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Abstract

We develop a general framework for measuring biases in expectation forma-
tion. The method is based on the insight that biases can be inferred from the re-
sponse of forecast errors to past news. Empirically, biases are measured by flexibly
estimating the impulse response function of forecast errors. The framework does
not require precise knowledge of the true data-generating process, and it nests all
major existing models of expectations. Monte Carlo simulations show that the
method is able to detect biases in empirically relevant settings. We illustrate the
methodology using data on inflation forecasts. Our framework can guide future
models of expectations.
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1 Introduction

There is ample evidence that subjective expectations deviate from simple forms of ra-
tional expectations.1 However, there is little agreement on how subjective expectations
are actually formed. The lack of consensus has led to a proliferation of models, some of
them taking very different views on expectation formation. For instance, much research
inmacroeconomics has focused onmodels featuring underreaction to new information.2

At the same time, many prominent models in financial economics exhibit overreaction.3

Even some of the empirical evidence seems conflicting, with some findings supporting
underreaction, and others more consistent with overreaction.4

In this paper we propose a general framework for measuring biases in expectation
formation. Our proposed method has several attractive features. First, the method does
not require precise knowledge of the true data-generating process. Second, the frame-
work is able to capture rich forms of bias such as overreaction to recent news and un-
derreaction to news that occurred far in the past. Finally, our method is straightforward
to apply empirically. The method can be used whenever both expectations and realized
values are observed, and the time series dimension of the dataset is large enough.

The basic insight is that biases can be inferred from the autocorrelation structure of
forecast errors. To be concrete, consider an analyst who is forecasting future inflation.
For some reason, inflation in the current quarter is higher than was expected by the ana-
lyst. If the analyst reacts to new information optimally, the forecast error in the current
quarter should not be predictive of future forecast errors. However, suppose that the
analyst does not follow macroeconomic developments very carefully and tends to un-
derreact to news. Since inflation is persistent, a positive forecast error today implies that
the forecast error next quarter is likely to again be positive. As a result, underreaction
leads to positively autocorrelated forecast errors. In contrast, if the analyst overreacts to
1 For surveys, see Pesaran and Weale (2006, Section 5) and Manski (2018). Coibion, Gorodnichenko,
and Kamdar (2018) provide another recent overview, focusing on inflation expectations. We use the
adjective “simple” because even if agents are rational and have full information, their forecasts may
differ from the true conditional expectations (e.g., if they have asymmetric loss functions, see Patton
and Timmermann (2007) and references therein).

2 Examples include sticky information (Mankiw and Reis, 2002), rational inattention (Sims, 2003), im-
perfect information (e.g., Woodford, 2003), and sparsity-based models of limited attention (Gabaix,
2017b, 2018).

3 Examples include diagnostic expectations (Gennaioli and Shleifer, 2010; Bordalo, Gennaioli, and
Shleifer, 2018), extrapolative expectations (e.g., Cutler, Poterba, and Summers, 1990b; DeLong,
Shleifer, Summers, and Waldmann, 1990; Barberis, Greenwood, Jin, and Shleifer, 2015), and over-
confidence (e.g., Daniel, Hirshleifer, and Subrahmanyam, 1998; Odean, 1998).

4 A striking example is given by De Bondt and Thaler (1990) and Abarbanell and Bernard (1992). These
papers provide evidence suggestive of both overreaction (De Bondt and Thaler) and underreaction
(Abarbanell and Bernard) for the case of stock market analysts. See also Bouchaud, Krüger, Landier,
and Thesmar (2018).
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the higher-than-expected inflation, inflation in the next quarter will on average be lower
than anticipated. With overreaction, forecast errors tend to be negatively autocorrelated.

We take this logic to its natural conclusion by representing biases in expectation
formation as an impulse response function (IRF) of forecast errors. The IRF of forecast
errors yields a set of bias coefficients which provide a natural measure of under- or
overreaction to news at various lags. If expectations react to news in an unbiased way,
a shock to the forecast errors should die out immediately. If the shock does not die out
immediately, expectations are biased. Since we do not impose any structure on the bias
coefficients, the method is able to capture rich forms of bias. Empirically, we use local
projections (Jordá, 2005) to estimate the IRF of forecast errors without imposing strong
parametric assumptions.

The estimated bias coefficients could have multiple economic interpretations. Non-
zero bias coefficients only provide evidence of statistical bias. For example, the inflation
analyst may underreact to news about inflation because of informational frictions, psy-
chological biases, or career concerns. Additional structure is necessary to distinguish
between these competing explanations. Nevertheless, if we choose a particular model
of expectations and postulate a process for the variable being forecast, it is straightfor-
ward to derive the predicted bias coefficients. Comparing the estimated bias coefficients
to their theoretical counterparts provides a natural test of the model. Bias coefficients
also provide a natural set of moments to target for calibration exercises or structural
estimation.

The existing literature on expectations is voluminous, and we refer to the surveys
cited above for comprehensive reviews. We are certainly not the first to study the auto-
correlation of forecast errors. A key result in the literature on forecast evaluation is that
with optimal one-step-ahead forecasts, the resulting forecast errors are white noise (see,
e.g., Diebold and Lopez, 1996). Our contribution is to show that the structure of auto-
correlation, not just its existence, is informative about how expectations are formed. In
the paper that introduced rational expectations, Muth (1961, pp. 321–322) already con-
sidered a model of biased expectation formation that is a special case of our framework.
More recently, Coibion and Gorodnichenko (2012) proposed an empirical technique
that is related to our method but requires more information about the underlying pro-
cess. We discuss these and other related papers in detail in Section 2.4 after presenting
our framework.

Related issues have also been extensively studied outside economics, most promi-
nently in psychology. The psychology literature has documented a number of biases
in the way people form subjective beliefs. Experimental studies of Bayesian updating
have found that subjects often do not update enough, a finding known as conservatism
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bias (Edwards, 1968). Studies on belief persistence (also known as belief perseverance)
show that people often hold on to incorrect beliefs (see, e.g., Nickerson, 1998, pp. 187–
188). Conservatism bias and belief persistence are both forms of underreaction to new
information. However, other well-known findings in psychology are more consistent
with overreaction. For example, Kahneman and Tversky (1973) find that subjects fail to
incorporate base rates and the reliability of the available information when making pre-
dictions. The famous hot-hand fallacy study of Gilovich, Vallone, and Tversky (1985)
suggests that people overreact to noise.5

The general framework is developed in Section 2. The basic setting is that of an agent
forecasting some variable of interest. We consider expectations that can be represented
as a linear combination of past shocks. The key result is that biases in expectation
formation are given by the IRF of the forecast errors.

In Section 3 we show that the framework is sufficiently flexible to nest all major
existing models of expectations. As a side benefit, the IRF representation of biases pro-
vides a new lens to look at existing models. Section 4 discusses a number of extensions
to the basic framework, including multiple-step-ahead forecasts, heterogeneity in ex-
pectations, measurement error, and multiple shocks and forecasts. We provide a Monte
Carlo study in Section 5 to gauge the statistical power of our procedure and investigate
its performance when some of the assumptions are violated.

In Section 6 we apply the method to data on inflation forecasts from the Survey
of Professional Forecasters. The results show underreaction for up to one year after
the arrival of news. We also discuss how the estimated bias coefficients can be used to
distinguish between different models of expectations. Section 7 concludes by discussing
limitations of the proposed methodology and outlining potential directions for future
work.
5 This interpretation has recently been challenged by Miller and Sanjurjo (2018). Other classic findings
in psychology suggestive of overreaction include illusion of choice (Langer, 1975) and illusory corre-
lation (for a review, see Chapman and Chapman, 1982); Andreassen (1987, p. 490) provides additional
references highlighting the tension between under- and overreaction in sequential settings. Griffin and
Tversky (1992) argue that the conflicting results can be reconciled if people focus too much on how di-
agnostic a piece of information is about a given hypothesis but place too little emphasis on the credence
of that information. See Nisbett and Ross (1980, especially Chapters 5, 7, and 8) for further discussion.
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2 Methodology

2.1 Framework

Wewant to measure biases in how an agent forms expectations6 about some variable xt.
For now, we assume that xt is covariance stationary.7 To simplify notation, we suppose
that any deterministic component in xt has been removed, and the variable is demeaned.

By Wold’s Representation Theorem (e.g., Hamilton, 1994, Proposition 4.1),

xt =
+∞∑
ℓ=0

αℓεt−ℓ (1)

for some coefficients satisfying α0 = 1 and
∑+∞

ℓ=0 α
2
ℓ < +∞, and a white noise series εt

(i.e., E[εt] = 0,E[ε2t ] = σ2, and E[εtεs] = 0 for t ̸= s). For the representation above to
hold, it is only necessary that xt be covariance stationary (i.e., the first two unconditional
moments of xt cannot depend on t). In particular, the specification does not presume
that xt cannot be predicted by other variables.

We observe an agent making one-step ahead forecasts of xt+1.8 Denote these fore-
casts by Ft[xt+1]. We assume that forecasts are generated as

Ft[xt+1] = b0 +
+∞∑
ℓ=0

aℓ+1εt−ℓ. (2)

Here b0 is a time-invariant bias term, while the coefficients aℓ capture how subjective
expectations react to past shocks. If aℓ ≠ αℓ, the subjective reaction to past shocks is
different from the reaction of the true process.

The specification in Eq. (2) is flexible and, as shown in Section 3, nests all commonly
used models of expectations. The flexibility is essential since there is no standard model
of non-rational expectations. In addition, biases may vary across contexts and variables
being forecast. For these reasons, we wish to impose as little structure as possible.

Let Et−1[xt]−Ft−1[xt] be the ex-ante forecast error and denote the ex-post forecast
error by et ≡ xt − Ft−1[xt]. (Whenever we write “forecast error” without additional
6 We use the terms “expectations” and “forecasts” interchangeably. In applications, observed forecasts
need not represent true subjective expectations. In that case, our method will reveal biases of the
observed forecasts.

7 The method can be generalized to non-stationary xt as discussed in Section 2.3. As always, even if xt

is not stationary, it often can be made stationary by means of simple transformations (e.g., taking first
differences or growth rates).

8 It is straightforward to allow for multiple-step-ahead forecasts, as shown in Section 4.1. As discussed
in Section 4.2, when our method is applied to consensus (e.g., average) forecasts, it recovers average
biases in expectation formation.
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qualifications, we mean the “ex-post forecast error.”) We say that expectations are un-
biased if the ex-ante forecast error is zero with probability one. This notion of bias is
a statistical one. As shown in Section 3, there may be multiple reasons for why ex-
pectations may be biased according to this definition, including psychological as well
as non-psychological ones. The definition of bias used in the present paper is more
stringent than what is meant by bias in some of the existing literature (such as whether
forecasts are equal to the realized values on average). Finally, we say that an agent
overreacts to shock εt−ℓ if the perceived response aℓ+1 is larger than the true response
αℓ+1 in absolute value, i.e., |aℓ+1| > |αℓ+1|. Underreaction is defined in the same way,
with the inequality reversed.

