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Abstract

Prices are increasingly set by algorithms. One concern is that intelligent al-
gorithms may learn to collude on higher prices even in absence of the kind
of communication or agreement necessary to establish an antitrust infringe-
ment. However, exactly how this may happen is an open question. I show in a
simulated environment of sequential competition that competing reinforcement
learning algorithms can indeed learn to converge to collusive equilibria. When
the set of discrete prices increases, the algorithm considered increasingly con-
verges to supra-competitive asymmetric cycles. I show that results are robust
to various extensions and discuss practical limitations and policy implications.
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“It’s true that the idea of automated systems getting together and reaching a meeting

of minds is still science fiction. (...) But we do need to keep a close eye on how

algorithms are developing. (...) So that when science fiction becomes reality, we’re

ready to deal with it.”

– EU Competition Commissioner Margrethe Vestager (2017)

1 Introduction

More and more, prices are set by algorithms rather than humans. One prominent

concern is that intelligent, self-learning pricing algorithms may work out by them-

selves how to ensure high prices (Mehra, 2016; Ezrachi and Stucke, 2016; 2017). Such

an outcome would be the same as in a price cartel, but without any overt act of

communication or agreement required to establish a competition law infringement

(Harrington, 2018). The debate has received extensive press coverage and increasing

interest from authorities.1 Beyond hypothetical concerns, recent empirical research

already suggests that the adoption of self-learning pricing algorithms can indeed have

negative effects on competition (Assad, Clark, Ershov and Xu, 2020). However, ex-

actly how algorithms may lead to autonomous collusion is an open research question.

To show more formally whether and how autonomous algorithms can collude, I

investigate the collusive capacity of reinforcement learning. Reinforcement learning

is the type of machine learning in which the algorithm learns by itself through au-

tonomous trial-and-error experimentation. More specifically, I investigate the collu-

sive capacity of Q-learning, which is a foundational reinforcement learning algorithm

upon which many of the recent breakthroughs in artificial intelligence are based.2

1Press coverage includes for instance Financial Times (2017), Frankfurter Allgemeine Zeitung
(2018), Harvard Business Review (2016), Politico (2018), The Economist (2017), The New Yorker
(2015) and The Wall Street Journal (2017). The increased interest from authorities becomes clear
from speeches (Delrahim, 2018; Ohlhausen, 2017; Powers, 2020; Vestager, 2017), hearings (FTC,
2018) and reports (Autoridade de Concurrência, 2019; Autorité de la Concurrence and Bundeskartel-
lamt, 2019; Competition & Markets Authority, 2018; OECD, 2017).

2This includes in particular the self-learning of superhuman play in complex board games like
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I use Q-learning as a proof of concept in this case: autonomous learning is used in

real-world pricing applications but it is unlikely to observe pricing algorithms that are

completely and fully based on Q-learning, because of several practical limitations.3

However, in the final section I discuss how these practical limitations may be dealt

with and performance improved using more advanced machine learning techniques.

Q-learning is based on the theory of dynamic programming and uses recursive

value-function estimation to maximize the net present value of future rewards. The

general approach (discussed in more detail in Section 3) is that the algorithm learns

iteratively what the long-run value is of taking a certain action in a certain state of

the world, taking into account how its action is likely to affect the future state of the

world. In picking an action, it continuously balances the need for exploration (picking

different actions in order to learn) with the need for exploitation (picking the perceived

optimal action to maximize some reward function). In single-agent environments,

Q-learning is theoretically guaranteed to converge to optimal behavior under mild

conditions. However, this theoretical guarantee is absent when multiple interacting Q-

learning algorithms are learning simultaneously. In absence of theoretical guarantees

I therefore provide an empirical understanding through simulations.

Self-learning algorithms are programmed in discrete time. It may be very unlikely,

however, that competing algorithms update their prices at exactly the same time (or,

alternatively, that they are unaware of the current competitor prices and hence act

‘as if’ prices are set simultaneously). We therefore deviate from the conventional

infinitely repeated simultaneous move framework and use the sequential move frame-

work of Maskin and Tirole (1988) instead, in which firms take turns setting prices.

Go and Chess (Silver et al., 2016; 2017; 2018) and Atari video games (Mnih et al., 2015). See
Kohs (2017) for the Netflix documentary on the breakthrough by Google DeepMind in achieving
superhuman play in the board game Go using their AlphaGo reinforcement learning algorithm.

3Examples of companies offering pricing software that uses autonomous learning include a2i sys-
tems (which optimizes fuel pricing), Eversight Labs (which help consumer goods companies optimize
their pricing) and RepricerExpress (which helps third-party sellers optimize their Amazon pricing
strategies). Assad et al. (2020) provide a discussion of such real-world algorithms and Den Boer
(2015) provides a literature review on dynamic pricing in the operations research and management
literature.
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A recent article by Calvano, Calzolari, Denicolò and Pastorello (2020b) (discussed

in more detail in Section 2) similarly shows through simulations how Q-learning can

lead to collusive strategies. However, they do assume the conventional infinitely re-

peated simultaneous move framework. Unlike Calvano et al., I also do not require the

algorithm to condition its prices on payoff-irrelevant past prices in order to collude.

My main finding is that when the number of discrete prices that the algorithm

can choose from is limited, competing Q-learning algorithms indeed often coordinate

on collusive equilibria. I show that these equilibria are sustained through the kind

of reward-punishment strategies that are defined by standard cartel theory. When

the number of discrete prices increases, Q-learning increasingly converges to supra-

competitive Edgeworth price cycles, in which periodic upward price jumps reset a

gradual price decline. This pricing pattern is similar to that regularly observed in

other markets often suspected of tacit collusion—in particular gasoline markets (Noel,

2011; Eckert, 2013; Byrne and de Roos, 2019), which is also the subject of the recent

empirical study of Assad et al. (2020). Although generally not an equilibrium out-

come, I find that these asymmetric cycles do push average prices above their (Markov

perfect) competitive level. Coordination on collusion or cycles occurs even though the

algorithm does not communicate and is only instructed to maximize its own profits.

I show that results are robust to reasonable changes to the learning parameters and

discuss how more advanced algorithms may improve results and deal with less stylized

environments.

The remainder of this article is organized as follows. Section 2 provides a review of

the literature so far on the broader question of how pricing algorithms may undermine

competition. Section 3 defines the competitive environment, the algorithm and the

performance metrics used in this article. Section 4 discusses the baseline empirical

results and shows the collusive reward-punishment strategies learned. Finally, Section

5 discusses several comparative statics and robustness checks and Section 6 concludes

with a discussion on the practical limitations and policy implications.
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2 Literature Review

The inception of the academic debate around pricing algorithms and collusion is

generally ascribed to the legal work of Mehra (2016) and Ezrachi and Stucke (2016,

2017). These works raise two legal concerns. First, algorithms may make it easier

to implement explicit or tacit collusive agreements—driven by better monitoring of

competitor prices and quicker retaliation in case of defection. Second, if algorithms

learn by themselves to adopt strategies that result in supra-competitive outcomes,

this would not be illegal under current competition laws.4

However, the concerns around algorithmic collusion are not universally shared.

