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Abstract

We develop new multi-factor copula models with time-varying dependence structures via

factor loadings with observation-driven dynamics. The new models are highly flexible,

scalable to high dimensions, and ensure positivity of covariance and correlation matrices.

The model retains a closed-form likelihood expression, thus allowing for straightforward

parameter estimation and likelihood inference. We apply the new model to a large panel

of 100 U.S. stocks over the period 2001–2014. The proposed multi-factor structure ap-

pears crucial for parsimoniously describing the dependence dynamics in high-dimensional

stock return data, particularly when compared to the typically used single-factor models

with dynamic loadings. The new factor models also improve on recently proposed bench-

marks in terms of one-step-ahead copula density forecasts and global minimum variance

portfolio performance.
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1 Introduction

Copulas are a key ingredient in many modern econometric applications in economics and

finance (see for example Patton, 2009; Cherubini et al., 2011; Fan and Patton, 2014; McNeil

et al., 2015). In particular, time-varying copulas have turned out to be an important and

flexible tool to describe dependence dynamics in an unstable environment (see Patton, 2006;

Manner and Reznikova, 2012; Lucas et al., 2014). Most copula applications deal with a cross-

sectional dimension that is small to moderate (for an overview, see Patton, 2013). Applications

to high-dimensional data sets are much scarcer, mainly due to the ‘curse of dimensionality’:

the number of parameters grows rapidly when the dimension increases.

Recently, Creal and Tsay (2015), Oh and Patton (2017, 2018), and Lucas et al. (2017)

provide a general approach to modeling time-varying dependence in high cross-sectional di-

mensions using a factor copula structure. The factor copula structure describes the dependence

between a large number of variables by a smaller set of latent variables with time-varying factor

loadings. This allows one to considerably limit the number of parameters required to flexibly

describe the dynamics of high-dimensional dependence structures.

Dynamic factor copulas have so far mainly been implemented for the single-factor case;

see the references above. This seems to be mainly driven by computational reasons. Though

adding more factors with dynamic loadings is in principle possible, it would increase the com-

putational burden substantially. In Oh and Patton (2018) the increased computational burden

results from the fact that the densities of the common latent factors and of the idiosyncratic

factors do not convolute easily. The copula density is then not available in closed form and

additional numerical methods are required for estimation. This requires considerable compu-

tational effort, particularly if multiple factors are used. Creal and Tsay (2015) face a different

challenge as they use a standard parameter driven recurrence equation for the factor loading

dynamics. This introduces new stochastic components into the model that need to be inte-

grated out (see also Hafner and Manner, 2012). Bayesian simulation techniques are used for

this integration step, which again becomes computationally more expensive as the number of
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factors with dynamic factor loadings grows.

Though restricting the number of factors to just a single factor is understandable from

a computational point of view, it seems too restrictive for most empirical applications. For

instance, when modeling panels of equity returns a minimum of three to five factors seems to

be the standard (see Fama and French, 1993, 2016). A computationally simple yet flexible

approach that can easily deal with both the multi-factor setting and dynamic loadings thus

seems to be called for.

In this paper we develop a multi-factor copula model based on observed characteristics. In

particular, we assume that the cross-sectional units can be grouped using observable charac-

teristics, such as the industry of the firm, its headquarters location, etc. Each of these groups

is possibly subject to one or more common factors as well as to group-specific factors. We

allow the loadings for each of the factors to vary over time using score-driven dynamics as

introduced by Creal et al. (2013) and Harvey (2013). Using appropriate distributional as-

sumptions for the latent common and group-specific factors as well as for the idiosyncratic

components, we obtain a model with a tractable, closed-from likelihood expression. Hence,

parameter estimation and inference are straightforward using Maximum Likelihood (ML) and

the computational burden is kept to a minimum. In particular, a two-step targeting approach

that combines a moment-based estimator and the ML approach leads to fast estimation of

the static parameters in our most flexible multi-factor copula model. The new multi-factor

model can easily be extended to high dimensions. In addition, the model easily allows for the

inclusion of exogenous variables that help to describe the dynamics of the factor loadings.

As a typical high-dimensional financial data set, we consider a panel of 100 U.S. daily

equity returns across 10 different industries over the period 2001–2014. We compare the

multi-factor copula models with three popular multivariate GARCH (MGARCH) models: the

cDCC model of Engle (2002); Aielli (2013), and the DECO and Block DECO models of Engle

and Kelly (2012).

Our comparison is based on in-sample and out-of-sample (density) forecasts, using the

Model Confidence Set approach of Hansen et al. (2011). In addition, we also consider economic
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performance of the models. We find that for our panel of equity returns, both the within-

industry and between-industry dependence dynamics are key data features that need to be

matched. Single-factor models and the standard DECO model have difficulty fitting all these

dynamic features simultaneously. Our multi-factor specifications, by contrast, outperform all

benchmarks considered in terms of density forecasts, both in-sample and one-step-ahead out-

of-sample. For economic criteria, the picture changes somewhat. In that case our one-factor

specification with heterogeneous dynamic loadings has the best ex-post variance of the Global

Minimum Variance Portfolio (GMVP). We attribute this difference to the character of the

minimum GMVP variance criterion: differences in minimum variance are harder to obtain

and typically smaller, such that the increased flexibility of more complex models does not

offset the associated estimation risk of the additional parameters used. This contrasts with

the criterion based on the full density forecasts, where all dynamics play a more dominant role

and the multi-factor specifications work best in-sample and out-of-sample.

This paper relates to various strands of the literature. First, there is an extensive literature

on factor models and the computation of large covariance matrices, see for example Fan et al.

(2008, 2011, 2016). Engle et al. (1990) develop factor ARCH models with an application

to asset pricing with many assets. However, the benefit of factor copulas is the flexibility

in choosing the factor structure and distributional assumptions, both with respect to the

marginals and the copula structure. Second, factor copulas have recently been introduced

by Krupskii and Joe (2013); Oh and Patton (2017), among others. Oh and Patton (2018)

and Lucas et al. (2017) are the first to introduce the score-driven framework of Creal et al.

(2013) within factor copulas. Compared to their work, we consider specifications that yield

closed-form densities and use a parametrization that is easily scalable to many factors and high

dimensions. Third, we relate to a strand of literature on Copula-MGARCH models, such as

Christoffersen et al. (2012, 2014), who combine a skewed Student’s t copula with a DCC model

to study diversification benefits in a panel of more than 200 asset returns. These models suffer

in general from the curse of dimensionality mentioned earlier. In addition, (large) covariance

or correlation matrices need to be inverted many times during parameter estimation, which
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becomes computationally cumbersome and numerically problematic.

The rest of this paper is organized as follows. In Section 2, we introduce the multi-factor

copula model and review the cDCC and (Block) DECO models, as well as the estimation

procedures under thin-tailed and fat-tailed errors. Section 3 studies the performance of the

multi-factor copula models in a controlled environment. Section 4 provides the results for the

empirical application. Section 5 concludes.

2 The modeling framework

In this section we first describe the general copula setup in Section 2.1. In Section 2.2, we

then introduce the class of closed-form dynamic factor copulas with score-driven time-varying

loadings, particularly in a multi-factor setting. Section 2.3 covers the more familiar benchmark

models we use from the multivariate GARCH class of copulas, in particular the DECO, Block

DECO, and DCC models. Sections 2.4 and 2.5 finally discuss the specification of the marginal

distributions and the details on parameter estimation, either using full likelihood, a two-step

targeting approach, or composite likelihood methods.

2.1 The copula set-up

Let yt = (y1,t, . . . , yN,t)
> ∈ RN denote a vector of asset returns over day t, t = 1, . . . , T . We

decompose the conditional joint distribution F t(yt) of yt into N marginals and a conditional

copula as in Patton (2006),

yt|Ft−1 ∼ F t(yt) = Ct

(
F1,t(y1,t;θM,1,t) , . . . , FN,t(yN,t;θM,N,t) ; θC,t

)
, (1)

where Ft−1 is the information set containing all information up to and including time t − 1,

Ct( · ;θC,t) is the conditional copula given Ft−1 and the time-varying copula parameter vector

θC,t, and Fi(yi,t;θM,i,t) i = 1, . . . , N , denotes the conditional marginal distribution of asset i

given Ft−1 and the time-varying marginal distribution parameter vector θM,i,t. We come back
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to the choice of the marginals later. Note that the conditional copula Ct( · ;θC,t) can also be

interpreted as the conditional distribution Ct(ut;θC,t) of the probability integral transforms

(PITs) ut = (u1,t, . . . , uN,t)
> of yi,t, where ui,t ≡ Fi,t(yi,t;θM,i,t) for i = 1, . . . , N .

As is well known, decomposing the multivariate (conditional) distribution F t(yt) into its

marginals and copula has several advantages. Particularly when the dimension N is large,

splitting the modeling task into modeling the marginals and the copula may substantially

reduce the computational burden as parameters can be estimated using a 2-step approach. As

modeling the univariate marginal distributions is relatively simple and fast even for large N ,

the main remaining challenge is to parsimoniously specify the conditional copula Ct( · ;θC,t)

given the PITs. This can be done using factor copulas or multivariate GARCH models like

the DCC or DECO models. We consider these two frameworks in the next two subsections.

2.2 Observation-driven dynamic factor copulas

The general literature on copula modeling is extensive; see for instance Patton (2009, 2013)

or Fan and Patton (2014) for partial overviews. However, the literature on how to deal with

copulas in large dimensions is rather scarce. The main challenge in high dimensions is to keep

the parameter space manageable, but at the same time to allow for sufficient flexibility in the

dependence structure. To strike this balance, we use a multi-factor copula structure that we

endow with score-driven parameter dynamics.