With these definitions at hand, we can write the ex-ante forecast error as

Et−1[xt]− Ft−1[xt] = −b0 −
+∞∑
ℓ=1

sgn(αℓ)bℓεt−ℓ, (3)

where bℓ ≡ sgn(αℓ)(aℓ − αℓ), ℓ ≥ 1 stands for the bias coefficients. The sign function,
sgn(αℓ), is equal to −1 if αℓ < 0 and 1 otherwise. For the ex-ante forecast error to be
zero with probability one, all bias coefficients must equal zero. Hence, the bias coeffi-
cients provide a natural measure of bias in expectation formation. The agent overreacts
to shocks that arrived ℓ periods before the forecast is made if bℓ+1 > 0 and underreacts
if bℓ+1 < 0 (if αℓ ̸= 0). For the special case αℓ = 0, any non-zero bias coefficient
indicates overreaction.

Outside experimental settings, we are unlikely to know exactly how xt is generated.
As a result, we typically do not observe either the true conditional expectation or the
shocks. The main insight of the paper is that even then, the bias coefficients can be
inferred from the autocorrelation structure of the ex-post forecast errors. Since xt =

Et−1[xt] + εt, Eq. (3) implies that

xt − Ft−1[xt]︸ ︷︷ ︸
et

= −b0 −
+∞∑
ℓ=1

sgn(αℓ)bℓεt−ℓ + εt. (4)

As a result, estimating the bias coefficients is equivalent to estimating the impulse
response function (IRF) of the ex-post forecast errors. To say whether agents under-
or overreact to new information, it is necessary to have some knowledge of the true
process—namely, the sign of αℓ. For simply testing whether expectations are unbiased,
the sign of αℓ is not needed. As discussed in Section 2.2, the IRF is inferred from the
autocorrelation structure of the observed forecast errors.

Figure 1 illustrates the main idea of the method. The dashed blue line shows the IRF
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Figure 1: Measurement framework illustrated. The dashed blue line shows the true impulse response
function (IRF) of an AR(1) process: xt = ρxt−1 + εt with ρ ∈ (−1, 1). The solid red line plots the IRF
of the process as it may be perceived by the agent (an example). Left panel: Positively autocorrelated
process (ρ > 0). Right panel: Negatively autocorrelated process (ρ < 0).

of the true process for xt (not the forecast errors). The solid red line plots an example
IRF of how the process may be perceived by the agent. As seen in the picture, the
bias coefficients bℓ are equal to the difference between the two IRFs. Our specification
of expectations is flexible enough to allow for both overreaction and underreaction at
different lags. In the case of positively autocorrelated xt (shown in the left panel) we
have overreaction for ℓ ∈ {1, 2} and underreaction for ℓ ≥ 3. Since the forecast errors
are just the difference between the realized value and the forecast, the bias coefficients
are equal to the IRF of forecast errors.

The right panel of Figure 1 makes it clear why we multiply the bias coefficients
by sgn(αℓ). We interpret overreaction to mean that the perceived impulse response is
larger than the true impulse response in absolute value. Multiplying by sgn(αℓ) ensures
that a positive bias coefficient indicates overreaction when the true impulse response is
negative. For ℓ = 3, for example, the perceived impulse response is smaller than the true
impulse response, but larger in absolute value, and we classify this bias as overreaction.
The symmetric opposite case is given by ℓ = 1.
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2.2 Estimation

If we could observe the true shocks (for example, in an experimental setting),9 it would
be straightforward to estimate the bias coefficients by simply regressing forecast errors
et = xt − Ft−1[xt] on past shocks:10

et = α + β0εt + β1εt−1 + · · ·+ βKεt−K + ut. (5)

The estimated bias coefficients are then b̂ℓ = − sgn(αℓ)β̂ℓ for ℓ ≥ 1. As we discuss in
Section 2.4, this approach is followed in several prominent existing studies, sometimes
implicitly.

In many cases of interest, however, we do not have enough information to estimate
the true shocks with much confidence. In these situations we can still recover the bias
coefficients by estimating the IRF of the forecast errors. To estimate the IRF flexibly,
we use the method of local projections (Jordá, 2005). For each s = 0, 1, ..., (L− 1), we
estimate the following regression by least squares:

et+s = α(s) + β
(s)
1 et−1 + β

(s)
2 et−2 + · · ·+ β

(s)
K et−K + ut. (6)

Here, K denotes the number of lagged forecast errors included in the local projection.
The estimated bias coefficients (for ℓ ≥ 1) are then b̂ℓ = − sgn(αℓ)β̂

(ℓ−1)
1 . The time-

invariant bias coefficient b0 is estimated by simply calculating the sample average of
et.

While our preferred estimation method is local projections, it is possible to estimate
the bias coefficients by fitting a high-order moving average model using maximum like-
lihood. In our experience, whenmaximum likelihood estimation works numerically, the
resulting point estimates are very similar; an example is provided in Section 6. How-
ever, there are major benefits to using local projections. First, it is immediate to extend
our method to cases in which we have multiple forecasters or want to pool multiple fore-
9 There is a large experimental literature on expectations that dates back to at least Schmalensee (1976).
Schmalensee cites Fisher (1962) as a source for his experimental design, but the reference by Fisher is
difficult to obtain. A recent experimental study that is particularly relevant for the present paper is Ma,
Landier, and Thesmar (2017). Ma, Landier, and Thesmar estimate an empirical model of expectation
formation; they also show how expectations respond to a unit shock in the model they consider (their
Figure 5).

10 An alternative approach would regress ex-ante forecast errors on past shocks. This approach, however,
imposes stronger informational requirements. In some situations, we may be able to observe some of
the true shocks even if we do not know the true conditional expectationEt−1[xt]. For example, suppose
that εt = ε

(1)
t +ε

(2)
t where ε(1)t and ε(2)t are independent of each other, but we only observe ε(1)t . Then,

we could estimate the regression in Eq. (5) consistently by using ε
(1)
t in place of εt, even though the

ex-ante forecast error is unknown.
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casts (panel data). Second, it is straightforward to adjust the standard errors for various
forms of clustering.11 Finally, maximum likelihood estimation of high-order moving
average models can be numerically challenging.

Intuition. Some readers may still wonder howwe can recover the bias coefficients if
the εt’s in Eq. (4) are unobserved. The bias coefficients are identified from the structure
of autocorrelation in the forecast errors. Suppose that the true process for xt is positively
autocorrelated but the agent underreacts to new information. In that case, the forecast
errors will be positively autocorrelated. With overreaction, in contrast, we would see
negatively autocorrelated forecast errors. Implicitly, the method in Eq. (6) maps the
observed autocorrelations into an implied IRF.

To see this in more detail, suppose that xt follows an AR(1) process xt = ρxt−1+εt,
ρ ∈ (−1, 1), and consider the following two models of expectations, one exhibiting un-
derreaction and one exhibiting overreaction. (The precise descriptions of these models
are given in Section 3.) For the sticky information model proposed byMankiw and Reis
(2002), forecast errors turn out to also follow an AR(1) process (see Section 3.2):

et = λρet−1 + εt.

Here λ ∈ [0, 1] is a parameter measuring the stickiness of expectations. If the process
is positively autocorrelated (ρ > 0), forecast errors are also positively autocorrelated.
The IRF of forecast errors decays geometrically.

Now, in contrast, suppose that expectations are diagnostic (Bordalo, Gennaioli, and
Shleifer, 2018). In this case, forecast errors follow an MA(1) process (see Section 3.3):

et = εt − θρεt−1,

where θ ≥ 0 is a parameter capturing the extent to which agents overweight represen-
tative events. Therefore, forecast errors are negatively correlated at the first lag. At all
other lags, forecast errors are uncorrelated. The IRF of forecast errors is equal to (−θρ)
at the first lag and zero at all subsequent lags.

2.3 Generalization

While the assumptions used to develop our basic framework in Section 2.1 are relatively
weak, they may not be tenable in all applications. In particular, we assumed that xt is
11 For example, when we have multiple forecasters forecasting the same variable, it is essential to account
for the cross-sectional correlation between the forecast errors of individual forecasters, as pointed out
by Keane and Runkle (1990).
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weakly stationary, and that subjective expectations can be written as an infinite sum of
the same Wold shocks that are driving xt.

Thankfully, the framework can be generalized significantly by directly considering
the IRF of the ex-post forecast errors. Economically, the IRF of the forecast errors
represents the difference between the true IRF of xt and the IRF of xt as it is perceived
by the agents. Hence, the IRF of the forecast errors can be naturally interpreted as a
measure of under- or overreaction even when some of the assumptions in Section 2.1
are violated.

Formally, following Jordá (2005, Eq. (1)), define the IRF of some variable yt as the
difference between the two forecasts

IRF(t, s) = Ê[yt+s|εt = 1,Ωt−1]− Ê[yt+s|εt = 0,Ωt−1], s = 0, 1, 2, . . .

where Ê denotes the optimal mean-squared error prediction, and the information set
Ωt−1 equals (yt−1, yt−2, . . . )

⊤.12 We can then write the IRF of forecast errors as

IRF(t, s) =
{
Ê[xt+s|εt = 1]− Ê[xt+s|εt = 0]

}
︸ ︷︷ ︸

actual impulse response

−
{
Ê [Ft+s−1(xt+s)|εt = 1]− Ê [Ft+s−1(xt+s)|εt = 0]

}
︸ ︷︷ ︸

perceived impulse response

.

Hence, as long as Eq. (6) yields consistent estimates of the IRF of forecast errors, the
estimated coefficients are economically meaningful as measures of under- or overreac-
tion.13

This observation can be used to calculate the bias coefficients even when subjective
expectations cannot be written as a linear combination of the same Wold shocks that
are driving xt. Provided that the forecast errors are weakly stationary—a much weaker
assumption than what was considered in Section 2.1—we can write the forecast errors
as

et = −b0 +
+∞∑
ℓ=0

θℓξt−ℓ

for some square-summable coefficients θℓ and a white noise series ξt. Then, we can
define the bias coefficients much in the same way as in Section 2.1. We provide an
example of such a calculation in Appendix A (Section A.6).
12 See also Koop, Pesaran, and Potter (1996, Eq. (3)). Koop, Pesaran and Potter define their general-
ized impulse response function similarly, except that they do not condition on εt = 0 in the second
conditional expectation.

