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Abstract

Despite the recent introduction of novel solution methods for Dynamic Stochas-

tic General Equilibrium (DSGE), perturbation methods are still among the

most popular and widely used solution techniques for DSGE models. Un-

fortunately, nonlinear perturbation solutions produce paths with stochastic

properties that invalidate econometric analysis. This paper proposes a cor-

rection that renders the econometric analysis valid and sound. The proposed

correction is simple to implement in existing software packages such as Dynare,

it does not add any signi�cant computational e�ort and, as a result, does not

impact computational times. The corrected solution retains the same ap-

proximation properties as standard higher order perturbation methods and,

in contrast to those methods, generates stable sample paths that are station-

ary, geometrically ergodic and absolutely regular. Additionally, moments are

shown to be bounded. Transformed perturbation solutions are an alternative

to the pruning method as proposed in Kim et al. (2008). The advantages of

our approach are that, unlike pruning, we do not need to sacri�ce accuracy

around the steady state by ignoring higher order e�ects, and furthermore, we

also deliver a policy function. Moreover, the newly proposed solution is always

more accurate globally than standard perturbation methods. We demonstrate

the superior accuracy of our method in a range of simple examples.

∗We thank Michel Juillard, Sergey Ivashchenko and the attendants of the "Advances in solution
methods" session of the 14th Dynare Conference for helpful comments and suggestions. We thank
Martin Andreasen and Wouter Den Haan for making code available that aided the paper.
†Corresponding author, email: m.h.c.nientker@vu.nl.
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1 Introduction

Since the seminal paper of Kydland and Prescott (1982) many di�erent methods

have been proposed to approximate the solution of Dynamic Stochastic General

Equilibrium (DSGE) models. It is well known that, in most cases, closed form ana-

lytical solutions do not exist, and hence we need numerical solution methods. See for

example Maliar and Maliar (2014), Aruoba et al. (2006) and Christiano and Fisher

(2000) for an overview and comparison studies of such methods or Norets (2012) and

Scheidegger and Bilionis (2019) for more recent methods based on machine learning

techniques such as arti�cial neural networks.

Perturbation is a numerical solution method that approximates the solution us-

ing a Taylor expansion centered around the steady state, (Blanchard and Kahn,

1980; Judd and Guu, 1997; Schmitt-Grohé and Uribe, 2004). The popularity of per-

turbation methods stem from the fact that they are able to accurately capture local

dynamics of the policy function while being computationally inexpensive and easy

to implement. See for instance Galí et al. (2012) and Christiano et al. (2015, 2016)

for applications of �rst order perturbation or Foerster et al. (2016) and Andreasen

et al. (2017) for methodological works that extend on the method. Higher order

perturbation has proven to work well when one attempts to model time varying risk

premia as in Fernández-Villaverde et al. (2011); Rudebusch and Swanson (2012);

Fernández-Villaverde et al. (2015) or compare welfare across di�erent environments

as in Kollmann (2002), Kim and Kim (2003) and Bergin et al. (2007).

Although higher order perturbation accurately describes nonlinear local features

of the policy function, it also de�nes an unstable dynamic system which produces

explosive paths. In fact, one can commonly show that sample paths generated using

higher-order perturbations diverge to in�nity almost surely, even if the true policy

function implies stable dynamics with nonexplosive paths.1 This has strong econo-

1This problem is outlined in Aruoba et al. (2006) and Den Haan and De Wind (2010) and
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metric implications, as it means that the approximated system does not have a

stationary ergodic solution and thus that no �nite unconditional moments exist. As

a result, moment based estimation methods such as maximum likelihood, the gen-

eralized method of moments, simulated method of moments (Du�e and Singleton,

1990) or indirect inference (Smith Jr, 1993; Dridi et al., 2007) cannot be used in

combination with higher order perturbation approximations. Moreover, Bayesian

methods that use unconditional moments to construct a limited information likeli-

hood function as proposed in Kim (2002) are infeasible.

In order to avoid unstable dynamics of higher-order perturbation solutions, Kim

et al. (2008) introduced the pruning method. This approach eliminates explosiveness

from perturbation sample paths by �pruning� or ignoring terms that are of higher

order than the considered perturbation approximation. The method has been ex-

tended by Andreasen et al. (2017), who provide simple to check conditions that

ensure pruned sample paths are stationary ergodic with �nite unconditional mo-

ments. Additionally, they �nd closed form solutions for the unconditional moments

of the pruned system. However, pruned solutions sacri�ce some local approximation

accuracy to ensure stability. Den Haan and De Wind (2010) show that pruning

�creates large systematic distortions�. Furthermore, pruning is a simulation-based

approximation method that enlarges the state space. Therefore it does not provide

a policy function for the original state space of the model. In fact, approximations

based on the pruning procedure contain di�erent updates for identical values of the

model's original state variables. This means that �the implied policy rule is not even

a function of the model's state variables� (Den Haan and De Wind, 2010). The

enlarged state space also implies that the use of the particle �lter with likelihood

inference as in (Fernández-Villaverde and Rubio-Ramírez, 2007; Andreasen, 2011)

becomes impractically computationally expensive.

encountered in Fahr and Smets (2010) and Den Haan and De Wind (2012), among others. See
Section 3.3.2 and Section 5 in Den Haan and De Wind (2010) for extensively discussed examples.
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This paper introduces a simple correction to the perturbation approximation that

is designed to enrich solutions with all the desirable stochastic properties needed for

parameter estimation and statistical inference. The correction transforms the stan-

dard perturbation approximation by replacing higher order monomials in the Taylor

expansion with transformed ones that are based on the transformed polynomials in-

troduced in Blasques (2014). The resulting solution method, denoted transformed

perturbation, is as fast as standard perturbation methods and can be easily imple-

mented in existing software packages such as Dynare. We prove that transformed

perturbation produces non-explosive paths and provide tractable conditions that en-

sure that the stochastic system contains a stationary ergodic solution with bounded

unconditional moments. Closed forms for these moments are not readily available.

Therefore we show that solution paths exhibit fading memory (i.e. geometric ergod-

icity and absolute regularity or β-mixing) so that laws of large numbers imply that

the unconditional moments can be arbitrarily well approximated using simulated

sample moments.

Statistical inference, forecast accuracy and policy analysis, all depend on cor-

rectly identifying and describing relevant properties of observed data. Our research

is signi�cant because properties such as stability, stationarity, ergodicity and fad-

ing memory have profound implications both on the shape of forecasts and impulse

response functions, and on the validity and accuracy of estimators and hypothesis

tests. Therefore, if the true unknown policy function creates a stable system satisfy-

ing these stochastic properties, then we should expect that an approximated system

works better if it establishes these properties too. Transformed perturbation thus

not only ensures that likelihood and simulated moment based estimation methods

produce econometrical valid results, it also is more capable than regular perturbation

in resembling the original data generating process. In fact, transformed perturbation

can be guaranteed to always be more accurate than standard perturbation methods.
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This is due to the fact that transformed polynomial functions share the same excel-

lent local approximation properties as regular polynomials and hence transformed

perturbation can provide an accurate approximation in highly nonlinear settings,

while retaining stability. Advantages compared to pruning are that transformed

perturbation is a direct approximation method that delivers a policy function and

does not enlarge the state space. Overall, this renders the transformed polynomial

solution attractive from both a practical and theoretical stand-point.

We demonstrate the accuracy of the transformed perturbation method exten-

sively for two small, highly nonlinear DSGE models in which higher order perturba-

tion is infeasible. We compare second order transformed perturbation to �rst order

perturbation and second order pruning. The �rst model is a partial equilibrium

model in which agents face idiosyncratic income risk, introduced in Deaton An-

gus (1991) and Den Haan and De Wind (2012). For this model we �nd that the

unconditional moments of our method are ten times more accurate than those of

pruning and one-hundred times more accurate than �rst-order perturbation. The

second DSGE model we study is a matching model from Den Haan and De Wind

(2012). Here transformed perturbation outperforms pruning up to a factor thirty

and �rst-order perturbation up to a factor one-hundred on moment accuracy.

The paper is structured as follows. We introduce notation, perturbation and

de�ne the transformed perturbation method in Section 2. Section 3 analyses the

statistical properties of the transformed perturbation system and provides lenient

conditions that ensure paths are nonexplosive, laws of large numbers can be ap-

plied and simulation based inference methods give asymptotically valid results. Sec-

tion 4 provides a theoretical foundation and motivation for the parameter choice in

the transformed perturbation approximation method. Finally Section 5 discusses

the accuracy of the new method. We provide theoretical results that show that

transformed perturbation, accuracy wise, matches regular perturbation locally and
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strongly outperforms it globally. Moreover, we demonstrate for two example mod-

els that transformed perturbation outperforms pruning and regular perturbation on

numerous common criteria.

2 Transformed Perturbation

2.1 The state space

Let ȳt be an ny-dimensional vector of control variables, let x̄t be an nx-dimensional

vector of endogenous state variables and let zt be an nz-dimensional vector of ex-

ogenous state variables. We study the general class of DSGE models characterized

by a set of �rst-order dynamic optimality conditions that can be written as

0 = Et(f(ȳt+1, ȳt, x̄t+1, x̄t, zt+1, zt)),(1)

zt+1 = Λzt + σηεt+1.(2)

Here Et denotes the expectation operator conditional on the information at time

t, and f : R2(nx+ny+nz) → Rny+nx is a real function. The matrix Λ is assumed

to be invertible with spectral radius smaller than one. Finally σ is the auxiliary

perturbation parameter and εt+1 is a nz-dimensional vector of exogenous innovations

with mean zero and �nite second moment that takes values in E ⊆ Rnz . Throughout

the paper, we will assume that (εt)t∈N is an independent and identically distributed

(iid) stochastic process.

We de�ne the deterministic steady states yss and xss of ȳt and x̄t respectively

such that

f(yss,yss,xss,xss,0nz ,0nz) = 0.

