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Abstract

We study situations where a new entrant with privately known talent competes with an

incumbent whose talent is common knowledge. Competition takes the form of a rank-order

tournament. Prior to the competition, the newbie can “show off,” i.e., send a talent revealing

costly signal. We find that incentives to show off can go in either direction—more talented

types may wish to mimic less talented ones or the reverse, depending on the newbie’s talent

distribution compared to the one of the incumbent. In equilibrium though, showing off occurs

only when the newbie is exceptionally talented compared to the incumbent. Surprisingly,

showing off occurs to the benefit of both parties; the newbie benefits for obvious reasons,

the incumbent by economizing on wasted effort when overmatched. We use our findings to

study the broader consequences of showing off, which is discouraged in many cultures through

implicit social norms. We show that norms against showing off raise total effort but worsen

talent selection, and are thus appropriate only when effort is society’s main concern.

Keywords: Showing Off, Contests, Norms

JEL-Classification: D23, D83, M52
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1 Introduction

In a way, Barry was coming home. Born in Honolulu, he moved to Jakarta at age four and

remained there until fifth grade. Because he stood out in school, his grandparents worked hard

to secure him a slot at Punahou Academy, the best private school in Hawaii at the time. Darker,

taller, and gawkier than the other boys, Barry was a curiosity on his first day in class.1 While he

knew a great deal about Punahou, his classmates knew little about him. And so, when his teacher

asked her first question, Barry faced the dilemma of all new kids at school, to raise his hand or to

stay quiet. When Barry went to college at Columbia, he was still different, one of the few black

students attending at the time. He knew much about Columbia and its storied history, but, to his

classmates, he was a man apart, an enigma. And he faced the same dilemma—to stand out or lay

low.

Years later, Barry, now going by his given name, Barack, ran for senate in Illinois. He was still

a cipher, an unknown commodity in the constellation of power in the Democratic party. Again

he chose between standing out or laying low, but this time standing out meant performing on a

world stage, delivering the keynote address at the 2004 Democratic National Convention. The

party hoped his speech would deter strong contenders in the upcoming contest for the thus far

Republican-held Senate seat in Illinois.2 Even today Obama’s keynote address is viewed as a great

piece of political theater. The rest of Barry’s story is well known. He cruised to victory in the

Senate race, and not long after, won another election, one that made him 44th President of the

United States of America.

While Obama’s story, Barry’s story, is singular in its events and final outcome, the dilemmas

he faced are not. Whether in the workplace, the political arena, high school, or college, the “new

kid” must choose between standing out or laying low.3 A good use of this strategy will soften

subsequent competition, while a wrong decision may lead to an escalation of rivalry. In this paper,

we investigate the economics of showing off, laying low, and psyching out.

In our archetypal situation, a newbie competes against an incumbent for a prize. Both know

the incumbent’s ability, but the newbie’s ability is a mystery to the incumbent. Prior to the

competition, the newbie can show off, i.e., send a talent revealing costly signal, or lay low. We find

that newbies are often better served by laying low. Only newbies that are exceptional, relative to

the incumbent, benefit from showing off in equilibrium. We refer to this finding as “The Law of

1https://www.washingtonpost.com/opinions/how-obama-became-black/2012/06/14/gJQA8CnKdV_story.

html?utm_term=.1a4eb438ae0a
2“On June 25th, Obama’s Republican opponent, Jack Ryan, dropped out of the race, and state and national GOP

leaders floated big-time names as a replacement, from former governor Jim Edgar to ex-Bears coach Mike Ditka.

The Democrats hoped that giving Obama the high-profile speaking slot would scare away potentially tough Republican

challengers.” http://www.chicagomag.com/Chicago-Magazine/June-2007/The-Speech/
3Many workplaces feature some form of competitive incentives. For example, Cowgill (2015) shows that relative

performance evaluation co-determines wages for 77% of workers in the United States. Such competition motivates
effort, but the nature of incentives depends on relative ability as well as beliefs about a competitor’s relative ability
(Brown, 2011). Horizontal movement of workers is commonplace. For example, Fallick et al. (2006) document that
between 1994 and 2001 more than 2.4% of employees in Silicon Valley changed their employer within the valley on a
monthly base. Consequently, asymmetries in the information about a co-worker’s talent are important: information
about a new hire’s talent is inherently less precise.
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Exceptionalism”—being better is not enough.

The point of showing off is to convince the incumbent to compete less intensely. Whether

revealing talent achieves that depends on relative ability. Newbies that are similar in ability to

the incumbent motivate the incumbent to compete harder. These newbies are well advised to lay

low. Very low ability newbies appease the incumbent and thus have an incentive to reveal their

talent. But for them showing off is very costly and they are not able to credibly reveal their type

in equilibrium. It is the exceptional newbies who psych out competition by showing off and for

whom showing off is relatively cheap at the same time. We identify the threshold where psych

outs become possible and study its properties.

To illustrate the incentives for showing off, consider a swim meet where top male high school

athletes compete against a “mystery swimmer,” whose identity is withheld by the competition

organizer. At his discretion, the mystery swimmer can, if he wishes, leak his identity to the press

in advance of the meet. If the mystery swimmer is Mark Spitz, an Olympic champion, but well past

his prime, laying low is optimal—revealing his identity will cause the other swimmers to intensify

their level of preparation and performance, forcing Spitz to work harder and reducing his chances

of winning. On the other hand, if Michael Phelps is the mystery swimmer, leaking is optimal since

the high school athletes will see that they have little chance of winning and hence little incentive

to prepare or try very hard in the meet. This, in turn, permits Phelps to economize on effort. We

identify the factors determining when a Spitz becomes a Phelps.

Finally, we examine the economics of showing off from a societal perspective. While the

students of Punahou might prefer to minimize effort, their teachers surely have a different objective.

We show that when society cares about aggregate effort, showing off should be strongly discouraged.

In many cultures this discouragement takes the form of a social norm against showing off. For

example, the English-speaking world uses the metaphor of “Cutting Down the Tall Poppies.”4 In

schools, tall poppies are straight-A students who are voluble in demonstrating their intelligence.

In the workplace, they are show-offs who showcase their expertise during watercooler discussions

and lunch breaks. Cutting down the tall poppies means punishing and thus discouraging showing

off behavior. Our analysis reveals that such norms, which nowadays often seem out of place, can

be functional and create social value. By limiting showing off opportunities, society shuts down

this channel of discouraging others as a means to economize on effort.

Casual empiricism, though, suggests exceptions to this rule: Silicon Valley startups seem to

owe much of their success to letting the tall poppies bloom. In these settings, talent identifica-

tion and retention determines success. We show that a norm against showing off is detrimental

when selecting the exceptional is the goal. Thus, the same model of showing off can account for

apparently vastly different behavioral norms.

To be precise, we amend the standard contest model to allow for the costly signaling of ability

in a situation where information is asymmetric—one party’s abilities are known to all while the

4This metaphor dates back to accounts by Herodotus that describe how Thrasybulus led a herald from Periander
through a wheat field. In response to the herald’s question of how he would most safely govern his city, Thrasybulus
silently cuts down the tallest ears of wheat. (Herodotus, The Histories, Book 5, 92-f)
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other’s are unknown and private knowledge. Signaling costs are perfectly correlated with ability.

In this setting, our main results are the following:

• There always exists a threshold equilibrium in which, if any, only newbie types that are ex-

ceptionally talented show off. Less talented newbies lay low and their types remain unknown.

• Showing off and laying low are used by competitors to soften competition to their mutual

benefit. Doing so, however, harms a society mainly interested in total effort. A norm against

showing off may serve as a remedy and increases aggregate effort.

• The possibility of showing off tends to accentuate competitors’ differences and thereby im-

proves selection efficiency. Thus a norm against showing off is detrimental to a society

interested in selecting the most able competitor.

We now place our findings in the context of the extant literature. Classical signaling games

in the tradition of Spence (1973) also deal with the question of whether to show off (see e.g.

Feltovich et al., 2002, or Daley and Green, 2014, for some more recent contributions to this strand

of literature). In contrast to our paper, here the showing off is addressed to a principal and not to

a competitor.

The extant contest literature mainly focuses on driving effort or selection by manipulating

various aspects of the contest such as prize amounts, numbers of players, and information disclosed

by the contest organizer. We focus on the equilibrium “culture” of information revelation that

prevails among competitors.

A branch of the literature studies contest structure including the allocation of prize money and

timing in the resolution mechanics of the contest itself.5 Another branch studies how the principal

might wish to manipulate the information competitors have about one another; for example, by

releasing information about the competitors’ abilities before the start of the competition. Leading

examples of this branch are Ederer (2010), Klein and Schmutzler (2017), Zhang and Zhou (2016),

Lu et al. (2016), or Crutzen et al. (2013). By contrast, we focus on the choices that would be

made when the agent, rather than the principal, decides.

There is a small literature that also focuses on disclosure by agents. Important examples are

Kovenock et al. (2015) and Wu and Zheng (2017), who study ex-ante commitment by the com-

petitors to disclose information costlessly, as well as Katsenos (2009) and Heijnen and Schoonbeek

(2017), who also analyze agents’ incentives to signal their types.6 Hörner and Sahuguet (2007)

study a competitor’s incentives to manipulate information in an auction setting through an ag-

gressive or cautious opening bid. We complement these papers in that we also study agents’

5For example, Moldovanu and Sela (2001), Clark and Riis (1998), or Sisak (2009) focus on optimal prize division
with a given budget. Gradstein and Konrad (1999) and Moldovanu and Sela (2006) analyze one-shot contests ver-
sus tournaments with multiple stages. Yildirim (2005), Klumpp and Polborn (2006), Konrad and Kovenock (2009),
Denter and Sisak (2015, 2016), or Seel and Strack (2016) focus on dynamics in effort choices where the same com-
petitors expend effort repeatedly against each other.

6In contrast to Katsenos (2009) and Heijnen and Schoonbeek (2017), who confine their analyses to binary type
distributions, we consider generic continuous and differentiable type distributions.
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incentives to reveal their type before entering into competition. We innovate by studying the

social desirability of norms against showing off.

While the question whether to show off is clearly relevant for human interactions, animals also

show off to signal their talent. For instance, scientists have studied the phenomenon of roaring

behavior by stags during the red deer’s mating season. A challenger initiates roaring against the

incumbent harem holder. After assessing one another during this roaring strength display, the red

deer stags decide whether to enter into direct conflict (see for example Payne and Pagel, 1997).

Critically, the incumbent’s subsequent aggressiveness depends on the information gained in the

roaring phase of the meeting. Recent studies found that also octopi engage in costly signaling

before potentially entering into conflict. They find that octopus colouring and body posture are

correlated with escalation of disputes (Scheel et al., 2016). The testable predictions we offer apply

as much to animal behavior as human.

There is a vast literature examining how institutions and norms form, and how they impact

policy.7 Many scholars argue that norms correct for positive or negative externalities and thus

a norm is likely to arise in settings where it is socially beneficial (see e.g. Fehr and Fischbacher,

2004). Relatedly, a behavioral regularity noted in the experimental economics literature is that a

more socially beneficial norm of behavior (in a broad sense) is more likely to be adopted.8

We are agnostic on how norms emerge. Rather, we take as given that the likelihood of a norm

prevailing depends on its social desirability. Our contribution, relative to the extant literature, is

to apply this metric to showing off situations embedded in contests. As described above, norms

against showing off are prevalent in many contexts, though they are noticeably absent in others.

Applying this notion of norm emergence, we find that a norm against showing off is more likely to

emerge when society benefits from aggregate effort expended in the contest and less likely when

selection of talent is society’s primary goal.

The paper is organized as follows. The next section, Section 2 introduces the model. Section

3 features the main analysis where we study showing off by the newbie in Subsection 3.1. In

Subsection 3.2 we study the incumbent’s perspective on showing off. In Section 4 we study the

effects of a norm that punishes individual showing off behavior. Finally, in Section 5 we study the

implications of ‘productive’ showing off, i.e. showing off that not only reveals information but also

translates into effective effort. Section 6 concludes. All proofs are relegated to the appendix.

2 The Model

As argued above, asymmetries in information for example about a co-worker’s talent are important,

since information about a new hire’s talent is inherently less precise than information about well

7See e.g. Acemoglu and Robinson (2016) for the importance of norms for the emergence of different institutions,
Sliwka (2007) for how norms affect organizational design, Name Correa and Yildirim (2016) for how norms affect
charitable giving, or Bowles and Polańıa-Reyes (2012) for a survey.