13 See Jordá (2005, pp. 164–165) for a discussion of when local projections recover the true IRF.
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2.4 Related Work

We now discuss how our framework relates to existing work.
The paper that introduced rational expectations (Muth, 1961) already had a section

on “Deviations from Rationality” (p. 321). In that section Muth studied a specification
of expectations (his equation 3.18) that is a special case of our Eq. (2). In the notation
of the present model, Muth allowed the subjective reaction to current news (a1) to differ
from the true reaction of the process (α1). In the present paper we continue in Muth’s
steps by allowing the subjective reaction to news in all periods to be different from the
true reaction of the process. In addition, we show how to estimate the bias coefficients
empirically.14

Broadly speaking, existing empirical approaches to measuring biases in expectation
formation tend to impose assumptions on either (i) the underlying process; or (ii) the way
expectations are formed. In the context of our framework, these assumptions correspond
to Eqs. (1) and (2).15

In category (i), this paper is most closely related to Coibion and Gorodnichenko
(2012). Similarly to our work, they study how forecast errors respond to shocks. While
the authors do not frame their theoretical discussion in terms of bias coefficients, they
derive how the forecast errors react to shocks in a number of models of expectations.
These calculations are the same as those that we perform in our paper. However, in their
empirical work Coibion and Gorodnichenko directly estimate the shocks using methods
that are somewhat specific to their setting (expectations of macroeconomic variables).
Our method has weaker informational requirements and may be more portable across
applications. Nevertheless, when the restrictions made to estimate the shocks are in fact
satisfied, the procedure employed by Coibion and Gorodnichenko typically yields more
precise estimates (see Section 5).16

A prominent literature on expectations of stock returns also falls into category (i).
14 Our specification of expectations in Eq. (2) is equivalent to the specification of “extrapolative models”
in Pesaran andWeale (2006, Eq. (9)) who specify expectations as an infinite linear combination of past
realizations of xt. Applying theWold’s Representation Theorem to past values of xt in the specification
by Pesaran and Weale would yield the same specification that is used in our paper.

15 There is also a large literature that tests rational expectations without imposing such assumptions; see
Pesaran and Weale (2006, Section 5). However, results from these tests are not necessarily straight-
forward to interpret without additional structure, as observed by Coibion and Gorodnichenko (2015,
p. 2651): “[...] when traditional tests identify a rejection of the null hypothesis of FIRE [full information
rational expectations], this rejection is not directly informative about other theories of the expectations
formation process in the absence of a clear theoretical mapping from the theory to the empirical tests.”

16 An advantage of our method is that it uses all of the variation in xt. In contrast, it may only be possible
to measure a fraction of the variation in the true shocks in practice. If only a small fraction of the
variation in the true shocks is used to apply the Coibion-Gorodnichenko procedure, our method may
well lead to more precise estimates.
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At short horizons, classic asset pricing theory predicts that stock prices should follow
martingales, and therefore changes in stock prices should be unpredictable (see, e.g.
Cochrane, 2005, p. 22). Hence, a reasonable first approximation for stock returns is that
xt = εt, where εt is a martingale difference sequence. In that case, the IRF representa-
tion in Eq. (4) implies that

Ft−1[xt] = b0 +
+∞∑
ℓ=1

bℓxt−ℓ.

As a result, the bias coefficients can be recovered by simply regressing current expec-
tations on past stock returns. The procedure is likely to yield more precise estimates
than our method. Extrapolative expectations of stock returns have been documented by
Graham and Harvey (2001), Vissing-Jorgensen (2004), Dominitz and Manski (2011)
and Greenwood and Shleifer (2014), among others, and often interpreted as prima facie
evidence for overreaction. Our framework highlights that stock returns must be uncor-
related over the relevant time horizon for the above specification to yield a meaningful
measure of overreaction. If stock returns are correlated over time, some degree of ex-
trapolation is justified.17

An important example of a category (ii) paper is given by Coibion and Gorod-
nichenko (2015). In that paper, the authors show that regressing forecast errors on
lagged forecast revisions recovers structural parameters in a number of models featuring
underreaction. Importantly, it is not necessary to know the data-generating process to re-
cover parameters governing expectation formation. However, making the link between
empirical estimates and structural parameters requires assumptions about how expec-
tations are formed. If these assumptions are violated, it may not be straightforward to
interpret the empirical estimates, analogously to the stock market case discussed above.
Once again, if the assumptions are in fact satisfied, the method typically yields more
efficient estimates than our procedure.

3 Mapping Existing Models

We now show how existing models of expectations can be mapped into our framework.
The exercise leads to two key takeaways. First, our framework is flexible enough to nest
all major models of expectations as special cases. Second, the implied bias coefficients
provide a useful lens for looking at models of expectations. For instance, some models
17 Cutler, Poterba, and Summers (1990a) document that in a sample of 13 developed countries over 1960–
1988, the autocorrelation of yearly excess aggregate stockmarket returns is roughly 0.02 (s.e. = 0.004).
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that may intuitively be thought to only exhibit underreaction, in fact, imply overreaction
at some lags.

To obtain closed-form expressions, we assume that xt follows a stationary AR(1):

xt = ρxt−1 + εt, ρ ∈ (−1, 1),

where εt is a white noise error term. The simple AR(1) process is a reasonable first
approximation for many economic time series. For more complicated processes, it is
often difficult to obtain the bias coefficients analytically. In those cases, however, it is
straightforward to obtain estimates by simulation.

To streamline the exposition, we discuss four major models of expectations in the
main text (rational expectations, sticky information, diagnostic expectations, and ad-
justment costs). In Appendix A, we show how to obtain bias coefficients for models
of adaptive expectations, noisy information, misperceived law of motion, extrapolative
expectations, learning, and overconfidence.

The results for the models discussed in the current section are summarized in Fig-
ure 2. As shown in the figure, existing models have sharp predictions on the structure
of bias coefficients. The sticky information model by Mankiw and Reis (2002) im-
plies that the bias coefficients are negative and decay geometrically (dashed blue line).
In contrast, diagnostic expectations of Bordalo, Gennaioli, and Shleifer (2018) predict
that the agent overreacts to current news but reacts rationally to all past news (dotted
magenta line). Finally, we plot the bias coefficients for a model in which the agent is
rational but must incur a quadratic adjustment cost to change forecasts from one period
to the next (solid red line). These adjustment costs may be interpreted as representing
career concerns (in an admittedly reduced-form fashion). At the chosen parameter val-
ues, the model with adjustment costs predicts strong underreaction to current news but
mild overreaction to news received further in the past. The result illustrates how the
bias coefficients can be helpful in understanding models of expectations.

3.1 Rational Expectations

We now show how to map four specific models into our framework (see Appendix A
for additional models). Rational expectations in the sense of Muth (1961) are given by

aℓ = ρℓ

bℓ = 0

13
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Figure 2: Bias coefficients for selected models of expectations. Positive bias coefficients indicate overre-
action to news at a particular lag, and negative coefficients indicate underreaction. Unbiased reaction to
news is given by a zero bias coefficient. The underlying process for xt is xt = 0.75xt−1+εt. The models
shown are: (i) sticky information model of Mankiw and Reis (2002) with λ = 0.50; (ii) forecasting with
adjustment costs (Section 3.4) with α = 1.0 and δ = 0.50; and (iii) diagnostic expectations of Bordalo,
Gennaioli, and Shleifer (2018) with θ = 0.50.

Here, the perceived response to a shock, aℓ, is identical to the true response of xt. As a
result, all bias coefficients are zero.

3.2 Sticky Information

Consider the sticky information model of expectations proposed by Mankiw and Reis
(2002); see also Carroll (2003). Each period a fraction (1 − λ) ∈ (0, 1] of agents up-
date their forecast to the full-information rational expectation. The remaining agents
use information obtained in some previous period to form expectations that are ratio-
nal conditional on their information set.18 Given these assumptions, expectations at the
aggregate (or consensus) level follow

Ft[xt+1] = (1− λ)
+∞∑
ℓ=0

λℓ Et−ℓ[xt+1]. (7)

For the AR(1) model, we have that Et−ℓ[xt+1] = ρℓ+1xt−ℓ, and some algebra yields

Ft[xt+1] =
+∞∑
ℓ=0

ρℓ+1(1− λℓ+1)εt−ℓ. (8)

18 Reis (2006, Section 5) provides a microfoundation for the Poisson adjustment process.
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As a result, we find that

aℓ = ρℓ(1− λℓ)

bℓ = − sgn(ρℓ)(λρ)ℓ

As long as expectations do not adjust to news immediately (λ > 0), the sticky informa-
tion model exhibits underreaction at all lags.19

As seen above, the bias coefficients depend on both (i) how people form expecta-
tions; and (ii) the data-generating process. Different processes for xt will imply different
bias coefficients, even if people form expectations in the same way. In the present ex-
ample, the bias coefficients are larger in absolute value if the process is more persistent.
Intuitively, underreaction is more severe when the process is highly persistent.

3.3 Diagnostic Expectations

Suppose that the agent has diagnostic expectations as in Bordalo, Gennaioli, and Shleifer
(2018) and overweights representative events. Bordalo, Gennaioli, and Shleifer (2018,
Proposition 1) show that in this case expectations follow

Ft[xt+1] = Et[xt+1] + θ {Et[xt+1]− Et−1[xt+1]} , θ ≥ 0, (9)

where θ is a parameter capturing the extent to which the agent overweights representa-
tive events. The expression can be rewritten as Ft[xt+1] = Et[xt+1] + ρθεt. Therefore,
diagnostic expectations imply that

aℓ =

ρ(1 + θ) if ℓ = 1

ρℓ if ℓ ≥ 2
and bℓ =

θ|ρ| if ℓ = 1

0 if ℓ ≥ 2

Hence, diagnostic expectations predict overreaction to current news and unbiased reac-
tion to all other news.20

19 Underreaction at all lags with sticky information extends to more general processes. To see this, con-
sider a general xt with a Wold representation as in Eq. (1) and perform the same calculations as for the
AR(1) case. The calculation shows that in the general case bℓ = − sgn(αℓ)λ

ℓαℓ.
20 The prediction is conditional on the underlying process being an AR(1). A distinctive feature of di-
agnostic expectations is that they depend on the structure of the underlying process, i.e., Eq. (9) is
endogenous to the model. In the sticky information model, parameter λ is also likely to be endogenous
to the process.
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3.4 Adjustment Costs

Finally, we assume the agent has rational expectations but faces a cost in adjusting fore-
casts from one period to the next. We interpret the adjustment cost as a stand-in for
reputational costs or career concerns. For example, forecasters who change their fore-
casts by large amounts may be perceived as having lower forecasting ability.