Furthermore, let yt = ȳt − yss and xt = x̄t − xss denote the random variables in

6



deviations from the steady-state, where yt takes values in Y ⊆ Rny and xt takes

values in X ⊆ Rnx . We write Z ⊆ Rnz for the domain of zt. Following Den Haan

and De Wind (2012), the solution to the model given in equation (1) is of the form

yt+1 = g(xt, zt+1, σ),(3)

xt+1 = h(xt, zt+1, σ).(4)

We refer to (3) and (4) as the observation and state equations respectively. It follows

from our setup that g(0nx ,0nz , 0) = 0ny and h(0nx ,0nz , 0) = 0nx .

Both functions g and h, known as policy functions, are unknown functions that

must be approximated. If the function g in the observation equation is measurable,

then the stability of the solution of a DSGE model depends entirely on the state

equation. For this reason we will focus on approximating the function h in (4).

2.2 Perturbation

Many common approximation methods obtain the approximate policy function as

an element of a vector space spanned by a set of basis functions. Perturbation uses a

Taylor series approximation, which is equal to choosing power monomials as the set

of basis functions. The expansion point used in Taylor's method is the deterministic

steady state (0nx ,0nz , 0). Choose x ∈ X and z ∈ Z and de�ne v = (x, z) and⊗
i v = v⊗ · · · ⊗ v︸ ︷︷ ︸

i times

, where the empty Kronecker product is set to one. Then the

m'th order perturbation approximation of h evaluated at (x, z, σ) can be expressed

as

hp(x, z, σ) := H0 +Hxx +Hzz +
m∑
i=2

Hi

⊗
i

v,(5)
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where we grouped all terms of v of the same power, regarding σ as a constant. That

is,

H0 =
m∑
j=0

1

j!

∂j

∂σj
h(0nx ,0nz , 0)σj Hx =

m−1∑
j=0

1

j!

∂j+1

∂σj∂x
h(0nx ,0nz , 0)σj

Hz =
m−1∑
j=0

1

j!

∂j+1

∂σj∂z
h(0nx ,0nz , 0)σj Hi =

m−i∑
j=0

1

i!j!

∂j+i

∂σj∂vi
h(0nx ,0nz , 0)σj

Thus, H0 is an nx × 1 vector that is the sum of all the derivatives of h with respect

to powers of σ. The matrix Hx is an nx × nx matrix that is the sum of all the

derivatives of h with respect to x and powers of σ. The matrix Hz is an nx × nz

matrix that is the sum of all the derivatives of h with respect to z and powers of σ.

Finally, the matrices Hi are of dimension nx × (nx + nz)
i and given by the sum of

all the derivatives of h with respect to vi and powers of σ.

2.3 The transformed perturbation method

A disadvantage of the power monomial set of basis functions, and therefore of per-

turbation, is that the derivative of the approximation function tends to in�nity away

from the steady state if m > 1. This creates highly explosive regions in the state

space which in practice means that sample paths eventually diverge to in�nity with

probability one. The transformed perturbation method solves this problem by using

another set of basis functions called the transformed power monomials.

The set of transformed power monomials is obtained by multiplying the regular

power monomials of order greater than one with an exponentially fast decaying

function Φτ : X → R that is a multivariate adaptation of the transformed function

of Blasques (2014) and is de�ned as

Φτ (x) = e−τ‖x‖
2
e ,(6)
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where ‖x‖e denotes the Euclidean norm of x. Figure 1 plots the second and third

order one dimensional transformed monomials for varying values of τ . Note that the
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Figure 1: Plots of the second, respective third, order one dimensional transformed monomial

in the left, respective right, panel for values of τ ∈ {0, 0.2, 0.5}.

case τ is zero sets the transformed monomials equal to the regular monomial basis

functions. The �gure shows that the transformed monomials are almost identical

to regular monomials close to the steady state at zero. However, the derivatives of

transformed monomials vanish away from the steady state, which implies that no

explosive regions are created in the state space. In Section 5 we will further show that

transformed perturbation has the same local approximation properties as classical

perturbation. In particular, local approximation rates are the same as for classical

perturbation, and transformed perturbation approximations converge uniformly on

compact analytic domains, just like perturbation methods do. A large number of

additional advantages of transformed perturbation over classical perturbation and

pruning methods are documented in Section 3 and Section 5.

State variables can be of di�erent orders in size, so we replace the vector x in

(6) by the relative di�erences from the steady state x̃ = x/xss, where dividing is

done entry wise, to ensure all variables have equal e�ect. This de�nition works
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poorly if an entry of xss is close to zero. For such an entry we take the simple

transformation x 7→ ex ≈ 1 + x, which is almost linear close to zero, and de�ne

x̃ = (ex+xss − exss)/exss . The m'th order transformed perturbation approximation

of h evaluated at (x, z, σ) is then de�ned as

htp(x, z, σ) = H0 +Hxx +Hzz +

(
m∑
i=2

Hi

⊗
i

v

)
Φτ (x̃),(7)

where all the H matrices are obtained using Taylor's method and thus they are

identical to those in the regular perturbation function (5).

The constant τ determines the speed at which the higher order terms in (7) are

going to zero when moving away from the origin. Its value in�uences the shape

of the resulting policy function, and thus requires careful consideration. We o�er

two methods to set τ . The �rst method is to �nd the optimal τ , denoted τ ∗,

by minimizing some criterion function. In this paper we chose to minimise the

maximum Euler errors on a relevant set around the steady state. The advantage of

this method is that we get the best possible value for τ , according to the criterion

function. The disadvantage is that minimizing the criterion function potentially

is time-consuming. In an estimation setting we �x the optimal τ ∗ at the start and

then estimate the remaining parameters while τ ∗ remains �xed. This means that the

possibly time consuming task of �nding τ ∗ has to be executed only once, making the

method almost as fast as perturbation, still viable for estimation and very accurate

if the optimal τ ∗ does not vary too much with the parameters. The second method

is designed to avoid the optimization completely and is characterised by a plug-in τ ,

denoted τ̂ , which is less precise, but found immediately. The plug-in value is given

by

τ̂ =
1

c
log

(
1

1− ρ(Hx)

)
,(8)
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where ρ(Hx) is the spectral value of the autoregressive part of the regular perturba-

tion solution and c is an approximation of the average range that the state variables

take place in. This range could be set according to prior knowledge on the variables,

or approximated by another solution method. In our case we used linear pertur-

bation to simulate a series and �nd the approximate range of our variables. In an

estimation setting we update τ̂ as the parameters are updated, since its calculation

is very fast. See Section 4 for a detailed discussion on the choice for our plug-in

value.

3 Econometric Analysis of DSGE models

This section veri�es that transformed perturbation generates an approximated sys-

tem with all the desirable stochastic properties needed for parameter estimation

and statistical inference. The results are summarised in two theorems. Theorem

3.1 provides tractable conditions, which are normally satis�ed, that ensure that

the transformed perturbation approximated system produces non-explosive sample

paths. Theorem 3.2 poses some additional lenient assumptions that establish that

the system admits a stationary ergodic solution with bounded moments to which

sample moments converge. We refer the reader to Appendix A.1 for a detailed

technical discussion of the assumptions and proofs.

Let x0 ∈ X and z0 ∈ Z be �xed and de�ne the exogenous sample paths (zt)t≥0

and the transformed perturbation sample paths (xt)t≥0 recursively by

zt+1 = Λzt + σηεt+1,

xt+1 = htp(xt, zt+1, σ).

We write ‖ · ‖ for both general norms on Euclidean space and their induced matrix
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norms as there should be no confusion in their use.2 Moreover, we denote the

functional ρ(·) to denote the spectral radius of a matrix. We require the following

assumption to ensure non-explosive sample paths.

Assumption A.

A1. The spectral radius ρ(Λ) < 1.

A2. The spectral radius ρ(Hx) < 1.

A3. There exists an r > 0 such that E‖εt‖rm <∞.

Theorem 3.1. Suppose that Assumption A holds, then transformed perturbation

sample paths are non explosive almost surely, i.e. the paths (zt)t∈N and (xt)t∈N satisfy

lim inf
t→∞

‖zt‖ <∞ and lim inf
t→∞

‖xt‖ <∞ a.s.

Theorem 3.1 shows that transformed perturbation virtually never su�ers from

the explosive problems that occur with regular perturbation. To ensure the existence

of a stationary ergodic solution we adopt the following additional assumption.

Assumption B.

B1. There exists an integer t ≥ 1 such that the matrix

[
H t−1

x Hz · · · HxHz Hz

]
has rank nx.

B2. The matrix Hx is invertible.

B3. The innovation εt is absolutely continuous with respect to the Lebesque mea-

sure on Rnz with strict positive density on the whole space Rnz .

2All matrix norms on �nite dimensional Euclidean space are equivalent, so that our statements
will work for any chosen norm.
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Theorem 3.2. Suppose that Assumptions A and B hold. Then there exists a unique

stationary ergodic solution (x∗t , z
∗
t )t≥0 to the dynamic system de�ned in (2) and (4),

featuring the transformed perturbation policy function given in (7). Additionally,

(i) the solution has fading memory, i.e. it is geometrically ergodic and absolutely

regular.

(ii) the solution has �nite moments µr := E‖x∗t‖r and νrm = E‖z∗t‖rm;

(iii) laws of large numbers apply to the sample paths, that is, almost surely

lim
T→∞

1

T

T∑
t=1

‖xt‖r = µr and lim
T→∞

1

T

T∑
t=1

‖zt‖rm = νrm.

Theorem 3.2 has many implications. Result (i) implies that the transformed per-

turbation system is stable and allows for the application of laws of large numbers and

central limit theorems. One such example is that absolute regularity implies strong

mixing, which is a key assumption for a set of central limit theorems, see for instance

Merlevede and Peligrad (2000). Result (ii) ensures the existence of unconditional

moments of order r if the innovations have moments of order rm. In practice it can

be hard to �nd theoretical formulations for these moments. Result (iii) establishes

that any sample path, irrelevant of the starting point, results in sample moments

that converge to the theoretical ones. One can therefore approximate µr arbitrarily

accurate by simulating a long enough �nite path.