8Zelmer (2003) provides a meta analysis of giving behavior in linear public goods games where a higher marginal
per capita return tends to increase contributions while Parravano and Poulsen (2015) show that stake size increases
coordination on label-salient strategies for symmetric coordination games.
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established, or incumbent, competitors. The model we construct is a parsimonious representation

of such an environment that serves to highlight the main forces at play. Two competitors vie

for a prize, which goes to the better performer and whose value we normalize at 1. The loser

receives a consolation prize, which we normalize at zero.9 These competitors could be two middle

managers competing for a bonus, political rivals competing for office, or students competing to be

valedictorian.

Let xi denote competitor i’s effort, where both players choose effort simultaneously. When

two managers compete, this effort can be thought of as the thoroughness of the market research

each of them conducts to use as the basis for decisions that affect the success of the company. A

competitor’s realized “performance” is a combination of her luck and effort; thus, it may well be

the case that the competitor who exerts more effort still loses the contest. Formally, let ǫi be the

luck component of performance and suppose that measured performance takes the form:

yi = xi · ǫi

A competitor’s “luck” consists of a realization of a Weibull (maximum) distribution with a mean

equal to one. Thus, on average, a player’s performance corresponds to her effort, and neither

player is “luckier” than her rival.

The principal awards the prize to the better performing competitor, i.e., the competitor with

the higher value of yi. Thus, while effort is helpful in securing the prize, exerting more effort than a

rival does not guarantee success. Our formulation of the luck component of performance produces

a convenient specification relating a competitor’s chance of success to her effort. In particular, the

chances of success are10

pi =
xi

xi + xj
and pj = 1− pi. (1)

This formulation, often called the lottery contest success function, proves extremely tractable, so

much so that it is virtually standard in examining contests and tournaments.11

Competitors are risk neutral and differ in ability/talent. We model this difference by assuming

that a more talented person has a lower marginal cost of effort, ci. Returning to our leading

example, a more talented manager can produce reports with a given level of thoroughness more

quickly than a less talented manager, i.e., she incurs lower costs.

While each competitor knows her own marginal costs (ability) at the time of effort choice, in-

formation about the other player may differ. In particular, we assume that the talent of competitor

I, the incumbent, is common knowledge, whereas the talent of her rival the newbie, whose identity

9One may worry about normalizing both the winning and losing prize, but, in a contest setting, this is without
loss of generality. Effort in a contest depends solely on the spread between the value of the prizes, rather than their
level; thus we have essentially normalized the spread to be equal to one “util.” Normalizing the prize spread is also
without loss of generality as we allow for general constant marginal costs of effort. A linear transformation of the
utility function, i.e. dividing by a constant, leaves strategic incentives intact.

10See Fu and Lu (2012) for details on how to derive this specification.
11The functional form of equation (1) is problematic when both players choose zero effort. Following the literature,

we assume that a coin flip determines the winner in this case. See for example Konrad, 2009 or Sisak, 2009 for surveys
of the vast literature using this specification.
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Figure 1: Sequence of moves.

we denote by N , is private information. The asymmetry describes common hiring situations where

an internal candidate faces off against an external candidate or where a new salesperson competes

against a veteran incumbent. It also serves the additional purpose of highlighting the main forces

in the economics of showing off, which are only relevant in private information settings, while

minimizing the complexity of the analysis.12

Prior to both party’s effort allocations, the newbie has the opportunity to “show off” by

choosing sN ≥ 0, i.e., to engage in costly (but non performance related) displays meant to signal

his ability.13 Such displays can take many forms. In a corporate setting they might consist of

watercooler conversations or especially dazzling presentations. In an academic setting they might

consist of incisive seminar comments from an Assistant Professor seeking tenure. Importantly, the

cost of such displays varies with the newbie’s talent. We assume that the marginal cost of a unit

of “showing off” is equal to the cost of one unit of expected performance, cN . Since the incumbent

does not know the newbie’s talent, such displays can affect the incumbent’s beliefs and hence alter

the strategic circumstances of performance driven effort. Studying when the newbie shows off, and

how this impacts effort choices, forms the heart of the paper. Figure 1 summarizes the timing of

moves.

Formally, the incumbent I’s cost parameter cI is common knowledge at the beginning of the

game, while the newbie’s cost cN is a random variable from the perspective of the incumbent

with a commonly known CDF F (cN ) over some interval SN = [cL, cH ]. We assume that F (cN ) is

twice differentiable and strictly increasing on SN = [cL, cH ]. While our results hold for continuous

CDFs, the intuition and economic forces at work are most clearly visible when competitor N has

only two types, i.e., when SN = SB
N = {cL, cH} and f(cN ) = q2 = (q, 1 − q), with q ∈ (0, 1).14

Throughout we focus on interior equilibria, that is equilibria in which all types of both players

choose positive effort in the contest. A sufficient condition for interiority is:15

12Our results readily extend to situations of two-sided asymmetric information where ability distributions differ.
In particular, our results may be thought of as describing the limiting value of a sequence of equilibria where the
ability of one player converges to the Dirac distribution. Katsenos (2009), on the other hand, offers some insights
on the limiting case where ability distributions are the same, i.e., either competitor is of type cL with probability q

and type cH with probability 1− q. We discuss his findings and relate them to our results in Subsection 3.1.
13In Section 5 we relax this assumption and allow for directly productive signaling effort.
14Note that this binary scenario does not satisfy the formal conditions on F (cN ).
15Corner solutions can arise when all of the probability mass is centered around cL and cI = cL. In such cases,
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Assumption 1. 2cL ≥ cH ≥ cI ≥ cL.

If the incumbent does not learn the newbie’s type, her expected payoff equals

πI (xI) =

∫ cH

cL

[

xI
xI + xN (cN )

]

dF (cN )− cIxI .

where xN (cN ) denotes the effort of a newbie of type cN . If she does learn the newbie’s type, her

expected payoff equals

πI (xI) =
xI

xI + xN
− cIxI .

The expected payoff for a newbie of type cN equals

πN (xN , sN ) =
xN

xI + xN
− cN (xN + sN ) , cN ∈ SN

Before starting with the details of the analysis, we define the kind of equilibria we will focus on in

the following:

Definition 1 (Threshold equilibrium). A threshold equilibrium of the showing off game is a Perfect

Bayesian Equilibrium in which a threshold cZ exists such that all newbies with cN < cZ (if any)

show off, while all others refrain and lay low. The incumbent observes the degree of showing off

and updates her beliefs accordingly. Both players choose efforts in the contest given these beliefs.

As usual, there may be multiple Perfect Bayesian Equilibria in signaling games. To avoid this,

we restrict off equilibrium beliefs using the Intuitive Criterion by Cho and Kreps (1987) when

there are only two types of newbies, and D1, which was also developed by Cho and Kreps (1987),

in the general case.16

3 Analysis

3.1 Showing Off

We now study the newbie’s incentives to show off. Showing off is a worthwhile endeavour if

it transmits information to the incumbent, and this information transmission leads to outcomes

which the newbie considers beneficial. Two observations are central to understanding showing

weaker newbie types optimally choose zero effort. Assumption 1 rules this out. Note that most of our results also
apply under a less strict version of this assumption, 4cL ≥ cH ≥ cI ≥ cL, only Proposition 3 and Theorem 3 rely on
it. These results do hold in a slightly weaker form. For details please consult Appendices D and F.

16As we will see in Proposition 1 below, using the Intuitive Criterion by Cho and Kreps (1987) produces a unique
equilibrium outcome in the binary case. With more than two types, however, the Intuitive Criterion fails to make
unique predictions, and other refinements, such as D1 due to Cho and Kreps (1987) or Universal Divinity due
to Banks and Sobel (1987), are needed to yield unique equilibrium predictions, see for example Chapter 13 of
Mas-Colell et al. (1995). D1 further refines the set of possible equilibria compared to the intuitive criterion. In
particular, D1 restricts off equilibrium beliefs by assigning probability 1 on the type with the greatest incentives
to deviate, should an off equilibrium action be chosen. For applications, see for example Bernheim (1994), Kolb
(2015), or Daughety and Reinganum (2014). In our model, D1 produces a unique equilibrium outcome, in which the
greatest possible fraction of newbies show off, and which is a direct implication of Lemma 5 in the appendix.
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Figure 2: A player’s effort is maximal when she faces a competitor of identical talent and decreases strictly
when the match gets more unbalanced. Left panel: Best response functions for i and j, given cj = 2 and
ci ∈ {1, 2, 5}. Right panel: Equilibrium effort of i with ci = 2 as a function of cj ∈ (0, 5].

off incentives. First, under complete information, the effort xCI
i (c−i) spent by a player with

marginal cost ci against an opponent with marginal cost c−i in equilibrium is maximal when she

faces another player of the same talent, xCI = xCI
i (ci), and decreases monotonically when the

talent of the opponent increases or decreases. This is shown in Figure 2. Therefore, with potential

opponent types drawn from some interval [cL, cH ], the incumbent’s minimum effort under complete

information will be chosen either against cL or against cH , and thus xCI = min
{

xCI
I (cL), x

CI
I (cH)

}

.

Second, under asymmetric information, effort of a player who faces an opponent drawn from [cL, cH ]

is xAI ∈ (xCI , xCI) for any non-degenerate type distribution (see Lemma 3 in Appendix B). That

is, the incumbent’s asymmetric equilibrium effort always fulfills xAI
I ∈ (xCI , xCI

I (cI)). The newbie

always benefits when the incumbent lowers her effort, and hence the best the newbie can do is to

convince the incumbent that he is the type against which she is least aggressive, i.e., the type that

induces xCI . This is true for all newbie types. Thus, our first task is to identify this type that

induces xCI .

We can see from Figure 2 that complete information best responses are hump-shaped in the

situations that we study and thus every positive complete information equilibrium effort choice—

except the maximum—can be induced by two different types of opponents. Complete information

effort xi against an opponent with marginal cost cj is xi(cj) = cj/(ci + cj)
2, implying that effort

is identical against some c′j and c′′j , c′j ≥ ci ≥ c′′j , if and only if ci =
√

c′j c
′′
j . Moreover, the

closer c′j and c′′j to ci, the more i spends against both. Consequently, if cI = µN =
√
cL cH ,

the incumbent chooses identical effort against the most and against the least talented newbie,

and thus all newbie types are indifferent between making the incumbent believe to be either one

(absent signaling costs). If the incumbent is relatively untalented, cI > µN , the incumbent’s

lowest complete information effort is against the most talented newbie cL, and otherwise against

the least talented newbie cH . Thus, we have a condition that tells us—depending on just cI , cL,

and cH—what the newbie would like the incumbent to believe.

Note that incentives to show off are different from incentives in standard signaling games à la

Spence (1973), where incentives to imitate run in one direction—worse types want to be perceived

as better types and thus better types signal to prevent this. In our setting incentives for the newbie

can run in either direction, depending on the incumbent’s ability. Thus, the same type distribution

9



and preferences do not, by themselves, determine the direction of signaling incentives. The reason

for this is that the fierceness of subsequent competition depends on the newbie’s as well as the

incumbent’s ability.

The implications of the described forces for showing off are most easily seen when there are

only two types of newbies. In this case, if one type of newbie successfully signals his type, the

other type is revealed as well. By the arguments above, if cI < µN and thus the incumbent is

relatively talented, both types would like to signal to have low talent. Both would like to signal

to be able otherwise. Because signaling cost are correlated with talent, whenever both would like

to show that they are untalented, lower signaling costs allow the more talented newbie type to

effectively mimic the less able one, and thus no separating equilibrium exists. In this situation no

showing off takes place. To the contrary, when the incumbent has low talent, both types would

like to signal to be talented. But now the more talented newbie type can induce a separating

equilibrium exactly because he has lower costs of signaling, and in equilibrium all types will be

revealed through showing off. Hence, our first conclusion, based on the binary case, is that if the

newbie is sufficiently talented, information on the newbie’s talent is fully revealed through showing

off in equilibrium:

Proposition 1. Assume binary types and let µN =
√
cL cH . A unique showing off equilibrium,

where the newbie’s type is completely revealed, exists if and only if the incumbent is relatively

weak in expectation (cI ≥ µN). In all other cases, the newbie lays low and no information will be

revealed in equilibrium.

The proof of Proposition 1 is contained in Appendix B.17 The proposition illustrates what we

might coin the “Law of Exceptionalism.” It does not suffice to be just more talented than the

incumbent for the talented newbie to show off and to psych out the incumbent (i.e., cL < cI);

the advantage needs to be sufficiently large for any given cH . This can be seen easily from the

condition for showing off to happen: cI >
√
cL cH ⇔ cL <

c2I
cH

< cI . A non-exceptional newbie

prefers to lay low, as revealing his talent would only sharpen competition.