Although algorithms may help to implement or stabilize a collusive agreement, Kühn

and Tadelis (2017a, 2017b) and Schwalbe (2019) point out that it is not clear how

algorithms can resolve the coordination problem: competitors still need to agree on

any one particular collusive outcome and the associated pricing strategy necessary to

stabilize this outcome. These authors argue, based to a large extend on experimental

economic evidence, that solving the coordination problem realistically requires some

form of illegal communication. Moreover, it is often pointed out that all known

cases of collusion involving algorithms also involved some degree of illegal human

behavior.5 Truly autonomous—and hence potentially legal—algorithmic collusion is

yet to be observed. Although true, the absence of observed cases is no guarantee.

In this section, I review the literature on the broader question of how pricing

algorithms undermine competition. Although there is some overlap, this literature

4Harrington (2018) and Gal (2019a) provide additional important legal contributions on this.
5One prominent cartel involving algorithms are the Topkins (US) and GB Eye-Trod (UK) cases

in 2015 and 2016, where online poster retailers used algorithms to coordinate differentiated product
prices. Another is the allegation that Accenture (a management consultancy) provided competing
car manufacturers in the EU with an algorithm that allowed them to coordinate prices of spare
parts (Reuters, 2018). Neither is a case of algorithms learning autonomously to collude, however.
Another illustration is “The Making of a Fly”, a biology textbook sold on Amazon. In 2011, one
seller used an algorithm that each day priced 25% above its competitor, while its competitor used a
price-matching algorithm. This caused prices to escalate (up to 23 million dollar per copy). This is
again no autonomous collusion. A review of recent case law around algorithmic collusion is provided
for instance by O’Kane and Kokkoris (2020).
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can generally be divided into four strands, based on the type of algorithm investigated:

static optimization algorithms, algorithms involving a credible commitment, demand-

prediction algorithms and dynamic optimization algorithms. This article belongs to

the last strand. Below, each strand is covered in turn and contrasted to this article,

followed by a brief discussion on the existing empirical evidence and some of the

frontier computer science literature.6

Static Optimization In operations research and management science, pricing algo-

rithms are often used to estimate and optimize static, one-period profit functions—see

Den Boer (2015) for a survey. In theory, such static optimization cannot lead to stable

collusion, as it does not allow for the kind of reward-punishment strategies that are

necessary to solve the prisoner’s dilemma dynamics (Milgrom and Roberts, 1990).

However, the practice in operations research is often to simply estimate monopoly

models and ignore competitors and strategic considerations. Cooper, Homem-de-

Mello and Kleywegt (2015) show that this practice may lead to an underestimation

of the price elasticity of demand, with the inadvertent effect that the algorithms learn

to price cooperatively rather than competitively.

Hansen, Misra and Pai (2020) and Huck, Normann and Oechssler (2003, 2004)

come to the same conclusion in two very different simulation settings. Their results

are driven by an inadvertent correlation in experimentation. Hansen, Misra and

Pai model firms as experimenting with a set of discrete prices using the so-called

Upper Confidence Bound (UCB) algorithm (which is a basic reinforcement learning

algorithm that explores those actions that have the highest potential of having an

6Relevant articles written on the topic that are more policy-oriented (and not discussed in fur-
ther detail here) include Ballard and Naik (2017), Capobianco and Gonzaga (2017), Calvano, Cal-
zolari, Denicolò and Pastorello (2020a), Deng (2018), Ezrachi and Stucke (2020), Gal (2017, 2019b),
Johnson, Rhodes and Wildenbeest (2020a), Klein (2020), Klein, van der Noll and Sviták (2020),
McSweeny and O’Dea (2017), Moore, Pfister and Piffaut (2020), Okuliar and Kamenir (2017), Ox-
era (2018, 2020) and Sviták and van der Noll (2019), as well as reports by different competition
authorities—including in particular Competition & Markets Authority (2018), Autoridade de Con-
currência (2019) and Autorité de la Concurrence and Bundeskartellamt (2019). Calvano, Calzolari,
Denicolò, Harrington and Pastorello (2020) provide a valuable recent addition to this policy-oriented
literature and is discussed in more detail in the concluding section of this article.
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optimal value). They show that when there is not too much noise in the demand

signal, UCB causes competitors to perceive the same options as potentially optimal

and inadvertently start to correlate their experimentation. As they start setting

equivalent prices, they fail to learn to profitably undercut and end up with supra-

competitive prices. A similar mechanism of correlated experimentation is found by

Huck, Normann and Oechssler (2003, 2004) in a simple “win-continue, lose-reverse”

rule in simulated quantity competition. However, Izquierdo and Izquierdo (2015)

show that the correlated experimentation and joint-profit maximizing convergence in

the case of Huck, Normann and Oechssler breaks down when there are minor changes

in the payoff function. A similar result may apply to Hansen, Misra and Pai.

My article differs from this strand of the literature in two ways. First, the al-

gorithm that I consider does not ignore competitor prices and hence forecloses the

mechanism of inadvertent price correlation or underestimation of price elasticity. Sec-

ond, this article looks at dynamic, multi-period optimization, which is a theoretically

necessary condition for a collusive equilibrium to arise autonomously in the presence

of prisoner’s dilemma dynamics. I also check whether the supra-competitive pricing

is even an equilibrium.

Algorithmic Commitment Related to the previous strand of the literature, there

are two articles in particular that show how algorithms can also lead to higher prices

when they involve some form of a credible short-run commitment to pricing strategies.

Brown and MacKay (2020) show theoretically that pricing algorithms lead to higher

prices in a model where firms use algorithms to implement a contingent pricing strat-

egy and prices are updated at different frequencies. They show that competing firms

will endogenously self-select into asymmetric pricing frequencies, which effectively re-

sults in a mutually profitable leader-follower relationship that pushes up equilibrium

prices. They also provide high-frequency online retail data consistent with this. Com-

parably, Salcedo (2015) shows theoretically that under certain sufficient conditions
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collusion between learning algorithms is inevitable, provided firms adopt a short-run

fixed-strategy pricing algorithm that periodically ‘decodes’ the other algorithm and

subsequently adjusts.

The main contribution of these articles is that they argue how the reasonably

realistic delegation of pricing strategies to algorithms can change the pricing game

in such a way that the most competitive equilibrium is no longer the Bertrand-Nash

equilibrium where prices are equal to marginal cost. Interestingly, this does not

require an extension to dynamic, multi-period optimization function. Their relevance

notwithstanding, this does mean that these articles do not look at whether algorithms

can learn to collude, but whether their use changes the pricing game such that the

unique static equilibrium involves higher prices. Additionally, Salcedo assumes that

the algorithms can periodically ‘decode’ each other’s contingent pricing strategies—

which may be interpreted as illegal communication (Schwalbe, 2019). Moreover,

Brown and MacKay have complete information by assumption. In my article, I neither

assume a pre-set commitment to a pricing strategy or knowledge on the strategies

used by the competition.