These results have important rami�cations for the validity of simulation-based

statistical inference and estimation methods. Estimation methods such as meth-

ods of moments or maximum likelihood are typically infeasible when dealing with

nonlinear solutions for DSGE models. With higher order perturbation methods,

practitioners may then resort to simulation-based methods such as Bayesian meth-

ods, simulated method of moments, simulated likelihood methods or indirect infer-

ence. For each of these methods su�cient regularity conditions for consistency and
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asymptotic normality are well known. These various sets of regularity conditions all

require at least one of the results of Theorem 3.2. For instance, suppose one want to

use bayesian inference as in Kim (2002), using a limited information likelihood func-

tion based on unconditional moment conditions. To set up the analysis he requires,

�rstly, the existence of those unconditional moments (result (ii)) while the asymp-

totic theory demands results (i) and (iii). Similarly, the existence of moments is

required to de�ne a simulated method of moments estimator θ̂SMM

T,S as in Du�e and

Singleton (1990) or Lee and Ingram (1991). Moreover, to obtain consistency and

asymptotic normality they require that the approximated system is geometrically

ergodic, see for instance assumption 2 in Du�e and Singleton (1990) and section two

of Lee and Ingram (1991). Next, let θ̂SML

T,S be a simulated quasi maximum likelihood

estimator as de�ned in Smith Jr (1993). Then again, the results of our Theorem 3.2

are required as assumption 1 in Smith Jr (1993) immediately demands that simu-

lated paths are stationary ergodic, while assumption 4 requires proper unconditional

moments to exist. Finally, the same follows for an indirect inference estimator θ̂IIT,S

as de�ned in Smith Jr (1993) or Gourieroux et al. (1993). The same assumptions

in Smith Jr (1993) are required, while assumption A2 in Gourieroux et al. (1993)

requires a uniform law of large numbers, which typically demands at least ergodicity.

Corollary. Theorem 3.2 shows that transformed perturbation solutions exhibit im-

portant properties which regular perturbation does not. Speci�cally, the stationarity,

ergodicity, bounded moments, and fading memory properties of transformed pertur-

bation solutions allow the user to obtain the consistency and/or asymptotic normal-

ity of the estimators θ̂SMMT,S , θ̂SMLT,S and θ̂IIT,S, under standard regularity conditions as

detailed in Du�e and Singleton (1990), Lee and Ingram (1991), Smith Jr (1993)

and Gourieroux et al. (1993). Additionally, it allows the user to similar asymptotic

properties for bayesian methods based on unconditional moments as in Kim (2002).
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4 The plug-in τ̂

In this section we motivate our choice for τ̂ , the plug in value of τ , as de�ned in

(8). As mentioned in Section 2, its value in�uences the shape of the transformed

perturbation policy function and thus has an e�ect on sample path behaviour in

the resulting transformed perturbation dynamic system. We want to ensure two

important properties for this dynamic system. Firstly, we want sample paths to be

stable and non locally explosive. In Section 4.1 we argue that this requires relatively

large values of τ . Secondly, nonlinear dynamics must be preserved, which needs τ

to take on somewhat small values, see Section 4.2. Together these two conditions

specify a rather narrow collection of available functions, resulting in (8), as derived

in Section 4.3.

4.1 Ensuring stability

The transformed perturbation method guarantees stable and nonexplosive paths

regardless of the choice of τ , as proved in Section 3. However, picking τ very small

can create locally explosive dynamics. Locally explosive dynamics originate when

the jacobian of the policy function with respect to x has expected spectral radius

greater than one on a large enough subset of X . A spectral radius greater than

one implies that the policy function expands on some subspace, which can create

multiple �xed points, as happens with the regular perturbation policy function.

Sample paths then typically move around one �xed point, until a large innovation

pushes it to another �xed point after which the path moves around the new one.

These jumps can locally look very similar to explosive sample paths, even though

the dynamic system is stable. We illustrate this e�ect with the following example
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updating equation

xt+1 = 0.3xt + zt+1 + 2x3t e
−0.5x2t ,(9)

where the (zt)t∈N are updated as in (2). Note that this is a univariate example of

(7) with τ = 0.5. Figure 2a plots the expected value E(xt+1 | xt) as a function of xt.

This function has large intervals on which its absolute derivative exceeds one, which
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Figure 2: The expected policy function (left panel) and an example sample path (right panel)

for the updating equations de�ned in (9) and (2).

has resulted in a total of �ve �xed points. The smallest one at -2.35, the middle one

at zero and the largest one at 2.35 are attractors while the other two are repellers.

A sample path produced while using (9) will jump between the neighbourhoods

around the three attractors. Figure 2b plots an example sample paths that �rst

spends some time around -2.35, then jumps to a neighbourhood of the origin and

then quickly moves on to the area around the largest attractor. Notice the similarity

with an explosive sample path, even though this path will almost surely eventually

come down to the lowest attractor again.

We wish to keep the spectral value of the Jacobian of the transformed perturba-

tion policy function typically below one (in expectation) to avoid locally explosive
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behaviour. This Jacobian is of the form

J = Hx + P (x, z)Φτ (x̃),

where P is a m'th order multivariate polynomial function. We can only control the

nonlinear part of the derivative, i.e. the second part of the summation, with our

choice for τ . Any norm of P goes to in�nity as ‖x‖ goes to in�nity. Hence, if we

choose τ too small, then P (x, z)Φτ (x̃) creates large areas on the state space with

expected spectral radius greater than one. If we were only concerned with ensuring

stability, then ideally we would choose τ = ∞, so that Assumption A2 ensures

that ρ(J) < 1 on the entire state space. Doing so, however, cancels all nonlinear

e�ects making the transformed perturbation method equal to linear perturbation.

Therefore we conclude that we would like to make τ as large as possible, while

preserving as much nonlinear dynamics as possible close to the steady state. If

we choose τ unequal to in�nity, then its size generally must depend on ρ(Hx). The

closer ρ(Hx) is to one, the less room remains available for P (x, z)Φτ (x̃). Accordingly

we have to impose that τ goes to in�nity as ρ(Hx) gets closer to one. Therefore we

must �nd a function f : [0, 1)→ [0,∞) such that τ = f(ρ(Hx)) and

lim
ρ(Hx)→1

f(ρ(Hx)) =∞.(10)

4.2 Preserving nonlinear dynamics

We have concluded that we want to choose large τ to avoid locally explosive be-

haviour, but not so large as to destroy relevant nonlinear dynamics. In this section

we formalise what we mean with preserving nonlinear dynamics. To do so we ex-

pand xt back in time, mimic the proof of Theorem 3.1 and use Proposition A.1 to

17



�nd the upper bound

‖xt‖ ≤ c̃+
∞∑
k=0

‖Hx‖k‖Hz‖‖z∗t−k‖+ c

m∑
j=0

∞∑
k=0

‖Hx‖kτ−j/2
(
m−j∑
i=0

‖z∗t−k‖i
)
.

for some constants c, c̃ > 0. The �rst, respective second, summation here is the

approximate total e�ect over time of the linear, respective nonlinear, terms in (7).

The �rst summation

∞∑
k=0

‖Hx‖k‖Hz‖‖z∗t−k‖,

is the familiar term that arises in autoregressive processes.3 The autoregressive part

Hxx of the policy function (7) introduces memory into the system, so that past

innovations ‖zt−k‖ in�uence the value of ‖xt‖. The strength of the memory depends

on the size of ρ(Hx). If it is close to zero, then memory fades away fast and past

innovations are of little weight to xt. As ρ(Hx) increases, past innovations matter

more up to the limit case ρ(Hx) = 1, where memory does not fade anymore, at

which point every past innovation is equally important and the sum diverges for all

matrix norms.

We would like the impact of past innovations through the nonlinear terms of

the transformed perturbation policy function to be of the same magnitude as those

of the linear e�ect, so that both the linear and nonlinear dynamics are present in

the solution paths. Speci�cally, we want the rate at which τ goes to in�nity to be

restricted such that the series

∞∑
k=0

‖Hx‖kτ−j/2
(
m−j∑
i=0

‖z∗t−k‖i
)

diverge for all 0 ≤ j ≤ m as ρ(Hx) → 1. If this were not the case, then they

3Note that it converges by Assumption A, Proposition 2.5.1 of Straumann (2005) and Proposi-
tion 4.3 of Krengel (1985).
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would converge and thus we would restrict some nonlinear e�ects so much that the

linear e�ect is in�nitely stronger as ρ(Hx) increases. To ease notation we de�ne

δt =
∑m−j

i=0 ‖z∗t‖i. The argument above then amounts to the following desired result:

for all j ∈ N we have

lim
ρ(Hx)→1

∞∑
k=0

ρ(Hx)kτ−j/2δt−k = lim
ρ(Hx)→1

f(ρ(Hx))−j/2
∞∑
k=0

ρ(Hx)kδt−k =∞.(11)

The following Lemma 4.1 then implies that (11) is equivalent to

lim
ρ(Hx)→1

f(ρ(Hx))j/2(1− ρ(Hx)) = 0.(12)

Lemma 4.1. Suppose that E‖εt‖m < ∞. Then the following converges to a �nite

and nonzero value:

lim
ρ(Hx)→1

(1− ρ(Hx))
∞∑
k=0

ρ(Hx)kδt−k.

4.3 Choice for τ̂

We need a function f : (0, 1)→ (0,∞) that satis�es both (10) and (12). To simplify

these equations further we de�ne f̃ : [0,∞)→ [0,∞) as f̃( 1
1−ρ(Hx))

) = f(ρ(Hx)) and

substitute y = 1
1−ρ(Hx))

. Equations (10) and (12) then can be rewritten as

lim
y→∞

f̃(y) =∞ and lim
y→∞

f̃(y)j/2

y
= 0.

These two equations together specify a fairly small collection of functions. To �nd

the function that diverges fastest we consider families of familiar functions in de-

creasing order of rate of divergence. Note that any exponential, polynomial or radical

function diverges to in�nity too fast to satisfy the rightmost limit for all j ∈ N. The

next natural candidate in line for the rate of divergence is the logarithmic function,
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which leads to the speci�cation

f(ρ(Hx)) = log

(
1

1− ρ(Hx))

)
.