Note that equilibrium showing off in Proposition 1 does not depend on the particular distri-

bution of newbie types. This is a peculiarity of the binary case, because, in this case, when the

talented newbie decides to show off, the untalented newbie’s type is also revealed. When there

are at least three types of newbies, the distribution of types matters. For example, assume there

is a third type cM ∈ (cL, cH). The above reasoning about which type everybody wants to mimic

remains valid: If the incumbent is strong, cI < µN , all types would like to signal to have low talent,

cH . Otherwise high talent, cL, induces the lowest incumbent effort under complete information.

Moreover, as in the binary scenario, it will not be possible to separate types completely when the

incumbent is talented, cI < µN , because the more talented newbies want to mimic the weakest

type cH , and they are also able to do this. Generally, for this case there cannot be a separating

17Note that Proposition 1 and all results that follow pertaining to the binary case locally generalize to a more
general class of contest success functions of the form pA = f(xI)

f(xI)+f(xN )
, where f(xi) is an increasing and weakly

concave function. Around a critical value of cI , which generally exists and where full information efforts against cH
and cL are equal, all results will be the same. Details are available from the authors upon request.
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equilibrium in which cH is revealed truthfully, and thus at least two newbie types need to pool.

The only possible partial separating equilibrium is the one in which cL shows off while cM and cH

lay low and pool. In this situation, showing off convinces the incumbent that he faces the most

talented newbie type, but, unlike in the binary case, not showing off leaves open several levels of

newbie talent. How the incumbent reacts to the newbie’s laying low depends now on the distribu-

tion of types, and this in turn determines showing off incentives. As such, the talent distribution

now figures into the talent threshold at which showing off first occurs.

Now we turn to general distributions. In Lemma 1 in Appendix A, we completely characterize

equilibrium effort in settings where no showing off occurs. We show that the effort equilibrium

is always unique. Next, we add the possibility of showing off in advance of effort determination.

As with nearly all signaling games, the freedom to choose beliefs arbitrarily off the equilibrium

path produces multiple equilibria. To address such situations, and thereby permit straightforward

derivation of comparative statics, we apply the D1 refinement, as is often used in signaling games.

This refinement selects the equilibrium where the largest possible set of newbie types show off. We

thus denote this equilibrium as the “maximally informative equilibrium” (MIE) in the following

and the newbie who is just indifferent between showing off and laying low as the MIE threshold.

We now state the main result from this section:

Theorem 1 (Showing Off and Laying Low). Suppose that newbie types are continuously distributed

on SN according to F (cN ). There exists a unique c̃I > cL such that if cI > c̃I , a unique MIE

threshold c̃N ∈
(

c2I
cH

, cI

)

exists. Newbie types cN show off if and only if cN < c̃N , and lay low

otherwise. The MIE threshold strictly increases in cI for cI ∈ (c̃I , cH ]. When cI ≤ c̃I , no newbie

shows off in equilibrium. c̃I is implicitly defined by c̃N = cL.

Theorem 1 shows that the impact of subsequent competition on showing off incentives and

the Law of Exceptionalism hold in general. Especially noteworthy is that showing off incentives

crucially depend on the incumbent’s ability—a sufficiently talented incumbent, cI ≤ c̃I , destroys

incentives for talented newbies to show off, because instead of psyching out the incumbent, it

provokes more intense competition.

Figure 3 presents a graphical illustration of Theorem 1 when the newbie’s ability is uniformly

distributed on [1, 2]. The solid line represents the MIE threshold, newbie types lying below this

threshold wish to show off, those lying above do not. When the incumbent is talented, that is

when cI lies to the left of the dotted vertical line (c̃I), all newbie types lie above the threshold and

no one shows off. As cI increases, so too does the amount of showing off. Indeed, an incumbent

corresponding to the worst possible newbie type leads all newbie types to show off. Figure 3 also

displays the upper and lower bounds of the MIE threshold, represented by the dashed lines, which

are not distribution specific. Thus, regardless of the type distribution, newbie types lying below

the lower bound always wish to show off.

One might wonder whether there is a systematic relation between risk and the incentives to

show off. No such general relationship exists, as is most easily seen in the binary case. There the

geometric mean of newbie types determines the showing off threshold, i.e., showing off occurs if

11
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Figure 3: The graphic show the MIE threshold (solid line) when cN ∼ U [1, 2]. The dashed lines represent
the bounds of the MIE threshold. All newbie types below the lower bound always show off, independent of
the type distribution’s details. Similarly, all newbie types above the upper threshold always lay low. The
dotted vertical line represents c̃I .

and only if the incumbent’s type lies above the threshold. The key thing is to notice that this

threshold is independent of the probabilities of the newbie’s type. As a consequence, risk may

increase or decrease the threshold, depending on how the geometric mean is affected.

At this point it is useful to link our findings to the ones in Katsenos (2009). He studies a

two-sided asymmetric information framework where ability distributions of both competitors are

the same, i.e., either competitor is of type cL with probability q and type cH with probability 1−q.

He finds that a separating equilibrium–or a showing off equilibrium in our language–only exists if

a player’s opponent is sufficiently weak in expectation, i.e., when q is sufficiently small. Thus, also

with two-sided asymmetric information a variant of our result applies: Only a sufficiently talented

competitor shows off.

3.2 The Incumbent’s Perspective

One might be tempted to think that showing off by the newbie must come at a cost to the

incumbent. The underlying intuition suggests that showing off psychs out the incumbent, thus

reducing her chance of winning the contest, and hence making her worse off. The flaw in this

intuition is that it ignores how the newbie responds to the incumbent’s change in effort.

As in the previous section, we start with the binary case to develop intuition. Absent showing

off, the incumbent remains uncertain as to the newbie’s ability and hence chooses effort somewhere

between that which she would choose knowing the newbie is a low type and that when knowing he

is a high type, i.e., xAI
I ∈

[

min
{

xCI
I (cL), x

CI
I (cH)

}

,max
{

xCI
I (cL), x

CI
I (cH)

}]

. As we next show,

whether showing off harms the incumbent depends on the relationship of this intermediate effort

to what an incumbent with commitment power would choose under full information.

To understand this, consider the following hypothetical problem: What effort level would the

incumbent choose, if she could commit to any effort level she wishes to? Such a situation is

alike a Stackelberg game with the incumbent as the leader and the newbie as the follower as

well as full information regarding the newbie’s talent. Under full information, it is well-known

12



Figure 4: Efforts rankings for the incumbent in the complete information Nash equilibrium and when she
is a Stackelberg leader against the different newbie types. In the upper graph we have cI > µN , implying
xCI
I (cL) < xCI

I (cH), and thus remaining ignorant moves the incumbent farther away from the Stackelberg
points vis a vis both newbie types. Thus, the incumbent likes showing off. In the lower graph we have
cI < µN , implying xCI

I (cL) > xCI
I (cH), and thus remaining ignorant moves the incumbent closer to the

Stackelberg points versus both newbie types. Hence, ignorance is bliss for the incumbent.

that a Stackelberg leader incumbent would overinvest in effort against an untalented newbie and

underinvest against a talented one (see, for example, Dixit, 1987). The reason is that weaker

opponents are deterred by greater effort levels and stronger opponents are appeased by lower

ones. Furthermore, in this setting the incumbent’s utility is single-peaked in her own action and

is maximized when the appropriate Stackelberg effort is chosen (see Yildirim, 2005). Whether

the incumbent’s efforts under showing off or under ignorance lie closer to the Stackelberg efforts

depends crucially on the incumbent’s relative strength compared to the newbie.

The upper graph of Figure 4 depicts a situation where the incumbent is relatively weak, i.e.,

cI > µN . Notice that, in this circumstance, she exerts less effort against a talented newbie and

more against an untalented one. With commitment, her ideal effort is even lower versus a talented

newbie and higher in the opposite case, as shown by points xSBI (cL) and xSBI (cH) in the figure.

Absent showing off, the incumbent optimally chooses a point between the full information efforts

xCI
I (cL) and xCI

I (cH) in the figure. Since this places her further from the optimal commitment

strategy regardless of the newbie’s type, the incumbent benefits when the newbie shows off.

The situation where the incumbent is relatively strong, cI < µN , is more complicated. The

ordering of the complete information efforts reverses and hence the Stackelberg actions may lie

outside or inside their range. The lower graph of Figure 4 depicts the former. Clearly the in-

cumbent’s effort under ignorance is closer to her optimal commitment strategy regardless of the

newbie’s type. In the latter case the ranking is not as clearly visible and ignorance may only be

optimal in expectation. Fortunately, the condition for ignorance to be bliss is quite simple:

Proposition 2. Consider binary types. If the incumbent is relatively talented compared to the

newbie, cI < µN , she strictly prefers to stay ignorant about the newbie’s type. If the incumbent

is relatively untalented, i.e., when cI > µN , she prefers to obtain information about the newbie.

When cI = µN , the incumbent is indifferent between obtaining information and staying ignorant.

Depending on the talent of the incumbent, she may both prefer the newbie to show off or

to lay low. Note that the condition delineating her preferences between these two informational

scenarios is equivalent to the one in Proposition 1 governing showing off: If the newbie shows off,

the incumbent wants the newbie to show off; if the newbie lays low, the incumbent does not want

to learn the newbie’s talent either. Their interests regarding showing off are perfectly aligned.

13



Now consider the general set-up. With at least three types, as we showed earlier, we may

have partial separation, and thus some newbie types show off while others do not. We now study

how the incumbent likes the possibility of showing off in expectation. In particular, we consider a

thought experiment. Suppose that the incumbent could pick any threshold type cZ ∈ [cL, cH ]. All

types with lower costs show off their types, and all types with higher costs refrain from doing so.

Which threshold would she choose? Proposition 3 offers an answer:

Proposition 3. Among all possible thresholds, the threshold defined by the MIE maximizes the

incumbent’s expected utility.

Proposition 3 shows that, surprisingly, the threshold most preferred by the incumbent perfectly

coincides with that chosen by the newbie. Thus, despite their conflict over receiving the reward,

there is no conflict as regards the tactics of showing off.

4 Cutting Down the Tall Poppies?

Our previous analysis reveals that both parties agree about the talent threshold at which showing

off improves matters. Yet societal norms are not so careful in accepting showing off behavior,

regardless of talent. In Britain the distaste for showing off is described as “cutting down the tall

poppies,” while in Scandinavia the “Law of Jante” represents the cultural proscription against

showing off. In Japan, the social obligation to conform and the consequences for those who violate

this norm are described in a common proverb:

“The nail that sticks out shall be hammered down”18

On the other hand, American cultural norms, particularly in business contexts, have few such

proscriptions against showing off.19 One might see this as a kind of “horses for courses” effect;

that is, under some conditions, society as a whole benefits from not discouraging showing off, while

in others, proscribing this behavior is better advice. If one considers expected aggregate effort as

reflecting the benefits to society, our model offers a crisp answer to the question as to whether

discouragements of showing off are helpful or harmful. To wit:

Theorem 2 (Norm Against Showing Off). Compared to the MIE, reducing showing off increases

aggregate effort. Formally, treating the showing off threshold as a parameter, aggregate effort

increases as the threshold for showing off decreases relative to the MIE threshold, i.e., when there

is less showing off.

18Roku Okada, Japanese Proverbs and Proverbial Phrases, Japan Travel Bureau, Tokyo 1955, page 28.
19For example, Fineman emphasizes the importance of showing off: “The other side of the coin is this: bragging

is integral to career now. You can denounce it, or you can learn how to use it to your advantage. At least,

that’s what I’ve done. Or rather, what I teach people to do. How to leverage voice and know-how and learn how

to break through the noise. Or in more simple terms, redefine self-promotion to get ahead in the workplace. It’s

the truth of 2015, and it matters at every phase of your career.” See https://www.inc.com/meredith-fineman/

showing-off-is-important.html.
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While Proposition 3 showed that there was complete alignment between competitors as to

the optimal information disclosure regime, their interests do not align as neatly with those of a

society interested in aggregate effort. In fact, the showing off choices selected by the competitors

represent society’s worst information disclosure regime. Any norm that discourages some newbie

types from showing off increases expected aggregate effort, but if possible, society would gladly

suppress showing off behavior entirely. No model can fully reflect the rich social milieu which the

players inhabit. Nonetheless Theorem 2 offers useful intuitions and insights. It shows that the

global norm of punishing show-offs may not be dysfunctional cultural baggage from the past in

need of discarding. Instead, it could represent a sensible societal choice.