We start from the factor copula structure

ui,t = Dx,i,t(xi,t; λ̃i,t, σi,t,ψC), i = 1, . . . N, (2)

xi,t = λ̃
>
i,tzt + σi,tεi,t,

zt
i.i.d.∼ Dz(zt | ψC), εi,t

i.i.d.∼ Dε(εi,t | ψC),

where λ̃i,t is a k×1 vector of scaled factor loadings, zt is a k×1 vector of common latent factors,

εi,t is an idiosyncratic shock, zt and εi,t are cross-sectionally and serially independent with

distributions Dz and Dε, respectively, characterized by zero means and identity covariance
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matrix and static shape parameter vector ψC , and Dx,i( · ) denotes the implied marginal

distribution of xi,t; see Creal and Tsay (2015). The vector λ̃i,t and scalar σi,t are defined as

λ̃i,t =
exp(λi,t)√

1 + exp(λi,t)> exp(λi,t)
, σ2

i,t =
1

1 + exp(λi,t)> exp(λi,t)
(3)

for an unrestricted k×1 vector λi,t, where the exp( · ) operates element wise. This ensures that

xi,t has zero mean and unit variance by design. The correlation matrix of xt = (x1,t, . . . , xN,t)
>

equals

Rt = L̃
>
t L̃t +Dt, L̃t =

(
λ̃1,t, . . . , λ̃N,t

)
, Dt = diag

(
σ2
1,t, . . . , σ

2
N,t

)
, (4)

which satisfies all requirements of a correlation matrix, namely positive semi-definiteness and

ones on the diagonal. The copula parameter vector gathers all free parameters in θ>C,t =

(λ>1,t, . . . ,λ
>
N,t,ψ

>
C).

The factor copula structure in (2) comes with an important computational advantage,

namely that the inverse and determinant of Rt are available in closed form as

R−1t = D−1t −D−1t L̃
>
t

(
Ik + L̃

>
t D

−1
t L̃t

)−1
L̃tD

−1
t , |Rt| =

∣∣∣Ik + L̃
>
t D

−1
t L̃t

∣∣∣ · |Dt|. (5)

As k is typically much smaller than N , computing the inverse of the k×k matrix Ik+L̃
>
t D

−1
t L̃t

is much faster than computing the inverse of the N×N matrix Rt. The class of factor copulas

is very flexible. We can vary the number of factors, the distributional assumptions of the

common factors zt and idiosyncratic shocks εi,t, and the dynamics of the factor loadings λi,t.

The following subsections discuss each of these choices in more detail.

2.2.1 The factor structure

Our main goal in this paper is to develop feasible factor structures that allow for multiple

factors in a flexible, dynamic way but still giving rise to a closed-form likelihood expression.

With our focus on multiple factors, we extend earlier papers that focus on single-factor im-
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plementations, such as Oh and Patton (2018) and Creal and Tsay (2015).

We assume that we can split the N assets into G groups according to an observed charac-

teristic such as industry, region, etc. Each group is subject to several factors. For the sake of

exposition, we take the example of G = 4 groups with 2 firms in each group throughout this

whole subsection. In reality, however, the number of groups and firms per group is typically

much larger. For instance, in our application in Section 4 we have G = 10 groups with up to

19 firms per group. The small setting of G = 4 with 2 firms per group, however, allows us to

clearly illustrate the structure of the factor loadings matrices.

In our most general specification the loading matrix consists of a lower-triangular matrix

with columns containing group-specific loadings. The loadings matrix then takes the form

L̃
>
t =



λ̃1,1,t 0 0 0

λ̃1,2,t λ̃2,2,t 0 0

λ̃1,3,t λ̃2,3,t λ̃3,3,t 0

λ̃1,4,t λ̃2,4,t λ̃3,4,t λ̃4,4,t


⊗

1

1

 , (6)

where ⊗ denotes the Kronecker product. The first column vector can be interpreted as a

common-factor with group-specific loadings, like different market betas. Overall, the loading

matrix could also be seen as an Cholesky decomposition of the quasi correlation matrix that

contains within and between group correlations. We label the model with the factor structure

in (6) as the Multi-Factor Lower-Triangular (MF LT) copula model.

A second, much more restricted version of our general specification combines a common

factor with (common) equi-loadings, and a set of group-specific factors with corresponding

group-specific loadings. The loading matrix changes into

L̃
>
t =



λ̃1,t λ̃2,1,t 0 0 0

λ̃1,t 0 λ̃2,2,t 0 0

λ̃1,t 0 0 λ̃2,3,t 0

λ̃1,t 0 0 0 λ̃2,4,t


⊗

1

1

 , (7)
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For G ≥ 4 and at least 2 firms in each group, this model is identified. To see this, note

that the correlation matrix Rt for G = 4 has 4 within-group correlations and 6 between-

group correlations, hence 10 free positions for the 5 different parameters in L̃t. For more

groups and firms, the number of positions in Rt increases quadratically, whereas the number

of parameters in L̃t increases linearly. The first (equi)factor with common loadings λ̃0,t affects

both the within-group and the between-group correlations. The group-specific factors with

their group-specific loadings, on the other hand, only affect the within-group correlations and

not the between-group correlations. We label this model as the Multi-Factor (MF) copula

model.

A third specification is obtained by replacing the group-specific factors with a common

factor with group-specific loadings. The loading matrix L̃
>
t is now given by

L̃
>
t =



λ̃1,t λ̃2,1,t

λ̃1,t λ̃2,2,t

λ̃1,t λ̃2,3,t

λ̃1,t λ̃2,4,t


⊗

1

1

 , (8)

From an asset pricing view, this second common factor has different betas for each group.

There is now less freedom, however, to capture the differences between within-group and

between-group dependence as λ̃2,j,t and λ̃2,j+1,t determine both. We label the model in equation

(8) the 2-Factor (2F) copula model. Omitting the factor λ̃1,t in (8) leads to the 1-Factor-Group

(1F-Gr) model, which consists of a single factor but with G different group loadings. This

model has also been used in Lucas et al. (2017) and Oh and Patton (2018).

Finally, the MF model from equation (7) has an interesting special case if we omit the

group-specific factors: we then obtain a single-factor model with common loadings. This

results in a DECO correlation structure as in Engle and Kelly (2012) (see Section 2.4), where

each pairwise asset correlation is assumed to be the same. From an asset pricing perspective,

the single factor can be seen as the market factor, with an identical ‘beta’ (factor loading) for

all assets. We label this special case the 1F-Equi copula model; see also the the single-factor
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Table 1: Various factor structures and their properties
This table summarizes the various factor structures that are proposed given that there are N assets allocated
to G different groups. We show the number of factors, the number of different scaled factor loadings, the
dimension of the scaled factor loading matrix and the existence of an equi-factor, group-specific factor and/or
group-specific loadings.

Name # factors # λs common factor common factor group factors dim L̃
>
t

with (equi) with with
common loading group loadings group loadings

1F-Equi 1 1 yes no no N × 1
1F-Group 1 G no yes no N × 1
2F 2 G+ 1 yes yes no N × 2
MF G+ 1 G+ 1 yes no yes N × (G+ 1)
MF-LT G G(G+ 1)/2 no yes yes N ×G

copula structures of Oh and Patton (2018) and Creal and Tsay (2015).

Table 1 lists all the factor structures considered in this paper with their corresponding

properties, such as the number of factors, the number of different λ̃s, and the associated

dimension of L̃
>
t .

2.2.2 Distributional assumptions

Given the various factor structures proposed in Section 2.2.1, the next step is to specify a

distribution for the common, group-specific, and idiosyncratic factors in (2). Oh and Patton

(2018) assume a skewed and symmetric Student’s t density for the common factor zt and the

idiosyncratic shock εi,t, respectively. As a result, their copula density for xi,t is not available in

closed form. Hence, likelihood evaluation and parameter estimation become computationally

involved. Also Creal and Tsay (2015) do not have a likelihood in closed form due to their choice

of a new stochastic component in the transition equation for the factor loading λi,t. They solve

the issue by employing Bayesian (numerical) techniques to estimate the parameters. Again,

this is computationally costly for increasing dimensions, particularly in multi-factor settings.

In contrast to the above approaches, we retain tractability of the model and a closed form of

the likelihood by two particular choices. First, we make convenient distributional assumptions

for the factors zt and εi,t. Second, we consider a score-driven transition equation for the factor

loadings. We discuss the latter in the next subsection.
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To model zt and εi,t, we use the Student’s t copula,

ui,t = T (xi,t; νC), i = 1, . . . N, (9)

xi,t =
√
ζt

(
λ̃
>
i,tzt + σi,tεi,t

)
, zt ∼ N(0, Ip), εi,t ∼ N(0, 1),

ζt ∼ Inv-Gamma (νC/2, νC/2) .

where T ( · ; νC) denotes the cdf of the univariate Student’s t distribution with νC degrees

of freedom, location zero, and unit scale, and ζt denotes an independent Inverse-Gamma

distributed random variable. Note that – in contrast to the studies of Creal and Tsay (2015)

and Oh and Patton (2018) – our proposed factor structures of the previous subsection easily

fit into the distributional framework above, while the copula density (and thus the likelihood)

retains its analytical closed-form expression. For the special case νC → ∞, we obtain ζt ≡ 1

and a Gaussian copula setting. The Gaussian copula, however, has no tail dependence (see

McNeil et al., 2015) and may therefore be less suitable to fit empirical data.

Further generalizations to (9) are easily possible by changing the distribution of ζt to the

Generalized Inverse Gaussian distribution and adding a multiple of ζt to the level equation

for xi,t. This gives rise to the Generalized Hyperbolic (GH) copula that allows for both thin

and fat tails as well as skewness. A special case is the GH skewed Student’s t copula; see for

instance Azzalini and Capitanio (2003) and Lucas et al. (2014, 2017). An initial estimate of

our model with a DECO (1F-Equi) specification as in Engle and Kelly (2012) and a skewed

Student’s t density as in Azzalini and Capitanio (2003) only showed a marginal increase of

the likelihood compared to the symmetric Student’s t copula. We therefore leave such further

generalizations to future research.

2.2.3 Score-driven factor loading dynamics

To complete our dynamic factor copula specification, we formulate the dynamics of the factor

loadings λi,t. In general, there are two approaches to modeling time-varying factor loadings.