This is the function we used for our choice in (8).

The constant τ should also depend on the size of the range on which the state

variables take place. Suppose that we increase the scale of our dynamic system

while keeping the exact same dynamics. Then τ should become smaller as regions

farther away from the steady-state are visited more often. Therefore we include

the c parameter to make sure that as we make the scale larger, τ becomes smaller.

Many of the other elements involved in the perturbation updating function, such as

σ or Hi for i ≥ 2 seem to be omitted in calculating the plug in τ . However, these

elements have an e�ect on the range of the state variables and thus are implicitly

included via c.

5 Accuracy

In this section we evaluate the accuracy of the transformed perturbation solution.

In Section 5.1 we prove theoretic results on both global and local accuracy. We

show that the optimal transformed perturbation solution is always at least as ac-

curate as regular perturbation and demonstrate that transformed polynomials, like

regular polynomials can perfectly approximate the real policy function h as we let

the approximation order m go to in�nity. Moreover, we prove that transformed

perturbation is locally as accurate as standard perturbation and present common

situations in which transformed perturbation globally outperforms regular perturba-

tion. Section 5.2 discusses two DSGE models from Den Haan and De Wind (2012)

and compares all discussed solution methods according to several criteria such as

path errors, euler errors and produced moments. It shows that transformed pertur-
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bation outperforms pruning and regular perturbation for both the optimal τ ∗ and

the plug in τ̂ .

5.1 Theoretical results

In order to analyse the accuracy of our approximation method we de�ne the point-

wise approximation errors attained by the perturbation and transformed perturba-

tion methods respectively, at (x, z, σ) ∈ X × Z × R≥0 as

Ep(x, z, σ) := ‖hp(x, z, σ)− h(x, z, σ)‖,

Etp(x, z, σ) := ‖htp(x, z, σ)− h(x, z, σ)‖.

We begin by showing that the function approximation by transformed perturbation

converges on analytic domains, like the standard perturbation approximation. This

result implies that we can arbitrarily accurately approximate the true policy function

by increasing the order m.

Proposition 5.1. Suppose that the true policy function is analytic over a compact

set S ⊆ X × Z × R≥0. Then m-order transformed perturbation errors vanish uni-

formly over S for any sequence τ → 0 as the perturbation order diverges to in�nity.

That is,

lim
m→∞,τ→0

sup
(x,z,σ)∈S

E
(m)
tp (x, z, σ) := ‖h(m)

tp (x, z, σ)− h(x, z, σ)‖ = 0.

Next, we prove that transformed perturbation is always able to outperform reg-

ular perturbation.

Proposition 5.2. For any policy function h there exists a τ ≥ 0 such that Etp(x, z, σ) ≤

Ep(x, z, σ) for all possible values of x, z and σ.

Note that this result makes no assumptions on the true policy function and
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implies that using the optimal τ ∗ for the transformation guarantees an equal or

better approximation compared to regular perturbation. This result is true even

when regular perturbation sample paths do not seem to explode. Therefore, it

may be argued that transformed perturbation should always be used over regular

perturbation.

We proceed by studying the accuracy properties of the transformed perturba-

tion method for arbitrary values of the constant τ . First we show that locally the

transformed polynomials inherit the excellent approximation qualities of perturba-

tion methods. This follows because the exponential function Φτ (x̃) is asymptotically

quadratic as ‖x‖ goes to zero. A consequence of the proposition below is that, close

to the steady state, errors between the transformed perturbation paths and the true

paths are of the same magnitude as the errors between the regular perturbation

paths and the true paths for m = 2, 3.

Proposition 5.3. Suppose that x0 = 0nx and z0 = 0nz . Let (xt)t≥0 be the path

generated by the true policy function (4) and let (x̂t)t≥0 be the path generated by the

m'th order transformed perturbation policy function, both initialised at these same

starting values. Then it holds for all t ∈ N that

‖x̂t − xt‖ =


O (σ3) if m = 2

O (σ4) if m > 2

as σ → 0.

Transformed perturbation has the same local properties as regular perturbation,

but on a global scale it is almost guaranteed to perform much better. The next

result shows that transformed perturbation is in�nitely more accurate in the tails

than regular perturbation. Therefore our method produces accurate approximations

both locally and globally.
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Proposition 5.4. Suppose that the true policy function is well behaved and almost

surely produces nonexplosive sample paths. If the perturbation order m ≥ 2, then

for almost surely all possible values of z and σ we have that

lim
‖x‖→∞

Etp(x, z, σ)

Ep(x, z, σ)
= 0.

5.2 Applications

In this section, we revisit two DSGE models used in Den Haan and De Wind (2012)

to compare transformed perturbation to pruning and other solution methods. Be-

low, we will show that the transformed perturbation approximation signi�cantly

outperforms both the regular perturbation approximation and the pruning method.

For the purpose of comparing the performance of di�erent solution methods, the

true policy function will be approximated to an arbitrary level of accuracy on a

relevant set using techniques such as projection methods or value function iteration,

see Aruoba et al. (2006). We can then compare the solution methods by analysing

sample paths between the �true" solutions and the approximated ones. The length

of our time paths are T = 104, with a burn in period of 500 observations.

We compare sample paths according to three di�erent criteria. The �rst one

measures the distance between a period t variable generated by an approximation

versus the one generated by the true policy function as in Den Haan and De Wind

(2012). Let xt be a generalisation of a univariate variable according to the true

solution, let ẋt be generated according to some approximation and let M be the

mean of the path (xt)
T
t=1. Then we de�ne the error at time t as

min

{∣∣∣∣ ẋt − xtxt

∣∣∣∣ , ∣∣∣∣ ẋt − xtM

∣∣∣∣} ,
that is, we take the minimum of the absolute percentage error and the absolute error

23



relative to the mean of the true solution path. The minimum between these two is

chosen because the percentage error in�ates the error when xt is close to zero, while

the error scaled by the mean overestimates inaccuracy when variables take on values

far away from their mean.

The second criteria that we use are Euler errors. The equilibrium condition (1) is

typically unequal to zero when we use an approximation method instead of the true

solution. Its size is an indication for accuracy, because the size of the di�erence in

supremum norm on a compact set between an approximate policy function and the

true solution is of the same magnitude as the Euler error, see Theorem 3.3 of Santos

(2000). We report the non normalized sample Euler error. We don't normalize our

Euler errors, because we are only interested in relative accuracy.

Finally we compare sample moments generated by the approximated paths versus

the true ones. DSGE models are often estimated using moment based approaches

such as the (simulated) method of moments or indirect inference. Therefore the

accuracy of the moments will have an impact on the estimated parameters. Let xt

and yt be univariate variables, then we compare the sample moments

µk(xt) =
1

T

T∑
t=1

xkt

and cross moments µ(xity
j
t ).

5.2.1 The Deaton model

The �rst model we consider is a partial equilibrium model in which agents face

idiosyncratic income risk. The original model was proposed in Deaton Angus (1991),

however, we use the modi�ed penalty function that was introduced in Den Haan and

De Wind (2012) to compare pruned and non-pruned perturbation solution methods.

The model is therefore identical to Model 3 in Den Haan and De Wind (2012). The
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optimization problem is given by

max
(ct,at)∞t=1

E1

∞∑
t=1

βt−1
(
c1−γt − 1

1− γ
− P (at)

)
,

s.t.

ct + at/(1 + r) = at−1 + ezt ,

zt = z̄ + εt,

εt ∼ N(0, σ2),

a0 given,

where ct stands for the agents consumption, ezt represents exogenous and random

income and r is the exogenous interest rate. The variable at denotes the amount

of chosen assets in period t, we assume that a0 is given. The amount of assets is

allowed to be negative, so the agent can borrow. The function P is given by

P (at) =
η1
η0
e−η0at + η2at.

Note that it is decreasing in its argument and thus penalizes utility when the agent

decides to borrow. We write xt = at−1 + ezt for the amount of cash on hand at time

t. Note that this DSGE model has a univariate state equation in xt, because the zt

are independent.

Our calibration is copied from the original paper and given in Table 1. The value

r γ z̄ σ β η0 η1 η2
0.03 3 0.4 0.1 0.9 20 0.04464 0.00352

Table 1: The choice of parameter values for the Deaton model.

of β is low to make agents impatient and ensure that borrowing constraints have

su�cient e�ect on the decision process. The value of σ is chosen large, because the

model describes single agent/household behavior and thus works with idiosyncratic

uncertainty. The values of η1 and η2 are chosen such that at has the same moments
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as in Deaton Angus (1991). We refer to Den Haan and De Wind (2012) for a more

detailed discussion on the model and choice of parameters.

We use a second order perturbation approximation to obtain

xt+1 − xss = 0.01 + 0.42(xt − xss) + 1.02(xt − xss)2 + ezt+1

and values for τ given by τ ∗ = 1.08 and τ̂ = 0.98. The innovations in the model are

strictly positive, so we cannot use Assumption B to ensure stability of transformed

perturbation sample paths. Instead we use Assumption C, which is easy to check

in univariate cases. Note that all parameters are positive and the autoregressive

parameter is smaller than one. It immediately follows that the transformed pertur-

bation approximation is able to reach any su�ciently large point and thus we have

an open interval of reachable points and Assumption C1 is satis�ed. All the other

Assumptions in A and C are easily checked. Therefore we obtain all the desired

stability results from Theorem 3.2.

To compare the approximate policy functions we plot in Figure 3a the expected

value of next-period's cash on hand E(xt+1 | xt), because this directly reveals

whether the dynamics are stable or not. The true policy function has a single

stable �xed point (an attractor). In contrast, the second order perturbation policy

function has a second �xed point (a repeller). This second intersection with the

y = x line is located above the true steady state. Sample paths produced by the

second order perturbation function eventually reach the state space to the right

of the repeller, after which they are expected to diverge, and eventually do with

probability one. Since the second �xed point is relatively close to the true steady

state this also frequently occurs in our �nite time simulated paths, making second

order perturbation infeasible. The transformed perturbation policy function solves

the problem as it negates the second order monomial fast enough to ensure that no

second �xed-point is created. The optimal and plug in values for τ , while irrelevant
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Figure 3: Expected policy functions for xt in the Deaton model generated by a second

order perturbation approximation and the transformed perturbation method for both the

optimal τ∗ and the plug in τ̂ . Figure 3a shows the actual policy functions, Figure 3b shows

the pointwise errors with respect to a close approximation of the true policy function and

Figure 3c zooms in on the relevant part of the state space to compare the previous methods

to pruning.

for stability, therefore create a policy function that generates very similar dynamics

as the true policy function. Figure 3c displays the same functions as in Figure 3a,

but focussed on the relevant part of the state space when using stable methods.