Similarly to Coibion andGorodnichenko (2015, p. 2660), suppose that in each period
t the agent makes a forecast of xt+1. The agent wishes to minimize the mean-squared
error of the prediction but faces a quadratic adjustment cost.21 Denoting the current
value of xt as x and the current forecast by F ′, the Bellman equation of the agent is
given by

V (x, F ) = min
F ′

1

2
E[(ρx+ ε̃− F ′)2] +

α

2
(F ′ − F )2 + δ E[V (ρx+ ε̃, F ′)],

where α ≥ 0 is the weight on the adjustment cost, δ ∈ (0, 1) is a discount factor, and
we have used tildes to denote random variables. The first-order condition is

−(ρx− F ′) + α(F ′ − F ) + δ E[VF (ρx+ ε̃, F ′)] = 0.

The envelope condition is just VF (x, F ) = −α(F ′−F ). Therefore, the optimal forecast
is given by

(F ′)∗ =
ρx+ α(1− δ)F

1 + α(1− δ)
.

If the agent is fully patient (δ = 1) or there is no adjustment cost (α = 0), the forecast
coincides with the true conditional expectation. In the other extreme, if α → +∞, then
it is optimal to never change the forecast.

Defining ϕ ≡ α(1− δ)/[1 + α(1− δ)], the optimal forecasting rule is

Ft[xt+1] = (1− ϕ)ρxt + ϕFt−1[xt].

Performing similar manipulations to those in Appendix A.1, we arrive at

Ft[xt+1] = (1− ϕ)ρ
+∞∑
ℓ=0

[
ϕℓ+1 − ρℓ+1

ϕ− ρ

]
εt−ℓ.

21 The setup is different from a situation in which an agent does not want to deviate from the consen-
sus forecast, leading to game-theoretic considerations. This alternative situation is fully characterized
by Coibion and Gorodnichenko (2012, pp. 126–129) who show—similarly to the model with sticky
information—that the forecast errors follow an AR(1) process, implying geometrically decaying bias
coefficients.

16



Hence, the bias coefficients are equal to

aℓ = (1− ϕ)ρ

[
ϕℓ − ρℓ

ϕ− ρ

]
bℓ = sgn(ρℓ)(aℓ − ρℓ)

A first intuition may be that adjustment costs can only generate underreaction. How-
ever, inspecting the expressions above, it is clear that this is not the case. Indeed, the
bias coefficients for this model in Figure 2 are positive for ℓ ≥ 2 at some parameter
values. Hence, the model with adjustment costs may generate overreaction (to more
distant news).

The example also shows that the first-order autocorrelation of forecast errors can
be misleading as a measure of underreaction. For the present model, the first-order
autocorrelation is equal to

Corr(et, et−1) =
ϕρ[1 + ϕ+ ρ(1− ϕ)]

1 + ρ+ ϕ(1− ρ)[1 + ρ(1− ϕ)]
.

Since ϕ ∈ [0, 1), if xt is positively autocorrelated, the first-order autocorrelation of
forecast errors is always positive. Nevertheless, as already discussed, expectations may
exhibit overreaction. Hence, the first-order autocorrelation can be misleading as a mea-
sure of underreaction. For example, at the parameter values used in Figure 2, the au-
tocorrelation is equal to roughly 0.24, even though expectations overreact to news in
multiple periods. Ignoring potential overreaction in later periods, as is commonly done
in existing empirical work, can lead to incorrect inferences.

4 Extensions

Wenow discuss a number of extensions to the basic framework, includingmultiple-step-
ahead forecasts, heterogeneity, measurement error, and forecasting multiple variables.
Finally, we present an example in which expectations are biased but the implied bias
coefficients are zero. The example illustrates that some types of bias may go undetected
by our method.

4.1 Multiple-Step-Ahead Forecasts

Forecasters commonly make multiple-step-ahead forecasts. For instance, we may ob-
serve an analyst making one-year-ahead inflation forecasts every quarter. It is straight-
forward to modify our methodology to account for such cases.
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Suppose that the agent makes h-step ahead forecasts with h ≥ 1 denoting the fore-
cast horizon. As before, xt is given by Eq. (1), and we assume that the forecasts are
generated as

Ft[xt+h] = b0 +
+∞∑
ℓ=0

aℓ+hεt−ℓ.

Performing the same calculations as in Section 2.1 shows that

xt − Ft−h[xt] = −b0 −
+∞∑
ℓ=h

sgn(αℓ)bℓεt−ℓ +
h−1∑
ℓ=0

αℓεt−ℓ.

Comparing the equation above to Eq. (4), we observe an additional term stemming from
themultiple-step ahead nature of forecasts. Even if subjective expectations react to news
in an unbiased way, the forecast errors are autocorrelated—up to lag (h − 1)—if the
underlying process is autocorrelated at these lags. The result is well known (see, e.g.,
Diebold and Lopez, 1996).

The methodology again boils down to estimating the IRF of the forecast errors. Dif-
ferently from the one-step ahead case, the first (h − 1) impulse responses need to be
discarded. The remaining impulse responses are converted to bias coefficients, with
bℓ+h giving the biased reaction to news that arrived ℓ periods ago.

4.2 Heterogeneity and Aggregation

Existing research has documented that expectations are heterogeneous across individ-
uals (e.g., Manski, 2004, Section 5). Our method can easily be applied to subsamples
of the population. For example, we may estimate the bias coefficients for young and
old forecasters.22 When the method is applied to the whole population, it recovers the
average bias coefficients, as we now show.

Suppose that expectations of agent i are given by

Fit[xt+1] = bi0 +
+∞∑
ℓ=0

ai,ℓ+1εt−ℓ, i = 1, 2, . . . , N.

Denote the consensus (average) forecast by Ft[xt+1] ≡ 1
N

∑
i Fit[xt+1]. Then, the fore-

22 In principle, our method could be used to estimate individual-specific bias coefficients. In practice,
however, that is infeasible because most existing datasets have few time series observations per each
individual.
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cast error of the consensus forecast is equal to

xt − Ft−1[xt] = −b̄0 −
+∞∑
ℓ=1

sgn(αℓ)b̄ℓεt−ℓ + εt,

where biℓ ≡ sgn(αℓ)(aiℓ − αℓ) and b̄ℓ ≡ 1
N

∑
i biℓ. With heterogeneity, the bias coef-

ficients of the consensus forecast reflect the average bias coefficients of the individual
forecasts. Therefore, the estimated bias coefficients are likely to be similar irrespective
of whether consensus or individual forecasts are used. We illustrate this result in our
application to inflation forecasts in Section 6.

4.3 Measurement Error

In practice, we may only be able to measure subjective expectations with some error.
Such error could arise because of imperfect measurement (e.g., survey questions may be
confusing). Measurement error could also be given an economic interpretation if sub-
jective expectations are inherently random. A concrete example of the latter is provided
in Appendix A (Section A.6) that discusses a stylized model of overconfidence.

Measurement error tends to mask any existing predictability of the forecast errors,
biasing the measured bias coefficients to zero. As a result, the empirically estimated bias
coefficients are likely to represent a lower bound on the true bias coefficients. Measure-
ment error is less of an issue in datasets in whichmany individual forecasts are available.
For these datasets, averaging across forecasters reduces measurement error by virtue of
the Law of Large Numbers (assuming that measurement errors across forecasters are
not too dependent).23

In Appendix B.1 we provide explicit formulas for the attenuation bias caused by
measurement error for two models of expectations (sticky information and diagnos-
tic expectations). The attenuation bias can be substantial, underscoring the benefits of
datasets with a large cross-sectional dimension.

While our method is sensitive to measurement error, so are most other existing tech-
niques. For instance, a common test for the optimality of expectations with respect to
some information set estimates

xt = α + β Ft−1[xt] + ut

23 Existing literature has developed techniques for consistently estimating time series models in the pres-
ence of measurement error, see Staudenmayer and Buonaccorsi (2005) and references therein. It may
be possible to combine these techniques with the approach taken in our paper to obtain consistent es-
timates of the bias coefficients in the presence of measurement error. However, pursuing this path is
outside the scope of the present paper.
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and then tests the joint restriction α = 0 and β = 1. The test goes back to at least
Mincer and Zarnowitz (1969, p. 9, who also credit Henri Theil, see p. 5); for a more
detailed discussion, see Diebold and Lopez (1996). Clearly, even if α = 0 and β = 1

in the equation above, if we only observe a noisy version of Ft−1[xt], the estimate of
β will be biased towards zero. For the method of Coibion and Gorodnichenko (2015),
measurement error can be even more pernicious and may even change the estimated
sign, as shown in Appendix B.2.

4.4 Multiple Variables

We now consider how our method extends to the case of multiple variables.
First, we emphasize that the formulation in Section 2 does not presume that xt is

generated by a univariate process, nor that agents are only using past values of xt in
forming their expectations. As long as xt is covariance stationary, it has a Wold repre-
sentation and can be written in the form given in Eq. (1). Hence, the substantive eco-
nomic assumption is that expectations can be written as a linear combination of the same
Wold shocks that are driving xt. These shocks, in turn, may combine information about
multiple economic variables. That being said, the method provided in Section 2 can-
not answer some questions that may be of interest. For instance, if we find that people
underreact to information about inflation, the method cannot say whether people under-
react to news about monetary policy or developments in the labor market. Additional
assumptions are necessary to answer these types of questions, as we now show.

Consider a mean-zero vector stochastic process xt = (x1t, x2t, · · · , xNt)
⊤ that does

not have any deterministic component. If xt is covariance stationary, then the multi-
variate Wold’s Representation Theorem (see, e.g., Hannan, 1970, Theorem 2, p. 158)
implies that the process can be written as

xt =
+∞∑
ℓ=0

Λℓεt−ℓ,

where εt ≡ (ε1t, ε2t, · · · , εNt)
⊤ is vector white noise, and Λℓ’s are (N ×N) matrices.

Without loss of generality, suppose that the agent is forecasting the first M ≥ 1

variables contained in xt, denoted by xft . We assume that the expectations of the agent
can be written as

Ft[xft+1] = b+
+∞∑
ℓ=0

Af
ℓ+1εt−ℓ,

where Af
ℓ ’s are (M ×N) matrices, and b is a (M × 1) vector capturing time-invariant
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bias.
LetΛf

ℓ denote the (M ×N)matrix that is constructed by taking the firstM rows of
Λℓ. We now extend our definition of under- and overreaction from Section 2 as follows.
We say that the agent overreacts to shock εj,t−ℓ when forecasting xit if the ij-th element
of Aℓ+1 is larger than the ij-th element of Λℓ+1 in absolute value; underreaction is de-
fined in a similar way. The key difference from the baseline setting is that with multiple
shocks, the agent may simultaneously overreact to one piece information received in
period t and underrreact to a different piece of information received in that same pe-
riod. We work out a concrete example of such simultaneous under- and overreaction in
Appendix A (Section A.6).

Given the assumption above, the ex-post forecast errors are given by

et = −b−
+∞∑
ℓ=1

(Af
ℓ −Λf

ℓ )εt−ℓ + εt.