Demand Prediction As opposed to learning or implementing pricing strategies,

algorithms may also be used to better forecast current or future demand, which in turn

can affect equilibrium behavior. Miklós-Thal and Tucker (2019) and O’Connor and

Wilson (2020) show that there are theoretically ambiguous effects on cartel stability

and welfare in the presence of better demand forecasting. Miklós-Thal and Tucker

rely on the framework of Rotemberg and Saloner (1986), in which future demand is

stochastic (and collusion is continuous but the cartel may need to price below joint-

profit maximization to ensure incentive compatibility). O’Connor and Wilson instead

rely on the framework of Green and Porter (1984), in which there are stochastic

demand shocks and competitor prices are not observed. Both articles show that

better demand prediction increases the expected payoff under both collusion and
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deviation, which may actually (though not necessarily) decrease cartel stability and

increase welfare in equilibrium.

Better demand prediction algorithms may also reside with third-party pricing soft-

ware providers that may supply their services to competing firms. Harrington (2020)

show theoretically how such situations can lead to price increases, as a third-party

pricing algorithm takes into account that it may face itself. Interestingly, higher

prices already occur when only a single firm ends up adopting the third-party pricing

algorithm. The model does exogenously assume an absence of competition between

different third-party pricing algorithms. Moreover, all these articles treat algorithms

as exogenous and black box improvements of demand predictability. I instead explic-

itly models algorithms as autonomous price setting agents.

Dynamic Optimization The fourth strand of the literature focuses on autonomous

algorithms designed to optimize some long-run or multi-period objective function. In

theory, multi-period optimization is required to learn the reward-punishment strate-

gies necessary to stabilize a collusive equilibrium. Looking at some form of sequential

price competition with no-standard demand function, Tesauro and Kephart (2002)

show though simulations how dynamic programming techniques can converge to prof-

itable asymmetric price cycles—with cycles becoming shorter and profits increasing

if products are more differentiated or consumers less informed. Noel (2008) sim-

ilarly uses dynamic programming in simulated competition to identify and analyze

likely Markov perfect equilibria in various extensions to the more accepted sequential-

pricing framework of Maskin and Tirole (1988). However, both articles assume full

knowledge of the environment and only provide an equilibrium identification analysis,

ignoring the whole coordination problem.

In a more realistic informational environment, Xie and Chen (2004) show through

simulations that when competing algorithms simultaneously set their inventory and

prices in an environment of stochastic demand, a Q-learning algorithm that sim-
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ply ignores competitors converges to a stable Nash equilibrium. Dogan and Güner

(2013) build on this by extending the state space to include current and previous

prices and inventories of itself and its competitors and find positive profits in case

of competing Q-learning algorithms. Finally, Waltman and Kaymak (2008) are the

first to show that Q-learning leads to supra-competitive outcomes in a conventional

Cournot oligopoly environment that is infinitely repeated. However, while the last

two papers find supra-competitive outcomes, they do not test for equilibrium behavior

or collusive reward-punishment strategies. In fact, Waltman and Kaymak also find

supra-competitive outcomes under conditions in which reward-punishment strategies

are not theoretically possible (no memory), which suggests that supra-competitive

outcomes may be spurious rather than collusive.

My article is most similar to that of Calvano, Calzolari, Denicolò and Pastorello

(2020b) and Abada and Lambin (2020). Calvano et al. show how Q-learning is able

to learn collusive strategies when competing algorithms update their prices at exactly

the same time. Their results generally align with what I find. The main difference is

that they use the conventional model of simultaneous competition. However, it may

be very unlikely that competing pricing algorithms update their prices simultaneously

(or have to act ‘as if’). Additionally, they require conditioning on own and competitor

past prices for collusion to occur, which increases the state space at least quadratically

and greatly increases the required learning duration.

Abada and Lambin (2020) take the same approach as Calvano et al. and my-

self and apply it to a competitive environment that is instead motivated by energy

markets. Instead of competing only for a per-period market demand, competitors

also face a dynamic arbitrage problem where they sell or buy an inventory at a pre-

vailing market price (taking into account capacity constraints on inventory and the

amount that can be bought or sold in any one period). The authors find that in this

environment, competing Q-learning algorithms again learn strategies that sustain

supra-competitive prices. They also discuss how regulators can (partially) frustrate
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the collusive learning processes by disaggregating the amount of agents that are op-

timizing their dynamic capacity or by introducing an agent that aims to maximize

social or consumer welfare. Similarly as Calvano et al., Abada and Lambin take an

environment of simultaneous move—which I depart from.

Finally, a interesting recent article by Johnson, Rhodes and Wildenbeest (2020b)

shows theoretically how market designers can induce sellers towards more competi-

tive behavior by steering demand in an environment of dynamic optimization. They

apply this reasoning to the context of e-commerce pricing algorithms. Using sim-

ulations with competing Q-learning algorithms, they show how competition on an

e-commerce platform can be improved by basically providing longer prominence to

Q-learning sellers that display behavior consistent with deviation from a collusive

agreement. Interestingly, the authors show that in their environment, such demand-

steering policies raise both platform profit and consumer surplus and is therefore a

particularly interesting market design mechanism to consider.

Empirical Literature In each of the above four strands of the literature, the

articles generally rely on theoretical models or computer simulations to investigate

the effect of pricing algorithms on competition (with the exception of Brown and

MacKay (2020), as discussed). Empirical evidence based on real-world data remains

limited and difficult to obtain. A 2017 e-commerce sector inquiry by the European

Commission does provide survey data that shows that a majority of retailers track

online prices of competitors and two-thirds of them automatically adjust prices in

response, but this inquiry does not look at any relation to for instance markups. Chen,

Mislove and Wilson (2016) show that of 1,600 best-selling products on Amazon, in

2015 more than one-third adopted algorithmic pricing strategies and that these did

tend to have higher price (and sales volumes), but this does not show any chain of

causation.

However, there is one important recent empirical contribution that does look at
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the causal effect of pricing algorithms. Assad, Clark, Ershov and Xu (2020) are able

to proxy which and when retail gasoline stations in German adopted algorithmic

pricing technology, between 2016 and 2019, based on observed changes in pricing

behavior. Correcting for the endogeneity of station-level adoption, they show that

margins increase in non-monopoly markets. This is in particular the case when two

competing stations adopted algorithms, in which case margins increase on average

by 28%. Interestingly, they find that these higher margins occur gradually. This

appears consistent with some form of learning to coordinate on higher prices—as in

Calvano et al. (2020b) and my article. The authors do treat the algorithms as black

boxes. In my article, I look at the inner workings of reinforcement learning applied

to a controlled pricing environment.

Frontier Computer Science The above literature mostly comes from economics.

There are also several articles on the academic frontier in computer science that look

more generally at cooperation between reinforcement learning algorithms. From the

theory perspective, there is a strand of the computer science literature that looks at so-

called multi-agent reinforcement learning algorithms, which combines (evolutionary)

game theory with reinforcement learning—often building on Q-learning as a baseline

specification.