In addition we have added a scatter plot of the pruning sample path. From this

plot it becomes immediately apparent that pruning does not deliver a policy func-

tion on the original state space, as we have di�erent updates for the same starting

27



value. Moreover, it can be seen that pruning on average is less accurate than both

the transformed perturbation methods. The policy function corresponding to the

optimal τ ∗ can be seen to be slightly more accurate than the plug in τ̂ . This is

extra apparent when we look at the pointwise errors between the true path and the

perturbation respective transformed perturbation approximations in Figure 3b.

It's not surprising that the resulting transformed perturbation sample paths are

very close to the true ones. The sample path accuracy results are summarised in

Table 2, where we report maximum and mean absolute path errors in addition

to Euler errors. Here we see that second order perturbation explodes, so sample

Path errors Euler errors
at ct

max mean max mean
Perturbation 1 132 38.4 10.7 1.06 3.11
Perturbation 2 ∞ ∞ ∞ ∞ -
Transformed 2 optimal 53.0 6.54 3.29 0.31 0.28

Transformed 2 plug-in 54.4 6.50 3.40 0.31 0.29
Pruning 2 123 13.6 6.42 0.69 0.51

Table 2: Absolute sample path and Euler errors for the Deaton model. Path errors are

compared to a projection approximation and given in percentages. Euler errors are also

scaled by 102. The results are based on a time path of 104 observation with a burn in time

of 500 observations.

paths created by this approximation are unusable. Therefore we need a stable

approximation approach. The transformed perturbation approximation performs

better than pruning and much better than linear approximation on all criteria.

Note that the maximum and mean path errors for the transformed perturbation are

about half of those for the pruning approximation, in both the asset and consumption

paths.

The di�erence in accuracy is extra apparent when we look at the cumulative

path errors, see Figure 4, which are signi�cantly smaller for our method. This

accumulation of inaccuracy then leads to larger errors when we compute some of

the sample moments, which can be found in Table 3.
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Figure 4: Cumulative paths errors for the number of assets in the left panel and consumption

in the right panel. Errors are calculated by a close approximation of the true policy function.

Sample moments
µ(at) µ2(at) µ3(at) µ4(at) µ(ct) µ2(ct) µ3(ct) µ4(ct)

True 0.083 0.016 0.004 0.001 1.502 2.264 3.423 5.192

Perturbation 1 58.1 62.2 84.2 89.7 0.09 0.11 0.03 0.16

Transformed 2 optimal 0.70 7.58 7.83 6.79 0.00 0.03 0.09 0.17
Transformed 2 plug-in 0.43 6.89 6.25 3.77 0.00 0.03 0.09 0.17
Pruning 2 5.88 23.50 31.66 38.27 0.01 0.06 0.20 0.40

Cross moments
µ(atct) µ(atc

2
t ) µ(atc

3
t ) µ(a2t ct) µ(a2t c

2
t ) µ(a3t ct)

True 0.13 0.20 0.31 0.03 0.04 0.006

Perturbation 1 57.3 56.5 55.7 63.0 63.6 84.1
Transformed 2 optimal 0.96 1.18 1.35 7.45 7.30 7.65
Transformed 2 plug-in 0.69 0.90 1.07 6.73 6.57 6.03

Pruning 2 6.30 6.58 6.75 23.2 22.8 31.1

Table 3: Sample and cross moments up to fourth order for the Deaton model. The true

row presents the moments given by a close approximation. The other moments are given

as absolute percentage di�erences from the true ones. The results are based on a time path

of 104 observation with a burn in time of 500 observations.

Here we see that �rst order perturbation performs a lot worse than the other

methods on the asset moments, which was to be expected, as it missed the nonlinear

e�ects. Transformed perturbation is more accurate than pruning for all moments,

especially for ones concerning the assets where we see improvement up to a factor

ten. Surprising is that the plug-in τ̂ transformed policy function performs better on

the moments than the optimal τ ∗ transformed policy function.
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Performance in a parameter estimation scenario

When researchers are interested in estimating parameters, it is important to ensure

that the employed approximation method is accurate across a wide range of pa-

rameter values. It is thus important to investigate what happens to the accuracy

of our approximation methods when we move the parameters away from an initial

calibrated parameter value. Figure 5 plots the expected Euler errors for varying val-

ues of β and γ. Note that, as described in Section 2.3, for the optimal transformed

perturbation method we have kept the initial calculated optimal τ ∗, while the plug

in transformed perturbation method updates τ̂ along with the parameters. We see

in Figure 5 that the expected Euler errors for both the transformed perturbation

methods are smaller than those for the pruning method on a signi�cant area around

the calibration. This implies that each transformed perturbation method outper-

forms the pruning method in an estimation setting when the initial parameters have

been set su�ciently close to the true ones. The two transformed perturbation meth-

ods have such similar Euler errors, because the plug-inτ̂ does not vary much as we

change the parameters and stays especially close to the optimal τ ∗.
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Figure 5: Expected Euler errors for the Deaton model on an area around the calibrated

parameter values. Figure 5a portrays the results when changing β and Figure 5b when

changing γ.
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5.2.2 The Matching model

The second model we examine is a matching model also featured in Den Haan and

De Wind (2012). The model has two types of agents, workers and entrepreneurs,

both of which are members of the same representative household. The household

earns wages and �rm pro�ts from its members at the end of each period. These are

then distributed among the members for consumption.

Firms : The main decision is made by a representative entrepreneur who tries to

maximise future discounted �rm pro�ts. The maximisation problem is given by

max
(nt,vt)∞t=1

E1

∞∑
t=1

βt−1
(
ct
c1

)−γ
((ezt − w)nt−1 − ψvt) ,

s.t.

nt = (1− ρn)nt−1 + pf,tvt,

zt =


zt−1 with probability ρz

−zt−1 with probability 1− ρz
,

n0, z1 given.

Here ct is the consumption level of the household, nt is the number of employees at

the end of period t, vt is the number of vacancies set by the �rm, pf,t is the number

of matches per vacancy, w is the wage rate, ψ is the cost of placing a vacancy

and ρn is the exogenous separation rate. Each worker produces ezt , which means

that the pro�t per worker is given by ezt − w. The random variable zt can only

take on two values, which we denote −ζ and +ζ. This is an arti�cial simpli�cation

introduced in Den Haan and De Wind (2012) enabling us to easily analyse the

approximation methods to the model in a graphical manner. Alternatively, one can

use a standard autoregressive updating function for zt. Finally, the �rm takes the

number of matches pf,t as given.
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Consumers : The household consumes the whole income earned by its members.

That is,

ct = wnt−1 + (ezt − w)nt−1 − ψvt = eztnt−1 − ψvt.

Matching market : The number of hires per vacancy is determined on a matching

market where the �rms and 1 − nt−1 unemployed workers search for a match. The

total number of matches is given by

mt = φ0(1− nt−1)φv1−φt .

This implies that the total number of matches per vacancy is given by

pf,t =
mt

vt
= φ0

(
1− nt−1

vt

)φ
.

The model requires some restrictions on the parameters to ensure that a solution in

the interior of the domain exists and thus that the policy function is smooth. Our

choice of parameter values is again taken from Den Haan and De Wind (2012) and

given in Table 4. See the original paper for a detailed discussion on the matching

model, the parameter values and further references.

γ w ψ ρn ρz ζ σ β φ0 φ
4.5 0.973 0.4026 0.0368 0.975 0.0224 0.007 0.99 0.7 0.5

Table 4: The choice of parameter values for the Matching model.

A second order perturbation approximation of the state equation delivers

nt+1 − nss = 0.95 + 0.46(nt − nss) + 0.52zt+1

− 2.92(nt − nss)2 − 6.57(nt − nss)zt+1 − 1.01z2t+1
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and we �nd

τ ∗ = 26.1 and τ̂ = 13.6.

The updating equation for the exogenous state variable zt is not of the type (2).

One can extend the theory in a rather straightforward way to also apply to general

Markov chain updating equations for the exogenous state variables, but we chose not

to do this to keep the assumptions and proofs relatively clear and concise. Note that

if we would have chosen a standard autoregressive process of order one for (zt)t≥0,

then Assumptions A and B can easily seen to be satis�ed as we have a univariate

system. Therefore, in that case, we would have obtained all the desired stability

results from Theorem 3.2.

The control variables can be explicitly calculated once the path for the single

state variable, the number of employees, is known. We therefore compare the ap-

proximation methods according to their best performance: either calculating the

control variables directly, or approximating the observation equation. We compare

the transformed perturbation and regular perturbation approximation in Figure 6.

Figure 6a shows the policy functions for the number of employees in the two possible

scenarios for zt. The case zt = −ζ is the crucial one here, as the regular perturba-

tion approximation stays below the y = x line and therefore does not intersect it.

