
 

 

 

TI 2018-033/III 

Tinbergen Institute Discussion Paper  

 

 

 

The option value of vacant land 

and the optimal timing of city 

extensions 
 

 

Rutger-Jan Lange1  

Coen Teulings2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Erasmus University Rotterdam 
2 University of Cambridge  



 

 

 

Tinbergen Institute is the graduate school and research institute in economics of 

Erasmus University Rotterdam, the University of Amsterdam and VU University 
Amsterdam. 

 
Contact: discussionpapers@tinbergen.nl  
 

More TI discussion papers can be downloaded at http://www.tinbergen.nl  
 

Tinbergen Institute has two locations: 
 
Tinbergen Institute Amsterdam 

Gustav Mahlerplein 117 
1082 MS Amsterdam 

The Netherlands 
Tel.: +31(0)20 598 4580 
 

Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 

3062 PA Rotterdam 
The Netherlands 

Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
http://www.tinbergen.nl/


The option value of vacant land and the optimal

timing of city extensions

Rutger-Jan Lange1 and Coen N. Teulings2

1Econometric Institute, Erasmus University Rotterdam, Netherlands
2Faculty of Economics, University of Cambridge, United Kingdom

March 2018

Abstract

Classic real options theory rests on two debatable assumptions: projects require a

fixed investment and generate cash flows that follow a random walk. Relaxing both

assumptions leads to radically different conclusions regarding the optimal timing of

investment. We model investment using a Stone-Geary production function (Leon-

tief and Cobb-Douglas are special cases) and growth as a mean-reverting Brownian

motion. The solution method for this option valuation problem is non-trivial be-

cause the state space is two dimensional (level of the cash flow and its growth).

For Leontief, the optimal policy is intuitive; the moment of investment involves a

trade-off between the level of the cash flow and its growth. For Cobb-Douglas, in

contrast, the optimal moment of investment depends only on the growth. More

surprisingly, investment should be delayed when growth is high. This conclusion

persists in the general Stone-Geary case. Applied to urban real estate, this suggests

that up to 20% of cities should delay new construction because of high growth. The

option value of vacant land may represent 60% of the value of new construction.

High prices of vacant land may thus result from rational investor behavior rather

than regulatory inefficiency. Our analysis should be widely applicable, for example

to investment in high-growth companies.

keywords: real options, mean-reverting growth, real estate construction
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1 Introduction

The standard model of real options rests on two assumptions: (i) the investment is fixed,

and (ii) the potential cash flow evolves according to a random walk. These assumptions are

convenient, since combined they allow an analytic solution to the optimal exercise strategy.

However, both assumptions are questionable, especially for real estate. First, the growth

of cities is highly persistent; Desmet and Rappaport (2015) show that the mean-reversion

parameter in an AR(1) model of the population growth of American cities is around 0.95,

while Nur and Teulings (in prep) report similar values for cities in the Netherlands. The

mean-reversion parameter of log population is a good proxy for the mean-reversion of the

rental value of housing in many models of cities.1 Second, as the density of construction

varies widely between locations, the assumption of fixed investment is unlikely to hold.

This paper shows that relaxing both assumptions simultaneously has major implications

for the optimal timing and density of construction.

First, consider the assumption of the cash flow being a random walk. This implies

that current growth has no predictive power for future growth. If this were true, the price

of vacant land in the proximity of a city — i.e. the option value of future construction —

would be independent of its current growth rate, which is unrealistic. One can make a sim-

ilar argument for firms. If current growth has no predictive power for future growth, then

what would explain high multiples for IT companies like Google and Facebook compared

to firms in more traditional industries, like Procter & Gamble and Shell? Indeed, Chan

et al. (2003) find persistence in sales revenue growth.2 One could assume that the sales

growth of such companies in the recent past reflects a higher drift, but this assumption

has undesirable implications of its own. The mean growth of some IT firms over the past

decade has exceeded any reasonable discount rate. If this excess growth were permanent,

then the value of such firms would be unbounded. Growth differentials between cities

— and firms, for that matter — are thus likely to be persistent but not permanent. We

therefore model the growth of the potential cash flow as a mean-reverting process, or in

continuous time, as an Ornstein-Uhlenbeck process. The complication of this assumption

is that the state space becomes two dimensional: consisting of both the level of the cash

flow and its growth.

