(

n
n−s

)
.

Hence, ∑
i∈N

SHα
i (N,µ) =

1

2− α
[µ(N)− µ(∅)].

With µ(∅) + µ(N) = αµ(N), we conclude that

∑
i∈N

SHα
i (N,µ) =

1

2− α
[µ(N)− (α− 1)µ(N)] = µ(N).

This completes the proof of Theorem 4.1. 2

5 The connection with classical TU games

Given α ∈ [0, 1), the class of α-constant-sum games CNα need not belong to
the class of TU games GN , as such a α-constant-sum game 〈N,µ〉 ∈ CNα , may
fail to satisfy the condition that µ(∅) 6= 0. In this section, we will build the
connection between the class of α-constant-sum games CNα and the class of TU
games GN .

Given any α ∈ [0, 1], let Kα : GN → CNα and Lα : CNα → GN , for every
〈N, v〉 ∈ GN and 〈N,µ〉 ∈ CNα , and for all S ⊆ N , be defined by

(Kαv)(S) = v(S)− v(N\S) +
α

2− α
v(N), (11)

and

(Lαµ)(S) =
1

2− α
µ(S) +

1− α
2− α

µ(N). (12)

Then, it is easy to get the following relationships between the value on GN
and the value on CNα , which we state without proof.
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Proposition 5.1 Given any α ∈ [0, 1].

(i) If ϕ is a value on GN , then ϕ ◦ Lα is a value on CNα ; if ψ is a value on
CNα , then ψ ◦Kα is a value on GN .

(ii) If ϕ1 and ϕ2 are two different values on GN , then ϕ1 ◦ Lα and ϕ2 ◦ Lα
are two different values on CNα ; if ψ1 and ψ2 are two different values on
CNα , then ψ1 ◦Kα and ψ2 ◦Kα are two different values on GN .

For α = 0, the mappings K0, L0, and Proposition 5.1 are used in Kohlberg
and Neyman (2018, [4]). The relationships, shown in Proposition 5.1, provide
a new perspective to prove Theorem 4.1.

An alternative proof of the uniqueness part of Theorem 4.1 can be given
using the map Lα as follows. First, we show how that the α-quasi Shapley
value for α-constant sum games can be obtained as the Shapley value of a
classical TU game using this map.

Proposition 5.2 Given any α ∈ [0, 1], SHα = Sh◦Lα, i.e., for any 〈N,µ〉 ∈
CNα , it holds that SHα(N,µ) = Sh(N,Lαµ).

Proof. Consider any α ∈ [0, 1]. Using the definition of the Shapley value,
according to (3) and Equation (8),

SHα
i (N,µ)

=
∑

S⊆N,S3i

(
(s− 1)!(n− s)!

n!
· 1

2− α
[µ(S)− µ(S\{i})]

)

=
∑

S⊆N,S3i

(s− 1)!(n− s)!
n!

(
[

1

2− α
µ(S) +

1− α
2− α

µ(N)]− [
1

2− α
µ(S\{i}) +

1− α
2− α

µ(N)]
)

=
∑

S⊆N,S3i

(s− 1)!(n− s)!
n!

[Lαµ(S)− Lαµ(S\{i})]

= Shi(N,L
αµ). 2

Next, we can give an alternative proof of Theorem 4.1.

Alternative proof of the uniqueness part of Theorem 4.1

Given any α ∈ [0, 1], for any 〈N,µ〉 ∈ CNα , note that the map Lα is linear,
efficient (i.e., (Lαµ)(N) = µ(N)), symmetric (i.e., if i and j are symmetric
players in 〈N,µ〉 ∈ CNα , then i and j are symmetric players in 〈N,Lαµ〉 ∈ GN),
and preserves null players (i.e., if i is a null player in 〈N,µ〉 ∈ CNα , then i is
also a null player in 〈N,Lαµ〉 ∈ GN).
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As the Shapley value Sh is the unique value on GN that satisfies efficiency,
symmetry, linearity and the null player property, according to Proposition 5.1,
the value Sh ◦ Lα should be the unique value on CNα that satisfies efficiency,
symmetry, linearity and the null player property. Therefore, Proposition 5.2
completes the proof of Theorem 4.1. 2

Remark 1 Given any α ∈ [0, 1], for any 〈N, v〉 ∈ GN , note that the map
Kα is linear and symmetric, but it can’t preserve efficiency and null players.
Hence, the value SHα ◦Kα is not the unique value on GN that satisfies effi-
ciency, symmetry, linearity and the null player property, i.e., SHα◦Kα 6= Sh.