This implies that the second order perturbation sample paths for nt tend to minus

in�nity if zt is equal to −ζ for many consecutive times. The case zt = +ζ goes to

minus in�nity for values of nt much smaller than portrayed in the �gure. Hence,

once nt has become small enough it has no chance of recovering and thus sample

paths diverge to minus in�nity with probability one. As in the previous example,

the explosive behaviour is encountered in our �nite time sample paths with a high

frequency, rendering regular perturbation infeasible. The transformed perturbation

policy function avoids the problem described for both values of τ as they both scale
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Figure 6: Policy functions for nt in the matching model generated by a second order pertur-

bation approximation and the transformed perturbation method. Figure 6a shows the actual

policy functions, Figure 6b shows the pointwise errors with respect to a close approximation

of the true policy function and Figure 3c zooms in on the relevant part of the state space

to compare the previous methods to pruning.

down the second order monomial fast enough to ensure that the policy functions

cross the y = x line at a unique point, like the true policy function. The dynamics

of our approximated systems therefore closely mimic the true dynamics for nt. Fig-

ure 6c again zooms in on the relevant part of the state space when using the stable

solution methods and includes a scatter plot of the pruning sample path. Again,

we are reminded that pruning does not provide a policy function on the original
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state space. Moreover, pruning provides less accurate updates, especially for large

value of nt in the case zt = +ζ and small values in the case zt = −ζ. The policy

function corresponding to the optimal τ ∗ is clearly the most accurate method in our

comparison, which is extra clear when we look at the pointwise errors between the

true path and the perturbation respective transformed perturbation approximations

in Figure 6b.

The graphical results are strengthened by studying the sample path errors in

Table 5. Here we see that the transformed perturbation approximation is both in

Path errors Euler errors
nt ct

max mean max mean
Perturbation 1 3.20 1.89 3.53 1.80 0.26
Perturbation 2 ∞ ∞ ∞ ∞ -
Transformed 2 optimal 0.26 0.07 0.64 0.32 0.08
Transformed 2 plug-in 0.71 0.25 0.97 0.23 0.04

Pruning 2 1.79 0.95 1.76 0.95 0.10

Table 5: Absolute sample path and Euler errors for the matching model. Path errors are

compared to a close approximation of the truth and given in percentages. Euler errors are

also scaled by 102. The results are based on a time path of 104 observation with a burn in

time of 500 observations.

extreme cases and on average performing better than both perturbation and pruning.

The improvement compared to perturbation is not surprising given the nonlinearity

of the plots in Figure 6. This time the optimal transformed perturbation method

performs better than the plug in approximation. It is also more than a factor ten

times better on average than pruning for the number of employees and more than a

factor three times better on average than pruning on consumption paths.

We emphasize the gravity of the di�erence in accuracy by plotting the cumulative

path errors in Figure 7. This total di�erence in accuracy then again leads to a large

di�erence in sample moment accuracy, which is summarised in Table 6.

35



0 2000 4000 6000 8000 10000
t

0

50

100

150

200

C
um

ul
at

iv
e 

er
ro

r
pert 1
pruning 2
trans 2 opt
trans 2 plug

(a)

0 2000 4000 6000 8000 10000
t

0

50

100

150

200

C
um

ul
at

iv
e 

er
ro

r

pert 1
pruning 2
trans 2 opt
trans 2 plug

(b)

Figure 7: Cumulative paths errors for the number of employees in the left panel and con-

sumption in the right panel. Errors are calculated by a close approximation of the true

policy function.

Sample moments
µ(nt) µ2(nt) µ3(nt) µ4(nt) µ(ct) µ2(ct) µ3(ct) µ4(ct)

True 0.93 0.87 0.81 0.76 0.91 0.83 0.76 0.70

Perturbation 1 1.90 3.77 5.62 7.43 1.81 3.57 5.27 6.91
Transformed 2 optimal 0.03 0.05 0.07 0.10 0.02 0.04 0.05 0.06

Transformed 2 plug-in 0.23 0.45 0.65 0.83 0.20 0.39 0.55 0.70
Pruning 2 0.68 1.30 1.88 2.40 0.65 1.23 1.73 2.16

Cross moments
µ(ntct) µ(ntc

2
t ) µ(ntc

3
t ) µ(n2t ct) µ(n2t c

2
t ) µ(n3t ct)

True 0.85 0.78 0.71 0.79 0.73 0.74

Perturbation 1 3.67 5.39 7.04 5.50 7.17 7.30
Transformed 2 optimal 0.04 0.06 0.07 0.07 0.08 0.09

Transformed 2 plug-in 0.42 0.59 0.73 0.62 0.77 0.80
Pruning 2 1.27 1.78 2.22 1.83 2.28 2.34

Table 6: Sample and cross moments up to fourth order for the matching model. The true

row presents the moments given by a close approximation. The other moments are given

as absolute percentage di�erences from the true ones. The results are based on a time path

of 104 observation with a burn in time of 500 observations.

Like before we see that the transformed perturbation method, especially the op-

timal one, is best at mimicking the dynamics of the sample paths. Note that both

the optimal and transformed perturbation method outperform pruning on all mo-

ments, especially for the higher order moments, where pruning loses relatively more

accuracy by ignoring higher order e�ects. Optimal transformed perturbation out-

performs pruning up to a factor forty for the fourth order moments of consumption,
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while plug-in transformed perturbation outperforms pruning by a factor three for

most moments.

Performance in a parameter estimation scenario

Once more we investigate the accuracy of the discussed methods in an area around

the calibrated parameter values. Figure 8 plots the expected Euler errors for varying

values of β and γ while keeping the steady state values for the number of employees,

the number of matches per unemployed worker and the number of matches per

vacancy equal. As in the previous example we �x the optimal τ ∗ at the initial derived

value at the calibrated parameters, while the plug in τ̂ is updated along with the

parameters. Figure 8 shows us that the expected Euler errors for each transformed

perturbation method is smaller than those for the pruning method on a relevant area

around the calibration. Therefore, we again conclude that an estimation procedure

using the transformed perturbation method improves accuracy over using either

linear perturbation or pruning when the starting values are decently close to the

true parameters.
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Figure 8: Expected Euler errors for the matching model on an area around the calibrated

parameter values. Figure 8a portrays the results when changing β and Figure 8b when

changing γ while keeping the steady state values for the number of employees, the number

of matches per unemployed worker and the number of matches per vacancy equal.
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6 Conclusion

In this paper we introduced a new transformed perturbation solution method for

DSGE models that is as fast as standard perturbation methods and can be easily im-

plemented in existing software packages like Dynare. Similarly to pruning methods,

the transformed perturbation delivers solutions paths that are stable, stationary, er-

godic, have bounded moments, and are geometrically ergodic. This allows the user

to obtain the consistency and/or asymptotic normality of simulation-based param-

eter estimation methods such as Bayesian methods, simulated method of moments,

simulated likelihood methods or indirect inference. Unlike pruning, the new solu-

tion method does not need to sacri�ce accuracy around the steady state by ignoring

higher order e�ects. We have demonstrated a signi�cant improvement in sample

path accuracy for two nonlinear example models from Den Haan and De Wind

(2012). This improvement in accuracy results in more precise simulated sample

moments and Euler errors. Additionally transformed perturbation delivers a pol-

icy function that outperforms even the best simulations from pruning, as can be

seen in �gures 3c and 6c. Altogether this should make transformed perturbation

an attractive approximation method from both a practical and theoretical point of

view.

A Appendix

A.1 Proofs of Section 3

To analyse the dynamics of the transformed perturbation system we split the per-

turbation updating equation (7) into the sum of its linear part H0 +Hxx +Hzz and
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its nonlinear part

D(x, z) :=

(
m∑
i=2

Hi

⊗
i

v

)
Φτ (x̃).(13)

Our results are based on the observation that the transformed perturbation policy

function (7) is asymptotically equal to its linear part as ‖x‖ → ∞. This follows

because an exponential function decays at greater speed than a polynomial, see

Figure 1, and thus for any 0 ≤ i ≤ m we have

lim
‖x‖→∞

(⊗
i

x

)
Φτ (x̃) = 0ni

x
.

We therefore study the transformed perturbation method as its asymptotic linear

process plus a deviation (13). We start by deriving a uniform upper bound on the

size of the deviation over X .

Proposition A.1. There exists a constant c ≥ 0 that does not depend on τ , such

that

sup
x∈X
‖D(x, z)‖ ≤ c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z‖i
)
.

Proof. In this proof we speci�cally choose ‖ · ‖ equal to the Euclidean matrix

norm ‖ · ‖e. This matrix norm is a crossnorm, i.e. it is multiplicative on Kronecker

products, see for example Lancaster and Farahat (1972). This implies, together with
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sub-additivity and sub-multiplicativity, that

‖D(x, z)‖ ≤
m∑
i=2

‖Hi‖‖v‖iΦτ (x̃)

≤
(

max
2≤i≤m

‖Hi‖
) m∑

i=2

i∑
j=0

‖x‖j‖z‖i−jΦτ (x̃)

≤
(

max
2≤i≤m

‖Hi‖
) m∑

j=0

‖x‖jΦτ (x̃)

(
m−j∑
i=0

‖z‖i
)
.

Next, note that

‖x‖jΦτ (x̃) ≤ ‖x‖je−τ‖x‖2e/max{xss},

which is a univariate function in ‖x‖e, since we chose ‖ · ‖ equal to ‖ · ‖e. It is

straightforward to verify that this function is maximised at ‖x‖2e = jmax{xss}
2τ

and

thus there exists a constant c̃ that does not depend on τ or x such that

sup
x∈X
‖x‖jΦτ (x̃) ≤ c̃τ−j/2 for all 0 ≤ j ≤ m.

�

A.1.1 Proof of Theorem 3.1

Assumptions A1 and A3 imply by Theorem 3.1 in Bougerol (1993) and the monotone

convergence theorem that there exists a unique stationary ergodic solution (z∗t )t∈N to

(2) with E‖z∗t‖rm < ∞. Moreover, ‖zt − z∗t‖ converges exponentially almost surely

to zero as t→∞, which implies that

lim inf
t→∞

‖zt‖ <∞ a.s.
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and that, for every realisation, there exists a constant d > 0 such that ‖zt‖i ≤

‖z∗t‖i + d for all t ≥ 0 and 0 ≤ i ≤ m.

Next, we repeatedly expand the term Hxx in (7) to obtain the following expres-

sion for the transformed perturbation path:

xt = H t
xx0 +

t−1∑
k=0

Hk
x (H0 +Hzzt−k +D(xt−1−k, zt−k)) .