For instance, Hu and Wellman (2003) propose Nash-Q learning, which maintains

Q-functions over joint actions and performs updates based on assuming Nash equilib-

rium behavior given current Q-values. This work is extended further by Greenwald

and Hall (2003) by looking for correlated equilibria and Könönen (2003) by looking at

leader-follower stage games. Tesauro (2003) proposes Hyper-Q learning, which learns

Q-values associated with mixed strategies and uses estimated opponent strategies as

additional state variables. And Singh, Kearns and Mansour (2000) allow for learn-

ing optimal mixing strategies in multi-agent games by using an infinitesimal gradient

ascent (IGA) algorithm—later extended or generalized by in particular Zinkevich
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(2003), Bowling and Veloso (2002), Abdallah and Lesser (2008) and Awheda and

Schwartz (2013).

However, strong theoretical results from the multi-agent reinforcement learning

literature have been relatively limited and key results that are there (for instance on

convergence guarantees to Nash equilibria under reasonable informational assump-

tions) have not been shown beyond even simple simulated matrix games. Moreover,

the theoretical results often have high informational requirements (such as observing

opponent rewards). It therefore seems unlikely that answers on autonomous algo-

rithmic collusion are readily found on the current frontier of theoretical multi-agent

reinforcement learning.7

However, most of the recent developments in reinforcement learning do not come

from theoretical computer science. Instead, recent breakthroughs in reinforcement

learning (and artificial intelligence more generally) come from empirical or simulation-

based investigations. This is for instance the case with the recent superhuman perfor-

mance in high-dimensional singe-player environments like Atari video games (Mnih

et al., 2015) or complex zero-sum board games like Go and Chess (Silver et al., 2016;

2017; 2018; see also Kohs, 2017). Yet, it is relevant to note that these high-profile

breakthroughs are still generally in the context of single-player or zero-sum games.

One article that does look at multi-agent environments that are not zero-sum is Cran-

dall et al. (2018), which shows how state-of-the-art reinforcement learning algorithms

are capable of cooperating both with other algorithms and with humans in very sim-

ple repeated matrix games. However, it is unclear how results hold up in a oligopoly

setting or pricing application. Additionally, Crandall et al. allow for certain sig-

nalling mechanisms—which in the context of competition law may be seen as illegal

7For a general introduction to the theory of multi-agent reinforcement learning see Shoham,
Powers and Grenager (2007) and Tuyls and Weiss (2012) and for an overview of the literature see
in particular Busoniu, Babuŝka and De Schutter (2008), Hernandez-Leal, Kaisers, Baarslag and
Munoz de Cote (2017) and Albrecht and Stone (2018). A textbook-style treatment is provided by
Schwartz (2014) and for a survey on the literature linking multi-agent reinforcement learning with
evolutionary game theory, see Bloembergen, Tuyls, Hennes and Kaisers (2015).
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communication. Other articles discussing frontier reinforcement learning algorithms

in cooperative matrix games include Leibo, Zambaldi, Lanctot, Marecki and Graepel

(2017), Lerer and Peysakhovich (2018), Romero and Rosakha (2019) and Wang, Hao,

Wang and Taylor (2018). Given that the frontier computer science literature does

not seem to consider oligopoly environments yet, I simply focus on Q-learning as a

simple but foundational reinforcement learning algorithms and do not consider more

state-of-the-art algorithms.

3 Environment and Learning Algorithm

This article investigates the collusive capacity of reinforcement learning in an envi-

ronment of sequential competition—which I have argued reflects more naturally the

setting of algorithmic price competition than for instance simultaneous competition.

The particular algorithm that I look at is Q-learning, which is a straightforward and

foundational reinforcement learning algorithm. This section discusses the pricing en-

vironment of Maskin and Tirole (1988) as used in the simulations, the Q-learning

algorithm as adapted to this environment and the performance metrics considered.

Sequential Pricing Duopoly

To capture the dynamics of sequential pricing motivated in the introduction, I take

the infinitely repeated sequential move pricing duopoly environment of Maskin and

Tirole (1988). Below I describe this environment as applied here and its equilibrium

behavior.

Competition between two firms i ∈ {1, 2} takes place in infinitely repeated discrete

time indexed by t ∈ {0, 1, 2, ...}. Adjustments in price occur sequentially: in turn,

each firm adjusts its price pit ∈ P , where in odd-numbered periods firm 1 adjusts its

price and in even-numbered periods firm 2. Price is a discrete variable scaled between

0 and 1 and with k equally sized intervals—so prices are taken from a discrete set
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P = {0, 1
k
, 2
k
, ..., 1}. Assuming no marginal or fixed cost, firm i profit at time t is

simply derived as

πi(pit, pjt) = pitDi(pit, pjt), (1)

where Di(pit, pjt) its demand as function of own price pit and competitor price pjt,

with j ∈ {1, 2} \ i. Firms discount future profits with a discount factor δ ∈ [0, 1),

where each firm has as objective to maximize at time t its cumulative stream of

discounted future profits, so

max
∞∑
s=0

δsπi(pi,t+s, pj,t+s). (2)

In showing whether and to what degree autonomous collusion using Q-learning is

possible, I restrict myself to the simple setting of homogeneous goods with linear de-

mand, which is also the baseline case of Maskin and Tirole. Demand has an intercept

and slope equal to 1 such that

Di(pit, pjt) =


1− pit if pit < pjt

0.5(1− pit) if pit = pjt

0 if pit > pjt

(3)

This provides as monopoly or joint-profit maximizing collusive price pC = 0.5, with an

associated per-firm profit of πi = 0.125. Note that this simple demand function is for

exposition purposes and is in fact unknown to the algorithm. I also follow Maskin and

Tirole in imposing the Markov assumption: strategies only depend on variables that

are directly payoff relevant, which in this case is limited to the previous competitor

price pj,t−1 and does not include, for instance, communication or the history of prices.

The strategy of firm i is therefore a dynamic reaction function Ri(·), where in its turn

pit = Ri(pj,t−1).
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The equilibrium outcomes in this setting can be described as follows. A (possibly

randomizing) strategy pair (R1, R2) is a Nash equilibrium if for all prices along the

equilibrium path the following value-function condition holds for both firms:

Vi(pjt) = max
p

[
πi(p, pjt) + Epj,t+1

[
δπi(p, pj,t+1) + δ2Vi(pj,t+1)

]]
(4)

where reaction function Ri(pj) is a maximizing choice of firm i and the expectation

over competitor response pj,t+1 is taken with respect to the distribution of Rj(p).

One Nash equilibrium here is the static Nash outcome in which firms always

price at or one increment above marginal cost, although more equilibria exist for a

sufficiently high discount factor.8 As a refinement of the Nash equilibrium, Maskin

and Tirole define the concept of a Markov perfect equilibrium (MPE), which is a

subgame perfect Nash equilibrium under the Markov assumption. A strategy pair

(R1, R2) is a MPE if Condition (4) holds for both firms and for all prices, including

off-equilibrium prices. They show that if firms value future profits sufficiently high

there are two sets of MPE: focal price equilibria and Edgeworth price cycle equilibria.