The first approach is parameter-driven and assumes λi,t evolves as a stochastic process driven
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by its own innovation. This leads to so-called stochastic copula models as in Hafner and

Manner (2012) or Creal and Tsay (2015). Estimating such models is typically more involved

and requires integrating out the random innovations of the time-varying parameters in a

numerically efficient way. The second approach is observation-driven and assumes the factor

loadings depend on functions of past observables. Our proposal falls into the latter category

and uses score-driven dynamics as introduced by Creal et al. (2013); see also Harvey (2013) and

Oh and Patton (2018). As mentioned before, an advantage of the observation-driven approach

is that the likelihood is available in closed-form via a standard prediction error decomposition.

This substantially reduces the computational burden compared to a parameter-driven dynamic

copula approach.

Score-driven dynamics use the score of the conditional copula density to drive λi,t. Intu-

itively, this adjust the loadings in a steepest ascent direction of the local likelihood fit at time

t. Information theoretic optimality results for this approach can be found in Blasques et al.

(2015); see also the generalizations in Creal et al. (2018).

For instance, for the 1-Factor equicorrelation model we have L̃
>
t = λ̃tι for a scalar param-

eter λ̃t = (1+exp(−λt))−1, where ι denotes an N ×1 vector filled with ones. The score-driven

dynamics for λt are given by

λt+1 = ω + Ast +B λt, st = ∂ log c(xt;λt, νC)/∂λt, (10)

with ω,A and B scalar parameters, and c( · ;λt, νC) the Student’s t copula density. Unless

stated otherwise, we assume that A and B are scalers in our factor copula models. Following

Oh and Patton (2018), we use unit scaling for the score st in the sense of Creal et al. (2013) in

order to reduce the computational burden of estimating a separate scaling function. Explicit

expressions for the scores for all factor copula specifications used in our paper are more involved

than (10) and are given in the appendix.
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2.3 Copula-MGARCH class of models

We compare the dynamic factor copula models from the previous subsection against the cDCC

model (Engle, 2002) (with the correction of Aielli (2013)) and the (Block) DECO model of

Engle and Kelly (2012) in high dimensions. To maintain a fair comparison between both

classes of models, we also cast the MGARCH models into a copula framework. Hence the

innovations in these models are xi,t = P−1(ui,t), with ui,t estimated in a first step by the same

marginals, and P−1( · ) the inverse marginal CDF corresponding to the copula specification at

hand.

The cDCC model is given by

Qt+1 = Ω + AQ∗txtx
>
t Q

∗
t +BQt (11)

RcDCC
t = Q∗−1t QtQ

∗−1
t

with Q∗t a diagonal matrix with entries qii,t, A and B scalars and Ω a N × N matrix. The

DECO model assumes that the dependence between all assets is the same (equi-dependence)

and takes the average of all pairwise DCC correlations:

RDECO
t = ρtJN×N + (1− ρt)IN (12)

ρt =
1

N(N − 1)
(ι>RcDCC

t ι−N) (13)

where JN×N denotes a N ×N matrix of ones. As noted earlier, the DECO model corresponds

to a one-factor model, though the DECO and score-driven dynamics are different.

A third variant is the Block DECO model that allows for different intra-block correlations

ρg,g, g = 1, ...G, and inter-block correlations ρg,h with g 6= h. Similar to the multi-factor
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models, the size of each block may differ. The Block DECO correlation matrix is defined as

RBL−DECO
t =


(1− ρ1,1,t)In1 · · · 0

...
. . .

...

0 · · · (1− ρG,G,t)InG



+


ρ1,1,tJn1×n1 · · · ρ1,G,tJn1×nG

...
. . .

...

ρ1,G,tJnG×n1 · · · ρG,G,tJnG×nG

 . (14)

The Block DECO model allows for distinct within-group correlations ρi,i,t, as well as for the

G(G − 1)/2 unique (off-diagonal) between-group correlations ρi,j,t for i 6= j. The dynamic

correlations are computed as

ρg,g,t =
1

ng(ng − 1)

∑
i∈g,j∈g,i6=j

qi,j,t√
qi,i,tqj,j,t

, (15)

ρl,m,t =
1

nlnm

∑
i∈l,j∈m

qi,j,t√
qi,i,tqj,j,t

, l 6= m, (16)

where qi,j,t is the i, j-th element of the matrixQt from the cDCC model in (11). Put differently,

the correlations of the Block DECO model are obtained by averaging all DCC correlations

within each block.

Similar to the multi-factor dynamic copula models, the Block DECO model allows for

different within-group and between-group correlations. This model comes with the additional

flexibility: via the matrix Ω each between-group correlation has its own intercept, while in

the factor copula approach the between-group correlations are spanned by a smaller set of

parameters. This flexibility comes at two important costs. First, it is hard to impose ex-

ante that the dynamic correlations from the Block DECO give rise to a positive definite

correlation matrix. Though in practice a maximum likelihood type approach will steer the

parameters away from a region where the predicted dependence matrix is indefinite, this is

not guaranteed by the structure of the model. By contrast, the factor copula models with
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score-driven dynamics automatically ensure a positive semi-definite correlation matrix at all

times, which is particularly relevant when using the model for forecasting. Second, the Block

DECO model averages DCC correlations, which means that it relies heavily on the A and B

parameters from the cDCC model and its unconditional N ×N intercept Ω.

2.4 Marginals

To operationalize the copula approach, we first need to model the conditional marginal distri-

butions. We use the same marginal models for both the MGARCH copulas and the multi-factor

copulas in order to ensure a clean comparison of the copula performance in high dimensions.

We model the marginal distributions by means of univariate volatility models using daily

returns. To account for the fat-tailed nature of daily returns, we use the t-GAS model of Creal

et al. (2011, 2013). That is, we assume a Student’s t distribution for the individual returns

yi,t with νi degrees of freedom, with the following return and volatility dynamics:

yi,t = φ0,i +

Q∑
q=1

φq,iyi,t−q + εi,t, εi,t ∼ t(0, hi,t, νi), (17)

hi,t+1 = ωi + αi (wi,tε
2
i,t − hi,t) + βi hi,t, wi,t =

νi + 1

νi − 2 + hi,t
−1ε2i,t

, (18)

with hi,t the conditional variance of asset i at time t. This model updates the conditional

variance by the (scaled) score, i.e., the partial derivative of the log Student’s t-density with

respect to the variance hi,t. We follow Creal et al. (2011, 2013) and scale the score by the

inverse conditional Fisher information matrix. The interpretation of the scaled score is highly

intuitive in this model: large values of ε2i,t are downweighted by wi,t, since possible outliers

(jumps) might are not only attributed to an increase in variance, but also to the fat-tailed

nature of the return data.
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2.5 Parameter estimation

Parameter estimation requires some further details, both for the factor copula and the MGARCH

copula models. To estimate the model’s parameters, we use a two-step likelihood based ap-

proach. First, we estimate the parameters of each of the marginals (separately). Second, we

estimate the copula parameters conditional on the marginals. This approach follows directly

from decomposing the joint likelihood as

L(θ) ≡
T∑
t=1

log f t(yt;θ) =
N∑
i=1

T∑
t=1

log fi,t(yi,t;θM) (19)

+
T∑
t=1

log ct (F1,t(y1,t;θM), . . . , FN,t(yN,t;θM);θC)

with θ = {θM ,θC}. According to Patton (2013), the implied efficiency loss of the two-step

compared to the one-step approach is small.

We assume a Student’s t and Gaussian copula to model the dependencies. For the factor

copula specifications, inverses and determinants of Rt are available in closed form, which

substantially reduces the computational burden in high dimensions. It enables us to estimate

these models by full maximum likelihood.

In case of our most general multi-factor copula model (the MF-LT), we potentially have

G(G+1)/2 different values of ω. A computational challenge may arise if G increases. Assuming

that the lambda process is covariance stationary, and defining the unconditional mean of λt

as λ̄, we have

E[λt+1] = ω +B E[λt] ⇔ λ̄ =
ω

1−B
, (20)

where we omit the subscript for the sake of simplicity. We therefore estimate copula parameters

in two steps. In the first step, we match each λ̄ with the empirical within- and between-group

correlation using a moment estimator. Let RM denote the G × G unconditional correlation

matrix based on xit = N−1(uit), where the off-diagonal (i, j) equals the average correlation

between assets from group i and j, and the diagonal contains the average sample correlations
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within each group of assets (i = j).1 The moment estimator is obtained by minimizing the

squared distance LM,dist:

LM,dist = RM − L̄L̄
′

(21)

with L̄
′

a G×G lower triangular matrix. In case G = 4, we have

¯̃L′ =



λ̄1,1 0 0 0

λ̄1,2 λ̄2,2 0 0

λ̄1,3 λ̄2,3 λ̄3,3 0

λ̄1,4 λ̄2,4 λ̄3,4 λ̄4,4


(22)

In a second step, we only have to estimate the A and B parameters. Given the estimated ˆ̄λi,j,

the intercepts in the transition equation for lambda are easily obtained using (20). This two-

step targeting procedure substantially decreases the computational burden, as the moment-

estimator is very fast. In the second step, only the two remaining parameters A and B have

to be estimated.

In contrast to the multi-factor models, inverses and determinants of Rt are not available in

closed form for the Block DECO and cDCC specifications. We therefore estimate the cDCC

model by means of the Composite Likelihood method of Engle et al. (2008). This technique is

based on maximizing the sum of bivariate Gaussian (copula) log-likelihood values to estimate

A and B. In a second step the matrix Ω is estimated by its sample analogue.

Finally, we also use a composite likelihood approach for the Block DECO model of Engle

and Kelly (2012) by extending their proposal from the Gaussian to the Student’s t case.