Second, consider the assumption that exercising the option requires an investment

of fixed size. This implies that the investor must decide only on the optimal timing

of investment, not on its size. If this were true, the density of construction would be

equal across different plots of land. Making the size of the investment endogenous is

particularly relevant when this investment is irreversible in both upward and downward

1See Section 6 for a detailed discussion.
2They also find that persistent sales growth does not necessarily translate into persistent earnings

growth, which may be due to the “noisiness of the earnings yield measure” (p. 683). However, they do
not estimate an AR(1) model, making a direct comparison with our method hard.
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directions. For real estate, irreversibility is evidently true for downsizing (i.e. scrapping

the building; see Glaeser and Gyourko (2005)). However, extending an existing building is

also far more costly than greenfield construction of new buildings.3 For these reasons, this

paper assumes that construction on a given plot of land is irreversible in both directions.

We assume that housing services are produced by a Stone-Geary technology with land

and construction as its inputs. This production function has two limiting special cases: (i)

Leontief, where the size of the investment in construction is fixed so that the elasticity of

substitution between land and construction is zero (as in the standard real options case),

and (ii) Cobb-Douglas, where there is no fixed investment and the elasticity of substitution

is equal to unity. In the general Stone-Geary case, the elasticity of substitution between

land and construction falls between zero and one.

The combination of both generalizations of the standard problem leads to counter-

intuitive results. Consider introducing persistence in the growth of the cash flow while

maintaining the assumption of a Leontief technology. Then, one would intuitively expect

the optimal stopping boundary to reflect a trade-off between the level of the cash flow

and its growth. The investor invests either because the current cash flow is high (even

though growth is low) or because growth is high (even though the cash flow is low). We

show that this intuition holds true. However, this naive expectation breaks down in the

other limiting case. For Cobb-Douglas, we find two surprising results. First, the optimal

exercise policy depends exclusively on the growth of the cash flow and not its level. The

intuition is that optimal investment in construction is always a fixed share of the value of

the asset after construction, as is standard for a Cobb-Douglas production function with

an elasticity of substitution between land and construction equal to unity. Second, even

more surprisingly, there is a maximum growth rate above which investment should be

delayed. That is, when the prospects of the project are particularly bright, the investor

should postpone investment! There are two reasons for this counterintuitive result. De-

laying investment allows new information on the future growth of the cash flow to come

to light, which can improve decision making on the optimal density of construction, with

investors choosing a higher density when the new information is favorable. This explains

why the combination of persistence in growth and variable investment matters. Further,

the high growth rate implies that the optimal density of construction is higher than is

justified by the current level of the cash flow. The current cash flow may not even cover

the interest bill on the investment, in which case postponing investment is clearly optimal.

The counterintuitive finding that construction should be delayed for high growth rates

generalizes to the Stone-Geary case. For Stone-Geary, the optimal investment boundary

is U-shaped as a function of growth: investment should be delayed when the growth

3One might argue that demolition and rebuilding is a common practice, in particular in US cities.
However, just an eyeball test shows that there is a strong persistence in urban structures. Given an
AR(1) parameter of 0.95 in the growth rate, a persistence of 20 years would justify our analysis.

3



rate is very low (as in the Leontief case) or very high (as in the Cobb-Douglas case).

Our numerical results show that this phenomenon is important for empirically relevant

parameters. Even for low values of the marginal construction-share (e.g. 10%; 0% yields

the Leontief case), the curve is upward sloping for empirically relevant growth rates.

Indeed, for reasonable parameter values, up to 20% of cities should delay investment due

to high growth. Naturally, the optimal density of construction along the optimal stopping

boundary increases as the growth rate increases. However, the option value of vacant land

on the edge of high-growth cities also increases as a function of the growth rate; indeed,

it may constitute up to 60% of the value of newly constructed houses. High-growth cities

should therefore wait longer before transforming vacant land into built area, even though

the value of the land is much higher than is justified by agricultural use. This conclusion

has important policy implications. Glaeser and Gyourko (2002) argue that the high land

prices in the proximity of growing cities is evidence of inefficient planning restrictions.