Young (1985, [9]) showed that the existence and uniqueness theorem for the
Shapley value on GN remains valid when linearity and the null player property
are replaced by marginality, which requires that the value of a player i ∈ N
in a TU game 〈N, v〉 depends only on the player’s marginal contributions,
v(S ∪ {i})− v(S), for all S ⊆ N\{i}.

• Marginality : For any α-constant-sum game 〈N,µ〉 ∈ CNα , and i ∈ N , φi(N,µ) =
ξi({µ(S ∪ {i})− µ(S)}S⊆N\{i}), where ξi : R2n−1 → R.

The map Lα preserves marginality (i.e., if the marginal contributions of player
i are the same in 〈N,µ〉, 〈N, ν〉 ∈ CNα , then the marginal contributions of player
i are also the same in TU games 〈N,Lαµ〉, 〈N,Lαν〉). Therefore, the following
corollary is implied.

Corollary 5.3 Take any α ∈ [0, 1]. The α-quasi-Shapley value is the unique
value on CNα that satisfies efficiency, symmetry and marginality.

For α = 1, this gives Theorem 1 of Khmelnitskaya (2003, [3]), while for
α = 0 this gives Corollary 1 of Kohlberg and Neyman (2018, [4]).

In van den Brink (2001, [6]) an axiomatization for the Shapley value on
GN is provided where symmetry and linearity are replaced by fairness, which
states that if to a TU game we add another TU game in which two players
are symmetric, then their payoffs change by the same amount.

• Fairness : For any α-constant-sum games 〈N,µ〉,〈N, ν〉 ∈ CNα , if i, j ∈ N are
symmetric players in 〈N, ν〉, then φi(N,µ+ ν)− φi(N, ν) = φj(N,µ+ ν)−
φj(N, ν).

The map Lα preserves fairness because it can preserve linearity and symmetric
players. Therefore, the following corollary is obvious.

Corollary 5.4 Take any α ∈ [0, 1]. The α-quasi-Shapley value is the unique
value on CNα that satisfies efficiency, the null player property and fairness.
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6 δ-reducing players

In the previous sections, we showed that modified unanimity games as given
by (4) allow to apply various axiomatizations of the Shapley value for TU
games, to the classes of α-constant-sum games and characterize a Shapley
type value. This does not work for every basis. For example, using the standard
basis on the class of all TU games, van den Brink (2007, [7]) characterized the
equal division value by efficiency, symmetry, linearity and the nullifying player
property. Given any α ∈ [0, 1], for any α-constant-sum game 〈N,µ〉 ∈ CNα , a
player i ∈ N is a nullifying player if, for every coalition S ⊆ N with i ∈ S,
µ(S) = 0.

• Nullifying player property : For any α-constant-sum game 〈N,µ〉 ∈ CNα , if
player i ∈ N is a nullifying player, then φi(N,µ) = 0.

It turns out that on the classes of α-constant-sum games, the nullifying
player property is implied by efficiency and symmetry. In fact, we can make
a stronger statement, that the existence of a so-called δ-reducing player, δ ∈
[0, 1), in an α-constant-sum game implies that the game is the null game. Given
any α, δ ∈ [0, 1], for any α-constant-sum game 〈N,µ〉 ∈ CNα , a player i ∈ N is a
δ-reducing player if, for every coalition S ⊆ N with i ∈ S, µ(S) = δµ(S \{i}).

• δ-reducing player property : For any α-constant-sum game 〈N,µ〉 ∈ CNα and
δ ∈ [0, 1], if player i ∈ N is a δ-reducing player, then φi(N,µ) = 0.