But does it also suggest that U.S. firms have somehow gotten it wrong, that they are pursuing

a policy that makes them worse off? In rigid promotion systems where seniority mainly deter-

mines managerial responsibility and where contest structures are used predominantly to determine

bonus payments, as often the case in Japanese firms, aggregate effort seems the most important

consideration.20 Likewise in schools, where educating everyone, rather than sifting out talent, is

the main goal, effort once again seems like the appropriate welfare metric.

But in other business contexts, this narrow view of welfare often seems more problematic.

Businesses thrive by identifying rare talent and exploiting that for competitive advantage. This

suggests that selection ought to have considerable weight in assessing the success of a business

culture. Likewise, when success depends primarily on innovation, as with many Silicon Valley

firms, effort cannot be the sole consideration. If selection efficiency is measured by the expected

talent ci of the winner of the contest, a sharp result is available in the polar case, i.e., where only

efficient selection matters:

Theorem 3 (Showing Off and Selection). Compared to the MIE, discouraging showing off decreases

expected selection efficiency. Formally, treating the showing off threshold as a parameter, the

expected talent of the winner decreases as the threshold for showing off decreases relative to the

MIE threshold, i.e., when there is less showing off.

Norms that sanction showing off are conducive to increasing aggregate effort. But as Theorem

3 shows this comes at a price: it deteriorates selection efficiency. The reason is that showing off,

when it happens, reveals the newbie’s superior talent, which psychs out the incumbent and thus

lowers her effort. However, by accentuating the competitors’ differences, it also leads to greater

differences in their behavior, which benefits selection efficiency. Thus, it may be that US firms are

not erring by embracing a laissez-faire culture of “showing off.” Rather, differences in business

culture might simply reflect differing tradeoffs between effort and selection.

Behavioral reasons, such as overconfidence, might also dictate against a norm of showing off.21

When the newbie is potentially overconfident, showing off provides an additional benefit—it gives

20For example, Chlosta et al. (2014) report that, unlike in the U.S., contest structures in Japan are indeed pre-
dominantly used to determine bonus payments, suggesting that the main goal of the contest is to incentivize effort.

21Overconfidence has been shown to be an important bias affecting economic decision making. See e.g.
Malmendier and Tate (2005, 2015) for evidence of overconfidence in the corporate world. Van den Steen (2004)
rationalizes overconfidence in a Bayesian model.
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feedback to the newbie as to his true ability. Remember that only newbies that believe they are

exceptional show off. An overconfident newbie who believes he is exceptional but is, in fact, quite

ordinary, will be disabused of this notion when his attempts at showing off fall flat. This realization

causes him to step up effort, as talent alone will not suffice. Also the incumbent increases her effort

in response. This feedback comes at a cost—when the newbie is, in fact, exceptional, showing off

reveals this and leads to effort reducing discouragement and complacency effects. Thus, there is

a tradeoff: when the newbie is likely to be well calibrated as to his ability, a norm condemning

showing off is optimal; whereas, when overconfidence is rife, a showing off culture is optimal. We

show this formally for the binary case.

Proposition 4. With binary types, if the probability of an overconfident newbie is large, expected

aggregate effort decreases when showing off is discouraged.

Appendix G adds overconfidence to the model with binary types and formalizes the intuition

above about the feedback benefit of showing off.

5 Productive Signals

In our preceding analysis, we upheld the assumption that showing off is not directly productive

but only facilitates information transmission from the newbie to the incumbent. Yet, in some

situations, showing off might have a direct influence on the contest outcome. In the context of our

model, this implies that showing off, or some fraction κ of the showing off effort, translates into

productive effort in the contest.22 How does this influence our results?

Recall that the main motive for (unproductive) signaling is influencing the incumbent’s beliefs

in such a way that she reacts with low effort in the contest. When showing off is productive,

adding to productive effort at rate κ, then two new motives appear. First, since the newbie now

has access to two “channels” for exerting effort, he will need to choose these optimally given his

type. Second, even if showing off is not an especially efficient effort producing technology, the

newbie may be motivated to employ it so as to gain a commitment advantage. If the newbie

is talented, he is stronger than the incumbent, and that gives him an incentive to commit to a

higher effort relative to the Nash equilibrium to soften competition; if he is untalented, he would

like to commit to lower effort with the same intention (see Dixit, 1987). While commitment to

a higher effort level is generally possible, commitment to a lower effort level is not, because the

newbie has a second chance to choose effort and he would always increase his effort to match the

complete information Nash equilibrium effort (see Lemma 1 of Yildirim, 2005). Thus, when the

signal is productive, a strong newbie now has two ways to affect competition: He can signal his

type through showing off and thereby alter effort responses in the second stage game. He can

also use the effort produced by showing off as a commitment device, transforming the situation to

22Essentially, this implies that the newbie can invest early and late in the contest, with a potentially differing
effectiveness or effective costs of effort. There are various reasons to assume the productivity or cost of effort differs
across time, including learning by doing (Clark and Nilssen, 2013), recency bias (Fudenberg and Levine, 2014, 2016),
or sabotage of early stage efforts (Chowdhury and Gürtler, 2015).
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one resembling Stackelberg competition. Both channels can be used to psych out the incumbent.

When κ is small, the commitment channel is too expensive and our original analysis still holds.

When κ is large enough, commitment motives dominate:

Proposition 5. When types are binary and showing off produces productive effort at rate κ per

unit, then Theorems 1 to 3 hold so long as κ < κ̄ = 2
3 . In particular, a norm against showing off

yields higher aggregate effort, while selection is inhibited.

The threshold where productive effort starts affecting our results highlights the relative im-

portance of the two new factors introduced by this extension. Notice that, if the allocation of

productive effort across channels were the main driver, then the relevant threshold would be

κ = 1. When κ > 1, showing off is the more efficient effort producing technology whereas when

κ < 1, it is inefficient. Instead, the critical value of κ represents a threshold for commitment forces

to come into play. In a sense, κ characterizes the expense of a commitment strategy—commitment

is cheaper for higher values of κ. Since no such commitment was present in the baseline model,

it then follows that, so long as commitment via showing off remains unattractive, the strategic

considerations of the two parties are unchanged. By contrast, when commitment via signaling is

sufficiently cost effective, the (talented) newbie avails herself of this strategy and the game be-

comes, in effect, sequential with the newbie having the first move in generating effort via showing

off.23

6 Conclusion

The Cambridge dictionary defines showing off as “to behave in a way that is intended to attract

attention or admiration, and that other people often find annoying.”24 This definition, especially

the latter part, is in line with social norms around the globe, for example the Tall Poppy Syndrome

known in large parts of the English speaking world or the Law of Jante known in Nordic countries.

At the same time, in many business environments, as for example in Silicon Valley, no such

proscriptions exist, and showing off one’s talent is often even well regarded. In this paper we study

the economics of showing off and laying low and its consequences. We augment a standard contest

model by allowing a new competitor (newbie) to transmit information through showing off to an

established competitor (incumbent). Our analysis reveals that the desirability of showing off is

indeed a question of horses for courses.

Showing off allows a contestant to influence the beliefs of his contender. We found that, unlike

in standard signaling games à la Spence (1973), incentives to signal one’s type through showing

off can run in either direction: a weak contender might want to mimic a strong one, and a strong

23Note that giving the incumbent a chance to “show off” as well, i.e., to expend productive effort at rate κ ahead
of the contest does not change our findings qualitatively when κ is sufficiently low. The reason is that the incumbent
benefits from the newbie’s showing off and prefers to use the information the newbie provides him with instead of
tying her hands by pre-committing to a high effort level.

24https://dictionary.cambridge.org/dictionary/english/show-off. Interestingly the American definition
merely states: “to do something to attract attention to yourself” and thus does not come with a negative con-
notation.
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contender might want to mimic a weak contender, in both cases with the aim to decrease the

fierceness of ensuing competition. But while meager talent is easily mimicked, it is hard to mimic

someone exceptional, and hence only the exceptional will successfully engage in showing off.

While the newbie decides whether to show off or lay low according to his liking, the incumbent

may not have a choice in this matter. Surprisingly, though, the incumbent is well-served by the

showing off behavior of the newbie. While showing off aims at psyching out the opponent, who

reacts by reducing effort, it also decreases the general fierceness of competition. When showing off

happens, it leads to an overall reduction in effort. In this sense, pre-conflict showing off behavior

can be seen as a form of collusion, benefitting both competitors. Our analysis thus offers a rationale

for the emergence of norms against showing off in circumstances where societies’ concerns lie with

aggregate effort.

On the other hand, in settings where selection of the most talented is paramount, a norm

against showing off is not advisable. Showing off tends to accentuate competitors’ differences

and thus helps selecting the best. Because innovative firms, like startups, rely exactly on that,

our results shed some light on why a norm against showing off seems absent from Silicon Valley

business etiquette.
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Appendix

A Preliminaries: Equilibrium under Full- and Asymmetric Infor-

mation

In this section we derive equilibrium efforts as well as utility when all types of newbies from the

interval [cL, cZ ] reveal their types, while newbies in [cZ , cH ] do not reveal their types. In both cases,

the incumbent updates her beliefs accordingly. Note that this analysis nests the full information

case when cZ = cH (i.e., all newbies reveal their types) as well as the no information case when

cZ = cL (i.e., no newbie reveals his type).

Lemma 1. Let cN be distributed according to some distribution F (cN ) over the interval [cL, cH ]

with strictly positive density f(cN ). Moreover, let cH ≤ 4cL. Assume all newbie types cN < cZ

show off their type, while all others lay low and pool. The subgame in which the incumbent does

not receive a signal has a unique equilibrium, which is in pure strategies:

xAI
I =

(

∫ cH
cZ

√
cNdF (cN )

)2

(

cI(1− F (cZ)) +
∫ cH
cZ

cNdF (cN )
)2 > 0.

and

xAI
N =

√

xAI
I

cN
− xAI

I > 0

Ex-post, the corresponding equilibrium utility of the incumbent is

πAI
I =

xAI
I

xAI
I + xAI

N

− cIx
AI
I =

√

cNxAI
I − cIx

AI
I .

In case the incumbent learns the newbie’s type, the subgame equilibrium follows from the equi-

librium characterization under complete information (see Nti, 1999):

xCI
i =

cj
(cI+cN )2

, XCI ≡ xCI
I + xCI

N = 1
cI+cN

, πCI
i =

c2j
(cI+cN )2

It is easily verified that the incumbent will invest more against a low-cost opponent cL than against

a high-cost one cH if and only if cI <
√
cHcL.

Ex-ante the utility of the incumbent when all newbie types in the interval [cL, cZ ] signal and

thus reveal their types equals

EπI =

∫ cZ

cL

c2N
(cN + cI)2

dF (cN ) +

(

∫ cH
cZ

√
cNdF (cN )

)2
∫ cH
cZ

cNdF (cN )
(

cI(1− F (cZ)) +
∫ cH
cZ

cNdF (cN )
)2
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Similarly, expected aggregate effort is equal to

EX =

∫ cZ

cL

1

cN + cI
dF (cN ) +

∫ cH
cZ

√
cNdF (cN )

∫ cH
cZ

1√
cN

dF (cN )
(

cI(1− F (cZ)) +
∫ cH
cZ

cNdF (cN )
)

Proof. The incomplete information (sub-)game can be solved easiest by taking the FOC of the

incumbent
1

1− F (cZ)

∫ cH

cZ

xN (cN )

(xI + xN (cN ))2
dF (cN ) = cI

and then inserting the best-response of all newbie types, BRN(xI ; cN ) = max
{

0,
√

xI

cN
− xI

}

=
√

xI

cN
− xI when 4cL ≥ cH , which is guaranteed by Assumption 1. This yields

1
1−F (cZ)

∫ cH

cZ

√

xI

cN
− xI

(xI +
√

xI

cN
− xI)2

dF (cN ) = cI ⇔
∫ cH

cZ

cN

(

1√
xIcN

− 1

)

dF (cN ) = cI(1− F (cZ))

⇔
∫ cH
cZ

√
cNdF (cN )
√
xI

= cI(1− F (cZ)) +
∫ cH
cZ

cNdF (cN ) ⇔ xAI
I (cZ) =

(

∫ cH
cZ

√
cNdF (cN )

)2

(

cI(1−F (cZ ))+
∫ cH
cZ

cNdF (cN )
)2 .

The corresponding SOC is fulfilled, as

− 1

1− F (cZ)

∫ cH

cZ

xN (cN )

(xI + xN (cN ))3
dF (cN ) < 0,

and thus the FOC characterize a global utility maximum. Similar steps establish a global maximum

for the newbie. Expected utility and expected aggregate effort follow directly from the equilibrium

effort levels.