They consider the joint log-likelihood of all the firms in two separate groups i 6= j, with

1Note that we use the inverse Normal here. Of course, we could use the t copula as well. As we will show in
the next section, even if the data is Student’s t distributed, using RM based on the inverse Normal distribution
will not affect the quality of the moment estimator of ω
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i, j ∈ {1 . . . , G}, i.e.,

LStudi,j =
T∑
t=1

[
−1

2
log |Rt| −

ν + ni + nj
2

log

(
1 +

x>t R
−1
t xt

ν − 2

)]
, (23)

where |Rt| andR−1t are given analytically for the 2-block case by Lemma 3.1 in Engle and Kelly

(2012). The Composite Likelihood (CL) method now maximizes the sum of all log-likelihoods

of each pair of blocks i > j,

maxLCL = max
∑
i>j

LStudi,j , (24)

where the intercept Ω is estimated by the unconditional correlation matrix of xt. Note that

for ν → ∞, we recover the Gaussian Block DECO model, which is the specification used in

most of the literature. As argued before, however, the Gaussian copula lacks tail dependence

and may therefore be less suitable for fitting financial data.

3 Simulation experiment

In this section, we present three Monte Carlo experiments. The first experiment investigates

the finite sample properties of the maximum likelihood estimator for θC of the Multi-factor

copula model. In the second experiment, we establish the finite sample properties of the 2-step

moment-based estimator of the MF-LT model. Finally, we assess the accuracy of the filtered

factor loadings in case of misspecficiation of the number of factors.

In the first experiment, we simulate N = 100 dimensional time series of length T ∈

{500, 1000} with G = 10 equally sized groups holding N/G = 10 individual cross-sectional

units each. These sizes roughly correspond to the data dimensions in our empirical application.
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As our data-generating process (DGP), we take the Multi-Factor copula

xi,t =
√
ζt

(
λ̃
>
i,tzt + σi,tεi,t

)
, (25)

L̃t =


λ̃eq1,t λ̃gr,f2,1,t · · · 0

...
...

. . .
...

λ̃eq1,t 0 · · · λ̃gr,f2,G,t

⊗ ιN/G
λeq1,t+1 = ωeq + Aeq seqt +B λeq1,t, (26)

λgr,f2,g,t+1 = ωgr,fg + Agr,f sgr,fg,t +B λgr,f2,g,t, g = 1, . . . , G, (27)

with ⊗ denoting the Kronecker product, and where zt ∼ N(0, IG+2), εi,t ∼ N(0, 1), and

ζt ∼ Inv-Gamma
(
1
2
νC ,

1
2
νC
)
, where the mapping from λt to λ̃t is given in (3). The expressions

for the scores seqt and sgr,fg,t can be found in the appendix.

The Multi-Factor copula model has two different types of λs, each with its own score-driven

dynamics: one λeq1,t for the common equi-factor, and G different λgr,f2,g,ts for each of the group-

specific factors. Each of these 11 loadings has its own intercept. We use a pooled persistence

parameter B common to all factor loadings, and type-specific score parameters Aeq and Agr,f .

Guided by the empirical application, we set ωeq = 0.01 and let ωg be equally spaced on the

interval [−0.05 , 0.01]. We set Aeq = 0.01 and Agr,f = 0.02. For the copula’s tail behavior, we

use νC ∈ {30,∞}, where νC →∞ corresponds to the Gaussian factor copula. Finally, in line

with our empirical results later on we set B = 0.92 for normally distributed factors (νC →∞)

and B = 0.97 for the Student’s t case (νC = 30).

Table 2 presents the results based on 1,000 replications. All parameters are estimated

near their true values and the standard deviation decreases in general when the sample size

T increases. There seems to be a small bias away from zero in the group specific intercepts

ωgr,fi for T = 500. The bias shrinks when the sample size increases to T = 1, 000. Overall, we

conclude that the parameters of the Gaussian and Student’s t factor copulas with score-driven

dynamic factor loadings can be accurately estimated if the model is correctly specified.

In the second Monte Carlo experiment, we investigate the two-step approach of estimating
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Table 2: Monte Carlo results of parameter estimates of the Multi-Factor-Copula
This table provides Monte Carlo results of parameter estimates using the multi-factor (MF) Gaussian and
t-copula model as given in (25)–(27). B(N) and B(t) denote the value of B in case of the Gaussian (N)
and Student’s t (t) factor copula model, respectively. The table reports the mean and standard deviation in
parentheses based on 1,000 Monte Carlo replications.

T = 500 T = 1,000
Coef. True MF-N MF-t MF-N MF-t

ωeq 0.010 0.012 (0.005) 0.011 (0.003) 0.011 (0.003) 0.011 (0.002)

ωgr,f1 -0.050 -0.058 (0.014) -0.057 (0.011) -0.054 (0.009) -0.055 (0.009)

ωgr,f2 -0.043 -0.051 (0.012) -0.049 (0.010) -0.047 (0.008) -0.047 (0.007)

ωgr,f3 -0.037 -0.043 (0.010) -0.042 (0.009) -0.039 (0.007) -0.040 (0.006)

ωgr,f4 -0.030 -0.035 (0.009) -0.034 (0.007) -0.032 (0.006) -0.033 (0.005)

ωgr,f5 -0.023 -0.027 (0.007) -0.027 (0.006) -0.025 (0.005) -0.026 (0.004)

ωgr,f6 -0.017 -0.019 (0.006) -0.019 (0.005) -0.018 (0.004) -0.018 (0.003)

ωgr,f7 -0.010 -0.012 (0.005) -0.011 (0.003) -0.011 (0.003) -0.011 (0.003)

ωgr,f8 -0.003 -0.004 (0.005) -0.004 (0.003) -0.004 (0.003) -0.004 (0.002)

ωgr,f9 0.003 0.004 (0.005) 0.004 (0.003) 0.004 (0.003) 0.004 (0.002)

ωgr,f10 0.010 0.012 (0.005) 0.011 (0.003) 0.011 (0.003) 0.011 (0.002)

Aeq 0.010 0.010 (0.001) 0.010 (0.002) 0.010 (0.001) 0.010 (0.001)
Agr,f 0.020 0.019 (0.004) 0.018 (0.004) 0.019 (0.003) 0.019 (0.003)

B(N) 0.920 0.907 (0.020) 0.915 (0.013)
B(t) 0.970 0.966 (0.007) 0.967 (0.005)

νC 30 30.37 (2.33) 30.27 (1.50)

the copula parameters of the Multi-Factor LT model. For this study, we simulate 1,000 time-

series of length T = 1, 000 and dimension N = 100 with G = 10 equally sized groups holding

N/G = 10 assets using the MF-LT model with Normal and Student’s t(30) distributed errors.

Based on empirical parameter estimates, we set A and B equal to 0.025 and 0.95 respectively

and allow for (10× 11)/2 = 55 different ω parameters, ranging from -1.4 to 0.2.

Table 3 presents the results based on 1,000 replications. The Monte Carlo averages of all

estimated ω parameters lie close to their true values. Note that the standard deviations of

moment-based estimators for ω are considerably higher than the standard errors of the ML

estimators for A,B, and νC . Using the two-step estimator thus implies a huge computational

gain, but at the cost of some efficiency loss. We further note that the assumed distribution

does not have a large impact on the moment estimator of ω.

In the final Monte Carlo experiment, we assess the impact of misspecification of the factor
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Table 3: Monte Carlo results of parameter estimates of the MF-LT model
This table provides Monte Carlo results of parameter estimates using the multi-factor (MF) LT Gaussian and
t-copula model with a loading matrix given in (6). The table reports the mean and standard deviation in
parentheses based on 1,000 Monte Carlo replications. Since we have 55 different values of ω, we only report
ω1, ω4, . . . , ω55 in addition to A, B and νC .

Coef. True MF-LT N MF-LT t

ω1 -0.101 -0.101 (0.052) -0.099 (0.053)
ω4 -0.480 -0.476 (0.057) -0.474 (0.061)
ω7 -0.596 -0.591 (0.081) -0.592 (0.083)
ω10 -0.189 -0.189 (0.078) -0.188 (0.084)
ω13 -1.114 -1.092 (0.080) -1.090 (0.082)
ω16 -0.857 -0.848 (0.103) -0.848 (0.104)
ω19 -0.600 -0.594 (0.116) -0.599 (0.112)
ω22 -1.179 -1.161 (0.088) -1.157 (0.088)
ω25 -1.115 -1.094 (0.128) -1.097 (0.134)
ω28 -1.052 -1.006 (0.056) -1.007 (0.057)
ω31 -0.988 -0.976 (0.117) -0.976 (0.113)
ω34 -0.924 -0.924 (0.159) -0.917 (0.168)
ω37 -0.861 -0.848 (0.099) -0.845 (0.102)
ω40 -0.797 -0.790 (0.142) -0.789 (0.152)
ω43 -0.733 -0.727 (0.094) -0.727 (0.095)
ω46 -0.670 -0.653 (0.055) -0.656 (0.056)
ω49 -0.606 -0.606 (0.093) -0.604 (0.094)
ω52 -0.542 -0.548 (0.079) -0.556 (0.083)
ω55 -0.780 -0.713 (0.057) -0.717 (0.059)

A 0.025 0.025 (0.002) 0.025 (0.002)
B 0.950 0.945 (0.005) 0.944 (0.006)

νC 30 30.45 (1.636)

structure on the fitted dependence structure. For this study, we simulate 1,000 time-series of

length T = 1, 000 and dimension N = 25 using the MF model with Student’s t(30) distributed

errors. We use G = 5 different groups, each containing N/G = 5 cross-sectional units. As our

statistical model, we use each of the factor copula specifications from Table 1 based on either

the Gaussian or Student’s t(νC) distribution. Using the statistical models, we estimate the

model-implied dependence structure from the fitted correlation matrices R̂t. These can be

compared to the true Rt in each simulation run. We measure the fit by the average squared

Euclidian distance

 L =
1

T

T∑
t=1

vech (R̂t −Rt)
>

vech (R̂t −Rt), (28)

21



Table 4: Performance of misspecified factor copulas
This table summarizes the mean and standard deviation of the average Euclidian distance between a simulated
correlation matrix Rt (t = 1, . . . , 1000) from the MF-model with t(30)-distributed errors and the estimated

R̂t based on one, two, or multi-factor copula models with either Gaussian or a Student’s t distributions. All
results are based on 1,000 replications.