The δ-reducing player property is introduced in van den Brink and Funaki
(2015, [8]) who used it to characterize the corresponding discounted Shapley
value (see Joosten (1996, [2]) and Driessen and Radzik (2002, [1])) together
with efficiency, symmetry and linearity on the class of all TU games. For δ = 1
this boils down to Shapley’s null player property, while for δ = 0 this gives the
nullifying player property. It turns out that any δ-reducing player property
with δ < 1 has no bite for α-constant-sum games since the existence of such
a player implies that the game is the null game.

Proposition 6.1 Take any α ∈ [0, 1] and δ ∈ [0, 1). If there exists a δ-
reducing player in α-constant-sum game 〈N,µ〉 ∈ CNα , then µ(S) = 0 for all
S ⊆ N .

Proof. For α ∈ [0, 1] and δ ∈ [0, 1), suppose that player i ∈ N is a δ-reducing
player in α-constant-sum game 〈N,µ〉 ∈ CNα . Then, by the δ-reducing player
property,

µ(N) = δµ(N \ {i}). (13)
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By definition of α-constant-sum game, µ(∅) + µ(N) = αµ(N), so

µ(∅) = (α− 1)µ(N). (14)

Also, by definition µ({i}) + µ(N \ {i}) = αµ(N), which by i being a δ-
reducing player gives δµ(∅) + µ(N \ {i}) = αµ(N). Substituting (14) gives
δ(α − 1)µ(N) + µ(N \ {i}) = αµ(N). Further substituting (13) gives δ(α −
1)δµ(N \{i})+µ(N \{i}) = αδµ(N \{i})⇔ (δ(α− 1)δ + 1− αδ)µ(N \{i}) =
(δ2α− δ2 + 1− αδ)µ(N \ {i}) = 0. Since (δ2α− δ2 + 1− αδ) 6= 0, it holds
that µ(N \ {i}) = 0. By (13), then also µ(N) = 0.

We are left to show that µ(S) = 0 for all S ⊆ N . Again, by the δ-reducing
player property,

µ(S) = δµ(S \ {i}) for all S ⊆ N, i ∈ S, (15)

and by the definition of α-constant-sum game, we have for S ⊆ N with i ∈ S,

µ(S) + µ(N \ S) = αµ(N) = µ(S \ {i}) + µ((N \ S) ∪ {i})

which, with (15), implies that δµ(S\{i})+µ(N \S) = µ(S\{i})+δµ(N \S)⇔
(1−δ)µ(N \S) = (1−δ)µ(S\{i})⇔ µ(N \S) = µ(S\{i} ⇒ (δ+1)µ(S\{i}) =
δµ(S \ {i}) + µ(S \ {i}) = µ(S) + µ(S \ {i}) = µ(S) + µ(N \ S) = αµ(N) =
0⇒ µ(S) = 0. Then also µ(S) = 0 for all S ⊆ N \ {i}. 2

As a corollary, we can see that efficiency and symmetry imply the δ-reducing
player property for any δ ∈ [0, 1). Specifically, this holds for the nullifying
player property. Further, we see that efficiency, symmetry, linearity and the
nullifying player property do not give uniqueness since, besides the equal divi-
sion value, for example, also the α-quasi Shapley value satisfies these axioms
on any class of α-constant sum games.

Corollary 6.2 Take any α ∈ [0, 1].

• Any value on CNα that satisfies efficiency and symmetry, also satisfies the
δ-reducing player property on CNα for any δ ∈ [0, 1).
• Specifically, any value on CNα that satisfies efficiency and symmetry, also

satisfies the nulliffying player property on CNα .
• For δ ∈ [0, 1), efficiency, symmetry, linearity, the δ-reducing player property

do not give uniqueness on CNα .
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7 Power efficiency

In Sections 4 and 5, we followed Kohlberg and Neyman (2018, [4])’s ap-
proach, taking the Shapley axioms and showing that these characterize a u-
nique value on the classes of α-constant-sum games. Specifically, we used the
efficiency axiom that requires that the sum of all payoffs equals the worth of
the grand coalition µ(N). However, for α-constant-sum games, since generally
the worth of the empty set is nonzero, an alternative efficiency is to require
that the sum of all payoffs equals the payoff that all players cooperating to-
gether can generate compared to the situation where there is no cooperation
at all, i.e. the total sum of payoffs equals µ(N)− µ(∅).