Our analysis shows that this conclusion cannot be based on the price of the vacant land

alone.

The practical relevance of this question would suggest that it must have been answered

long ago, but this turns out not to be the case. Dixit and Pindyck (1994) discuss the

option value when the level of the cash flow is mean-reverting. However, mean-reversion

in the level has entirely different implications than mean-reversion in growth. Arnott and

Lewis (1979) and Capozza and Helsley (1989) apply a model with permanent growth

rate differentials between cities to show that land close to fast-growing cities commands a

higher option value and that this land will be developed with a higher density of construc-

tion. The model that comes closest to ours is that of Capozza and Li (1994), which allows

for stochastic non-persistent growth around a deterministic trend that differs between

cities.4 However, as discussed above, though this model has the merit of convenience, it

does not capture reality very well. By contrast, in our model growth rate differentials

are persistent, but not permanent. Under this more realistic assumption, unexpected

shocks to the growth rate have a much larger effect on land prices, since a growth shock

affects not only today’s growth rate, but also tomorrow’s. Persistence in growth might

therefore contribute to our understanding of the excess volatility in asset prices relative

to the volatility in the underlying cash flows. We expect therefore that our analysis of the

valuation of asset prices for cash flows with an Ornstein-Uhlenbeck growth process has a

wider application than real estate; for example, in the valuation of equity of high-growth

4See their discussion on the comparative statics of growth rate g on pp. 896-897. They suggest using
of a model with stochastic rather than deterministic growth rates, as we do in this paper. Interestingly,
Capozza and Li (1994) conjecture our results:

We conjecture that, in a more sophisticated rational-expectations model with stochastic
rather than constant growth expectations, this phenomenon (...) will imply that additional
projects will be undertaken even as growth expectations are declining.
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companies.

The analysis is, from a technical point of view, rather involved. This is because (i)

the problem has two state variables: the level of the cash flow and its growth; (ii) the

option is of the American type, meaning that the decision-maker can exercise the option

at any time; and (iii) the stochastic process is parabolic rather than elliptic5, implying

that classic tools such as ‘smooth fit’ are not available to us. In fact, this paper seems to

be the first to document the failure of smooth fit in higher dimensions. Even in the elliptic

case, multidimensional American-type option valuation problems are notoriously difficult

to solve. Prominent contributions to the growing body of literature in this area are Rogers

(2002), Andersen and Broadie (2004) and Bally and Printems (2005). We deviate from

the literature in permitting our investor to invest at random moments in time that arrive

at a fixed Poisson arrival rate λ. The standard case, where investors may invest at any

point in time, is obtained in the limit λ → ∞. This problem set-up has rarely been

considered in the literature; e.g. Rogers and Zane (2002) use the case λ < ∞ to model

liquidity constraints. Apart from its theoretical appeal, our generalization is useful from

a practical point of view, since the problem corresponding to λ large but finite turns out

to be mathematically and numerically more tractable than the problem corresponding to

λ = ∞. In particular, we present a new method that finds the solution as a monotone

(non-decreasing) sequence of lower bounds; moreover, this property persists through the

discretization. These desirable properties are related to those observed in the literature

on the ‘penalty method’; see e.g. Zvan et al. (1998); Forsyth and Vetzal (2002); d’Halluin

et al. (2004), and Zhang et al. (2008, 2009). As our numerical method is stable and

straightforward to implement, we expect it to have wider applicability in the analysis of

multidimensional American-type options.

This paper is structured as follows. Section 2 sets out the assumptions of the model for

the Leontief case. Section 3 derives the present value of a cash flow with mean-reverting

growth, while Section 4 presents the solution to the option valuation problem. Section

5 analyses the generalization to the Stone-Geary case, and Section 6 fleshes out our

framework to the spatial structure of a city. Finally, Section 7 discusses the implications

of our findings and contains suggestions for future work.

While the arguments in this paper are economically motivated, some level of technical

detail is unavoidable. Readers mainly interested in our economic rationale may wish to

skip the more technical subsections, the subheadings of which are preceded by an asterisk.