First, in focal price equilibria both firms sustain a fixed price with the common belief

that the other firm would undercut if it were to decrease its price and not follow if

it were to increase it. Such beliefs are sustained by off-equilibrium price wars in case

any firm undercuts, in which case prices drop and firms mix between staying at lower

prices and returning to the fixed price. Second, in Edgeworth price cycle equilibria

firms gradually undercut each other. When further price cuts become too costly, both

firms have an incentive to raise their price and reset the gradual downward spiral but

prefer the other firm to do so. They therefore mix between maintaining lower prices

(to punish the other firm for not resetting the price cycle) and resetting itself.

8To see that one increment above marginal cost is a Nash equilibrium, assume that R2(p1) = 1
k ,

such that firm 2 always prices one increment above zero marginal cost. Condition (4) then simplifies
to V1( 1

k ) = 1+δ
1−δ2 maxp π1(p, 1k ). A maximizing choice of firm 1 is then similarly R1(p2) = 1

k , which,
by symmetry, is a Nash equilibrium.
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Sequential Q-Learning

The learning algorithm applied here is an adaptation of Q-learning to sequential in-

teraction. Q-learning is a simple and foundational reinforcement learning algorithm

that aims to maximize the net present value of expected future rewards for unknown

environments with repeated interaction—where actions affect both the immediate

payoff and future states of the world. It was originally proposed by Watkins (1989)

to solve unknown Markov decision processes, which are discrete time stochastic pro-

cesses in which actions affect both current reward and the next state in an otherwise

stationary environment. Below the sequential-move adaptation as used in this article

is discussed in detail. For a textbook treatment on Q-learning, see Sutton and Barto

(2018). Calvano et al. (2020b) and Johnson, Rhodes and Wildenbeest (2020b) also

provide a general primer on Q-learning.

Q-learning, like any reinforcement learning algorithm, consists of two interacting

modules: a learning module that processes the observed information and an action-

selection module that balances exploitation (choosing the currently perceived optimal

action) with exploration (choosing perhaps another action, to learn what happens).

Each module as it is applied in this setting is discussed in turn.

Learning Module Q-learning estimates a Q-function Qi(pit, st), which maps for

firm i ∈ {1, 2} action pit (new own price at time t) into its estimated optimal long-run

value given current state st ∈ S. Assuming a discrete state set, Qi is a |P |×|S| matrix

in this case. After observing own profits and new state st+1, the algorithm updates

entry Qi(pit, st) according to the following recursive relationship

Qi(pit, st)← (1− α) · previous estimate + α · new estimate, (5)

previous estimate = Qi(pit, st)

new estimate = π(pit, st) + δπ(pit, st+1) + δ2 max
p
Qi(p, st+1)

17



where α ∈ (0, 1) is a stepsize parameter that regulates how quickly new information

replaces old information and δ ∈ [0, 1) is again a discount factor.

Note that the new estimate of the optimal long-run value given state st consists

of three components: direct profit π(pit, st), next period profit π(pit, st+1) when new

state st+1 realizes but the price has not changed (discounted for one period), and the

highest possible Q-value maxpQi(p, st+1) in this new state st+1 (discounted for two

periods). This enable a recursive value-function approximation in which initially the

Q-values are imprecise, but over time they become better estimates of the long-run

consequences of choosing pit in state st, allowing for convergence.

There are three more things worth noting about this learning module. First, under

the Markov assumption current and new state st and st+1 are equivalent to current

and new competitor price pjt and pj,t+1. Second, note the parallel between Condition

(4) and Equation (5). This comes from the fact that through recursive updating,

Q-learning aims to solve for a dynamic programming condition. And third, in the

learning module each time only one entry within the Q-matrix is updated. Such

tabular learning leads to a slow learning process. To speed up learning, and allow

for continuous state and action spaces, function approximations could be used. This

would however increase the amount of parameters and modelling assumptions and is

left for future research.

Action-Selection Module In balancing exploration and exploitation, the algo-

rithm adopts a probabilistic action-selection policy. I simply use a straightforward

procedure called ε-greedy exploration: with probability εt ∈ [0, 1] it selects a price

randomly (exploration) and with probability 1− εt it selects the currently perceived

optimal price (exploitation), so

pit

 ∼ U{P} with probability εt

= argmaxpQi(p, st) with probability 1− εt
(6)
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where U{P} is a discrete uniform distribution over action set P . In case of ties under

exploitation, the algorithm randomizes over all perceived optimal actions.

Note that that ε-greedy exploration is very untargeted: when exploring, it selects

any price randomly. As with the learning module, the action-selection module could

be improved by using more sophisticated techniques but this is outside the scope

of this article. A pseudocode of the entire algorithm as used in the simulations is

provided below.

Pseudocode Sequential Q-Learning (Simulation)

1 Set demand and learning parameters; Initiate Q-functions
2 Initialize {p1t, p2t} for t = {1, 2} randomly
3 Initialize t = 3, i = 1 and j = 2
4 Loop over each period
5 | Update Qi(pi,t−2, pj,t−2) according to (5)
6 | Set pit according to (6) and set pjt = pj,t−1
7 | Update t← t+ 1 and {i← j, j ← i}
8 Until t = T (specified number of periods)

Theoretical Limitations

There are two theoretical limitations in the above specification that justify my em-

pirical approach through simulations. First, in a multi-agent setting there are no

theoretical convergence guarantees for Q-learning. When a single Q-learning agent

faces a fixed-strategy competitor, it is guaranteed to converge to the optimal (rational,

best-response) strategy, given mild conditions on stepsize parameter α and the rate of

exploration εt (Watkins and Dayan, 1992; Tsitsiklis, 1994). However, in our setting

Q-learning remains vulnerable to adaptation and experimentation by its opponent.

More generally, agents that are simultaneously adapting to the behavior of others

face a moving-target learning problem (Busoniu, Babuŝka and De Schutter, 2008;

Tuyls and Weiss, 2012), in which their best response changes as others change their

strategies. Convergence guarantees that exist for single-agent reinforcement learning
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algorithms then no longer hold.

Second, Q-learning is restricted to playing pure strategies whereas the MPE iden-

tified by Maskin and Tirole require mixing strategies—either off-equilibrium (in case

of the focal price) or along the equilibrium path (in case of the Edgeworth price cy-

cles). Although it is incapable of learning subgame perfect equilibria or equilibria

which require mixing strategies on the equilibrium path, subgame imperfect Nash

equilibria do remain possible. Despite this and the previous limitation however, the

algorithm does not have to perform badly in practice. It only means that theory is

unable to say how well it is expected to behave. In absence of theoretical guarantees

I therefore provide an empirical understanding through simulations.

Performance Metrics

In assessing the performance of the algorithm, I look at how profitable it is at the end

of the simulations, how optimal it is relative to best-response behavior and whether

it has converged to a Nash equilibrium. I do this for many different runs, in order to

assess the average and distribution of performance.

Profitability I evaluate the final profitability of any one run lasting T periods by

looking at the average profit in the final 1,000 periods of this run, so

Profitability: Πi
.
=

1

1,000

T∑
t=T−1,000

πi(pit, pjt), (7)

where I omit a subscript indicating the specific run. The average is taken because

pricing can be dynamic and profits can fluctuate such that a low profit in any one

period may be offset by a higher profit in another period and vice versa. Looking

only at final-period profit fails to capture this.