We now use Proposition A.1 to bound the deviation terms and then use the bounds

on the path (zt)t≥0 to obtain

‖xt‖ − ‖Hx‖t‖x0‖

≤
t−1∑
k=0

‖Hx‖k
(
‖H0‖+ ‖Hz‖‖zt−k‖+ c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖zt−k‖i
))

≤
t−1∑
k=0

‖Hx‖k
(
‖H0‖+ ‖Hz‖(‖z∗t−k‖+ d) + c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z∗t−k‖i + d

))
(14)

Next we arti�cially extend (z∗t )t≥0 to a stationary ergodic sequence (z∗t )t∈Z and then

note that (14) is bounded by

Yt :=
∞∑
k=0

‖Hx‖k
(
‖H0‖+ ‖Hz‖(‖z∗t−k‖+ d) + c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z∗t−k‖i + d

))
.

The term within the brackets is stationary ergodic by Krengel's lemma, see Proposi-

tion 4.3 in Krengel (1985), and the fact that (z∗t )t∈Z is stationary ergodic. Moreover

it has a �nite log moment since E‖z∗t‖rm <∞. Next, we can choose a matrix norm

such that ‖Hx‖ < 1 by Assumption A2. Therefore, the in�nite sum converges al-

most surely by Proposition 2.5.1 of Straumann (2005). Again, the sequence (Yt)t∈Z

is stationary ergodic by Krengel's lemma and thus there almost surely exists an
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M > 0 such that {Yt ≤M} occurs for in�nitely many t > 0. We conclude that

lim inf
t→∞

||xt|| ≤M <∞.

A.1.2 Proof of Theorem 3.2

We use a two step approach to prove Theorem 3.2. We start by demonstrating the

result for a less tractable Assumption C. Afterwards we will show that Assumption

B implies Assumption C.

De�ne a point x∗ ∈ X to be reachable if for every open set x∗ ∈ O ⊆ X and

starting value x0 ∈ X there exists a t ∈ N such that P(xt ∈ O) > 0. A subset of X

is called reachable if all the points in it are reachable.

Assumption C.

C1. X has an open reachable subset.

C2. The innovation εt is absolutely continuous with respect to the Lebesque mea-

sure on E with strictly positive density on a connected subset of E .

Proposition A.2. Suppose that Assumption C holds, then all the results from The-

orem 3.2 follow.

Proof. The approach is di�erent to before as we will now study the processes

(zt)t≥0 and (xt)t≥0 as a joint Markov process. This section makes extensive use of

Meyn and Tweedie (1993). Suppose at �rst that (zt,xt)t≥0 is a ψ-irreducible and

aperiodic T -chain. See sections 4.2, 5.4 and 6.2 of Meyn and Tweedie (1993) for

a detailed discussion on these properties. Then it is su�cient to check the drift

condition for t-step transitions, which is described in condition (iii) of Theorem 1

in Saïdi and Zakoian (2006), adapted from Theorem 19.1.3 in Meyn and Tweedie

(1993) and originally suggested by Tjøstheim (1990). The condition states that we
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need to �nd a non-negative function V : X × Z → R and a t ∈ N such that

E (V (xt, zt) | x0 = x, z0 = z)

V (x, z)
(15)

is �nite on a compact set C ⊆ X ×Z and smaller than one outside of C. Note that

the set C actually has to be petite, but all compact sets are petite in a ψ-irreducible

T -chain, Theorem 6.2.5 in Meyn and Tweedie (1993). It then follows by Theorem 1

in Saïdi and Zakoian (2006) that there exists a unique stationary ergodic solution

(x∗t , z
∗
t )t≥0 that is geometrically ergodic and has the required moments, given our

choice for V . Absolute regularity follows from Theorem 1 in Davydov (1974) and

the laws of large numbers follow from Theorem 17.0.1 in Meyn and Tweedie (1993).

The reason that we resort to t-step, instead of 1-step, transitions is that Assumption

A1 and Assumption A2 do not guarantee that there exists a matrix norm such that

both ‖Λ‖ < 1 and ‖Hx‖ < 1. Assumption A1 can ensure that there exists a matrix

norm such that ‖Λ‖ < 1, but then Assumption A2 only provides the existence of a

t ∈ N such that ‖H t
x‖ < 1 by Gelfand's formula.

For the choice of our test function V we adopt the ideas of Cline and Pu (1999)

and use

V (x, z) = 1 + (‖x‖+ ω‖z‖m)r ,

where we will choose ω > 0 su�ciently large later on. If r ≤ 1, then (‖x‖ +

ω‖z‖m)r ≤ ‖x‖r + ωr‖z‖rm. We prove the theorem for the case r ≥ 1, as it is the

harder case. In that case Minkowski's inequality provides the upper bound

E((‖xt‖+ ω‖zt‖m)r | x0, z0) ≤
(
E(‖xt‖r | x0, z0)

1
r + ωE(‖zt‖rm | x0, z0)

1
r

)r
.

We start by bounding the second expectation. Note that the expectations E‖σηεs‖rm
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are bounded for all s ∈ {1, . . . , t} by Assumption A3. Expanding backwards and

working out brackets then gives

E (‖zt‖rm | z0) ≤ E
((
‖Λtz0‖+ ‖Λt−1ε1‖+ · · · ‖εt‖

)rm | z0

)
≤ ‖Λ‖trm‖z0‖rm + o (‖z0‖rm) as ‖z0‖ → ∞.

(16)

Next, by Proposition A.1 there exist constants c1, c2 > 0 such that ‖D(xs−1, zs)‖ <

c1+c2(1+‖zs‖m) for all s ∈ {1, . . . , t}. It then follows again by backwards expansion

and the fact that ‖zs‖ ≤ 1 + ‖zs‖m that there exist constants d1, d2 > 0 such that

E (‖xt‖r | x0, z0) ≤ E

(∥∥∥∥∥H t
x
x0 +

t−1∑
k=0

Hk
x

(H0 +Hzzt−k +D(xt−1−k, zt−k))

∥∥∥∥∥
r

| x0, z0

)

≤ E

((
‖H t

x
‖‖x0‖+ d1 + d2

t−1∑
k=0

‖zt−k‖m
)r

| x0, z0

)

≤
(
‖H t

x
‖‖x0‖+O (‖z0‖m)

)r
as ‖z0‖ → ∞.

The last inequality follows by repeated application of Minkowski's inequality in

combination with the same calculations as in (16). Filling everything in then upper

bounds (15) by

1 + (‖H t
x
‖‖x‖+ (‖Λ‖tm + ω−1O (1))ω‖z‖m + o (‖z‖m))

r

1 + (‖x‖+ ω‖z‖m)r
as ‖z‖ → ∞.

Recall that ‖H t
x‖ < 1 and ‖Λ‖ < 1 and choose ω large enough such that ‖Λ‖tm +

ω−1O(1) < 1 as ‖z‖ → ∞. Then we can make the fraction smaller than one if

we choose ‖x‖, ‖z‖ > M for a su�ciently large M . Let C = {(x, z) ∈ X × Z |

‖x‖, ‖z‖ ≤M}, then (15) is bounded over C and smaller than one outside of C.

It remains to be proven that (zt,xt)t≥0 is a ψ-irreducible and aperiodic T -chain,

which follows from the results of sections 6.0 - 1 of Meyn and Tweedie (1993). We

have, similarly to Proposition 6.1.2 and 6.1.3, that Assumption C2 ensures that the
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Markov chain is strong Feller. It then follows by Proposition 6.1.5 and Assumption

C1 that the Markov chain is ψ-irreducible. Finally, we conclude that (xt)t≥0 is an

aperiodic T -chain by Lemma 6.1.4 and part (iii) of Theorem 6.0.1. �

Proposition A.3. Assumption B implies Assumption C.

Proof. It is clear that Assumption B3 implies Assumption C2, so it remains

to prove Assumption B also implies Assumption C1. We will prove a stronger

statement: Fix any x∗ ∈ X then that point is reachable. Let t be the smallest

integer such that assumption B1 holds. The approach will be to show that we can

�nd values for z1, . . . , zt that bring xt arbitrarily close to x∗. It then follows by

Assumption B3 that we have positive probability of xt being arbitrarily close to x∗.

To �nd the values for the exogenous state variables, we start by expanding xt

back in time as

xt =
t−1∑
k=0

Hk
xH0 +H t

xx0

+

[
H t−1

x Hz · · · HxHz Hz

] [
z
′
1 z

′
2 · · · z

′
t

]′
+

t−1∑
k=0

Hk
xD(xt−1−k, zt−k).

Assumption B1 ensures that we can select nx linearly independent columns from

the matrix

[
H t−1

x Hz · · · HxHz Hz

]
, which we denote a1, . . . , anx . Let A =[

a1 . . . anx

]
and let δ =

[
δ1 . . . δnx

]′
be the vector consisting of the univari-

ate stochastic variables inside

[
z
′
1 z

′
2 · · · z

′
t

]′
that correspond to the columns

a1, . . . , anx . Then, by setting the random variables corresponding to the other
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columns equal to zero, we get

xt =
t−1∑
k=0

Hk
xH0 +H t

xx0 + Aδ +
t−1∑
k=0

Hk
xD(xt−1−k, zt−k).(17)

Suppose all the deviations are zero, then we immediately obtain that we need to

choose

δ = A−1

(
x∗ −

t−1∑
k=0

Hk
xH0 −H t

xx0

)
.(18)

Generally, the deviations are nonzero, so that the choice (18) does not guarantee

that xt is close to x∗. In fact we would obtain

xt = x∗ +
t−1∑
k=0

Hk
xD(xt−1−k, zt−k).(19)

The idea is then as follows. We show that sample paths can reach arbitrarily large

values, and then take such a large value to be our starting point x0. We then show

that as the starting point gets larger our choice for δ will get larger according to (18)

and the whole path from x0 to xt will be arbitrarily large. Since deviations converge

to zero away from the steady state we conclude that we can get xt arbitrarily close

to x∗.

Formally, the deviations in (17) are nonlinear, which together with Assumption

B2 and the fact that A is invertible means that we can for any starting point x0

reach a point xt ∈ X such that H t
xxt =

∑nx

i=1 λiai has all λi ∈ R arbitrarily large.