MF 2F 1F-Group 1F-Equi
Student’s t 0.035 2.104 2.879 2.606

(0.023) (0.208) (0.186) (0.155)

Gaussian 0.059 1.944 2.655 2.663
(0.027) (0.156) (0.170) (0.175)

which is a consistent loss function according to Laurent et al. (2013).

Table 4 presents the mean and the standard deviation of the discrepancies between Rt

and R̂t over all 1,000 replications. The distributional assumptions appear to have little effect:

differences all fall within the simulation error bands. However, given the MF copula DGP

with one equi-factor and five industry factors, the effect of underestimating the number of the

factors can be substantial. The models with one or two factors seem to result in substantially

different dynamic dependence structures than the DGP. This clearly shows that the effect of

misspecification can be substantial if one sticks to one-factor or two-factor copula models when

the DGP has more factors. It is therefore important to allow for more factors in our empirical

work than the typical one-factor implementations as found in Creal and Tsay (2015) and Oh

and Patton (2018).

4 Empirical application

4.1 Data

In our high-dimensional empirical application we investigate the daily open-to-close returns

of 100 constituents of the S&P 500. These 100 stocks are randomly chosen from different

industries. Table 5 provides an overview of the tickers of each company, grouped into 10

different industries. The data spans the period January 2, 2001 until December 31, 2014 and

contains T = 3, 521 days. The Financial industry covers most companies (i.e. 19), followed by
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Table 5: S&P 500 constituents
This table lists ticker symbols of 100 companies listed at the S&P 500 index during the period January 2, 2001
until December 31, 2014. All Tickers are grouped per industry.

Ind Nr. Industry # Comp. Tickers
1 Capital Goods 10 AA,BA,CAT,HON,F,NOC,UTX,A,IR,GD
2 Finance 19 AXP,JPM,AIG,BAC,C,KEY,MTB,COF,USB,

BBT,STI,WFC,GS,MS,MMC,HIG,PNC,
XL,MCO

3 Energy 12 GE,XOM,BHI,MUR,SLB,CVX,HAL,OXY,
APC,SU,CNX,PXD

4 Consumer Services 14 HD,MCD,WMT,TGT,BXP,DIS,JCP,NLY,
ANF,EQR,WY,RCL,WSM,TV

5 Consumer Non-Durables 9 KO,MO,SYY,PEP,CL,AVP,GIS,CPB,EL
6 Health Care 11 PFE,ABT,BAX,JNJ,LLY,THC,MMM,MRK,BMY,

MDT,CI
7 Public Utilities 7 AEP,AEE,DUK,SO,WMB,VZ,EXC
8 Technology 5 IBM,DOV,HPQ,TSM,CSC
9 Basic Industries 9 PG,DD,FLR,DOW,AES,IP,ATI,LPX,POT
10 Transportation 4 LUV,UPS,NSC,FDX

the Consumer Services and Energy industries, respectively. Each industry covers at least four

companies.

To model the marginal behavior, we estimate a univariate t GAS volatility model from

equation (17) for each of the 100 series. For the conditional mean, we find significance for at

most the first two AR lags for some of the return series and therefore set Q = 2 in (17). Table

6 shows the cross-sectional mean and quantiles of the estimated parameters of the marginal

distribution across all 100 stocks. The mean value of ν = 8.22 underlines the fat-tailed nature

of stock returns, even after filtering for time-varying volatility. We follow Creal and Tsay

(2015) and evaluate the fit of the marginal distributions by transforming the PITs ûi,t into

Gaussian variables x̄i,t = Φ−1(ûi,t). We subsequently test each series x̄i,t, t = 1, . . . , T , for

normality using the Kolmogorov-Smirnov test. Across the 100 firms, we only reject the null

hypothesis for 5 series. We conclude that the marginal distributional assumptions are adequate

for our subsequent analysis.
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Table 6: Marginal distribution parameter estimates
This table reports summaries of the maximum likelihood parameter estimates of the GAS t volatility models
of (17) for 100 different daily time series of equity returns. The columns present the mean and quantiles of
the cross-sectional distribution of each parameter. Data are observed over the period January 2, 2001 until
December 31, 2014 (T = 3, 521 trading days).

Mean 5% 25% Med 75% 95%
φ0 0.027 -0.030 0.010 0.025 0.046 0.091
φ1 -0.009 -0.049 -0.027 -0.008 0.008 0.026
φ2 -0.012 -0.044 -0.028 -0.011 0.001 0.020
ω 0.025 0.009 0.014 0.021 0.029 0.060
α 0.091 0.062 0.077 0.088 0.104 0.129
β 0.991 0.983 0.988 0.992 0.995 0.998
ν 8.22 5.53 6.77 8.21 9.25 11.41

KS test for Student’s t dist of std. residuals
Number of rejections 5

4.2 Full-sample comparison

After estimating the parameters of the marginal distributions, we estimate the parameters of

the score-driven factor copula models as well as the benchmark MGARCH models using the

full sample of 3,521 observations. The groups for the factor copulas are based on the firm

industries as laid out in Table 5.

Table 7 shows the parameter estimates and maximized log-likelihood values for all models.

The A.1 and A.2 panels contain the results for our Gaussian and t factor copula specifications,

respectively: a one-factor copula with homogeneous (1F-Equi) or with industry-specific (1F-

Group) loadings, a two-factor copula (2F) with one factor with homogeneous loadings and one

factor with industry-specific loadings, a multi-factor copula (MF) with 10 industry factors, and

a multifactor model (MF-LT) with a triangular loadings matrix, allowing for cross-exposures

between groups of the group factors. The B.1 and B.2 panels contain the Gaussian and t

benchmark copulas from the MGARCH class, respectively: the cDCC model, the DECO

model, and the Block DECO model. In both multi-factor copula models, we assume that the

B parameter is the same for all factors. While in the MF-LT model we also assume a common

A parameter for all factors, the A parameter is allowed to differ between the common factor

and the industry-specific factors in the MF model. Within the group of 10 industry factors,
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Table 7: Parameter estimates of the full sample
This table reports maximum likelihood parameter estimates of various factor copula models, the (block) DECO
model of Engle and Kelly (2012) and the cDCC model of Engle (2002), applied to daily equity returns of 100
assets listed at the S&P 500 index. We consider five different factor copula models, see Table 1 for the definition
of their abbreviations. Panel A.1 presents the factor models with a Gaussian copula density, Panel A.2 presents
the parameter estimates corresponding with the t-factor copula. Panel B.1 and B.2 present the estimates of
the MGARCH class of models. In case of the cDCC and Block DECO models, the table shows parameters
estimates obtained by the Composite Likelihood (CL) method. Standard errors are provided in parenthesis
and based on the (sandwich) robust covariance matrix estimator. We report the copula log-likelihood, as well
as the Akaike Information Criteria (AIC) for all models. The sample comprises daily returns from January 2,
2001 until December 31, 2014 (3,521 observations).

Model ωeq Aeq Aind Agr B νC LogL AIC

Panel A.1: Gaussian factor copula’s
1F-Equi -0.037 0.008 0.890 65,991 -131,976

(0.007) (0.001) (0.019)
1F-Group 0.013 0.971 68,133 -136,241

(0.001) (0.006)
2F -0.027 0.009 0.029 0.929 73,295 -146,562

(0.001) (0.000) (0.001) (0.002)
MF -0.026 0.009 0.033 0.914 82,422 -164,815

(0.005) (0.001) (0.002) (0.012)
MF-LT 0.029 0.933 83,319 -166,525

(0.001) (0.008)

Panel A.2: t-factor copula’s
1F-Equi -0.024 0.024 0.925 36.49 69,699 -139,391

(0.005) (0.002) (0.013) (1.91)
1F-Group 0.009 0.984 32.01 72,309 -144,592

(0.001) (0.003) (1.04)
2F -0.032 0.030 0.023 0.983 38.62 75,686 -151,342

(0.008) (0.003) (0.002) (0.001) (1.62)
MF -0.011 0.023 0.030 0.958 45.27 84,952 -169,873

(0.004) (0.002) (0.003) (0.010) (2.07)
MF-LT 0.019 0.969 37.46 86,346 -172,575

(0.001) (0.005) (2.51)

Panel B.1: Gaussian copula-MGARCH models
cDCC (CL) 0.017 0.968 74,263 -138,623

(0.000) (0.001)
DECO 0.071 0.929 64,474 -119,044

(0.001) (0.001)
Block DECO 0.030 0.957 83,087 -156,270

(0.000) (0.000)

Panel B.2: t copula-MGARCH models
DECO 0.106 0.894 34.43 69,314 -128,721

(0.000) (0.000) (0.80)
Block DECO 0.032 0.955 22.51 86,222 -162,537

(0.000) (0.001) (0.14)
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however, we use a common A parameter for parsimony. To save space, we do not report all the

different intercepts ωg for all groups for the factor copulas with group-specific loadings. All

standard errors are based on the sandwich (robust covariance matrix) estimator A−10 B9A
−1
0

with B0 the inverse Hessian of the likelihood evaluated at the optimum (information matrix),

and A0 the expected value of the outer product of the gradients at the optimum.

Three main results emerge from Table 7. First, in terms of the statistical fit, the MF-LT

t model outperforms the other factor-copula models, as well as the MGARCH-copula models

(cDCC and block DECO). The gain is not only with respect to the total log-likelihood, but

also with respect to the AIC, which takes into account the number of estimated parameters.

Second, multi-factor models appear to provide a much better fit than one-factor copula

models. For example, the log-likelihood difference between the MF-LT t copula and the 1F-

Equi t copula is more than 15,000 points. The largest gain with respect to the factor structure

is obtained by including industry factors. This increases the log likelihood by almost 10,000

points in both the Gaussian and Student’s t case. An additional 1,500 points is gained by

going to the triangular loadings structure and allowing more freedom for the between-industry

correlations.