This equation generalizes Eq. (4) to the multivariate case. However, in contrast to Sec-
tion 2, we can no longer recover the difference between Af

ℓ and Λf
ℓ by simply estimat-

ing the IRF of the forecast errors. For one thing, the matrix (Af
ℓ −Λf

ℓ ) is of dimension
(M ×N), and so ifM < N , we cannot hope to measure the reaction of the forecast er-
rors to a shock in εjt for a particular j. Even if we assume that the agent is forecasting all
of the relevant variables (M = N ) and proceed to estimate the IRF of the forecast errors,
the estimated coefficients only measure the response of forecast errors to reduced-form
innovations. Economically, the IRF may not be of direct interest. For example, we may
be interested to learn how inflation expectations respond to a monetary policy shock.
To measure this response, as is well known, additional assumptions are necessary.24

4.5 Inefficient Forecasts

While our empirical procedure can capture rich forms of bias, there are some forms of
bias that the method is unable to detect. In other words, there are situations in which
expectations are biased in the sense of Section 2.1, and yet the implied bias coefficients
are zero. In this section we provide one such example: If agents ignore information that
is relevant for forecasting xt, the loss in precision can go undetected by our procedure.

Suppose that xt has the Wold representation in Eq. (1). However, at time t there is
a public signal st that is helpful for forecasting εt+1 with

εt+1 = st + νt+1,

24 For a recent discussion, see Ramey (2016).
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where st and νt+1 are mutually uncorrelated white noise series. Given the existence of
the public signal, the true conditional expectation is equal to

Et−1[xt] = st−1 +
+∞∑
ℓ=1

αℓεt−ℓ,

implying a forecast error of νt. In contrast, if the forecaster correctly perceives that the
true process is generated by Eq. (1) but ignores the public signal, the forecast will be bi-
ased (according to our definition in Section 2.1), with a forecast error of εt. Since st and
νt+1 are uncorrelated, Var(νt) ≤ Var(εt). Hence, ignoring the additional information
in st leads to less efficient forecasts. However, since εt is white noise, the implied bias
coefficients are zero. Of course, the example is quite special in that the signal is white
noise. In more realistic cases, ignoring relevant information typically leads to non-zero
bias coefficients (e.g., consider Section A.3 with ρ̂ = 0).

5 Monte Carlo Experiment

To further investigate the validity of our methodology, we perform aMonte Carlo exper-
iment. The purpose of the experiment is twofold. First, we gauge the statistical power
of our procedure. Second, we investigate the performance of our method when some of
the underlying assumptions are violated.

To facilitate comparison, the baseline design follows Coibion and Gorodnichenko
(2012, Appendix B). The true process is an AR(1) calibrated to match the key features
of quarterly GDP deflator inflation:

xt = ρxt−1 + εt with εt ∼ i.i.d. N (0, σ2
ε), t = 1, 2, . . . , T.

We set ρ = 0.85, σ2
ε = 1.005 and use a sample size of T = 150 periods. The value for

x1 is drawn from the stationary distribution of xt, i.e., N (0, σ2
ε/(1− ρ2)).

Subjective expectations follow the sticky information model of Mankiw and Reis
(2002):

Ft[xt+1] = (1− λ)ρxt + λρFt−1[xt].
25

The level of information stickiness is λ = 0.75. We set F0[x1] = 0 to start up the
recursion. To allow for measurement error, the observed forecasts, F∗

t [xt+1], are equal
25 To obtain this recursion, use Eq. (17), to find that Ft[xt+1] − λFt−1[xt+1] = (1 − λ)ρxt and then
substitute Ft−1[xt+1] = ρFt−1[xt] as derived in Appendix B.1 (Section B.2).
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to the true forecasts plus some noise vt (independent of the true shocks):

F∗
t [xt+1] = Ft[xt+1] + vt, vt ∼ i.i.d. N (0, σ2

v). (10)

As discussed in Section 4.3, measurement error could have multiple economic interpre-
tations, including data collection problems (e.g., poorly constructed surveys) as well as
expectations that are inherently random (e.g., overconfidence, see Section A.6).

We parametrize the size of measurement error by the R2 of Eq. (10). From Eq. (8),
the fraction of the variation in the observed forecasts that is explained by the true fore-
casts is

R2 =
κσ2

ε

κσ2
ε + σ2

v

where κ =
(1− λ)2ρ2 (1 + λρ2)

(1− ρ2) (1− λρ2) (1− λ2ρ2)
. (11)

In Appendix B.2, we show that the existing evidence on inflation expectations points
to σv ≈ 0.21, implying an R2 of 0.95 at the chosen parameter values. Since other
empirical settings may have more measurement error, we provide the results for a range
of values for R2. To avoid potential initial value effects, we simulate the model for
1,150 periods and discard the first 1,000 periods. The remaining 150 periods are then
used for estimation.

The results are shown in Figure 3. The left column plots the estimated bias coef-
ficients when the true shocks are observed. This estimation procedure regresses the
forecast errors on the true shocks, as given in Eq. (5), and is essentially identical to the
method proposed by Coibion and Gorodnichenko (2012).26 The top row has R2 = 1

(no measurement error), and the lower rows include progressively more measurement
error. The shaded areas give 90% of the Monte Carlo realizations.

The estimates obtained using the true shocks are unbiased. Measurement error does
not introduce bias because noisy forecasts only lead to measurement error in the left-
hand side of the regression. Measurement error only makes the estimates less precise.

The right column shows the estimates obtained using local projections, our preferred
method when the true shocks are not observed. Local projections only use the forecast
errors, as given in Eq. (6). With local projections, measurement error leads to an attenu-
ation bias. As discussed in Section 4.3, this issue is not unique to our method. The bias
can be substantial if measurement error is large. Perhaps more surprisingly, measure-
ment error does not make the estimates less precise. The reason is that measurement
error is present in both the left- and right-hand side variables of the regression. While
measurement error in the left-hand side variable unambiguously makes least squares
26 In their paper, Coibion and Gorodnichenko use a somewhat more parametric specification (see their
Eq. (33)). In Appendix D, Coibion and Gorodnichenko consider a specification (their Eq. (D1)) that is
equivalent to Eq. (5) and show that it yields similar results empirically.
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Figure 3: Baseline Monte Carlo results. The shaded areas give 90% of the Monte Carlo realizations (5th

and 95th percentiles of the Monte Carlo realizations). 10,000 Monte Carlo replications are used for each
figure. The top row has no measurement error; the lower rows have progressively more measurement
error.

Left column: Bias coefficients estimated using the true shocks:

xt − Ft−1[xt] = α+ β0εt + β1εt−1 + · · ·+ β10εt−10 + ut.

Right column: Bias coefficients estimated using local projections (not using the true shocks):

xt+s − Ft+s−1[xt+s] = α+ β
(s)
1 {xt−1 − Ft−2[xt−1]}+ · · ·+ β

(s)
4 {xt−4 − Ft−3[xt−4]}+ ut,

where s = 0, 1, . . . , 9.

24



estimates less precise, measurement error on the right-hand side introduces variation
that is helpful for identifying the value of the biased coefficient. We stress that local
projections correctly identify the IRF of the observed forecast errors. The issue is that
with measurement error, the IRF of the observed forecast errors is no longer the object
of economic interest.

Comparing the two columns, we observe that our method has reasonable statistical
power. For example, when R2 = 0.75, our method is able to detect the first three
bias coefficients in 90% of Monte Carlo simulations, whereas with true shocks, we can
detect the first five bias coefficients. In addition, the comparison is not entirely fair
since in practice we are unlikely to observe all of the shocks. As a result, it may be more
reasonable to compare our method whenR2 = 0.75 to that of using the true shocks when
R2 = 0.25 or so. To be concrete, to apply their method, Coibion and Gorodnichenko
(2012) first estimate various shocks to inflation. Coibion and Gorodnichenko show that
technology shocks explain the largest share of the variation in inflation of all the shocks
that they consider. However, even technology shocks only explain around 25% of the
variation (their Table 2). In contrast, local projections directly use all of the variation in
the variable that is being forecast.

Nevertheless, the results in Figure 3 imply that in some cases our method is unlikely
to detect bias. For instance, consider expectations of stock market returns, as studied by
Greenwood and Shleifer (2014), among others. If we assume that stock market returns
are uncorrelated over time (as discussed in Section 2.4), then the estimates inGreenwood
and Shleifer (2014, Table 3) suggest an upper bound for the bias coefficient at the first
yearly lag of 0.03.27 Our method is unlikely to detect a bias of this magnitude. In the
current simulation, our method fails to detect the bias coefficient at the fourth lag in
many simulations, even when no measurement error is present. The magnitude of the
bias coefficient at the fourth lag in the simulation is−0.165, or roughly five times greater
than the likely effect size in the stock market setting. This reasoning also suggests that
there may be large efficiency gains from imposing additional structure when measuring
overreaction in financial markets (such as imposing ρ = 0).

In addition to the baseline simulation, we investigate the robustness of our method-
ology to a number of variations. We consider two changes to the underlying xt process.
First, we suppose that xt is not covariance stationary and follows a random walk (i.e.,
27 In Table 3, Greenwood and Shleifer regress expectations of stock market returns on realized stock
market returns over the past year. For the case of Chief Financial Officers in the U.S. (column GH)
who directly report a quantitative estimate of future stock returns, the estimated slope coefficient is 3.13
(s.e. = 1.25). Greenwood and Shleifer measure expectations in percentages (e.g., 5 for an expected
return of 5%) whereas past stock returns are expressed as a fraction (e.g., 0.05 for a realized return of
5%), see their Table 1. Dividing the slope coefficient by 100 leads to the number reported in the text.
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xt = xt−1 + εt and x0 = 0), with all other parameters unchanged. Second, instead of
normally distributed i.i.d. shocks, we suppose that the εt’s follow a GARCH(1, 1):

εt+1 = σt+1zt+1, zt ∼ N (0, 1)

σ2
t+1 = ω + αε2t + βσ2

t

To calibrate the process, we use the estimates for inflation reported by Capistrán and
Timmerman (2009, Table 1): ω = 0.02, α = 0.12, and β = 0.86. These parameter
values imply an unconditional variance of 1, which is very close to the unconditional
variance of σ2

ε = 1.005 used in the baseline simulation. However, with a GARCH
process, extreme realizations of εt are much more likely.