B Proof of Theorem 1: Showing Off

The proof proceeds in several steps. First we show that separation is not possible for types that

are less talented than the incumbent. Then we characterize the threshold type of the maximally

informative equilibrium. Finally we derive the equilibrium signaling cost function and show that

there are no profitable deviations.

Signaling utility. A player’s maximized utility, when his opponent believes him to be of type

c′, while in fact he is of type cN , is

πN (c′; cN ) =
BRN (xI(c

′); cN )

BRN (xI(c′); cN ) + xI(c′)
− cNBRN(xI(c

′); cN ),

whereBRN (xI(c
′); cN ) is the best response effort choice of the newbie against the effort xI(c

′) of the

incumbent who believes to be facing an opponent with marginal cost c′. Because BRN (xI ; cN ) =
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√

xI

cN
− xI and xI(c

′) = c′

(c′+cI)2
, this simplifies to

πN (c′; cN ) =

(

cI −
√
cNc′ + c′

)2

(cI + c′)2
.

Taking into account the cost to signal to be of type c′, which equals cNs(c′), we get

πS
N (c′; cN ) =

(

cI −
√
cNc′ + c′

)2

(cI + c′)2
− cNs(c′). (2)

Untalented newbies and the impossibility of separation. In the first part of the proof

we show that, given two newbie types c′N and c′′N , separation is never possible when both are

relatively untalented. In particular, we prove this by showing that for any two c′N and c′′N , whenever

cI <
√

c′Nc′′N , it is not possible to find a pair of signals that reveal the types without the incentives

to mimic.

Lemma 2. Let there be a range of values S ′ = [cN , cN ] such that cN < cN and cI ≤ cN . Then, a

separating equilibrium among cN ∈ S ′ does not exist.

Proof. Take two types from S ′, c′N and c′′N , c′N < c′′N . Using (2), we can write the incentive

constraints as follows:
c′N : πS

N (c′N ; c′N ) ≥ πS
N (c′′N ; c′N )

c′′N : πS
N (c′′N ; c′′N ) ≥ πS

N (c′N ; c′′N )

Rewriting these constraints using the specific formulas yields

c2I
(cI+c′N )2

− (cI−
√

c′′
N
c′
N
+c′′N)

2

(cI+c′′N )2

c′N
≥ s(c′)− s(c′′) ≥ −

c2I
(cI+c′′N )2

− (cI−
√

c′′
N
c′
N
+c′N)

2

(cI+c′N )2

c′′N
.

For separation to be possible it is necessary and sufficient that

c2I
(cI+c′N )2

− (cI−
√

c′′
N
c′
N
+c′′N)

2

(cI+c′′N )2

c′N
> −

c2I
(cI+c′′N )2

− (cI−
√

c′′
N
c′
N
+c′N)

2

(cI+c′N )2

c′′N
,

which is the case if and only if cI >
√

c′N c′′N . Because cI < cN implies cI <
√

c′Nc′′N for all

c′N , c′′N ∈ S ′, separation is not possible for any cN ∈ S ′.

Proposition 1 studying showing off with a binary type distribution follows directly from the

last paragraph of the proof of Lemma 2:

Corollary 1. Consider binary types. A showing off equilibrium, where the newbie’s type is com-

pletely revealed exists if and only if cI >
√
cLcH .

Note that a perfect Bayesian pooling equilibrium always exists. Invoking the Cho and Kreps

(1987) intuitive criterion eliminates the pooling equilibrium when cI >
√
cHcL. Also note that for
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cI =
√
cHcL all parties are indifferent regarding showing off, as an incumbent chooses the same

effort against a talented and untalented newbie.

Maximally informative equilibria. Returning to the general case, Lemma 2 implies that only

partial separation can be possible whenever cI < cH . Thus, only types below some threshold cZ

may be able to signal their types in equilibrium. Before continuing, we now formally define the

MIE:

Definition 2 (Maximally Informative equilibrium, MIE). Let c̃N ∈ SN be the greatest possible

threshold type such that all cN < c̃N show off and separate while all cN ≥ c̃N lay low and pool,

given SN and F (cN ). A threshold equilibrium with cZ = c̃N is called a maximally informative

equilibrium.

To study incentives we need to determine equilibrium effort under incomplete information.

From Lemma 1 it follows that the incumbent, when he only knows that cN ∈ [cZ , cH ], chooses the

asymmetric information effort in the pooling equilibrium:

xAI
I (cZ) =

(

∫ cH
cZ

√
cNdF (cN )

)2

(

cI(1− F (cZ)) +
∫ cH
cZ

cNdF (cN )
)2 =

(

E[
√
cN |cN ≥ cZ ]

)2

(cI + E[cN |cN ≥ cZ ])2

Then the following is true:

Lemma 3. In any pooling equilibrium,

min

{

cH
(cH + cI)2

,
cZ

(cZ + cI)2

}

< xAI
I (cZ) <

1

4cI
.

The effort in the pooling equilibrium cannot be greater than the greatest effort expended under

complete information against the same types, and it cannot be lower than the lowest effort expended

under complete information against the same types.

Proof. We first prove the upper boundary. From Jensen’s inequality it follows that
√

E[cN |cN ≥ cZ ] >

E[
√
cN | cN ≥ cZ ]. We can then replace the latter by the former in the formula determining A’s

strategy and get
E[cN |cN ≥ cZ ]

(cI + E[cN |cN ≥ cZ ])2
> xAI

I (cZ)

This expression is now greater than xAI
I (cZ) and maximized when E[cN |cN ≥ cZ ] = cI . In this

case
cI

(cI + cI)2
=

1

4cI
> xAI

I (cZ),

proving the first half.

To prove the second half look at the first-order condition of the incumbent and then plug in

22



the best response of the newbie:

E

[√

cN
xI

− cI − cN

∣

∣

∣

∣

cN ≥ cZ

]

= 0

Assume without loss of generality that cH
(cH+cI)2

< cZ
(cZ+cI)2

⇔ c2I
cH

< cZ and let xI = cH
(cI+cH )2

,

that is the smallest effort chosen under complete information. Then we get, after some simplifica-

tions,

E

[(√
cN (cI + cH)√

cH
− cI − cN

)∣

∣

∣

∣

cN ≥ cZ

]

=: E [ζ(cN , cH , cI)| cN ≥ cZ ] = 0 (3)

Note that ζ(cN , cH , cI) has two roots in cN , when cN = cH and when cN =
c2I
cH

, and that

∂ζ(cN , cH , cI)

∂cN

∣

∣

∣

∣

cN=cH

< 0,

implying that as cN gets smaller, ζ increases at this point. Consequently, for (3) to be zero, we

need that some types cN <
c2I
cH

occur with positive probability, but this contradicts
c2I
cH

< cZ . Thus,

evaluated at xI =
cH

(cI+cH)2
, the incumbent’s FOC is positive. Together with concavity of his utility

function, this implies that in equilibrium xAI
I (cZ) >

cH
(cI+cH )2

, and thus it proves the second part

of the lemma.

The next lemma is crucial to prove existence and uniqueness of the MIE.

Lemma 4. If cI ≥ µN =
√
cL cH , xAI

I (cZ) and xCI
I (cZ) intersect exactly twice on cZ ∈ [cL, cH ],

once at some cZ = c̃N < cI and once at cZ = cH . If cI < µN , there could be both one or two

intersections, depending on the details of the distribution F (cN ).

Proof. Define

∆xI(cZ) ≡ xAI
I (cZ)− xCI

I (cZ). (4)

First note that

lim
cZ→cH

∆xI(cZ) = 0,

which can be shown easily by repeatedly applying L’Hôpital’s rule to xAI
I (cZ). Hence, this is the

first intersection of xAI
I (cZ) and xCI

I (cZ). Second, note that

∆xI(cI) = xAI
I (cI)−

cI
(cI + cI)2

= xAI
I (cI)−

1

4cI
< 0

by Lemma 3. Moreover,

∆xI

(

c2I
cH

)

= xAI
I

(

c2I
cH

)

− c2I

cH

(

cI +
c2
I

cH

)2 = xAI
I

(

c2I
cH

)

− cH

(cI + cH)2
> 0.

Hence, by continuity, there must be c̃N ∈
(

c2I
cH

, cI

)

such that ∆xI(c̃N ) = 0, proving existence of
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the second intersection for cI > µN . Note that when
c2I
cH

< cL ⇔ cI <
√
cL cH = µN , c̃N might be

smaller than cL, which is why there might be only one intersection on [cL, cH ] in this case.

Could there be another cZ ∈ (c̃N , cH) such that xAI
I = xCI

I ? Next we show that this is not

possible. First note that xCI
I is strictly concave, increasing on [cL, cI) and decreasing on (cI , cH ].

To see how xAI
I changes with cZ we differentiate it:

∂xAI
I

∂cZ
=

2f(cZ )
(

∫ cH
cZ

√
cNf(cN ) dcN

)

(

cI
∫ cH
cZ

f(cN ) dcN+
∫ cH
cZ

cNf(cN ) dcN

)3

×
[

(cI + cZ)
∫ cH
cZ

√
cNf(cN ) dcN −√

cZ

(

∫ cH
cZ

cNf(cN ) dcN + cI(1− F (cZ))
)]

We can easily verify that the sign of the derivative turns on the sign of the squared brackets, which

turns on xAI
I − xCI

I . Thus,

Sign

[

∂xAI
I

∂cZ

]

= Sign
[

xAI
I − xCI

I

]

,

which implies that at c̃N the derivative is zero. Since xCI
I is increasing on [cL, cI ], x

AI
I must be

decreasing on some interval (c̃N , c′Z ], c
′
Z > cI , and it can only increase again after xAI

I = xCI
I once

more. If this were too happen for some c′Z < cH , xAI
I were increasing on (c′Z , cH ], because xCI

I is

still strictly decreasing. But this would imply that when cZ = cH , xAI
I > xCI

I , which cannot be the

case. Hence, c′Z cannot be smaller than cH , implying xAI
I decreases on (c̃N , cH), and there cannot

be cZ ∈ (c̃N , cH) such that xAI
I = xCI

I .

Finally, note that it must be that xAI
I > xCI

I if cZ ∈ (c′Z , c̃N ) for some c′Z < c̃N . Could it be the

case that there exists c′Z > cL such that both efforts intersect again? Note that xCI
I increases on

[cL, c̃Z ] and is concave. This implies that if there is another intersection, xAI
I must be steeper than

xCI
I at this point and it thus must have a strictly positive slope. However, such an intersection then

implies that xAI
I cannot be differentiable at the intersection, because we know that the derivative

must be zero when xAI
I = xCI

I . However, it is differentiable. Thus, this intersection cannot exist.

Consequently, xAI
I (cZ) = xCI

I (cZ) on [cL, cH ] exactly twice when cI ≥ µN and once or twice

else.

Now we return to the equilibrium analysis. In the MIE, the threshold type needs to be indif-

ferent between signaling and pooling. In a maximally informative equilibrium, the greatest share

of newbies possible signals, and thus the threshold type c̃N incurs no signaling costs. Since he only

reacts optimally to the incumbent’s effort, the incumbent needs to choose identical effort against

the threshold type whether he signals his type or pools, ∆xI(c̃N ) = 0. From Lemma 2 it follows

that the threshold must be lower than cI . From Lemma 4 it follows that if cI ≥ µN , a unique

threshold type exists for which this is the case.
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Equilibrium showing off. To find the signal cost function s(c′) for which truth-telling is strictly

optimal, we take the first order condition of πS
N (c′; cN ) in (2) with respect to the stated type c′:

−2
(

cI −
√
cN c′ + c′

)2

(cI + c′)3
+

2
(

1− cN
2
√
cNc′

)

(

cI −
√
cN c′ + c′

)

(cI + c′)2
− cNs′(c′)

We are searching for a function for which utility is maximized when c′ = cN . Thus, now let c′ = cN

and set the derivative equal to zero to find the local extrema:

cI(cN − cI)

(cI + cN )3
− cNs′(cN ) = 0

This is a differential equation that can easily be solved. The general solution for s(c′) is

s̃
(

c′
)

= K − 2cI + c′

(cI + c′)2
+

ln
(

cI+c′

c′

)

cI

where K is a constant. Note that the least attractive type c′ one might signal, given c̃N ≤ cI , is

c′ = c̃N , because that is the type closest to cI and hence A will be most aggressive against this

type. Therefore, it is sensible to demand that c̃N does not need to signal at all, s(c̃N ) = 0. This

implies

K =
2cI + c̃N
(cI + c̃N )2

−
ln
(

cI+c̃N
c̃N

)

cI
,

and therefore equilibrium showing off follows

s∗(c′) =
ln
(

c̃N (cI+c′)
c′(cI+c̃N )

)

cI
+

2cI + c̃N
(cI + c̃N )2

− 2cI + c′

(cI + c′)2
.