I compare profitability against two benchmarks: the joint-profit maximizing bench-

mark of 0.125 (which the profit that occurs where both firms set pi = 0.5) and a
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competitive benchmark. The competitive benchmark is not trivial, however. An ob-

vious candidate may seem to be the static Nash outcome of prices equal to (or one

increment above) marginal cost. However, the sequential environment makes pric-

ing at or one increment above marginal cost not subgame optimal (for a sufficiently

high discount factor). Although marginal cost is still an interesting benchmark for

practical purposes, I take the more conservative (higher) competitive benchmark that

approximates the most competitive Edgeworth price cycle MPE identified by Maskin

and Tirole (1988): firms undercut each other by one increment until prices reach their

lower bound, after which one firm resets prices to one increment above monopoly price

and the cycle restarts. It is taken that the first firm that observes the lower-bound

price resets the price cycle. This provides in this case an average per-period profit of

approximately 0.0611 for k = 6 (which increases in the limit of k to approximately

0.0833).

Optimality and Nash Equilibrium To capture a degree of optimality, I define

Γi as the ratio of estimated and best-response discounted future profits at the end of

the simulation (as captured by the associated Q-values), so

Optimality: Γi
.
=

Qi(pi, pj)

maxpQ∗i (p, pj)
, (8)

where Q∗i is the optimal Q-function given current competitor strategy (and I again

omit a subscript indicating the specific run). Q∗i is not observed by the algorithm,

but can be computed exactly by keeping the competitor Q-function fixed and looping

over all action-state pairs until Equation (5) converges.

Γi has the following interpretation: it shows in percentage terms how much the

estimated discounted future profits are below the discounted future profits under best-

response behavior given current competitor strategy. When the algorithm learned

a best-response strategy it therefore produces Γi = 1. An outcome is therefore a

Nash equilibrium if and only if Γi = 1 holds for both algorithms. In evaluating the
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performance of the algorithm, I also look at the share of Nash equilibria over all runs

(where I allow for a tolerance of 0.00001).

Note finally that Γi does not only take into account the next period best-response

behavior, but also possible off-equilibrium exploitation of its competitor in states that

are otherwise never visited. And note that for Γi to be reliable, stepsize parameter α

or the rate of exploration εt has to decrease sufficiently. This allows Qi to converge

and become a reliable estimate of actual discounted future profits. In the simulations

I impose that εt goes towards zero towards the end.

Collusive Equilibrium I consider the outcome of a run a collusive equilibrium

when profitability is above the competitive benchmark and the algorithms have

adopted strategies such that neither can improve given the strategy of the other

algorithm (i.e. they are in a Nash equilibrium).

The key characteristic of a collusive equilibrium is the use of a “reward–punishment

scheme which rewards a firm for abiding by the supracompetitive outcome and pun-

ishes it for departing from it” (Harrington, 2018). Similar as in Calvano et al. (2020b),

I test for the existence reward-punishment strategies by forcing a deviation by one

of the firms at the end of the simulation and observing subsequent responses. Xie

and Chen (2004) use a similar approach to test for convergence to a steady Nash

equilibrium, which they call a ‘Nash test’.

4 Results

For the baseline simulation I look at k = 6 price intervals between 0 and 1, which is

the illustrating example in Maskin and Tirole (1988) and the lowest amount of price

intervals at which both fixed-price and price cycle MPE exist. To assess the average

and distribution of performance I simulate 1,000 runs. In the baseline simulation,

I set stepsize parameter α = 0.3 as a reasonable compromise between the need to

ensure learning is not too slow (α too close to 0) and the need to ensure it does not
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forget too rapidly what it has learned in the past (α too close to 1). I set discount

factor δ = 0.95 reasonably close to 1 as periods are generally small. I vary {k, α, δ}

in the next section.

I evaluate the average profitability, average optimality and the share of Nash

equilibria at the end of the simulations, where I vary each time the total amount of

learning periods T . I set the probability of exploration as εt = (1− θ)t, where decay

parameter θ is set such that the probability of exploration gradually decreases from

100% at the beginning to 0.1% halfway the run, reaching 0.0001% at the end (so

ε0.5T = 0.001 and εT = 0.000001). Finally, the Q-values are initiated with all zeros,

although results are not sensitive to initialization.

Figure 1 shows that when two Q-learning algorithms face each other sequentially,

they manage to converge to profits that are on average supra-competitive, although

below the joint-profit maximizing level. When the total amount of learning periods

increases, the average optimality is around 97 percent and the share of Nash equilibria

around 67 percent. The left-hand panel in Figure 2 illustrates for T = 500,000 that

even though most runs are symmetric and the algorithms converge to profitability

levels at or just below the joint-profit maximizing rate, this is not always the case.

In a minority of 230 runs, one of the two algorithms ends up with a lower payoff.

Although average performance is clearly supra-competitive, the key question is

whether the algorithms are able to coordinate on collusive equilibria—where prof-

itability is above the competitive level and strategies constitute a Nash equilibrium.

The right-hand panel in Figure 2 illustrates that for 667 runs the algorithms indeed

managed to coordinate on a collusive equilibrium, 241 of which on the joint-profit

maximizing level. For those runs with a Nash equilibrium outcome, the market price

is fixed. For those runs without a Nash equilibrium outcome, the market price gener-

ally displays an asymmetric pricing pattern, where prices gradually decrease followed

by a sharp increase. This pattern is discussed in more detail in the next section.

[FIGURES 1 AND 2 AROUND HERE]
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The key characteristic of a collusive equilibrium is the existence of reward-punishment

strategies, where a firm is rewarded with higher profit by sticking to the collusive out-

come while punished if it deviates. Following the approach in Calvano et al. (2020b)

of forcing a deviation and observing behavior, Figure 3 shows for those runs where

the algorithms managed to coordinate on a joint-profit maximizing Nash equilibrium

(241 runs) that the algorithms indeed learn strategies that have the effect of reward-

punishment: a deviation by firm 1 triggers a downward price spiral that leads to a

net profit loss for firm 1, despite the one-period higher deviation profit. Figure 3

also shows that this punishment effect is temporary, with prices getting back to the

monopoly level after a few periods.

Note that although Figure 3 shows that on average prices gradually return, this is

actually the consequence of the different runs jumping up in price in different periods.

In each of the individual runs prices shoot back up to the monopoly level after several

periods of lower prices and profits (i.e. display one-off asymmetric price cycles).

[FIGURE 3 AROUND HERE]

5 Comparative Statics

The above results show that autonomous algorithmic collusion is possible. In this

section I discuss how results change when I increase the amount of discrete prices the

algorithm can choose from. I also show how results are generally robust to changes

in stepsize parameter α = 0.3, discount factor δ = 0.95 and whether the algorithms

can also condition on their own past price.