Finally, we examine the robustness of the baseline simulation by examining an alter-
native model of expectations. Existing experimental work has documented that people’s
forecasts are often well approximated by simple linear functions of past forecasts and
past values of xt.28 For that reason we also consider a simple model of extrapolative
expectations:

Ft[xt+1] = xt + γ(xt − xt−1). (12)

In a recent experiment on inflation forecasting, Pfajfar and Žakelj (2014) document that
many people use such forecasting rules. Based on their findings, we pick γ = 0.50.29

Finally, we consider a Markov-switching model of expectations. We assume that
expectations follow Eq. (12) but with one change: Expectations can now be in one
of two states. They can either be trend seeking with γH = 0.50 or contrarian with
γL = −0.50. The movement from the current γ to the value of γ in the next period,
denoted by γ′, is governed by a Markov chain. The transition matrix is symmetric with

P(γ′ = γs|γ = γs) = 0.75

P(γ′ ̸= γs|γ = γs) = 0.25

where s ∈ {L,H}. While the particular numbers are less empirically grounded, the
specification captures the fact—well documented in experiments—that people often
switch between different internal models of expectations.30 Prominent theoretical mod-
28 See, among many others, Hey (1994), Heemeijer, Hommes, Sonnemans, and Tuinstra (2009) and Bao,
Hommes, and Makarewicz (2017).

29 Pfajfar and Žakelj (2014, Table 5) find that for a plurality (but not a majority) of people, rational
expectations cannot be rejected, and trend extrapolation is the second largest category of subjective
expectations. While Pfajfar and Žakelj (2014) do not provide the average estimates for the trend ex-
trapolation model, in Supplementary Material, they state that the estimated extrapolation coefficient
lies between 0 and 1 in most cases. For that reason, we pick γ = 0.50.

30 See Pfajfar and Žakelj (2014) or Assenza, Bao, Hommes, and Massaro (2014).
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Figure 4: Additional Monte Carlo results. The shaded areas give 90% of the Monte Carlo realizations
(5th and 95th percentiles of the Monte Carlo realizations). 10,000 Monte Carlo replications are used for
each figure. The left column uses the true shocks to estimate bias coefficients; the right column uses
local projections (without using the true shocks). The top row has no measurement error; the lower rows
have progressively more measurement error. See Figure 3 for the exact regression specifications.

GARCH : GARCH(1, 1) distributed shocks. Random Walk: random walk for the underlying pro-
cess (ρ = 1). Extrapolative: extrapolative expectations with Ft[xt+1] = xt + γ(xt − xt−1) and
γ = 0.50. Switching: Markov-switching model with extrapolative expectations in which γ = 0.50 or
γ = −0.50 according to a Markov chain. The simulation with GARCH errors calibrates the value of
σv so that R2 = 0.50 using Eq. (11). All other simulations use the same level of measurement error
σv ≈ 0.963 as in Figure 3 for R2 = 0.50.

27



els that feature switching expectations include Brock and Hommes (1997) and Barberis,
Shleifer, and Vishny (1998). Our formulation is particularly motivated by the latter pa-
per.

The results are shown in Figure 4. For the case of GARCH errors and a random
walk for xt, the results are very similar to those reported in the baseline setting for
R2 = 0.50. The findings for extrapolative expectations are also similar. While both lo-
cal projections and the estimation procedure that uses the true shocks is able to detect the
first bias coefficient, local projections are subject to an attenuation bias from measure-
ment error. With Markov-switching expectations, although the true bias coefficients
are not zero, both methods often fail to detect bias. The reason is simple: Expecta-
tions switch between two opposite types of bias. If the econometrician fails to notice
the Markov-switching structure of expectations and estimates the bias coefficients us-
ing the full sample, the resulting estimates yield a time average of the true coefficients,
which is close to zero. The example highlights how ignoring changes in expectations
may significantly bias estimates.

6 Application: Inflation Expectations

We now turn to an empirical application of our method.
The application uses inflation forecasts from the Survey of Professional Forecasters

(SPF). The SPF is currently run by the Federal Reserve Bank of Philadelphia. Each
quarter, participants of the survey forecast a number of macroeconomic and financial
variables. The names of the individual participants in the survey are not publicly known,
limiting the scope for strategic considerations. The participants are professional fore-
casters; see Croushore (1993) for further discussion.

The dataset has been used extensively in prior work, with recent prominent stud-
ies including Carroll (2003), Mankiw, Reis, and Wolfers (2003), Coibion and Gorod-
nichenko (2012), and Coibion and Gorodnichenko (2015).31 As a result, the dataset
provides a natural testing ground for our method. To streamline the discussion, we fo-
cus on the findings and explain how we construct the dataset in Appendix C.

6.1 Bias Coefficients

We study one-quarter ahead GDP deflator inflation forecasts. Summary statistics of the
dataset are provided in Table 1.32 Both consensus (median) and individual-level fore-
31 The Philadelphia Fed provides an extensive list of studies that have used this dataset.
32 The number of participants in the SPF has not been constant over time. As a result, estimates us-
ing the consensus- and individual-level datasets implicitly weight the data somewhat differently. The

28

https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/academic-bibliography


N x̄ σx ρx ē RMSE ρe R2
adj

Inflation: Consensus 196 3.45 2.59 0.83 -0.05 1.40 0.40 0.20
Inflation: Individual 7,475 3.80 2.67 0.81 0.02 1.96 0.32 0.16

Table 1: Summary statistics. Root mean-squared error (RMSE) is calculated as
√

1
N

∑
e2t where et is the

forecast error. Persistence ρz is measured by the estimate of b in the regression zt = a+bzt−1+vt. R2
adj is

the adjustedR-squared in the regression of forecast errors on past four forecast errors et−1, et−2, . . . , et−4

casts are considered. We construct the consensus forecasts from the individual forecasts
available on the SPF website. To avoid bias stemming from data revisions, we use real-
time data to measure the realized inflation.

The results are shown in Figure 5. The top panel plots the bias coefficients estimated
using consensus forecasts. To calculate the bias coefficients, we first estimate the IRF
of forecast errors using local projections, as in Eq. (6). Then, the estimated IRF is
multiplied by (−1) to obtain the bias coefficients.33 To be conservative, we show both
the 65% and 95% confidence intervals calculated using Newey-West standard errors.
We observe statistically significant negative bias coefficients for lag 1 (p = 0.005),34

lag 3 (p = 0.022), and lag 4 (p < 0.001). The evidence suggests that participants in
the SPF underreact to information that arrived up to one year ago. In Appendix D, we
show that virtually identical results obtain—with somewhat smaller standard errors—
if instead of local projections, we use maximum likelihood to fit a high-order moving
average model (Figure 6).

The magnitude of underreaction is substantial. The point estimates indicate that a
positive 1σ shock to inflation in the current quarter leads the forecasters to underpredict
inflation by roughly 0.30σ four quarters from now.

The bottom panel of Figure 5 performs the same exercise using the individual-level
forecasts. We estimate a panel-data equivalent of Eq. (6), including forecaster fixed
effects. To account for the fact that the respondents are all forecasting the same variable,
and the forecast errors may be correlated over time for a given respondent, we cluster

individual-level dataset implies a somewhat higher weight on observations coming from the earlier part
of the sample. That is the reason why, for instance, the estimates of mean inflation differ across these
two datasets.

33 As shown in Appendix D (Figure 7), the IRF of inflation is positive at all the relevant lags, so that
sgn(αℓ) = 1.

34 At the time of responding to the survey, participants know the advance estimate of inflation in the
previous quarter but not inflation in the current quarter (Federal Reserve Bank of Philadelphia, 2017,
p. 21). As a result, interpretation of the bias coefficient in the first lag requires some care. On the one
hand, forecasters have access to various real-time information on prices. On the other hand, they do
not yet know the official number for inflation in the current quarter. In that sense, the one-step ahead
forecast may really be a two-step ahead forecast. If that is the case, a non-zero bias coefficient at the
first lag should not be interpreted as bias. See Keane and Runkle (1990) for further discussion.
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Model Parameter SSR

Misperception 0.61 0.16
Sticky 0.51 0.18
Adjustment Cost 0.43 0.25
Rational NA 0.32
Diagnostic 0.00 0.32
Adaptive 0.17 0.36
Extrapolative -0.31 0.55

Table 2: Calibration exercise formatching the empirically estimated bias coefficients. The sum of squared
residuals (SSR) is calculated as

∑12
ℓ=1[b̂ℓ−bℓ(θ

∗)]2 where b̂ℓ is the empirically estimated bias coefficient,
and bℓ(θ

∗) is the theoretically predicted bias coefficient; θ∗ denotes the parameter value that minimizes
the sum of squared residuals. The estimated process for inflation is xt = 0.83xt−1 + εt. The precise
descriptions of the models are given in Section 3 and Appendix A.

the standard errors by both individual forecaster and quarter, as in Thompson (2011)
and Colin Cameron, Gelbach, and Miller (2011).

The pattern of the estimated bias coefficients is very similar to that obtained using
the consensus forecasts. However, the bias coefficient at lag 3 is no longer statistically
significant at the 5% level (p = 0.096). Overall, the point estimates from the individual-
level data are somewhat larger in absolute value. However, they fall well within the
confidence intervals obtained using consensus forecasts. Of course, the result is not
unexpected given the theoretical aggregation result in Section 4.2.

6.2 Calibration Exercise

The estimated bias coefficients can be used to guide theory. To illustrate this point,
we perform a simple calibration exercise. For a number of models, we choose their
parameters to fit the estimated bias coefficients as closely as possible. Specifically, for
each model of expectations, we choose its parameters θ to minimize the sum of squared
residuals

SSR =
12∑
ℓ=1

[b̂ℓ − bℓ(θ)]
2,

where b̂ℓ is the empirically estimated bias coefficient, and bℓ(θ) is the theoretically pre-
dicted bias coefficient. To get the theoretical predictions, we assume that the true in-
flation process is an AR(1). Estimating the persistence parameter using least squares
yields an estimate of ρ̂ = 0.83 (see Table 1).

The results from this exercise are shown in Table 2. Since the models all have a
single parameter (except for rational expectations which have no free parameters), we
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(a) Inflation: Consensus-Level Estimates
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(b) Inflation: Individual-Level Estimates

Figure 5: Bias coefficients for one-quarter ahead inflation forecasts. Top panel: estimates using consen-
sus (median) forecasts; Newey-West standard errors with four lags are used to calculate the confidence
intervals. Bottom panel: estimates using individual-level data (controlling for forecaster fixed effects);
standard errors are clustered by both forecaster and quarter. Both sets of estimates are obtained by first
using local projections (withK = 4) to estimate the impulse response function of the forecast errors:

xt+s − Ft+s−1[xt+s] = α+ β
(s)
1 {xt−1 − Ft−2[xt−1]}+ · · ·+ β

(s)
4 {xt−4 − Ft−3[xt−4]}+ ut,

where s = 0, 1, . . . , 11. The bias coefficients are then estimated by b̂ℓ = −β̂
(ℓ−1)
1 .
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do not adjust for model complexity. The model that best fits the data is a simple model
in which forecasters think that the true persistence of inflation is smaller than it actually
is (see Section A.3). The perceived level of persistence that provides the best fit is
0.61. This number is roughly 25% lower than the estimated persistence of inflation.
As discussed by Gabaix (2017a, pp. 14–15), limited attention can naturally lead to a
misperception of persistence.