It remains to verify that s∗(c′) really implements a separating equilibrium. Take (2) and replace

s(c′) by s∗(c′):

π∗
N (c′; cN ) =

(

cI −
√
cN c′ + c′

)2

(cI + c′)2
− cN





ln
(

c̃N (cI+c′)
c′(cI+c̃N )

)

cI
+

2cI + c̃N
(cI + c̃N )2

− 2cI + c′

(cI + c′)2





Maximizing this with respect to the claimed type c′, we get the first-order condition

∂π∗(c′; cN )

∂c′
= −cN

2(c′ − cI)
(√

cNc′ − c′
)

(cI + c′)2(cN c′)3/2
= 0.

This equation has two roots, one at c′ = cI and one at c′ = cN . The second-order conditions are

∂2π∗(c′; cN )

∂c′2

∣

∣

∣

∣

c′=cI

=
cN
(

cI −
√
cIcN

)

4
√

cI7cN
> 0 ∀cN ∈ [cL, c̃N ]
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and
∂2π∗(c′; cN )

∂c′2

∣

∣

∣

∣

c′=cN

=
cN − cI

2cN (cI + cN )2
< 0 ∀cN ∈ [cL, c̃N ]

respectively. Thus, the latter, where c′ = cN , is indeed a local maximum as c̃N < cI , while c′ = cI

is a local minimum. Moreover, since there are no other roots of the first-order condition, we can

also exclude corner-solutions, because the utility minimum occurs when c′ = cI , which is not within

the range of potential types, implying π∗
N (c′; cN ) is strictly quasi-concave in c′ on [cL, c̃N ]. Could

a talented newbie benefit from deviating by pretending to have cN > c̃N? No, because this would

give him the exact same utility he would get from pretending to have type c̃N by definition of this

type, because the incumbent’s effort and the cost from showing off would be just the same. Hence,

given s∗(c′), truthfully revealing one’s type is the unique best strategy for all types [cL, c̃N ].

Incentive compatibility for pooling newbies. Next we look at incentive compatibility for

the pooling newbie types [c̃N , cH ]. We need to assure that none of them has an incentive to mimic

any cN < c̃N . The benefit from mimicking is that A competes less fiercely against the more

efficient types than in the pooling equilibrium, which is beneficial. Consider the incentives of some

cN > c̃N to mimic some c′N < c̃N . The utility he gets from pooling is

πPool
N =

√

xAI
I

cN
− xAI

I
√

xAI
I

cN
− xAI

I + xAI
I

− cN





√

xAI
I

cN
− xAI

I



 =

(

1−
√

cN xAI
I

)2

.

Hence, the maximum willingness to spend on a signal that mimics some type c′N < c̃N is

I(c′N ; cN ) =

(cI−
√

cNc′N+c′N)
2

(cI+c′N )2
−
(

1−
√

cNxAI
I

)2

cN
.

We know that the marginal type c̃N has no incentive to mimic any other c′N < c̃N , because he is

indifferent between revealing his type and pooling, and given s∗(c′) he would choose c′ = c̃N . If we

can show that the incentives to mimic are decreasing in cN , that is types with higher marginal cost

have less incentives to mimic a given c′N than types with lower marginal cost, then the fact that

c̃N is indifferent is sufficient to prove that nobody with greater cost has an incentive to deviate

either.

Lemma 5. The maximum willingness to spend on a signal to mimic some c′N is decreasing in cN

if

xAI
I (c̃N ) >

c′N
(cI + c′N )2

.
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Proof. Take the derivative of I(c′N ; cN ) with respect to cN :

∂I(c′N ; cN )

∂cN
=

√
cN

(

√

c′N − (cI + c′N )
√

xAI
I (c̃N )

)

cN 2(cI + c′N )

This is negative if and only if

√

c′N − (cI + c′N )
√

xAI
I (c̃N ) < 0 ⇔ xAI

I (c̃N ) >
c′N

(cI + c′N )2
.

Because xAI
I (c̃N ) = c̃N

(cI+c̃N )2
and c′N < c̃N , this is always the case.

If c̃N has no incentive to mimic a given c′N < c̃N , neither has another type with cN > c̃N .

Thus, we established existence of a MIE with threshold newbie type c̃N .

Next consider comparative statics. Condition (4) determines the MIE threshold. Using the

implicit function theorem, we know that dcZ
dcI

∣

∣

∣

cZ=c̃N
= −

∂∆xI
∂cI

∂∆xI
∂cZ

∣

∣

∣

∣

cZ=c̃N

or

dcZ
dcI

∣

∣

∣

∣

cZ=c̃N

= −

2(1−F (c̃N ))
(

∫ cH
c̃N

√
c dF (c)

)2

(

cI(1−F (c̃N ))+
∫ cH
c̃N

c dF (c)
)3 − 2c̃N

(cI+c̃N )3

2f(c̃N )
(

∫ cH
c̃N

√
c dF (c)

)(

cI
√
c̃N (1−F (c̃N ))−(cI+c̃N )

∫ cH
c̃N

√
c dF (c)+

√
c̃N
∫ cH
c̃N

c dF (c)
)

(

cI(1−F (c̃N ))+
∫ cH
c̃N

c dF (c)
)3 + cI−c̃N

(cI+c̃N )3

First note that the denominator is strictly positive since cI > c̃N and cI
√
c̃N (1−F (c̃N ))−(cI +

c̃N )
∫ cH
c̃N

√
cdF (c)+

√
c̃N
∫ cH
c̃N

cdF (c) = 0. Thus, the sign of the derivative turns on the numerator’s

sign. The numerator is positive if and only if

2(1−F (c̃N ))
(

∫ cH
c̃N

√
cdF (c)

)

2

(

cI(1−F (c̃N ))+
∫ cH
c̃N

c dF (c)
)

3
− 2c̃N

(cI+c̃N )3
> 0 ⇔

(1−F (c̃N ))
(

∫ cH
c̃N

√
cdF (c)

)

2

(

cI(1−F (c̃N ))+
∫ cH
c̃N

c dF (c)
)

3
− c̃N

(cI+c̃N )3
> 0

⇔ (1−F (c̃N ))
(

cI(1−F (c̃N ))+
∫ cH
c̃N

c dF (c)
)xAI

I − xCI
I

1
cI+c̃N

> 0 ⇔ (1−F (c̃N ))
(

cI(1−F (c̃N ))+
∫ cH
c̃N

c dF (c)
) > 1

cI+c̃N

⇔ 1
(

cI+

∫ cH
c̃N

c dF (c)

(1−F (c̃N ))

) > 1
cI+c̃N

⇔
∫ cH
c̃N

c dF (c)

(1−F (c̃N )) < c̃N

But this is impossible. Thus, the numerator must be negative and therefore the derivative is

positive: c̃N increases in cI .

For low enough cI , the threshold is lower than cL and thus no showing off takes place. Denote

the first cI such that no showing off takes place by c̃I . This c̃I solves

cL
(cL + c̃I)2

=
(E[

√
cL])

2

(c̃I + E[cL])2
⇔ c̃I =

√
cL E[cL]− cLE[

√
cL]

E[
√
cL]−

√
cL

> 0.

c̃I is the generalization of µN from the binary case. Hence, if cI > c̃I , the most able newbie types

show off, while otherwise all newbie types lay low and no information is transmitted.
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C Proof of Proposition 2: The Incumbent’s Perspective–Binary

Case

Using equilibrium utilities given in Appendix A, the difference in the incumbent’s expected utility

between complete and asymmetric information is equal to

∆πI = πCI
I − πAI

I =
q(1− q)

(√
cH −√

cL
) (

cI −
√
cHcL

)

(cI + cH)2(cI + cL)2(cI + (1− q)cH + qcL)2

×
[

c3I (2
√
cHcL + cL + cH)

+c2I ((cH + cL + (1− q)cH + qcL)
√
cHcL + 4cHcL)

+
(

c3I + 2qc2I + cHcL (3cI −
√
cHcL)

)

((1− q)cH + qcL)
]

If cI =
√
cHcL, ∆πI = 0 and the incumbent is indifferent between the newbie showing off or laying

low. For cI >
√
cHcL, she prefers to receive information about the newbie’s type. Finally, for cI

smaller than
√
cHcL, the sign of the difference also depends on 3cI −

√
cHcL, which is decreasing in

cH and thus smallest for the highest possible cH . Using cH = 2cL, which is the largest admissible

value of cH , it becomes 3cI −
√
2cL > 0 by Assumption 1. Thus, for cI <

√
cHcL, ∆πI < 0 and

the incumbent is better off when the newbie lays low.

D Proof of Proposition 3: The Incumbent’s Perspective–General

Case

Recall that by Lemma 1

EπI =

∫ cZ

cL

c2N
(cN + cI)2

dF (cN ) +

(

∫ cH
cZ

√
cNdF (cN )

)2
∫ cH
cZ

cNdF (cN )
(

cI(1− F (cZ)) +
∫ cH
cZ

cNdF (cN )
)2 .

Differentiating with respect to threshold cZ yields

∂EπI
∂cZ

= f(cZ)

(

c2Z
(cI + cZ)2

− 2
√
cZγ2(cZ)γ1(cZ)

(cI + γ1(cZ))
2 +

γ2(cZ)
2 [(2cI + cZ)γ1(cZ)− cIcZ ]

(cI + γ1(cZ))
3

)

, (5)

where γ1(cZ) ≡
∫ cH
cZ

cNdF (cN )

1−F (cZ) and γ2(cZ) ≡
∫ cH
cZ

√
cNdF (cN )

1−F (cZ) . For the rest of the proof we omit

the argument of γ1 and γ2, cZ , for better readability of the equations whenever possible. Using

xCI
I (cI , cZ) =

cZ
(cI+cZ)2

and xAI
I (cI , cZ) =

(γ2)2

(cI+γ1)
2 , we can write the FOC for an extremum as

∂EπI

∂cZ
= f(cZ)

(

cZx
CI
I (cI , cZ)− 2

√
cZγ1
γ2

xAI
I (cI , cZ) +

((2cI+cZ)γ1−cIcZ)
(cI+γ1)

xAI
I (cI , cZ)

)

= f(cZ)cZ

(

√

xCI
I (cI , cZ)−

√

xAI
I (cI , cZ)

)

(

√

xCI
I (cI , cZ) +

√

xAI
I (cI , cZ)− 2γ1

γ2
√
cZ

xAI
I (cI ,cZ)√
xCI
I (cI ,cZ)

)

= 0.
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and thus we have a local extremum when xCI
I (cI , cZ) = xAI

I (cI , cZ). By Lemma 4 this happens

only at the MIE and when cZ = cH . Next we show that this is the only possible type of extremum

in the relevant range, i.e., we show that

ζ(cZ) ≡ f(cZ)cZ

(

√

xCI
I (cI , cZ) +

√

xAI
I (cI , cZ)− 2γ1

γ2
√
cZ

xAI
I (cI ,cZ)√
xCI
I (cI ,cZ)

)

< 0

⇔
√

xCI
I (cI , cZ) +

√

xAI
I (cI , cZ)− 2γ1

γ2
√
cZ

xAI
I (cI ,cZ)√
xCI
I (cI ,cZ)

< 0

for cL ≤ cZ < cH . First note that this expression is negative when xCI
I (cI , cZ) = xAI

I (cI , cZ)

because
2γ1

γ2
√
cZ

> 2 (6)

as γ2 >
√
cZ and γ1 > (γ2)

2 by Jensen’s inequality. More generally the expression is always

negative when xCI
I ≤ xAI

I which is true for any cZ < c̃Z by Lemma 4. Thus the MIE constitutes

the only extremum on cZ ∈ [cL, c̃Z ]. To prove that it is also negative for all cZ ≥ c̃Z we will

construct bounds on the inequality in (D). First we multiply by
√

xCI
I (cI , cZ) and insert back the

expressions for xAI
I (cI , cZ) and xCI

I (cI , cZ) to get

cZ
(cI + cZ)2

+
γ2

cI + γ1

√
cZ

cI + cZ
− 2γ1√

cZ

γ2

(cI + γ1)
2 < 0.

Now we multiply by (cI + γ1)
2 to get

(cI + γ1)
2

(cI + cZ)2
cZ +

(cI + γ1)

cI + cZ
γ2
√
cZ − 2γ1√

cZ
γ2 < 0.