• Power efficiency : For any α-constant-sum game 〈N,µ〉 ∈ CNα ,
∑
i∈N φi(N,µ) =

µ(N)− µ(∅).

Notice that for classical TU games, this is equivalent to efficiency, since for
those games µ(∅) = 0. We refer to this as ‘power efficiency’, since it reflects
that the players earn the payoff that they can generate by their ability to
cooperate.

Interestingly, applying this power efficiency together with symmetry, the
null player property and linearity on classes of α-constant-sum games CNα ,
characterizes a value that is given exactly by the famous Shapley value formula
(without any α-term), see (1). We refer to this as the quasi-Shapley value since
it is also defined on classes where the worth of the emptyset is nonzero.

Theorem 7.1 Take any α ∈ [0, 1]. There is a unique value on CNα that sat-
isfies power efficiency, symmetry, linearity and the null player property. This
value is, for every 〈N,µ〉 ∈ CNα and i ∈ N , given by

SHi(N,µ) =
∑

S⊆N, S3i

(
(s− 1)!(n− s)!

n!
· [µ(S)− µ(N\S)]

)
. (16)

Proof. We first prove the uniqueness. Given any α ∈ [0, 1], let φ : CNα → RN

be a value on CNα that satisfies power efficiency, symmetry, linearity and the
null player property. We prove that the value φ is uniquely determined on CNα .

Let T ⊆ N , T 6= ∅. Consider the unanimity α-constant-sum game uαT given
by (4). As we saw in the proof of Theorem 4.1, all players i ∈ T are symmetric,
and all players i /∈ T are null players in uαT .

According to φ satisfying the null player property, the players i 6∈ T earn
zero payoff in 〈N, uαT 〉. By power efficieny and symmetry of the function φ,
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and the fact that uαT (N)− uαT (∅) = 2
2−α −

2α−2
2−α = 2, we obtain

φi(N, u
α
T ) =


2
t
, if i ∈ T ;

0, if i /∈ T .

With linearity, the function φ is uniquely determined on CNα .

For any α ∈ [0, 1], it is obvious that the quasi-Shapley value SH given by
(16) satisfies symmetry, linearity and the null player property. We now prove
that the quasi-Shapley value satisfies power efficiency.

Again, we use the function Ii : 2N → {0, 1} defined in (9) of the proof of

of Theorem 4.1. For any S ⊆ N , denoting rn(S) := (s−1)!(n−s)!
n!

, it follows from
(16) that

∑
i∈N Shi(N,µ) =

∑
S⊆N,S 6=∅

1

(n
s)

[µ(S) − µ(N\S)], in the same way

as in (10) in the proof of Theorem 4.1, just deleting the term 1
2−α everywhere.

Note that, in case S ( N , S 6= ∅, then N\S ⊆ N , N\S 6= ∅, while(
n
s

)
=
(

n
n−s

)
. Hence, after cancelling out terms, we are left with

∑
i∈N

Shi(N,µ) = µ(N)− µ(∅). 2

8 The β-constant sum games

In the previous sections, given any α ∈ [0, 1], we considered the class of
α-constant-sum games in which the sum of threat powers of coalition S, µ(S),
and its complementary coalition N\S, µ(N\S), is a fixed fraction between 0
and µ(N). We showed that axiomatizations of the Shapley value on the class
of TU games are also valid on the classes of α-constant-sum games, but this
is not the case for the equal division value.

The threat power of the empty set may not be 0, because it can represent
the latent power in nature. Therefore, one can, as an alternative, consider
the class of games, where the sum of the threat powers of coalition S and
its complementary coalition N\S will be in between the threat power of the
empty set and the threat power of the grand coalition.