The sticky information model also does well, with only a slightly worse fit than the
misperception model. The estimated information stickiness parameter for this model is
λ̂ = 0.51. The estimate is very close to that reported by Coibion and Gorodnichenko
(2015) who find λ̂ = 0.54 (s.e. = 0.10).35 While Coibion and Gorodnichenko (2015)
also use the SPF data, they consider one-year ahead forecasts, and their methodology
estimates the level of stickiness by regressing forecast errors on past forecast revisions.
The fact that we get a very similar number using a completely different methodology
is reassuring. In the context of the sticky information model, our estimate implies that
forecasters in the SPF update their information sets roughly twice a year on average.

The model with adjustment costs performs better than simple rational expectations.
However, in the current setting it is not exactly clear what the adjustment cost may
represent, given that the identities of the participants are not publicly known. Diagnos-
tic expectations in this example do exactly as well as rational expectations, since they
cannot generate underreaction. Finally, mechanical adaptive and extrapolative expecta-
tions perform worse than rational expectations. The finding is consistent with previous
research that has documented that participants in the SPF are quite accurate.36 It is there-
fore not surprising that their behavior is not very well described by mechanical models
of expectations. The fact that extrapolative expectations perform especially poorly is
interesting in light of the fact that extrapolative models explain inflation expectations
well in laboratory experiments (e.g., Pfajfar and Žakelj, 2014).

7 Conclusions

We have developed a new framework for measuring biases in expectation formation.
The framework allows for a fairly unified treatment of existing models, and it provides
a simple way to measure biases empirically. The estimated bias coefficients can be used
to distinguish between different models of expectations. Since our empirical method
35We use the Delta Method to calculate the standard error for λ̂ from the estimates provided by Coibion
and Gorodnichenko, i.e., s.e.(λ̂) = s.e.(β̂)/(1 + β̂)2.

36 See, for example, Croushore (2010). Croushore documents that themedian forecast in the SPF performs
better than simple time series models of inflation (Table 5), and that it is difficult to adjust forecasts for
biases observed in the past to obtain higher forecasting accuracy (Table 4).
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is based on local projections, it is easy to accommodate various empirical scenarios,
including panel data and clustered error terms. The flexibility of local projections can
also be brought to bear on questions that may be difficult to address otherwise, such as
whether expectations exhibit non-linearities or state dependence.

The proposed method imposes fewer assumptions than existing approaches. The
additional generality can come at the cost of lower statistical precision. When con-
sidering using our method, researchers should weigh the costs of imposing additional
assumptions—which may be violated in practice—against the benefits of increased sta-
tistical power. Additional structure is likely to be especially valuable when the dataset
has a small time series dimension.

The notion of bias used in this paper is a statistical one. There may be multiple
reasons for why expectations are biased according to this definition, including psycho-
logical (e.g., belief persistence) as well as non-psychological ones (e.g., informational
frictions). A related challenge is that different models of expectations can yield similar
predictions for bias coefficients. Predictions on additional moments of the data can help
to distinguish between competing explanations in these situations.37

Given the methodological nature of the present work, we have illustrated the method
with a single yet prominent application: inflation expectations. Many new datasets on
subjective expectations have become available in recent years, thanks to numerous data
collection efforts. While much remains to be done, new data sources will no doubt shed
light on how expectations are formed. Our method may prove useful in this endeavor.

37 For instance, in Section 3, the models of sticky information and noisy information are shown to imply
identical values for the bias coefficients when the underlying process is an AR(1). However, the two
models make different predictions on how disagreement among forecasters changes in response to
shocks (Coibion and Gorodnichenko, 2012).
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Appendix A Mapping Existing Models

A.1 Adaptive Expectations

Suppose that agent has adaptive expectations as in Cagan (1956) and Nerlove (1958):

Ft[xt+1] = Ft−1[xt] + λ{xt − Ft−1[xt]}.

Iterating, we have that

Ft[xt+1] = λ
+∞∑
ℓ=0

(1− λ)ℓxt−ℓ = λ
+∞∑
ℓ=0

+∞∑
j=0

(1− λ)ℓρjεt−ℓ−j

= λ
+∞∑
ℓ=0

(
(1− λ)ℓ+1 − ρℓ+1

1− λ− ρ

)
εt−ℓ.

Hence, we obtain

aℓ = λ

[
(1− λ)ℓ − ρℓ

1− λ− ρ

]
bℓ = sgn(ρℓ)

[
λ(1− λ)ℓ − (1− ρ)ρℓ

1− λ− ρ

]

A.2 Noisy Information

We now analyze a model in which agents are rational and understand the structure of the
model but do not observe the underlying state perfectly. Models of this type include the
rational inattention model of Sims (2003) and the imperfect information model studied
byWoodford (2003). The section follows Coibion andGorodnichenko (2015, pp. 2649–
2650) closely.

Suppose the true process for xt is an AR(1) but each agent i only observes a noisy
signal yit of xt:

yit = xt + ωit.

Here, ωit is a normally distributed mean-zero noise term which is i.i.d. across time
and agents. The Kalman filter equations then imply (see Eq. 8 in Coibion and Gorod-
nichenko (2015)) that

Fit[xt+1] = ρ {Gyit + (1−G)Fi,t−1[xt]} ,

where G ∈ [0, 1] is the Kalman gain.
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Assuming that there is a continuum of agents and making the usual Law of Large
Numbers assumption, we can integrate over agents to find

Ft[xt+1] = Gρxt + (1−G)ρFt−1[xt], (13)

with Ft[xt+1] denoting the average forecast across agents.
Now write Ft[xt+1] =

∑+∞
ℓ=0 aℓ+1εt−ℓ for some unknown coefficients to be deter-

mined. From Eq. (13), we have that

a1εt +
+∞∑
ℓ=1

[aℓ+1 − (1−G)ρaℓ]εt−ℓ = Gρεt +G

+∞∑
ℓ=1

ρℓ+1εt−ℓ.

Matching coefficients and solving the resulting difference equation, we find that

aℓ = ρℓ − [(1−G)ρ]ℓ

bℓ = − sgn(ρℓ)[(1−G)ρ]ℓ

Hence, as long as the signal is not perfectly revealing of the state (G ̸= 1), the noisy
information model predicts underreaction. In fact, the model predicts identical bias
coefficients as the sticky information model when λ = 1−G.

A.3 Misperceived Law of Motion

Suppose that the agent misperceives the true persistence of the process and makes fore-
casts as

Ft[xt+1] = ρ̂xt, ρ̂ ∈ (−1, 1),

with ρ̂ potentially different from ρ. Examples of models with misperceived laws of
motion abound in the literature, with two prominent cases given by Barberis, Shleifer,
and Vishny (1998) and Fuster, Laibson, and Mendel (2010); see also Gabaix (2017a,
pp. 14–15). In the present case,

Ft[xt+1] = ρ̂
+∞∑
ℓ=0

ρℓεt−ℓ

and therefore

aℓ = ρ̂ρℓ−1

bℓ = sgn(ρℓ)
[
ρ̂ρℓ−1 − ρℓ

]
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When ρ ̸= 0, we can write

bℓ = sgn(ρℓ)ρℓ
(
ρ̂− ρ

ρ

)
.

If ρ > 0, the agent overreacts to news whenever ρ̂ > ρ and underreacts otherwise.

A.4 Extrapolative Expectations

We now consider pure extrapolative expectations

Ft[xt+1] = xt + γ(xt − xt−1),

as in Goodwin (1947, p. 191). The parameter γ could be either positive or negative,
with a positive γ representing extrapolation or trend following, while a negative γ could
capture contrarian expectations.

Substituting in the expression for xt, we calculate that

Ft[xt+1] = (1 + γ)εt +
+∞∑
ℓ=1

{
(1 + γ)ρℓ − γρℓ−1

}
εt−ℓ,

and so we find that

aℓ =

1 + γ if ℓ = 1

(1 + γ)ρℓ−1 − γρℓ−2 if ℓ ≥ 2
,

and

bℓ =

sgn(ρ)(1 + γ − ρ) if ℓ = 1

sgn(ρℓ)
{
(1 + γ)ρℓ−1 − γρℓ−2 − ρℓ

}
if ℓ ≥ 2

Suppose expectations are of the trend-following type (γ > 0). Then, if xt is positively
autocorrelated, the agent always overreacts to current news (b1 > 0). However, extrap-
olative expectations may well lead to underreaction to past news.

A.5 Learning

Many models of expectations study agents that are learning the true data-generating
process over time. These models naturally lead to time-varying expectations. As a re-
sult, models with learning are generally not nested by our time-invariant formulation in
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Eq. (2). We could add a time t subscript to our specification without any theoretical
difficulty. The problem is a practical one. Without assuming some constancy of pa-
rameters or imposing some other structure on expectations, measuring bias coefficients
empirically does not seem feasible.

Models of learning often have the property that agents eventually learn the true
model. According to the Blackwell-Dubins Theorem (Blackwell and Dubins, 1962),
that is the case if agents are Bayesian, and—very loosely speaking—place a positive
prior probability on the true model.38 Another example is if the agents do not know
the true data-generating process but estimate correctly specified regressions, as in many
models of adaptive learning (Evans and Honkapohja, 2001). In these circumstances, a
natural empirical approach is to split the sample into early and late periods and estimate
the bias coefficients separately in the two subsamples. The prediction of learning is that
the estimated bias coefficients should be closer to zero in the later subsample.

Finally, in some models, the agents know the true model but are not able to ob-
serve the true state. Such models involve learning about the true state (although not
the parameters of the model). For example, the variable being forecast may consist of
a transitory and a permanent component, but the agent may not be able to distinguish
between the two. An example is given by the seminal paper by Kydland and Prescott
(1982) who assume that the technology shock consists of a permanent and transitory
component (see their equation 3.7). If the model can be written as a linear state space
model with normally distributed disturbances, then a key result in the theory of Kalman
filtering states that the forecast errors are independent.39 In these cases, the predicted
bias coefficients are zero.

A.6 Overconfidence

Finally, we discuss a stylized model of overconfidence along the lines of Daniel, Hir-
shleifer, and Subrahmanyam (1998) and Odean (1998), among others. Suppose that
expectations follow

Ft[xt+1] = st, (14)

where st is white noise (and independent of εt). We think of this specification as cap-
turing an extreme form of overconfidence. In this interpretation, st is a private signal
that is uncorrelated with the actual news.

According to the definition in Section 4.4, expectations simultaneously overreact
to the private signal (st) and underreact to the actual news (εt). Overall, expectations
38Marimon (1997, pp. 285–286) discusses this result and its implications in economics.
39 See, for example, Durbin and Koopman (2012, p. 69).
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exhibit underreaction. To see this, note that we can write (1−ρL)et = εt−st−1+ρst−2.