Third, Table 7 shows two additional interesting findings. As is usual, the Student’s t factor

copulas fit considerably better than their Gaussian counterparts. Log-likelihood differences

range between 2,000 and 4,000 points, depending on the specification. Differences for the

multi-factor specifications are typically at the lower end of this range. This underlines that

allowing for more than one factor also takes care of part of the fat-tailedness. We also see a

strong persistence in the time-varying factor loadings with a value of B ≈ 0.97 for most of the

estimated (t-)factor copula models. Both findings confirm the empirical analysis of Oh and

Patton (2018) using an entirely different dataset of log-differences of U.S. CDS spreads.

Finally, we note that the estimated degrees of freedom parameter ν is much lower for

the Block DECO t specification than for the MF-LT t model or the DECO model. It seems

that there is empirically some efficiency loss or bias effect due to the use of the Composite

Likelihood method for parameter estimation.
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Figure 1: Factor loadings of the Multi-Factor LT t-copula
This figure shows factor loadings through time for the first factor of the MF-LT t copula model. We show 9
different factor loadings, corresponding to Financials, Capital Goods, Energy, Consumer Services, Consumer
Non-Durables, Health Care, Public Utilities, Technology, and Basic Industries. The sample spans the period
from January 2, 2001 until December 31, 2014 (T = 3, 521 days).

27



Figure 1 shows the different factor loadings corresponding to the MF-LT t copula model,

which has the richest factor structure and the best fit. We concentrate on the loadings of

the first factor. The top, middle and bottom panels show three industry loadings each. We

note that the loadings of the Financials and Energy (Consumer Services and Non-Durables)

industries are higher than the Capital Goods (Health Care) loadings. Further, Financial

industry loadings exceed the loadings of the Energy industry during the years 2001 and 2013.

Huge upward spikes are visible as well for the Financials during the heat of the global financial

crisis (2007-2009): the loading increases rapidly from 0.5 to 0.8. The main take-away is that

the nine industry factors pick up significant group-specific dynamics that cannot be captured

by a single factor model. Hence allowing for different industry factors with their own GAS

loadings captures additional dynamic effects present in the data and results in substantial

increases in the statistical fit of the model, as shown before.

Figure 2 plots the implied within correlation of Financials and Capital Goods industry

companies for the MF-LT t and the Block DECO-t model. The two panels show a similar

pattern for the within industry correlations. Correlations are high around the same times for

both models, as are the differences between the industry correlations. The main feature evident

from the figure is that the MF-LT specification seems to be much more responsive to incoming

data, whereas the Block DECO seems to be much smoother. Whether one or the other pattern

is more helpful for out-of-sample forecasting is a question that we address next. For the in-

sample analysis, we conclude that the MF-LT t model has the best total statistical fit, which

is even obtained using a considerably smaller number of static parameters. Furthermore, the

fit of the multi-factor model is considerably better than the fit of one-factor models.

4.3 Multivariate Density Forecasts

As we have closed-form copula densities, a natural way to compare the out-of-sample (OOS)

forecasting performance of factor copula models and copula MGARCH models is to consider

multivariate density forecasts as in Salvatierra and Patton (2015). Using the log score rule

(see Mitchell and Hall, 2005; Amisano and Giacomini, 2007), the multivariate one-step-ahead
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Figure 2: Within group dependencies
This figure shows the within dependence between stock returns of 19 Financial companies (red line) and 11
Capital Goods companies (blue line) through time, according to the MF-LT t-copula model (upper panel) and
the Block DECO t model (lower panel). The sample spans the period from January 2, 2001 until December
31, 2014 (T = 3, 521 days).
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density forecasts require the evaluation of the OOS copula log-likelihood.

Using a moving-window with an in-sample period of 1,000 observations (or roughly four

calendar years) leaves P = 2, 521 observations for the out-of-sample period, starting 28 De-

cember 2004. Hence the OOS period includes the Great Financial Crisis. We re-estimate each

model after 50 observations, which corresponds to roughly 10 calendar weeks.

Define the difference in the log score (ls) between two copula density forecasts M1 and M2

as

dls,t = Sls,t(ut,M1)− Sls,t(ut,M2) (29)

for t = 1001, 1002, . . . , T , with Sls,t(ut,Mj) the log score at time t of the density forecast

corresponding to model Mj for j = 1, 2, i.e.,

Sls,t(ut,Mj) = log ct(ut, Rt | Ft−1,Mj), (30)

where ct(·) is the Gaussian or Student’s t copula density. Note that the marginal distributions

based on identical specifications for all models drop out in (30).

The null and alternative hypotheses of equal predictive ability are given by

H0 : E[dls,t] = 0, HA : E[dls,t] 6= 0. (31)

This hypothesis can be tested by means of a Diebold and Mariano (1995) test statistic

DMls =
d̄√
σ̂2/P

, (32)

where d̄ is the out-of-sample average of the log score differences and σ̂2 a HAC estimator of

the true variance σ2 of dls,t. This test-statistic is asymptotically N(0, 1) distributed under the

assumptions of Giacomini and White (2006). A significantly positive value of DMls means

that model M1 has superior forecast performance over model M2.

Since we deal with a substantial number of different models and factor structures and

hence many different density forecasts, we also consider the Model Confidence Set (MCS) of
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Hansen et al. (2011). To build the MCSs, we compute (minus) the log score values and use a

significance level of 5%. The MCS automatically accounts for the dependence between model

outcomes given that all models are based on the same data.

Table 8 compares copula density forecasts over the whole region (Panel A) and over the

joint lower tails (Panels B.1-B.4) for the factor copulas and the MGARCH copula models. We

report the mean of the log score as well as the pair-wise DM test statistics of the MF-LT t

model against all other models. Finally, we show the p-values of the Model Confidence Set

approach.

The table shows two interesting results. First, in line with our full-sample results, Panel

A shows that the MF-LT t model performs best in terms of predictive ability. The pairwise

comparisons via the DM test-statistics reveal a rejection of the null hypothesis of equal pre-

dictive ability for all models. Only when comparing the ML-LT t model to the Block DECO

t model, the results is less strong and only significant at a 10% level.

The same pattern emerges from MCS approach. The MCS p-value equals 1 for the MF-

LT t, whereas that of all other models equals 0, except the Block DECO t model. The

latter stays within the MCS, but with a much more modest p-value of 22%. Second, similar

to the in-sample results, most of the gain for the factor copulas is obtained by allowing

for industry-specific factors. For example, changing the equifactor from fixed (1F-Equi t) to

industry-specific loadings (1F-Group t) increases the average log-score by only 0.7 points (from

21.09 to 21.83). Allowing for different industry factors (MF t), however, implies an additional

increase of almost 4 points to an average log-score of 24.77. Allowing for cross exposures in

the MF-LT specification results in yet a further increase by 1.3 points.

Overall, we conclude that the flexibility provided by the new MF-LT t model also seems

important in a forecasting context. The more flexible parametrization allows for a larger

class of dependence matrices. This extension appears to be empirically important in high

dimensions.
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Table 8: One-step ahead copula density forecasts
This table provides the accuracy of one-step ahead copula density forecasts of 100 daily returns of the S&P500
index, obtained by various factor copula and MGARCH models, assuming a Gaussian or Student’s t distribution
(denoted by N or t). We consider a 1-factor model with equi-loadings (1F-Equi), a 1-factor model with group-
specific loadings (1F-Group), a 2-Factor model with one equifactor and an additional factor with group-specific
loadings (2F), a multi-factor copula model with one equi-factor plus G group-specific factors (MF), and the
lower triangular multi-factor model (MF-LT). In addition, we show the results of the cDCC model of Engle
(2002) and the (block) DECO model of Engle and Kelly (2012). The table presents the mean of the log score
(Sls and the DM-statistic of a pairwise test on predictive accuracy of the MF-LT t model against all other
models. A positive DM-statistic implies that the MF-LT t model has superior density forecasts against the
alternative models. Finally, we present the p-value associated with the Model Confidence Set of Hansen et al.
(2011), based on a significance level of 5%. Bold numbers in this row represent those models that belong to
the model confidence set. The out-of-sample period goes from January 2005 until December 2014 and contains
2,519 observations.

Model Sls,t DMls MCS p-val
1F-Equi N 20.10 33.86 (0.00)
1F-Equi t 21.09 35.72 (0.00)
1F-Group N 20.73 34.03 (0.00)
1F-Group t 21.83 36.78 (0.00)

2F N 21.79 29.08 (0.00)
2F t 23.28 29.22 (0.00)

MF N 23.03 14.62 (0.00)
MF t 24.77 13.22 (0.00)
MF-LT N 25.35 11.32 (0.00)
MF-LT t 26.07 (1.00)

cDCC(CL) 22.42 14.10 (0.00)
DECO N 19.76 32.38 (0.00)
DECO t 21.01 36.73 (0.00)
Block DECO N 25.24 8.51 (0.00)
Block DECO t 26.02 1.68 (0.22)
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4.4 Economic out-of-sample performance

Finally, we assess the forecasting performance of the different models from an economic point

of view. We do so by considering the ex-post variance of the ex-ante global minimum variance

portfolio (GMVP); compare Chiriac and Voev (2011) and Engle and Kelly (2012), among

others. The best forecasting model should provide portfolios with the lowest ex-post variance.

Assuming that the investor’s aim is to minimize the 1-step portfolio volatility at time t subject

to a fully invested portfolio, the resulting GMVP weights wt+1|t are obtained by the solution

of the quadratic programming problem

minwt+1|t
′ (Dt+1|tR

∗
t+1|tDt+1|t) wt+1|t, s.t. wt+1|t

′ι = 1, (33)

with Dt+1|t the 1-step ahead forecasted variances from the GAS t model, R∗t+1|t the one-step

ahead forecasted correlation matrix according to our different factor copula models, and ι a

k × 1 vector of ones.2 Following Chiriac and Voev (2011), we assess the predictive ability

of the different models by comparing the results to the ex-post realizations of the conditional

standard deviation, which are given by σp,t =
√
wt+1|t′RCt+1wt+1|t, withRCt+1 the realized

covariance matrix obtained using 5-minute returns. We decompose this matrix into realized

variances and a realized correlation matrix, where the latter is by definition ill-conditioned and

not positive definite. We use the ‘eigenvalue cleaning’ method used by Hautsch et al. (2012) to

get a positive definite correlation matrix. Having constructed the ex-post conditional portfolio

standard deviation, we again test model performance by means of the Model Confidence Set

(MCS) approach with a significance level of 5%.