Edgeworth Price Cycles Under More Prices

Figure 4 shows that when the amount of pricing intervals k increases, average prof-

itability remains above the competitive benchmark for the different total learning
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durations T . However, Q-learning appears to have increasing difficulty to learn strate-

gies that are best-responses to its competitor—with lower average optimality when

k increases and nearly no Nash equilibria when k = 24. The left panel in Figure 5

shows a clear dichotomy that underlies the profitability results: generally only one of

the two algorithms has a profitability that is around (or even above) the joint-profit

maximizing level, while the other algorithm has a lower profitability. The right panel

in Figure 5 shows a similar dichotomy for optimality. It is the case that the algorithm

with the higher profitability is also the one with an optimality equal to one.

[FIGURES 4 AND 5 AROUND HERE]

So what underlies these different outcomes when the algorithms have more prices

to choose from? Whereas under k = 6 the algorithms often converge to a collusive

equilibrium with a fixed market price, Figure 6 shows that under k = 24 final market

prices display a clear asymmetric dynamic pattern: looking at the final 100 periods

of all runs, the majority of periods observe a very small price decrease, whereas in a

small minority of periods the market price suddenly jumps up by a relatively large

amount.

Underlying this asymmetric dynamic pattern is the convergence to deterministic

asymmetric price cycles—or Edgeworth price cycles. These Edgeworth price cycles

are illustrated in Figure 7, which shows the market price in the final 40 periods of

the first three runs of the 1,000 runs simulated. It illustrates that when prices have

decreased too much, one of the two algorithms has learned to shoot up in price and

enable a new gradual price decrease, pushing up average prices and profits and hence

keeping average profitability high.

[FIGURES 6 AND 7 AROUND HERE]

Note that unlike in Maskin and Tirole (1988), these price cycles are deterministic:

it is always the same firm that undertakes the costly action of ‘resetting’ the price
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cycle by jumping up in price rather than undercutting, with the other firm able to

free ride on this. This difference relative to the stochastic Edgeworth price cycles

described theoretically by Maskin and Tirole comes from the fact that Q-learning

is a pure-strategy algorithm that cannot learn the mixed-strategy behavior on the

equilibrium path that underlies the Edgeworth price cycles of Maskin and Tirole (as

also discussed in the Theoretical Limitations subsection of Section 3).

Different Stepsize Parameters

In the baseline simulation, I have set stepsize parameter α = 0.3 as a reasonable

compromise between the need to ensure learning is not too slow (α too close to 0)

and the need to ensure it does not forget too rapidly what it has learned in the

past (α too close to 1). Figure 8 confirms that 0.3 is indeed a good compromise,

with average profitability, average optimality and the share of Nash equilibrium runs

generally decreasing for stepsize parameters that are closer to zero or close to one.

Although not shown here, similar results apply when keeping the stepsize parameter

of one of the two firms fixed (i.e. allow for asymmetric stepsize parameters).

[FIGURE 8 AROUND HERE]

Different Discount Factor

I have set discount factor δ = 0.95 reasonably close to 1 as periods are generally small.

In case of very short periods the actual discount factor of a firm would be much closer

to 1. However, when setting δ very close to 1, sufficient learning may fail because old

Q-value estimates will get too much weight. It may then be required to set a lower δ.

Figure 9 shows this. It shows that when δ is low, it consistently learns to coordinate on

a static Nash equilibrium outcome. When δ increases, average profitability increases

while average optimality and the share of Nash equilibrium runs decreases. When δ is
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set too close to 1, it indeed fails to learn properly and performance collapses. Although

not shown here, the same result occurs when setting different stepsize parameters α.

[FIGURE 9 AROUND HERE]

Self-Reactive Conditioning

Similarly as Maskin and Tirole (1988) I have imposed the Markov assumption, under

which the state variable is defined as current competitor price only. In other words, the

algorithm is not allowed to condition its prices on any history of past prices that are

not longer relevant for its current profit. In their setting of simultaneous competition,

Calvano et al. (2020b) however consider a Q-learning algorithm that allows for and

requires (at least) one-period memory, such that state st = {pi,t−1, pj,t−1}. The cost of

this is that it increases the state-space and hence the amount of unique action-state

pairs over which the Q-learning algorithm has to learn to optimize.

Figure 10 shows that in this setting of sequential competition, also allowing for

conditioning on own past price does increase average profitability moderately. How-

ever, this comes at the cost of longer learning and less optimality. It also has more

difficulty to converge to Nash equilibrium behavior—which is not unexpected, given

the much larger state-space. Overall performance therefore does not seem to improve

in the presence of self-reactive conditioning. The reason why overall performance

does not improve in this setting relative to Calvano et al. is that knowing the history

of prices does not help the algorithm in learning strategies that involve much more

effective reward-punishment effects. The sequential nature of price setting already

enables the asymmetric pricing cycles as off-equilibrium punishment strategies.

[FIGURE 10 AROUND HERE]
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6 Concuding Remarks

This article shows that competing pricing algorithms powered by reinforcement learn-

ing can learn collusive strategies. This occurs even though the algorithms do not

communicate with each other and are only instructed to maximize own profits (i.e.

do not receive any instructions to collude). In this final section, I discuss the practical

limitations of Q-learning and how more advanced algorithms may deal with these. I

close off with several comments on policy implications.

Limitations and Future Research

Reinforcement learning techniques are used in pricing applications—in particular the

autonomous exploration of optimal prices. However, as noted in the introduction, I

use Q-learning as a proof of concept only: it is unlikely to observe pricing algorithms

‘in the wild’ that are completely and only based on Q-learning. This is because

Q-learning suffers from three key limitations: it requires many periods of costly ex-

perimentation, it may need to adapt its learned behavior when there are structural

changes in the environment (such as entry, exit or shifts in cost or demand) and it is

not guaranteed to converge to one specific outcome. Relatedly, this article only con-

siders a very stylized competitive environment, for exposition purposes. Q-learning is

likely to have increasingly more difficulty in finding optimal strategies under increas-

ingly more complex environments.

There are different avenues with which to deal with these limitations in practice.

For instance, Calvano et al. (2020b) already discuss how pricing algorithms powered

by reinforcement learning may be trained in an offline, simulated environment before

being put to use in the real world (see also Wang, Hao, Wang and Taylor, 2018).

In fact, this is how reinforcement learning algorithms are trained in for instance

board games (Silver et al., 2018) and autonomous driving (Kiran et al., 2020). More

importantly, however, a solution to the practical limitations may be to impose more
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structure on the learning algorithm. The sequential Q-learning algorithm discussed

here learns very slowly by design: it only updates one entry in its Q-matrix at a time.

Imposing more structure by for instance modelling a demand function or competitor

learning is a very obvious next step to improve the learning process (Romero and

Rosakha, 2019; Schwartz, 2014; Sutton and Barto, 2018). These two avenues are left

for future research.9

Policy Implications

The main conclusion of this article is that autonomous algorithmic collusion is in prin-

ciple possible. This leads to three concrete policy implications. First, we need a better

empirical understanding on whether this also occurs in reality. As this article and

the literature review show, there are different theoretical competition concerns when

it comes to the use of pricing algorithms. Recent empirical evidence on the German

retail gasoline market supports in particular the concern around self-learning algo-

rithms (Assad et al., 2020). However, at this stage it is still unclear what the scope

of the concerns are in practice, nor exactly what kind of pricing algorithms are used.