Given any β ∈ [0, 1], a β-constant-sum game is a pair 〈N, η〉, where

• N = {1, 2, . . . , n} is a finite set of players;
• η : 2N → R is a function such that η(S) + η(N\S) = βη(∅) + (1− β)η(N),

for all S ⊆ N .
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Denote by CNβ the game space consisting of all β-constant-sum games with
player set N . In particular, when β = 0, it is the class of constant-sum games.
However, the class of β-constant-sum games does not cover the class of threat
of games. Notice that, for β = 1, it does contain the threat games with η(∅) = 0
(i.e. the intersection of the class of threat games and TU games). We can do a
similar analysis as for α-constant sum games. Given any β ∈ [0, 1]. Let T ⊆ N ,
T 6= ∅. The unanimity β-constant-sum game, 〈N, uβT 〉 ∈ CNβ , is given as

uβT (S) =


2− 2β, if S ⊇ T ;

−2β, if S ⊆ N\T ;

1− 2β, otherwise.

Taking any i ∈ N , the unanimity β-constant-sum games, {〈N, uβT 〉}T⊆N,T3i,
span the class of β-constant-sum games, CNβ .

Given any β ∈ [0, 1), let Kβ : GN → CNβ and Lβ : CNβ → GN be defined by,
for all S ⊆ N ,

(Kβv)(S) = η(S)− η(N\S) + (1− 2β)η(N), (17)

and

(Lβη)(S) = (1− β)η(S) + βη(N), (18)

where 〈N, v〉 ∈ GN and 〈N, η〉 ∈ CNβ .

Remark 2 Notice that, if β = 1, then (18) would boil down to (Lβη)(S) =
η(N) for all S ⊆ N , and thus be a constant game where all coalitional worths
are the same. Therefore, we exclude β = 1 from now on.

A value on CNβ is a function that associates with each β-constant-sum game
a vector of payoffs to the players. The relationships between the value on GN
and the value on CNβ is as follows.

Proposition 8.1 Given any β ∈ [0, 1).

(i) If ϕ is a value on GN , then ϕ ◦ Lβ is a value on CNβ ; if ψ is a value on
CNβ , then ψ ◦Kβ is a value on GN .

(ii) If ϕ1 and ϕ2 are two different values on GN , then ϕ1 ◦ Lβ and ϕ2 ◦ Lβ
are two different values on CNβ ; if ψ1 and ψ2 are two different values on
CNβ , then ψ1 ◦Kβ and ψ2 ◦Kβ are two different values on GN .

Given any β ∈ [0, 1), the map Lβ preserves efficiency, symmetry, linearity,
marginality, fairness, and the null players. With Proposition 8.1, we can build
the following results for values in the class of β-constant-sum games.
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First, we define the following solutions. Given any β ∈ [0, 1), the β-quasi-
Shapley value, is given by

SHβ
i (N, η) =

∑
S⊆N,S3i

(
(s− 1)!(n− s)!

n!
· (1− β)[η(S)− η(N\S)]

)
,

for any β-constant-sum game 〈N, η〉 ∈ CNβ , and i ∈ N .

Corollary 8.2 Consider any β ∈ [0, 1). Then,

(i) The β-quasi-Shapley value is the unique value that satisfies efficiency, sym-
metry, linearity and the null player property.

(ii) The β-quasi-Shapley value is the unique value on CNβ that satisfies effi-
ciency, symmetry and marginality.

(iii) The β-quasi-Shapley value is the unique value on CNβ that satisfies effi-
ciency, the null player property and fairness.

As with the class of α-constant-sum games, on the class of β-constant-sum
games, β ∈ [0, 1), a game having δ-reducing players, δ ∈ [0, 1), also implies
that the game is a null game.

Proposition 8.3 Take any β ∈ [0, 1) and δ ∈ [0, 1). If there exists a δ-
reducing player in β-constant-sum game 〈N, η〉 ∈ CNβ , then η(S) = 0 for all
S ⊆ N .

Proof. For β ∈ [0, 1) and δ ∈ [0, 1), suppose that player i ∈ N is a δ-reducing
player in β-constant-sum game 〈N, η〉 ∈ CNβ . Then, by the δ-reducing player
property,

η(N) = δη(N \ {i}). (19)

By definition of β-constant-sum game, η(∅) + η(N) = βη(∅) + (1−β)η(N), so

η(∅) = − β

1− β
η(N). (20)

Also, by definition η({i}) + η(N \ {i}) = βη(∅) + (1 − β)η(N), which by i
being a δ-reducing player gives δη(∅) + η(N \ {i}) = βη(∅) + (1 − β)η(N).