Alongside the GMVP’s volatility, we also calculate a number of other relevant quantities,

such as portfolio turnover (TOt), concentration (COt), and the total short position (SPt) for

2Note that R∗t+1|t 6= Rt+1|t as we need the correlations of yt+1 instead of xt. We compute R∗t+1|t by
means of simulating 10,000 returns from the joint distribution of returns as constructed from the marginals
and conditional copula.
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each competing model at time t. Turnover at time t is defined as

TOt =
k∑
i=1

∣∣∣∣∣w(i)
t+1|t − w

(i)
t|t−1

1 + y
(i)
t

1 +wt|t−1
′yt

∣∣∣∣∣ , (34)

where w
(i)
t|t−1 and y

(i)
t the i-th element of the weight vector wt|t−1 and return vector yt. It

measures the value of the portfolio that is bought/sold when rebalancing the portfolio to its

new optimal position from time t to t + 1. A model that produces more stable correlation

matrix forecasts implies in general less turnover and hence, less transaction costs. Portfolio

concentration and total portfolio short position both measure the amount of extreme portfolio

allocations. Again, more stable forecasts of R∗t+1|t should result in less extreme portfolio

weights. Portfolio concentration is defined as

COt =

(
k∑
i=1

w
(i)2
t

)1/2

, (35)

while the total portfolio short position SPt is given by

SPt =
k∑
i=1

w
(i)
t · I[w

(i)
t < 0], (36)

with I[·] an indicator function that takes the value 1 if the i-the element of the weight vector

is lower than zero.

Table 9 reports the economic out-of-sample performance results. As for the density forecast

results, the factor copulas also perform best in terms of economic performance. The are

however also a number of remarkable differences. In terms of the ex-post variance of the

GMVP, the 1-factor copulas with industry specific loadings now perform best. This contrasts

with the density forecast setting, where the MF-LT t model was the best in-sample and out-

of-sample performer. Note however, that also here the MF-LT t model still comes close, as

indicated by the MCS p-value of 0.03. The multi-factor models also still outperform the block-

DECO model in terms of ex-post variance of the GMVP. The 1-factor models, however, has

the best performance, both in terms of ex-post variance, turnover, concentration, and total
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Table 9: Minimum variance portfolio results
This table reports results on a global minimum variance portfolio strategy, based on 1-step ahead predictions
of the daily covariance matrix, according to four different type of factor copulas , the cDCC model of Engle
(2002) and the (block) DECO model of Engle and Kelly (2012). The columns represent two types of one-factor
copulas (one equi-factor or one factor with group-specific loadings, denoted by 1F-eq and 1F-gr), one 2-Factor
model (one equi-factor plus an additional factor with group-specific loadings) and two types of multi-factor
copula models (one equi-factor plus G group-specific factors and the MF-LT model). Each type of model is
further discriminated across distribution (Gaussian vs. a Student’s t) For each model, we show the mean of
the ex-post portfolio standard deviation, the p-value corresponding with the Model Confidence Set of Hansen
et al. (2011), using a significance level of 5%, and the mean of the portfolio turnover (TO), concentration (CO)
and the total portfolio short positions (SP). Bold numbers indicate the models that stay within the MCS, or
the lowest (absolute) portfolio turnover, concentration and total portfolio short positions. The out-of-sample
period goes from January 2005 until December 2014 and contains 2,519 observations.

σ̄p p-val TO CO SP

Factor-copula models
1F-Equi N 0.522 (0.00) 0.353 0.336 -0.593
1F-Equi t 0.524 (0.00) 0.352 0.338 -0.600
1F-Group N 0.510 (1.00) 0.343 0.307 -0.527
1F-Group t 0.510 (0.95) 0.321 0.310 -0.537
2F N 0.525 (0.00) 0.399 0.330 -0.581
2F t 0.535 (0.00) 0.376 0.344 -0.619
MF N 0.534 (0.00) 0.406 0.357 -0.634
MF t 0.534 (0.00) 0.404 0.359 -0.641
MF-LT N 0.523 (0.00) 0.422 0.350 -0.619
MF-LT t 0.522 (0.03) 0.407 0.351 -0.621

Copula-MGARCH models
cDCC (CL) 0.554 (0.00) 0.761 0.471 -1.030
DECO N 0.523 (0.00) 0.345 0.336 -0.592
DECO t 0.523 (0.00) 0.346 0.337 -0.594
Block DECO N 0.531 (0.00) 0.398 0.352 -0.619
Block DECO t 0.533 (0.00) 0.399 0.352 -0.621

number of short positions. Unlike the density forecast setting, we also note that the choice of

the distribution plays a less important role in Table 9.

To reconcile the findings in terms of economic performance with those of the density

forecast evaluation from the previous subsection, it is important to note that the GMVP

evaluation takes a very specific perspective. The GMVP focusses attention on an area of the

forecast distribution where differences are more concentrated: all models focus on a portfolio

with ex-ante minimum variance. If the models are any good, differences in this concentrated

performance measure are hard to obtain. This is corroborated by the results in Table 9. Al-

though the results are sometimes statistically significantly different, they are all quite close in

economic terms (with the possible exception of the cDCC). Using such a performance mea-
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sure, introducing models with more parameters and their associated estimation risk typically

deteriorates overall performance. This explains why the simpler 1-factor models do better

here. By contrast, if the full density is taken into account as in the previous subsection, the

additional flexibility of the more complex factor models has a beneficial effect on performance,

particularly in the current high-dimensional setting.

Summarizing, we conclude that the one-step-ahead copula density forecasts over the whole

support of the MF-LT t model are superior to those of the other factor copula models and

GARCH based copula models considered. In terms of economic performance of the GMVP,

however, simpler factor models appear to work better. In particular, a one-factor model with

industry specific loadings turns out to have the lowest conditional portfolio standard deviation.

This model also has significantly (in terms of MCS) lower turnover, lower concentration, and

smaller short positions than the other factor models, and even more so than the MGARCH

models considered like the cDCC and (block) DECO.

5 Conclusions

We have introduced various factor structures within the class of closed-form factor copula

models for high dimensions. The new factor copula model is computationally tractable with

score-driven dynamics, implying a closed from copula density. Parameters can be estimated in

a straightforward way by Maximum Likelihood and/or a fast two-step approach that combines

a moment-based estimator and the ML approach.

The factor structures are based on group-specific characteristics. In addition, an important

feature of our model is that it allows for more than one factor. Extensions to the model are

also easily possible, such as the inclusion of covariates to describe the factor loading dynamics.

This can be done without any difficulty for the positive definiteness of the implied dependence

matrix.

Empirically, we modeled the dependence across 100 equity returns from the S&P 500 index

over the period 2001-2014. We found that our factor copula models outperform multivariate
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GARCH (MGARCH) based counterparts, such as the (c)DCC and (block) DECO. In-sample,

the multi-factor copula model has a better fit than one-factor models and benchmarks such

as the cDCC and (Block-)DECO. Out-of sample, the good performance of multi-factor copula

models persists. Measured in terms of density forecasts, the multi-factor models perform

best, whereas in terms of the global minimum variance portfolio variance, simpler 1-factor

models outperform other models. In all settings, we thus find score-driven factor copulas to

describe the dynamics of the data well in high-dimensional settings. Given their computational

ease and closed-form likelihood expression, they thus provide a useful tool for modeling high-

dimensional dynamic dependence structures.
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A: Derivations of the score

A.1: General set-up

The general set-up of the (multi) factor copulas is given by equation (2). We are interested in the score st,

defined as

st = ∂ log c(xt; λ̃i,t, ψC)/∂λt (A.1)

with λi,t a k × 1 vector of time-varying factor loadings, and log c(·) the log-copula density. Note that the

dimension of λi,t (and hence st) depends on the chosen factor structure.

We assume a Student’s t and a Gaussian copula density for xt = (x1,t, . . . , xN,t)
>. The corresponding

copula log-likelihood at time t is defined as

lStud,t = −1

2
log |Rt| −

ν + n

2
log

(
1 +

x>t R
−1
t xt

ν − 2

)
, (A.2)

lGaus,t = −1

2
log |Rt|+−

1

2
x>t R

−1
t xt, (A.3)

omitting terms that do not depend on Rt. Further, the dependence matrix Rt of xt is modeled as

Rt = L̃
>
t L̃t +Dt, L̃t =

(
λ̃1,t, . . . , λ̃N,t

)
, Dt = diag

(
σ2
1,t, . . . , σ

2
N,t

)
, (A.4)
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with

λ̃i,t =
exp(λi,t)√

1 + exp(λi,t)> exp(λi,t)
, σ2

it =
1

1 + exp(λi,t)> exp(λi,t)
(A.5)

for an unrestricted k × 1 vector λi,t. This ensures that xi,t has zero mean and unit variance by design.

Hence, using the chain rule

∂ log c(xt; λ̃i,t, ψC)

∂λ>i,t
=
∂ log c(xt; λ̃i,t, ψC)

∂ vec(Rt)>
∂ vec(Rt

∂λ>i,t
. (A.6)

Given (A.4), we have

d vecRt = d vec(L̃
>
t L̃t +Dt) = (In2 +Kn)

(
In ⊗ L̃

>
t

)
d vec L̃t + d vecDt, (A.7)

wher Kn is such that vec(A) = Kn vec(A>) for a general n× n matrix A. We obtain

∂ vecRt

∂λ>i,t
= (In2 +Kn)

(
In ⊗ L̃

>
t

) ∂ vec L̃t

∂λ>i,t
+
∂ vecDt

∂λ>i,t
. (A.8)

Hence to summarize, we need to derive
∂ log c(xt;λi,t,ψC)

∂ vec(Rt)>
, ∂ vec L̃t

∂λ>i,t
and ∂ vecDt

∂λ>i,t
. Note that the first quantity

does NOT depend on any factor structure, only on the chosen copula density, while the latter two do depend

on the factor structure. We will therefore derive
∂ log c(xt;λi,t,ψC)

∂ vec(Rt)>
in case of the Student’s t and Gaussian copula

density first, and then derive the other two quantities in the following subsections.