The right-hand side is a sum of an MA(1) process and white noise, and therefore also
an MA(1) process (see, e.g., Hamilton, 1994, pp. 102–105). Write the right-hand side
as ξt + θξt−1 for some θ and a white noise series ξt. Then, the Wold Representation of
et is given by40

et = ξt + (ρ+ θ)
+∞∑
ℓ=1

ρℓ−1ξt−ℓ.

One can show that ρ+ θ > 0, and therefore expectations exhibit overall underreaction.
As these calculations make clear, the present overconfidence model is isomorphic to the
model with a misperceived law of motion (Section A.3 with ρ̂ = 0) and measurement
error. Empirically, it may be challenging to disentangle these two possibilities.

40 The calculation is exactly the same as that used to calculate the bias coefficients in the presence of
measurement error in Appendix B.1, and the expression for θ is given in Eq. (16) with (λρ) replaced
with ρ.
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Appendix B Measurement Error

B.1 Formulas for Sticky and Diagnostic Expectations

This appendix provides explicit formulas for the attenuation bias caused by measure-
ment error for two models of expectations (sticky information and diagnostic expecta-
tions). As in Section 3, xt follows a stationary AR(1) process.

First, suppose that the true expectations are generated by the sticky information
model of Mankiw and Reis (2002), implying that the true forecast errors follow

et = λρet−1 + εt.

However, instead of observing the true forecast Ft[xt+1], we can only observe

F∗
t [xt+1] = Ft[xt+1] + vt,

where vt is white noise measurement error with variance σ2
v (and independent of εt).

The observed forecast error is then equal to e∗t = et − vt−1. Now write

e∗t − λρe∗t−1 = εt − vt−1 + λρvt−2. (15)

The right-hand side of Eq. (15) is the sum of an MA(1) process and white noise, and
therefore also an MA(1) process (see, e.g., Hamilton, 1994, pp. 102–105). Denote the
resulting process as ξt + θξt−1 for some parameters θ and σ2

ξ to be determined. For the
representation to be valid, the autocovariances must match, namely

σ2
ε + [1 + (λρ)2]σ2

v = (1 + θ2)σ2
ξ

−λρσ2
v = θσ2

ξ

Substituting out σξ and rearranging leads to a quadratic equation in θ:

(−λρ)θ2 − θ

{
σ2
ε

σ2
v

+
[
1 + (λρ)2

]}
− λρ = 0.

The equation has two real solutions. Picking the solution associated with the invertible
representation (i.e., with |θ| < 1) yields

θ =

{
σ2
ε

σ2
v
+ [1 + (λρ)2]

}
−
√{

σ2
ε

σ2
v
+ [1 + (λρ)2]

}2

− 4(λρ)2

−2λρ
. (16)
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All in all, the observed forecast errors follow an ARMA(1, 1) process with

e∗t (1− λρL) = (1 + θL)ξt,

where L is the lag operator. As a result, the Wold representation of e∗t is

e∗t = ξt + (λρ+ θ)
+∞∑
ℓ=1

(λρ)ℓ−1ξt−ℓ.

Therefore, measurement error leads to an attenuation bias. The attenuation bias can be
substantial if measurement error is large (i.e., signal-to-noise ratio, σε/σv, is small). For
example, suppose that λ = 0.50, ρ = 0.75, σε = 0.25, and σv = 0.15. Then, the true
bias coefficient b1 is equal to (−λρ) = −0.375. In contrast, the bias coefficient in the
process with measurement error is equal to

−(λρ+ θ) ≈ −(0.375− 0.097) = −0.278.

The attenuation bias is roughly 26% in relative terms. This simple calculation highlights
the importance of having datasets in which many forecasters forecast the same variable.
By averaging across multiple forecasters, σv can be reduced, thereby diminishing the
attenuation bias.

Now consider the case of diagnostic expectations. In that case, the true forecast
errors follow an MA(1) process with et = εt − θρεt−1, implying that the observed
forecast errors are given by e∗t = εt−θρεt−1−vt−1. The right-hand side again follows an
MA(1) process but with different parameters. Write e∗t = ξt+ψξt−1 for some parameters
ψ and σ2

ξ . Similar calculations to those performed earlier show that

ψ =

{
σ2
v

σ2
ε
+ [1 + (θρ)2]

}
−

√{
σ2
v

σ2
ε
+ [1 + (θρ)2]

}2

− 4(θρ)2

−2θρ
.

To gauge the size of the attenuation bias, suppose that θ = 0.50, ρ = 0.75, σε = 0.25,
and σv = 0.15. With these parameters, the true bias coefficient is equal to b1 = θρ =

0.375. However, the bias coefficient from the process with measurement error (i.e.,−ψ)
is equal to approximately 0.268. In relative terms, the attenuation bias is roughly 29%.
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B.2 Calibrating the Level of Measurement Error

We now study how large measurement error is likely to be in the context of inflation
expectations (at the consensus level). As a side benefit, the section characterizes the
effects of measurement error on the procedure proposed by Coibion and Gorodnichenko
(2015).

Coibion and Gorodnichenko (2012) use an empirical strategy that directly estimates
the underlying εt shocks. They find (p. 154, an average across all their specifications)
that λ̂ = 0.82. In subsequent work, Coibion and Gorodnichenko (2015) use a different
estimation strategy to measure λ and find that λ̂ = 0.54 (p. 2653). The second strategy
is potentially subject to attenuation bias stemming from measurement error (see their
Footnote 7 and Online Appendix A).

Suppose that—as an upper bound calculation—we can attribute all of the difference
between the two estimates to measurement error in the second approach. Coibion and
Gorodnichenko (2015) obtain λ by estimating the following regression by least squares:

xt − F∗
t−1[xt]︸ ︷︷ ︸

≡e∗t

= α + β{F∗
t−1[xt]− F∗

t−2[xt]}+ ut.

The stars indicate that the variables are measured with error:

F∗
t−1[xt] = Ft−1[xt] + vt−1

F∗
t−2[xt] = Ft−2[xt] + vt−2

where vt is a white noise measurement error with variance σ2
v . As a result, e∗t = et−vt−1

(with et denoting the one-step ahead forecast error).
For the sticky information model, k-step ahead forecasts are given by

Ft[xt+k] = (1− λ)
+∞∑
ℓ=0

λℓ Et−ℓ[xt+k] = ρk
+∞∑
ℓ=0

ρℓ(1− λℓ+1)εt−ℓ, (17)

implying that Ft[xt+2] = ρFt[xt+1]. Forecast revisions for xt+1 are hence

Ft[xt+1]− Ft−1[xt+1] = ρ(1− λ)
+∞∑
ℓ=0

(ρλ)ℓεt−ℓ.
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Since the forecast errors are equal to et =
∑+∞

ℓ=0(ρλ)
ℓεt−ℓ, we can write

et = εt +
λ

1− λ

[
ρ(1− λ)

+∞∑
ℓ=0

(ρλ)ℓεt−1−ℓ

]
= εt +

λ

1− λ
{Ft−1[xt]− Ft−2[xt].

Combining these results we have that

Var{Ft−1[xt]− Ft−2[xt]} =
ρ2(1− λ)2σ2

ε

1− λ2ρ2
,

and therefore

plim β̂ =
λ(1− λ)ρ2 − σ2

v

σ2
ε
(1− λ2ρ2)

(1− λ)2ρ2 + 2σ2
v

σ2
ε
(1− λ2ρ2)

.

Note that there are two reasons why the empirically estimated β̂ would understate the
true level of stickiness. First, there is the usual attenuation bias, as seen in the denom-
inator. However, measurement error also introduces a mechanical negative correlation
between forecast errors and past forecast revisions, as captured by the second term in
the numerator. As a result, even a small amount of measurement error can lead to sub-
stantial bias. If measurement error is severe, the estimated β̂ may even be negative.
Indeed, if σv → +∞, plim β̂ → −1/2. We emphasize that measurement error can also
be given a more structural economic interpretation. For instance, measurement error is
isomorphic to some models of overconfidence (Section A.6).

We can now ask at what level ofmeasurement error the probability limit abovewould
coincide with the empirically measured β̂. Coibion and Gorodnichenko (2015, p. 2653)
estimate β̂ = 1.19. Take ρ = 0.85, σ2

ε = 1.005, and λ = 0.82 (using the estimates
in Coibion and Gorodnichenko, 2012). Solving for σ2

v , we find that σv ≈ 0.21. In
other words, for the estimates in Coibion and Gorodnichenko (2012) and Coibion and
Gorodnichenko (2015) to be consistent, the magnitude of measurement error needs to
be roughly a fifth of the magnitude of the true shocks.
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Appendix C Data Appendix

We download data for the individual responses from the website of the Federal Re-
serve Bank of Philadelphia (link). The downloaded file contains forecasts of GDP de-
flator inflation for the past quarter (PGDP1), current quarter (PGDP2), and the next
four quarters (PGDP3 up to PGDP6), see Federal Reserve Bank of Philadelphia (2017,
pp. 20–22).

To construct consensus inflation forecasts, we first calculate the median forecast of
PGDP2 and PGDP3 in each quarter. Then, we calculate annualized quarter-on-quarter
inflation forecasts as

100

[(
PGDP3
PGDP2

)4

− 1

]
.

The approach follows the standard practice in the Survey of Professional Forecasters.
To calculate individual inflation forecasts, we directly use the equation above.

For realizations, we use the Real-Time Data Set for Macroeconomists which is also
provided by the Philadelphia Fed (link). We use the first-release data for “Price Index
for GNP/GDP (P).” In 1995Q4, the first-release data for inflation is not available. In
this period, we use the second-release data.

To match forecasts and actuals, we align the forecasts to the date for which they
were made. For example, the one-quarter ahead forecast made in the 1970Q1 survey is
matched with the actual inflation reported for 1970Q2.
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Appendix D Additional Results

1 2 3 4 5 6 7 8 9 10 11 12

Lags (ℓ)

−0.6

−0.4

−0.2

0.0

0.2

B
ia
sC

oe
ff
ic
ie
nt
s

95% Confidence Interval
65% Confidence Interval

Figure 6: Bias coefficients for one-quarter ahead inflation forecasts: maximum likelihood estimates. The
estimation uses consensus (median) forecasts. The impulse response function of the forecast errors is
obtained by estimating

xt − Ft−1[xt] = εt + θ1εt−1 + θ2εt−2 + · · ·+ θ12εt−12, εt ∼ N (0, σ2
ε)

by maximum likelihood. The bias coefficients are then given by b̂ℓ = −θ̂ℓ.
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Figure 7: Impulse response function: quarterly GDP deflator inflation. The estimation uses local projec-
tions; Newey-West standard errors with four lags are used to calculate the confidence intervals.
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