Therefore we can assume the same for our starting point x0, that is, for all d > 0

we can choose x0 such that H t
xx0 =

∑nx

i=1 λiai with |λi| > d for all 1 ≤ i ≤ nx.

It immediately follows from (18) that each |δi| goes to in�nity linearly in d as we

increase d.

Next, we show that increasing d ensures that each ‖xt−j‖ for 0 < j < t becomes
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arbitrarily large. Let A(j) and δ(j) be the sub-matrix respective sub-vector of A and

δ such that for partially expanding xt we have

xt =

j−1∑
k=0

Hk
xH0 +Hj

xxt−j + A(j)δ(j) +

j−1∑
k=0

Hk
xD(xt−1−k, zt−k).

Note that A(j) and δ(j) are nonempty since we chose t as small as possible. Com-

bining this with (19) gives

Hj
xxt−j = x∗ −

j−1∑
k=0

Hk
xH0 − A(j)δ(j) +

t−1∑
k=j

Hk
xD(xt−1−k, zt−k).

It then follows, since ‖xt−j‖ ≥ ‖Hj
x‖−1‖Hj

xxt−j‖, that we get

‖xt−j‖ ≥ ‖Hj
x‖−1

(∥∥A(j)δ(j)
∥∥− ‖x∗‖ − ∥∥∥∥∥

j−1∑
k=0

Hk
xH0

∥∥∥∥∥−
∥∥∥∥∥
t−1∑
k=j

Hk
xD(xt−1−k, zt−k)

∥∥∥∥∥
)
.

(20)

The remaining part of the proof is a recursive argument. We start at j = t − 1, in

which case (20) gives

‖x1‖ ≥ d1
(∥∥A(t−1)δ(t−1)

∥∥− ‖D(x0, z1)‖
)

+ d2.

This goes to in�nity linearly in d as we increase d, as the �rst norm increases linearly

with d while

lim
d→∞

D(x0, z1) = 0,

because the deviation is exponentially fast decreasing in its �rst argument and in-

creasing at only a polynomial rate in its second argument. Next, since ‖x1‖ goes to
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in�nity linearly in d, it follows by a similar argument

‖x2‖ ≥ d2
(∥∥A(t−2)δ(t−2)

∥∥− ‖D(x1, z2) +HxD(x0, z1)‖
)

+ d3

goes to in�nity linearly in d as we increase d. Iterate until xt−1 to conclude that

each ‖xt−j‖ for 0 < j ≤ t increases linearly with d to in�nity and thus we can always

choose d large enough to ensure that the deviations in (19) are arbitrarily close to

zero. �

A.2 Proofs of Section 4

A.2.1 Proof of Lemma 4.1

We can rewrite

∞∑
k=0

ρ(Hx)kδt−k = (1− ρ(Hx))
∞∑
k=0

δt−k

∞∑
j=k

ρ(Hx)j = (1− ρ(Hx))
∞∑
j=0

ρ(Hx)j
j∑

k=0

δt−k.

Next, (δt)t∈Z is a stationary ergodic sequence by Krengel's lemma, Proposition 4.3

in Krengel (1985), and Eδt−k < ∞ by the assumption that E‖εt‖m < ∞ and part

(ii) of Theorem 3.2. Therefore a law of large numbers holds and thus

lim
ρ(Hx)→1

(1− ρ(Hx))
∞∑
k=0

ρ(Hx)kδt−k = lim
ρ(Hx)→1

(1− ρ(Hx))2
∞∑
j=0

ρ(Hx)j
j∑

k=0

δt−k

= lim
ρ(Hx)→1

(1− ρ(Hx))2
∞∑
j=0

ρ(Hx)j(j + 1)Eδt−k

= Eδ0.
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A.3 Proofs of Section 5

A.3.1 Proof of Proposition 5.1

Note that

‖h(m)
tp (x, z, σ)− h(x, z, σ)‖ ≤ ‖h(m)

tp (x, z, σ)− h(m)
p (x, z, σ)‖+ ‖h(m)

p (x, z, σ)− h(x, z, σ)‖.

Now,

lim
m→∞

sup
(x,z,σ)∈S

‖h(m)
tp (x, z, σ)− h(m)

p (x, z, σ)‖ = 0,

because S is compact and τ → 0 as m→∞ and

lim
m→∞

sup
(x,z,σ)∈S

‖h(m)
p (x, z, σ)− h(x, z, σ)‖ = 0,

by the assumptions that the true policy function is analytic over a compact set S

and the Weierstrass M-test.

A.3.2 Proof of Proposition 5.2

This result follows immediately by noticing that setting τ = 0 makes the trans-

formed polynomials equal to the regular polynomials. Therefore we can always �nd

a τ for which transformed perturbation performs equally or better than regular

perturbation.

A.3.3 Proof of Proposition 5.3

Let (x̄t)t≥0 be the path generated by the m'th order perturbation policy function,

also initialised at the origin. Additionally, let vt = (xt−1, zt) and v̄t = (x̄t−1, zt).

Throughout this proof we let ‖ · ‖ be the in�nity norm, or maximum norm.

It follows from the exogenous variable updating function in (2) and the fact that

49



z0 = 0nz that

‖zt‖ ≤ ‖Λ‖‖zt−1‖+ σ‖ηεt‖ = ‖Λ‖‖zt−1‖+O(σ) = ‖Λ‖t‖z0‖+O(σ) = O(σ), ∀t ∈ N.

Next, we proof by induction that ‖x̄t‖ = O(σ) for all t ∈ N. It is true for t = 1,

since x0 = 0nx and thus

‖x̄1‖ ≤ ‖H0‖+ ‖Hz‖‖z1‖+
m∑
i=2

‖Hi‖‖v̄1‖i

= O(σ) +O(σ) +
m∑
i=2

‖Hi‖‖z1‖i = O(σ),

where we used that ‖z1‖ = O(σ) by the previous derivation and ‖H0‖ = O(σ) by

the de�nition of H0. Similarly, if ‖x̄t−1‖ = O(σ), then

‖x̄t‖ ≤ ‖H0‖+ ‖Hx‖‖x̄t−1‖+ ‖Hz‖‖zt‖+
m∑
i=2

‖Hi‖‖v̄t‖i = O(σ).

We proceed by showing via induction that ‖x̄t − xt‖ = O(σm+1) and ‖xt‖ = O(σ)

for all t ∈ N. This is true for t = 1, since by the reverse triangle inequality and the

properties of a Taylor approximation we have that

|‖x̄1‖ − ‖x1‖| ≤ ‖x̄1 − x1‖ = ‖hp(v1, σ)− h(v1, σ)‖

= O
(
‖(v1, σ)‖m+1

)
= O

(
‖(z1, σ)‖m+1

)
= O

(
σm+1

)
.

If the statement hold for t− 1, then likewise

|‖x̄t‖ − ‖xt‖| ≤ ‖x̄t − xt‖ = ‖hp(v̄t, σ)− h(vt, σ)‖

≤ ‖hp(v̄t, σ)− hp(vt, σ)‖+ ‖hp(vt, σ)− h(vt, σ)‖

The second term is of O (σm+1) by the same argument as before. The �rst term
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requires a bit more work

‖hp(v̄t, σ)− hp(vt, σ)‖ ≤ ‖Hx‖‖x̄t−1 − xt−1‖+
m∑
i=2

‖Hi‖

∥∥∥∥∥⊗
i

v̄t −
⊗
i

vt

∥∥∥∥∥ ,
which is O (σm+1) since

∥∥∥∥∥⊗
i

v̄t −
⊗
i

vt

∥∥∥∥∥ ≤ i‖v̄t − vt‖max{‖v̄t‖, ‖vt‖}i−1

= i‖x̄t−1 − xt−1‖‖(v̄t,vt)‖i−1 = O
(
σm+1

)
.

The next step is to show that ‖x̄t − x̂t‖ = O
(
σmin{m+1,4}) and ‖x̂t‖ = O(σ) for all

t ∈ N. Since x0 = 0nx we have ‖x̄1 = x̂1‖. Let v̂t = (x̂t−1, zt) and suppose the

statement holds for t− 1, then similarly as before we have

|‖x̄t‖ − ‖x̂t‖| ≤ ‖x̄t − x̂t‖ ≤ ‖Hx‖‖x̄t−1 − x̂t−1‖

+
m∑
i=2

‖Hi‖

∥∥∥∥∥⊗
i

v̄t−1 −
⊗
i

v̂t−1

∥∥∥∥∥+
m∑
i=2

‖Hi‖‖v̂t−1‖i−1
∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥
= O

(
σmin{m+1,4})+O

(
σmin{m+1,4})+O

(
σ2
) ∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥ .
Note that

∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥ =
∥∥∥1− e−τ‖˜̂xt−1‖2e

∥∥∥ = O(‖x̂t−1‖2) = O
(
σ2
)
,

so that the result follows. The proposition is now proved by putting everything

together:

‖x̂t − xt‖ ≤ ‖x̂t − x̄t‖+ ‖x̄t − xt‖ = O
(
σmin{m+1,4})+O

(
σm+1

)
= O

(
σmin{m+1,4}) .
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A.3.4 Proof of Proposition 5.4

By well-behaved we assume that the function h makes the dynamic system de�ned

in (2) and (4) ψ-irreducible. Note that this follows under many di�erent circum-

stances, such as monotonicity, as the innovations have full support by Assumption

B3. The assumption that sample paths are nonexplosive implies that the Markov

chain cannot be transient. Theorem 8.4.2 in Meyn and Tweedie (1993) then imposes

that

lim sup
‖x‖→∞

E(‖h(x, z1, σ)‖ | z0 = z)

‖x‖
≤ 1,(21)

where we used the test function V (x, z) = ‖x‖ + ‖z‖. It follows that the true and

transformed perturbation policy functions both go to in�nity at a linear rate in ‖x‖,

while the regular perturbation policy function explodes to in�nity at a polynomial

rate larger than one. Therefore we immediately have that the di�erence between the

true and the perturbed policy functions must become in�nitely many times larger

than the errors between the true and the transformed perturbation policy functions

as ‖x‖ goes to in�nity.
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