This warrants a push for a better empirical understanding. One particularly valuable

tool here may be a comprehensive market investigation by authorities into the use of

pricing algorithms. Several competition authorities already have the ability to initi-

ate such investigations. Moreover, the European Commission has recently launched

a consultation to develop a new competition tool with similar capabilities—and al-

ready identifies “the risk of tacit collusion [...] due to algorithm-based technological

solutions” as a potential topic for investigation (European Commission, 2020).10

9Another valuable avenue for future research may lie with experimental economics, as also dis-
cussed by Schwalbe (2019). In our environment of a sequential pricing duopoly, Q-learning does
not outperform the human performance benchmark as provided by Leufkens and Peeters (2011).
For future autonomous pricing algorithms, it may be interesting to see whether they are capable of
outperforming human subjects in controlled laboratory settings.

10Note that this focuses specifically on the concerns around algorithmic collusion. Other com-
petition concerns in the use of pricing algorithms can for instance relate to the increased use of
differentiated prices (Competition and Markets Authority, 2018), which may be seen as unfair, or
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Second and relatedly, the possibility of autonomous algorithmic collusion raises in-

teresting regulatory questions. Pricing algorithms can involve many pro-competitive

effects and prohibiting their use is sure to be excessive. A more tailored response

could for instance restrict what goes into the algorithm. In particular, in my environ-

ment autonomous collusion would be avoided by imposing that firms update prices

at the exact same time rather than sequentially (and cannot condition on the history

of prices, as in Calvano et al.). It would be valuable to consider how this conclu-

sion applies more broadly to different competitive environments and whether such a

restriction does not involve excessive efficiency costs. Additionally, autonomous col-

lusion would be avoided when prohibiting firms from taking into account competitor

prices. However, this may be unique to dynamic optimization environment consid-

ered. As discussed in the literature review, opposite results are found in the case of

static optimization algorithms, where ignoring competitors may lead to an underes-

timation of the own price elasticity of demand or inadvertent correlated pricing. In

addition to regulating the input to the algorithm, various market design features may

also prevent autonomous collusion, without impeding efficiency benefits. These can

for instance relate to demand-steering policies (Johnson, Rhodes and Wildenbeest,

2020b), or forcing a disaggregation of decision-makers or introducing an additional

algorithm that aims to maximize social or consumer welfare (Abada and Lambin,

2020). It would be valuable to explore such options further.

Finally, we may need to rethink the basis of our antitrust laws when it comes to

algorithms and collusion. As discussed by Harrington (2018) and Calvano, Calzo-

lari, Denicolò, Harrington and Pastorello (2020), collusion between humans on higher

prices involves a three-step process: (1) communication between competitors on the

collusive intent and conduct, (2) the mutual adoption of the collusive conduct and (3)

the higher prices as a consequence of the collusive conduct. In prosecuting cartels,

the increase of barriers to entry when the algorithms are driven by proprietary data (Autorité de
la Concurrence and Bundeskartellamt, 2019; OECD, 2016). Additionally, any investigation needs
to similarly look at the pro-competitive effects of algorithms—such as lower costs, better market
clearing and lower entry barriers (Oxera, 2020).
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antitrust laws have focused on the first stage (communication between competitors).

This is because the second stage (the collusive conduct) is generally latent (i.e. occur-

ring only in the head of the managers) and the third stage (higher prices) is difficult to

ascribe definitively to collusive conduct (as opposed to other, innocuous explanations

such as changes in demand, cost or other market conditions). This antitrust practice

of focusing on communication may be problematic in the case of the autonomous algo-

rithmic collusion shown in this article and Calvano, Calzolari, Denicolò and Pastorello

(2020), as communication is absent. Collusion is tacit. But, whereas authorities gen-

erally cannot observe the second stage (the underlying collusive conduct) in the case

of human collusion, pricing algorithms can be audited and tested to see whether they

employ the kind of strategies that support a collusive equilibrium outcome. The

forced deviation as shown in Section 4 is an example of such an approach.

There is actually a more general principle here, which is that algorithms require a

far greater level of specificity than human decision-making and this specificity can be

probed. This principle provides novel possibilities in detecting and prosecuting un-

wanted behavior. This goes beyond just competition concerns, applying for instance

also to concerns around algorithmic bias and discrimination (Kleinberg, Ludwig, Mul-

lainathan and Sunstein, 2020). The big challenge, however, will be to translate the

principle of probing algorithmic decision-making to practical policy.
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Figure 1: Baseline Performance Under Different Learning Durations T
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Notes: Results are in case of amount of price intervals k = 6, stepsize parameter
α = 0.3 and discount factor δ = 0.95.
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Figure 2: Baseline Joint Distribution of Profitability Πi
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Notes: Right panel considers only those runs that led to a Nash equilibrium (667 out
of 1,000 runs). Dotted squares indicate joint-profit maximizing profitability. Results
are in case of amount of price intervals k = 6, learning duration T = 500,000, stepsize
parameter α = 0.3 and discount factor δ = 0.95.
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Figure 3: Average Market Price and Profit After a Forced Deviation
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Notes: Results are for those runs that led to a Nash equilibrium outcome on the
joint-profit maximizing price. Dotted line indicates moment of deviation. Results are
in case of amount of price intervals k = 6, learning duration T = 500,000, stepsize
parameter α = 0.3 and discount factor δ = 0.95.
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Figure 4: Performance Under Different Learning Durations T and Amount of Pricing
Intervals k
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Notes: Results are in case of different amounts of price intervals k, with stepsize
parameter α = 0.3 and discount factor δ = 0.95.
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Figure 5: Joint Distribution of Final Profitability Πi and Optimality Γi for k = 24
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Notes: Dotted squares indicate joint-profit maximizing profit and Nash equilibrium
respectively. Results are in case of amount of price intervals k = 24, learning duration
T = 500,000, stepsize parameter α = 0.3 and discount factor δ = 0.95.

Figure 6: Distribution of Changes in Market Price
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Notes: This figure looks at all the changes in market price that occur during the
final 100 periods of all runs put together, where each bar represents a possible price
change. Results are in case of amount of price intervals k = 24, learning duration
T = 500,000, stepsize parameter α = 0.3 and discount factor δ = 0.95.
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Figure 7: Illustration of Final Market Prices for k = 24
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Notes: This figure looks at the market price during the final 40 periods of the first
three individual runs. Results are in case of amount of price intervals k = 24, learning
duration T = 500,000, stepsize parameter α = 0.3 and discount factor δ = 0.95.
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Figure 8: Performance Under Different Stepsize Parameters α
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Notes: Results are in case of amount of price intervals k = 6 and discount factor
δ = 0.95.
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Figure 9: Performance Under Different Discount Factors δ
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Notes: Results are in case of amount of price intervals k = 6, learning duration
T = 500,000 and stepsize parameter α = 0.3.
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Figure 10: Performance Under Self-Reactive Conditioning
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Notes: Results are in case of amount of price intervals k = 6, stepsize parameter
α = 0.3 and discount factor δ = 0.95.
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