Substituting (20) gives − δβ
1−βη(N) + η(N \ {i}) = − β2

1−βη(N) + (1 − β)η(N).

Further substituting (19) gives − δ2β
1−βη(N\{i})+η(N\{i}) = − δβ2

1−βη(N\{i})+

δ(1−β)η(N\{i})⇔ (1−δ)[1−β(1−δ)]
1−β η(N\{i}) = 0. Since (1−δ)[1−β(1−δ)] 6= 0,

it holds that η(N\{i}) = 0. By (19) and (20), then also η(N) = 0 and η(∅) = 0.

We are left to show that η(S) = 0 for all S ⊆ N . Again, by the δ-reducing
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player property,

η(S) = δη(S \ {i}) for all S ⊆ N, i ∈ S, (21)

and by the definition of β-constant-sum game, we have for S ⊆ N with i ∈ S,

η(S) + η(N \ S) = βη(∅) + (1− β)η(N) = η(S \ {i}) + η((N \ S) ∪ {i})

which, with (21), implies that δη(S\{i})+η(N \S) = η(S\{i})+δη(N \S)⇔
(1 − δ)η(N \ S) = (1 − δ)η(S \ {i}) ⇔ η(N \ S) = η(S \ {i} ⇒ (δ + 1)η(S \
{i}) = δη(S \ {i}) + η(S \ {i}) = η(S) + η(S \ {i}) = η(S) + η(N \ S) =
βη(∅) + (1− β)η(N) = 0⇒ η(S \ {i}) = 0. Then also η(S) = 0 for all S ⊆ N
with i ∈ S. 2

From this, on the class of β-constant-sum games, we can also see that effi-
ciency and symmetry imply the δ-reducing player property for any δ ∈ [0, 1).
Specifically, this holds for the nullifying player property. Further, we see that
efficiency, symmetry, linearity and the nullifying player property do not give u-
niqueness since, besides the equal division value, for example, also the β-quasi
Shapley value satisfies these axioms on any class of β-constant sum games.

Corollary 8.4 Take any β ∈ [0, 1).

• Any value on CNβ that satisfies efficiency and symmetry, also satisfies the
δ-reducing player property on CNβ for any δ ∈ [0, 1).

• Specifically, any value on CNβ that satisfies efficiency and symmetry, also
satisfies the nulliffying player property on CNβ .

• For δ ∈ [0, 1), efficiency, symmetry, linearity, the δ-reducing player property
do not give uniqueness on CNβ .

9 Conclusions

Khmelnitskaya (2003, [3]) and Kohlberg and Neyman (2018, [4]) showed
that classical axiomatizations of the Shapley value hold for constant sum
games, respectively games of threats. In this paper, we showed that this can
be extended to any class of α-constant sum games, where the sum of the worth
of a coalition and its complement always equals the same fraction of the worth
of the grand coalition. This is an interesting feature of these classes of games
since mostly, when considering a subclass of TU-games, a classical axiomati-
zation of the Shapley value does not give uniqueness since some axioms (in
particular axioms that compare different games such as linearity, marginality
and fairness) have less bite when we consider subclasses of games.

We showed that a simlar analysis cannot be done for the equal division
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value. We also introduced an alternative efficiency, called power efficiency,
which reflects that the players allocate among themselves what they can earn
with their ability to cooperate, and showed that replacing efficiency with this
power efficiency characterizes on any class of α-constant-sum games, a value
that is defined with exactly the same formula as the Shapley value and does
not depend on α. Finally, we introduced another way to combine the threats of
power of coalitions and their complements, leading to the class of β-constant
sum games. Future research will be devoted to extending the anaylsis of this
last class of games.

We remark that in this paper the parameter α determined a class of games,
and on these classes we characterized a Shapley type value by classical (non-
parametrized) axioms. In the literature on classical TU games, there exist
classes of (parametrized) solutions, such as the classes of egalitarian Shapley
values and discounted Shapley values, that can be characterized by parametrized
axioms. We want to stress the difference with the underlying paper, where we
only consider one solution but apply it to different classes of games. Another
future goal is to consider classes of (parametrized) solutions, such as the ones
mentioned above, for classes of α-constant sum games.
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