For the t-copula, d lStud,t is given by

d lStud,t = −1

2
tr
(
R−1t dRt

)
− ν + n

2

1

1 +
x>t R

−1
t xt

ν−2

d

(
x>t R

−1
t xt

ν − 2

)

= −1

2

(
vecR−1t

)>
d vecRt +

1

2

[
ν + n

ν + x>t R
−1
t xt

]
x>t R

−1
t (dRt)R

−1
t xt

= −1

2

(
vecR−1t

)>
d vecRt +

1

2

[
ν + n

ν + x>t R
−1
t xt

x>t R
−1
t ⊗R

−1
t xt

]>
d vecRt

=

{
−1

2

(
vecR−1t

)>
+

1

2

[
ν + n

ν + x>t R
−1
t xt

vec
(
R−1t xtx

>
t R
−1
t

)]>}
d vecRt, (A.9)

hence

∂ log c(xt; λ̃i,t, νC)

∂ vec(Rt)>
= −1

2

(
vecR−1t

)>
+

1

2

[
ν + n

ν + x>t R
−1
t xt

vec
(
R−1t xtx

>
t R
−1
t

)]>
. (A.10)
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For the Gaussian case, we let νC →∞ and obtain

d lGaus,t =

{
−1

2

(
vecR−1t

)>
+

1

2
vec
[
R−1t xtx

>
t R
−1
t

]>}
d vecRt, (A.11)

such that

∂ log c(xt; λ̃i,t)

∂ vec(Rt)>
= −1

2

(
vecR−1t

)>
+

1

2
vec
[
R−1t xtx

>
t R
−1
t

]>
. (A.12)

A.2: 1-Equi-Factor

In the 1-Factor equi-copula, we have L̃
>
t = λ̃tιN with λ̃t = exp(λt)/

√
1 + exp(2λt), and λt ∈ R. Then

∂ vec L̃t/∂λt is given by

∂ vec L̃t
∂λt

= ιN
∂

∂λt
λ̃t = ιN

[
λ̃t −

exp(3λt)

(1 + exp(2λt))3/2

]
= ιN λ̃t(1− λ̃2t ). (A.13)

Second, given that Dt = 1
1+exp(2λt)

In it holds that

∂ vecDt

∂λt
= vec IN

∂

∂λt

1

1 + exp(2λt)
= vec IN

−2 exp(2λt)

(1 + exp(2λt))2
= vec IN

(
− 2λ̃2t (1− λ̃2t )

)
. (A.14)

Hence ∂ log c(xt;λi,t, ψC)/∂λt is obtained by combining (A.10) or (A.12) with (A.8), (A.13) and (A.14).

A.3: 1-Factor model with heterogeneous loadings

Let SL denote a selection matrix of size N × G such that SLi,g = 1 if asset i belongs to group g, and 0 else,

where i = 1, . . . , N and g = 1, . . . , G. Further, let SD1 denote a selection matrix of size N2 × G such that

SDi+(i−1)N,g = 1 if asset i belongs to group g, and 0 else, where i = 1, . . . , n, and g = 1, . . . , G.

Then L̃
>
t = SLλ̃

gr

t and vecDt = SD1λ̃
gr

t , with λ̃
gr

t = [λ̃t,1, λ̃t,2 . . . , λ̃t,G]
>

a G × 1 vector with the G

different group loadings. Further, λ̃t,g = exp(λt,g)/
√

1 + exp(2λt,g).

The objects of interest are ∂ vec L̃t/∂(λgrt )> and ∂ vecDt/∂(λgrt )>. We have

∂ vec L̃t
∂(λgrt )>

= SL
∂ vec λ̃

gr

t

∂(λgrt )>
= SL · diag

(
λ̃t,1(1− λ̃2t,1) , . . . , λ̃t,G(1− λ̃2t,G)

)
. (A.15)

Similarly,

∂ vecDt

∂(λgrt )>
= −2SD1 · diag

(
λ̃2t,1(1− λ̃2t,1) , . . . , λ̃2t,G(1− λ̃2t,G)

)
. (A.16)
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A.4: MF model

The MF model consists of two types of factors: an equi-factor, and G industry factors, each with a group-

specific loading. Note that the equifactor is in fact group-specific after scaling, i.e., even if λeqt is scalar,

λ̃eqt,g = exp(λeqt )/
√

1 + exp(2λeqt ) + exp(2λindt,g ) depends on the group via the unscaled industry factor loading.

We define λ̃
eq

t = SL(λ̃eqt,1, . . . , λ̃
eq
t,G)>, and λ̃

ind

t = SLdiag(λ̃indt,1 , , . . . , λ̃
ind
t,G), using the same definition for

SL as in Section A.3. The corresponding loading matrix equals L̃
>
t = [λ̃

gr

t λ̃
ind

t ] ∈ RN×(G+1).

The scaled lambdas are given by

λ̃eqt,g = exp(λeqt )/
√
Xt,g, (A.17)

λ̃indt,g = exp(λindt,g )/
√
Xt,g, (A.18)

Xt,g = 1 + exp(2λeqt ) + exp(2λindt,g ). (A.19)

We have the following four types of derivatives:

∂λ̃eqt,g
∂λeqt

= λ̃eqt,g
(
1− (λ̃eqt,g)

2
)
, (A.20)

∂λ̃eqt,g
∂λindt,g

= −λ̃eqt,g(λ̃indt,g )2, (A.21)

∂λ̃indt,g
∂λeqt

= −λ̃indt,g (λ̃eqt,g)
2, (A.22)

∂λ̃indt,g
∂λindt,g

= λ̃indt,g
(
1− (λ̃indt,g )2

)
. (A.23)

Using these results, we have

∂ vec L̃t
∂λt

= vec

SL ·

λ̃eqt,1(1− (λ̃eqt,1)2)

...

λ̃eqt,G(1− (λ̃eqt,G)2)

 − SL · diag
(
λ̃indt,1 (λ̃eqt,1)2, . . . , λ̃indt,G(λ̃eqt,G)2

)
 , (A.24)

and

∂ vec L̃t
∂λindt,g

= vec

−SL ·

λ̃eqt,1(λ̃indt,1 )2

...

λ̃eqt,G(λ̃indt,G)2

 λ̃indt,g (1− (λ̃eqt,g)
2)SL � eg

 , (A.25)

where eg is the gth row from the unit matrix IG, and � is the element-by-element Hadamard product. Note

that both matrices above are very sparse.
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To derive ∂ vecDt

∂λt
∈ RN2×(G+1), we note that

∂σ2
t,g

∂λeqt
= −2(λ̃eqt,g)

2σ2
t,g, (A.26)

∂σ2
t,g

∂λindt,g
= −2(λ̃indt,g )2σ2

t,g. (A.27)

Define SD2 as a selection matrix of size N2 ×G such that SD2
i+(i−1)N,g = 1 for i = 1 . . . N if firm i belongs to

group g, and zero else. Also define σ2
t = (σ2

t,1, . . . , σ
2
t,G)>. We then have vecDt = SD2 · σ2

t , and thus

∂ vecDt

∂λ>t
= −2SD2 · σ2

t ·
(
λ̃t � λ̃t

)>
. (A.28)

A.5: MF LT model

For the MF LT model, we have

σ2
t,g =

(
1 +

g∑
i=1

exp(2λt,g,i)

)−1
, (A.29)

∂σ2
t,g

∂λt,j,k
=


−2σ2

t,gλ
2
t,g,k, if j = g and k ≤ g,

0, else,

(A.30)

∂λ̃t,i,j
∂λt,k,`

=


λ̃t,i,j(1− λ̃2t,i,j) if i = k, j = `, and j ≤ i,

−λ̃t,i,j λ̃2t,i,` if i = k, j 6= `, j ≤ i, and ` ≤ k,

0, else.

(A.31)

Define a selection matrix SL ∈ RN ·G×G(G+1)/2 such that vec L̃t = SLλ̃t for the vectors

λ̃
>
t =

(
λ̃t,1,1 , λ̃t,2,1, λ̃t,2,2 , λ̃t,3,1, . . . , λ̃t,3,3 , λ̃t,4,1, . . . , λ̃t,4,4 , . . . , λ̃t,G,1, . . . , λ̃t,G,G

)
, (A.32)

λ>t =
(
λt,1,1 , λt,2,1, λt,2,2 , λt,3,1, . . . , λt,3,3 , λt,4,1, . . . , λt,4,4 , . . . , λt,G,1, . . . , λt,G,G

)
, (A.33)
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and a second selection matrix SD2 ∈ RN2×G such that vecDt = SD2σ2
t for vector σ2

t = (σ2
t,1, . . . , σ

2
t,G)>.

Then the required derivative expressions follow directly from equations (A.29)–(A.31) as

∂ vec L̃t

∂λ>t
= SL ·



λ̃t,1,1(1− λ̃2t,1,1) 0 0 . . . 0

λ̃t,2,1(1− λ̃2t,2,1) −λ̃t,2,1λ̃2t,2,2 0 . . . 0

−λ̃2t,2,1λ̃t,2,2 λ̃t,2,2(1− λ̃2t,2,2) 0 . . . 0

...
...

−λ̃2t,G,1λ̃t,G,G . . . . . . −λ̃2t,G,G−1λ̃t,G,G λ̃t,G,G(1− λ̃2t,G,G)


, (A.34)

and ∂ vecDt/∂λ
>
t as in (A.28).
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