Note that (cI+γ1)
(cI+cZ) is decreasing in cI and thus, in order to bound the LHS of the inequality (and

show that it cannot be positive), we can insert the lower bound cI = cL in this expression. This

lower bound is smallest for a given cH when cL is the smallest possible (according to Assumption

1) and thus we use cI = cL = cH/2:

(

cH
2 + γ1

)2

( cH2 + cZ)2
cZ +

(

cH
2 + γ1

)

cH
2 + cZ

γ2
√
cZ − 2γ1√

cZ
γ2 < 0.

Furthermore, we can bound cH in
( cH

2
+γ1)

cH
2

+cZ
by γ1 as cH ≥ γ1 and thus our inequality, after

simplifying and dividing by γ1, becomes

γ1
(

3
2

)2

(γ12 + cZ)2
cZ +

(

3
2

)

γ1
2 + cZ

γ2
√
cZ − 2√

cZ
γ2 < 0.
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Next note that the last two terms are linear and decreasing in γ2 and thus we can bound the

inequality further by setting γ2 =
√
cZ , its lower bound, to get

γ1
(

3
2

)2

(γ12 + cZ)2
cZ +

(

3
2

)

γ1
2 + cZ

cZ − 2 < 0.

Finally, the first two terms are decreasing in γ1 and thus we can bound the inequality by setting

γ1 = cZ , its lower bound, to get

cZ
(

3
2

)2

(32cZ)
2
cZ +

(

3
2

)

3
2cZ

cZ − 2 = 0.

Thus, except in the limit case, in which cZ = cH , the inequality in (D) is strict. As a consequence,

all extrema of the incumbent’s expected utility function must fulfill xCI
I = xAI

I . From Lemma 4

we know that this happens no more than twice: at the MIE and at cZ = cH .

In order to check the SOC we need to check the second derivative of the incumbent’s expected

utility with respect to cZ at the MIE. This reveals that

∂2EπI

∂c2Z

∣

∣

∣

cZ=c̃Z
= ζ ′(cZ)

(

√

xCI
I

∣

∣

∣

∣

cZ=c̃Z

−
√

xAI
I

∣

∣

∣

∣

cZ=c̃Z

)

+ ζ(cZ)

(

∂
√

xCI
I

∂cZ

∣

∣

∣

∣

cZ=c̃Z

− ∂
√

xAI
I

∂cZ

∣

∣

∣

∣

cZ=c̃Z

)

= ζ(cZ)
∂
√

xCI
I

∂cZ

∣

∣

∣

∣

cZ=c̃Z

Because
∂
√

xCI
I (cI ,cZ)

∂cZ
= 1

2
√

xCI
I

(cI ,cZ)

∂xCI
I (cI ,cZ)
∂cZ

> 0 and
∂
√

xAI
I (cI ,cZ)

∂cZ
= 1

2
√

xAI
I

(cI ,cZ)

∂xAI
I (cI ,cZ)
∂cZ

= 0

at the MIE (see Lemma 4) and ζ(cZ) < 0, ∂2EπI

∂c2Z

∣

∣

∣

cZ=c̃Z
< 0 and thus the MIE constitutes a global

expected utility maximum for the incumbent. Note that we have shown that the MIE is a local

maximum also when 4cL ≥ cH > cL, which is more permissive than Assumption 1. However, in

this case we cannot exclude that the incumbent prefers another threshold type cZ > c̃Z over the

MIE.

E Proof of Theorem 2: Norm Against Showing Off

Recall that because of Lemma 1, expected aggregate effort given threshold type cZ is

EX =

∫ cZ

cL

1

cN + cI
dF (cN ) +

∫ cH
cZ

√
cNdF (cN )

∫ cH
cZ

1√
cN

dF (cN )
(

cI(1− F (cZ)) +
∫ cH
cZ

cNdF (cN )
) .

Taking the derivative with respect to cZ yields

∂EX

∂cZ
= f(cZ)

(

(cI + cZ)γ2(cZ)γ3(cZ)

(γ1(cZ) + cI)
2 −

√
cZγ3(cZ)

(γ1(cZ) + cI)
− γ2(cZ)√

cZ (γ1(cZ) + cI)
+

1

cI + cZ

)
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where γ3(cZ) ≡
∫ cH
cZ

f(cN )
√

cN
dcN

1−F (cZ) and, as before, γ1(cZ) ≡
∫ cH
cZ

cNdF (cN )

1−F (cZ) and γ2(cZ) ≡
∫ cH
cZ

√
cNdF (cN )

1−F (cZ) .

As before, for better readability we suppress the argument of γ1, γ2 and γ3 whenever possible.

Rewriting this derivative in terms of incumbent effort against the threshold newbie xCI
I (cI , cZ)

and incumbent effort under asymmetric information given threshold cZ , x
AI
I (cI , cZ), we get

∂EX

∂cZ
= f(cZ)

(

√

xCI
I (cI , cZ)−

√

xAI
I (cI , cZ)

)(

1√
cZ

− (cI + cZ)γ3
(γ1 + cI)

)

,

and thus we again have a local extremum when xCI
I (cI , cZ) = xAI

I (cI , cZ). Again, by Lemma 4

this happens only at the MIE and when cZ = cH . Next we show that this is the only possible type

of extremum in the relevant range, i.e., we show that

1√
cZ

6= (cI + cZ)γ3
(γ1 + cI)

.

Rewriting, the sign of the expression in brackets turns on

(γ1 + cI)

(cZ + cI)
−√

cZγ3.

Note that
√
cZγ3 =

∫ cH
cZ

√
cZ√
cN

f(cN )dcN/(1 − F (cZ)) < 1 when cZ < cH . Furthermore, γ1 > cZ .

Thus the first term is larger than one and the second one smaller than one and thus it always

holds that
(γ1 + cI)

(cZ + cI)
−√

cZγ3 > 0.

Next take a look at the SOC at the extrema, i.e., when xCI
I (cI , cZ) = xAI

I (cI , cZ). The second

derivative of expected aggregate effort with respect to cZ simplifies considerably to

∂2EX
∂c2Z

∣

∣

∣

xCI
I =xAI

I

= f(cZ)
∂(
√

xCI
I (cI ,cZ))

∂cZ

(

1√
cZ

− (cI+cZ)γ3
(γ1+cI)

)

where we used
∂xAI

I (cZ)
∂cZ

= 0 when xCI
I (cI , cZ) = xAI

I (cI , cZ) (see Lemma 4) as well as the FOC.

Note that
∂
√

xCI
I (cI ,cZ)

∂cZ
> 0 at the MIE. Thus ∂2EX

∂c2Z

∣

∣

∣

cZ=c̃N
> 0 and the MIE constitutes a global

expected aggregate effort minimum.
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F Proof of Theorem 3: Showing Off and Selection

We define expected efficiency as the expected marginal cost of effort of the contest winner given

threshold newbie type cZ , i.e.:

EE(cZ) ≡ E [ci|iwins]
=

∫ cH
cL

(

xN (cZ ,cN )
xN (cZ ,cN )+xI(cZ ,cN)cN + xI(cZ ,cN )

xN (cZ ,cN )+xI(cZ ,cN )cI

)

dF (cN )

=
∫ cH
cL

(

xN (cZ ,cN )
xN (cZ ,cN )+xI(cZ ,cN)cN +

(

1− xI(cZ ,cN )
xN (cZ ,cN )+xI(cZ ,cN )

)

cI

)

dF (cN )

=
∫ cH
cL

xN (cZ ,cN )
xN (cZ ,cN )+xI(cZ ,cN )(cN − cI) dF (cN ) + cI

=
∫ cZ
cL

(cN − cI)
xCI
N (cN )

xCI
N (cN )+xCI

I (cN )
dF (cN )

+
∫ cH
cZ

(cN − cI)
xAI
N (cN )

xAI
N (cN )+xAI

I (cZ)
dF (cN ) + cI

=
∫ cZ
cL

(cN − cI)
cI

cI+cN
dF (cN ) +

∫ cH
cZ

(cN − cI)
(

1−√
cN

γ2(cZ)
cI+γ1(cZ)

)

dF (cN ) + cI

γ1(cZ) and γ2(cZ) are defined as before. Using

∂
γ2(cZ )

cI+γ1(cZ )

∂cZ
= −f(cZ)

(cI+γ1(cZ))
√
cZ−(cI+cZ)γ2(cZ )

(1−F (cZ))(cI+γ1(cZ ))2

= − f(cZ )(cI+cZ)
(1−F (cZ))(cI+γ1(cZ ))

( √
cZ

(cI+cZ) −
γ2(cZ )

(cI+γ1(cZ))

)

= f(cZ )(cI+cZ)
(1−F (cZ ))(cI+γ1(cZ))

(

√

xAI
I (cZ)−

√

xCI
I (cN )

)

the derivative of EE(cZ) with respect to cZ , can be written as

∂EE(cZ)
∂cZ

= f(cZ)
[

(cZ − cI)
cI

cI+cZ
− (cZ − cI)

(

1−√
cZ

γ2
cI+γ1

)

−
∫ cH
cZ

(cN − cI)
√
cN

∂
γ2(cZ )

cI+γ1(cZ )

∂cZ
dF (cN ) 1

f(cZ )

]

= f(cZ)

[

(cZ − cI)
√
cZ

(

√

xAI
I (cZ)−

√

xCI
I (cN )

)

−
∫ cH
cZ

(cN − cI)
√
cN

f(cZ )(cI+cZ)
(1−F (cZ))(cI+γ1(cZ ))

(

√

xAI
I (cZ)−

√

xCI
I (cN )

)

dF (cN ) 1
f(cZ)

]

= f(cZ)

(

√

xAI
I (cZ)−

√

xCI
I (cN )

)

×
(

(cZ − cI)
√
cZ −

∫ cH
cZ

(cN − cI)
√
cN

(cI+cZ)
(1−F (cZ ))(cI+γ1(cZ))dF (cN )

)

.

We know from Lemma 4 that except at the MIE and at cZ = cH , xAI
I (cZ) 6= xCI

I (cZ), and thus the

MIE constitutes a local extremum of EE(cZ ). Any other extremum in the relevant region must

satisfy

(cZ − cI)
√
cZ − (cI + cZ)

(cI + γ1(cZ))

∫ cH
cZ

(cN − cI)
√
cNdF (cN )

(1− F (cZ))
= 0. (7)
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At cZ = cI < cH , this cannot be the case, because

− 2cI
(cI + γ1(cI))

∫ cH
cI

(cN − cI)
√
cNdF (cN )

(1− F (cI))
< 0.

If we can show that the LHS of equation (7) is strictly negative for all cZ < cI , we prove that the

MIE is the only extremum on [cL, cI ].

First note that (cZ − cI)
√
cZ is negative and strictly increasing in cZ when cZ < cI ≤ 2cZ

which is the relevant range taking into account Assumption 1. Also note that the second term

is (cI+cZ)
(cI+γ1(cZ))E

[

(cN − cI)
√
cN |cN ≥ cZ

]

, where (cI+cZ)
(cI+γ1(cZ )) ≤ 1 and strictly so for cZ < cH . We

know already that for cZ = cI the LHS of equation (7) is negative. Now decrease cZ starting at

this point. Then the left term turns and remains strictly negative, while the right term might be

positive, zero, or negative, depending on cI and cZ . As long as the right term is positive or zero,

the difference must remain negative, because we subtract a positive term from a negative term. If

the second term turns negative as well for some cZ , we must compare their magnitudes. Because

(cZ − cI)
√
cZ is negative and strictly increases in cZ in the relevant range it holds that

0 >
(cI + cZ)

(cI + γ1(cZ))
E [(cN − cI)

√
cN |cN ≥ cZ ] > E [(cN − cI)

√
cN |cN ≥ cZ ] >

√
cZ(cZ − cI),

and thus the difference remains strictly negative (as long as cZ < cH). Consequently, there is no

other extremum for cZ < cI apart from the MIE. Using xAI
I (cZ) = xCI

I (cZ) as well as
∂xAI

I (cZ )
∂cZ

= 0

when cZ = c̃N (see Lemma 4),

∂2EE(cZ)
∂c2Z

∣

∣

∣

cZ=c̃N
= −f(cZ)

∂(
√

xCI
I (cI ,cZ))

∂cZ

(

(cZ − cI)
√
cZ − (cI+cZ)

(cI+γ1(cZ))

∫ cH
cZ

(cN−cI)
√
cNdF (cN )

(1−F (cZ ))

)

.

We know from our above analysis that
∂(
√

xCI
I (cI ,cZ))

∂cZ
> 0 and the expression in parentheses is

negative on cZ ∈ [cL, cI ] and therefore ∂2EE(cZ)
∂c2Z

∣

∣

∣

cZ=c̃N
> 0, proving that the MIE maximizes

expected efficiency (minimizes the expected marginal cost of the winner) in that range.

G Proof of Proposition 4: Overconfidence

To prove the result regarding overconfidence, consider the following modification of the model.

As before, the newbie can be of two types. He is talented with probability q or untalented with

probability 1 − q. He is always fully aware of his true ability when he is talented, but he may

exhibit overconfidence when untalented. In particular, with probability b ≤ 1− q he is untalented

but wrongly believes to be talented and does not consider the possibility of being overconfident.

As such an untalented and overconfident newbie, he will choose an effort level such that he incurs

the same effort cost a talented type would incur in equilibrium. The idea behind this is that he

sees himself working as hard as the talented type, but the resulting effective effort xi will be only

xi
cL
cH

< xi. Thus, while the overconfident newbie thinks he is productive, he is not. We assume
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that ex-ante the incumbent holds biased beliefs as well and thus thinks she is facing a talented

newbie with probability q + b and an untalented one with probability 1− q − b.

The newbie’s incentives to show off are unchanged—the Law of Exceptionalism applies. Whether

showing off happens turns only on the relation of the incumbent’s talent cI to the geometric mean

of the newbie’s potential types µN =
√
cHcL and not the respective probabilities with which these

occur. Thus, a newbie that believes to be strong shows off if and only if cI ≥ µN , which follows

from Example 1. In this case, the overconfident newbie types flop and learn through showing off

that they are in fact untalented. A truly able newbie, to the contrary, reveals his high talent.

The newbie’s flopping, or not, will be observed by the incumbent as well. Thus, after showing off,

both competitors choose efforts under full information. If cI < µN , the newbie will not show off

in equilibrium and thus no information is revealed. In particular, the incumbent still believes that

the newbie is talented with probability q+ b while a fraction b of newbie types holds the incorrect

belief that they are talented even though they are in fact not.

We now prove Proposition 4 for b = 1 − q. By continuity our results are also valid in a

neighborhood of b = 1− q for b sufficiently large. Under showing off full information prevails and

we can use our previous results to derive equilibrium efforts. Expected aggregate effort equals

EXCI =
cI + qcH + (1 − q)cL
(cI + cH)(cI + cL)

.

When no showing off takes place, the incumbent wrongly believes the likelihood of a talented

opponent is q + b and thus maximizes

max
xI

(q + b)
xI

xI + xL
+ (1− q − b)

xI
xI + xH

− cIxI

An untalented, non-overconfident newbie chooses effort

max
xH

xH
xI + xH

− cHxH ,

a talented one

max
xL

xL
xI + xL

− cLxL,

while an untalented, overconfident newbie chooses

xHL =
cL
cH

xL.

This yields the following equilibrium efforts:

xAI
I = cL

(cI+cL)2
, xAI

L = cI
(cI+cL)2

, xAI
HL = cL

cH
cI

(cI+cL)2
.
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Expected aggregate effort in this case is

EXAI =
(cI + cH)cL + qcI(cH + cL)

cH(cI + cL)2
.

Thus the difference in aggregate effort, after simplifying, is

∆EX =
(cH − cL)(c

2
I − cHcL)(1− q)

cH(cI + cH)(cI + cL)2
,

which turns only on the sign of c2I − cHcL. In particular, aggregate effort is higher for cI >
√
cHcL

under complete information and vice versa if no information is transmitted, which is in contrast

to the case with b = 0. By continuity there exists at least one switching point for each cI such

that going from b = 0 to b = 1− q reverses the inequality.

When the incumbent does not learn the newbie’s type through showing off, she overestimates

the likelihood of facing a strong newbie. This tends to dampen her effort if the newbie is exceptional

and increases her effort if the newbie is non-exceptional. For a large enough share of overconfident

newbies, the incumbent’s effort is thus higher under showing off if and only if the newbie is

exceptional. Moreover, the overconfident newbie chooses a different effort level than if he was

aware of his true strength. His effort level will be higher than when he knows he is untalented

if and only if the incumbent is quite talented (cI < µN ). Thus only in this case will the newbie

be more aggressive if his bias is not revealed which is exactly what happens in equilibrium. The

reason is that in this case a talented newbie competes more fiercely with the incumbent than an

untalented one (as they are more similar), and thus the overconfident newbie expends more than

if he knew he was untalented. Thus, in the case when there is no showing off and thus no learning

of types, i.e., cI < µN , the biased newbie overinvests in effort to the benefit of the principal.

So far we have assumed that also the incumbent holds biased beliefs. This is not necessary for

Proposition 4 to hold, though. The same effects can be generated when the incumbent correctly

anticipates the newbie’s behavior and best-responds to it. In this case, the newbie chooses the

efforts characterized above, unaware of his bias. The incumbent on the other hand, best-responds

to the newbie’s choices. Equilibrium expressions of efforts are available, but the expressions are

extremely unwieldy. Thus we show that our results are robust to this setting by example. In

particular, consider the case where cL = 1, cH = 2 and q = 0.5. Figure 5 shows the difference

between aggregate effort under complete information and absent information transmission for

b = 0, b = 1
10 , and b = 3

10 as a function of cI . For b = 1
10 the results are qualitatively unchanged,

while for b = 0.3 results are exactly reversed.

H Proof of Proposition 5: Productive Signal

To prove the result we proceed in two steps. First, we derive a bound on the effectiveness κ of

the productive signal that guarantees that no newbie type finds it profitable to use the productive

signal to commit effort greater than the contest efforts in the equilibrium we have studied so far.
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Figure 5: The blue lines shows the difference in expected aggregate effort between full information and
asymmetric information for the case where no newbie is overconfident (b = 0). The orange (dashed) line
shows this difference for a small fraction of overconfident newbies (b = 1

10
) while the green (dotted) line

shows this difference for the case of a large fraction of overconfident newbies (b = 3

10
). As before, when

cI =
√
cL cH = µN =

√
2 the differences are zero.

We then prove that incentive compatibility still works and showing off works exactly as it did in

the Baseline model.

Commitment. Assume that signaling effort si translates into contest effort at rate siκ. Thus,

the newbie’s total contest effort equals sNκ + xN . When κ > 0, the newbie can effectively pre-

commit to effort because he can move first. Note that among all efforts some type of newbie could

pre-commit to, the best is the effort he would choose as a Stackelberg leader (see Yildirim, 2005).

This effort is xSBN = cI
4c2N

. While generally pre-commitment of effort might lead to corner solutions,

in which the player who moves second stays passive, Assumption 1 assures an interior equilibrium.

It is well known since Dixit (1987) that in a game like the one we are studying, a player

benefits from commiting to an effort level that is greater than the level of effort he would choose in

a standard Nash equilibrium, if the player is “stronger” than his opponent. Otherwise, he would

like to commit to lower effort. The fact that the newbie chooses effort also in the contest itself

prevents him from under-commiting effort, because he would just add as much effort as needed

to achieve his Nash equilibrium effort in the normal contest stage (see Lemma 2 of Yildirim,

2005). However, the newbie might overcommit effort, which would change the contest equilibrium.

Therefore we need to find a condition under which this is not in the newbie’s interest.

As we have established earlier, the newbie’s Nash equilibrium effort is xCI
N = cI

(cI+cN )2
. If he

overcommits relative to this effort using the signal s′, κ s′ ≥ cI
(cI+cN )2

, in the contest itself he would

choose zero effort, while the incumbent simply best responds (see again Lemma 2 in Yildirim,

2005). In this case, his utility from choosing the signal would be

πs
N =

κs′

κs′ +
√

κs′

cI
− κs′

− cNs′ =
√

cI κ s′ − cNs′.
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Taking the first derivative with respect to s′ yields

∂πs
N

∂s′
=

1

2

(

cI κ s
′)−1/2

(cI κ)− cN .

Evaluating this at s′ = 1
κx

CI
N = 1

κ
cI

(cI+cN )2
this derivative must not be positive. Thus we need

1

2

(

cI κ
1

κ

cI
(cI + cN )2

)−1/2

(cI κ)− cN ≤ 0 ⇔ κ ≤ 2cN
cI

(

c2I
(cI + cN )2

)1/2

=
2cN

(cI + cN )
.

Without loss of generality let cI = λcN , λ ∈ (12 , 2) (by Assumption 1). Then

κ ≤ 2cN
(cI + cN )

=
2cN

(λcN + cN )
=

2

(λ+ 1)
.

Since this has to hold for all λ ∈ (12 , 2), a sufficient condition is κ ≤ κ̄ = 2
3 . Thus when κ ≤ κ̄ = 2

3 ,

the newbie never finds it profitable to precommit to an effort level that is higher than his complete

information Nash equilibrium effort and the subsequent contest stage remains unchanged relative

to the Baseline model.

Incentive Compatibility. Now let us study the signaling game. Assume the newbie chooses

signal s′. From Lemma 2 in Yildirim (2005) it follows that, if the newbie doesn’t overcommit

effort and information is revealed truthfully, then the newbie simply adds effort to reach the Nash

equilibrium level, x′N = xCI
N − κs′. Likewise, the incumbent chooses Nash equilibrium efforts.

Thus, along the equilibrium path, the newbie chooses efforts

x′L(sL) =
cI

(cI + cL)2
− κsL and x′H(sH) =

cI
(cI + cH)2

− κsH ,

the incumbent chooses Nash equilibrium efforts, and thus utilities for the newbie types, from the

perspective of the signaling stage, are

π̃CI
L =

κsL+x′
L(sL)

κsL+x′
L(sL)+xCI

I (cI ,cL)
− cLx

′
L(sL)− cLsL =

c2I
(cI+cL)2

− cL sL (1− κ),

π̃CI
H =

κsH+x′
H (sH )

κsH+x′
H (sH )+xCI

I (cI ,cH)
− cHx′H(sH)− cHsH =

c2I
(cI+cH )2

− cH sH (1− κ).

Off equilibrium information is not truthfully revealed. Denote xCI
I (cI , cj) the incumbent’s effort if

he believes to face a newbie of type j and denote BRi(x
CI
I (cI , cj); si) newbie type i

′s best response

against this effort of the incumbent, when he spent already si on a signal. Then:

BRL(x
CI
I (cI , cH); sH) =

√

xCI
I (cI ,cH)

cL
− xCI

I (cI , cH)− κsH

BRH(xCI
I (cI , cL); sL) =

√

xCI
I (cI ,cL)

cH
− xCI

I (cI , cL)− κsL
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This implies the newbie’s utility, again from the perspective of the signaling stage, is as follows:

π̃D
L =

BRL(x
CI
I (cI ,cH);sH)+κsH

BRL(x
CI
I (cI ,cH);sH)+κsH+xCI

I (cI ,cH)
− cLBRL(x

CI
I (cI , cH); sH)− cLsH

=
(cH+cI−

√
cL cH)2

(cH+cI)2
− cL sH(1− κ)

π̃D
H =

BRH (xCI
I (cI ,cL);sL)+κsL

BRH (xCI
I

(cI ,cL);sL)+κsL+xCI
I

(cI ,cL)
− cHBRH(xCI

I (cI , cL); sL)− cHsL

=
(cL+cI−

√
cL cH)2

(cL+cI)2
− cH sL(1− κ)

In equilibrium it must be the case that sH = 0. Then, incentive compatibility requires

c2I
(cI+cL)2

− cL sL (1− κ) ≥ (cH+cI−
√
cL cH)2

(cH+cI)2

c2I
(cI+cH)2

≥ (cL+cI−
√
cL cH)2

(cL+cI)2
− cH sL(1− κ).

Note that, if κ = 0, this condition is exactly the condition for separation we found above with

binary types. Moreover, as it was the case there, there exists sL > 0 such that separation is possible

if and only if cI >
√
cL cH . Finally, also note that when sL is chosen such that the untalented

newbie’s IC constraint is just binding,

sL(κ) =

(cI−
√
cHcL+cL)

2

(cI+cL)2
− cI

2

(cI+cH)2

cH(1− κ)
,

the incumbent’s IC constraint holds and κ · sL(κ) < xCI
L , which can be checked readily. It is

easily checked that sL(κ) increases in κ, implying showing off increases as signaling becomes more

productive. If we refine the incumbent’s beliefs using the intuitive criterion due to Cho and Kreps

(1987), the game has a unique equilibrium in which the talented newbie shows off and types

separate. Similar steps establish that, again as before with κ = 0, a separating equilibrium cannot

exist if cI <
√
cL cH .
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