5This is because the 2 × 2 diffusion matrix of the process is singular; such processes are often called
degenerate.
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2 The model for the Leontief case

2.1 Assumptions

We consider the value of an option to build an asset that yields a cash flow determined by

a two-dimensional stochastic diffusion process {Xt}t≥0 in continuous time defined on some

complete filtered probability space (Ω,F ,P) satisfying the usual conditions. Specifically,

we assume that the diffusion consists of two components, i.e. Xt = (gt, ln ft)
′, where

the first component gt is an Ornstein-Uhlenbeck process as in Uhlenbeck and Ornstein

(1930) and where the second component ln ft is defined as the integral of the first (i.e.

ln ft = ln f0 +
∫ t

0
gτdτ ; ft is the cash flow and gt is the (geometric) growth rate of the cash

flow, both at time t). In other words, we assume that Xt = (gt, ln ft)
′ is the strong unique

solution to the following pair of stochastic differential equations (SDEs):

dgt = −θ (gt − µ) dt+ σdWt, (2.1)

d lnft = gt dt,

where Wt is a standard Wiener process.6 We note that ln ft is perfectly predictable over

time scales of order dt.7 The first stochastic process is the persistent, but mean-reverting,

geometric growth rate of the second process. Specifically, µ is the long-run mean of the

growth rate, while θ > 0 is the rate of convergence to this long-run mean and σ > 0 is the

standard deviation of innovations in the growth rate. Future payoffs are discounted at a

rate ρ and we assume that the realization of the asset requires an irreversible investment

I. For the discussion of our numerical results, it useful to have a set of benchmark

parameters. Nur and Teulings (in prep) estimate the Ornstein-Uhlenbeck mean-reversion

parameter on an annual time scale to be θ ≈ 0.05, using population data for a sample

of Dutch agglomerations.8 We use an interest rate ρ = 0.04 and a drift µ = 0.01.

The value of σ2 can most easily be assessed starting from the steady-state variance of

population growth rate across cities, Var [gt]. We take as a point of reference a standard

deviation of the growth rate across cities in the steady state of about 0.02, implying

Var [gt] = 4×10−4. The steady-state distribution of the growth rate is gt ∼ N [µ, σ2/ (2θ)].

Hence, σ2 = 2θ × Var [gt] = 4× 10−5. This motivates the following definition:

Definition 1 Benchmark parameters on an annual time scale:

θ = 0.05, ρ = 0.04, µ = 0.01, σ2 = 4× 10−5.

6A standard Wiener process satisfies E[Wt −W0] = 0, E [Wt −W0]
2

= t.
7This implies the 2 × 2 diffusion matrix of the process {Xt}t≥0 is singular. Such processes are often

called degenerate.
8Note that the mean-reversion parameter in a (discrete-time) AR(1) process is different from that in

a (continuous-time) Ornstein-Uhlenbeck process.
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Figure 1: A flowchart of the bivariate stochastic process (gt, ft)
′ for the benchmark pa-

rameters.

Figure 1 provides a flowchart of the system in (gt, ft) space. It displays two paths

constructed by following the drift of the process and ignoring any noise, starting from

(gt, ft) = (−0.04, 1) and (gt, ft) = (0.06, 0.5), respectively. The growth rate gt mean-

reverts to the drift parameter µ. Hence, both paths converge to the vertical line gt = µ.

The path starting from (−0.04, 1) declines until the growth rate passes the line gt = 0

and increases afterwards.

The model has four special cases related to the limits σ2 = 0, θ = 0, θ = ∞, and both

σ2 = θ = 0.

• Deterministic growth: in the limit σ2 → 0 there is no uncertainty. The growth

rate gt mean-reverts deterministically along an exponential path back to its mean

µ at a deterministic rate θ. The long-term behavior is determined by µ.

• Immediate mean-reversion: the limit θ → ∞ is equivalent to σ2 → 0 (i.e.:

deterministic growth). The growth rate gt mean-reverts immediately to µ, and

stays there for eternity. The value of σ2 becomes irrelevant, since innovations are

immediately suppressed. The growth is fully determined by µ.

• No mean-reversion: in the limit θ → 0, the growth rate gt follows a random walk

without mean-reversion to µ. Hence, the value of µ becomes irrelevant. In this case

the asset value of the project is unbounded, as will be shown below.

• Degenerate case: when both σ2 and θ are zero, there is neither randomness nor

mean-reversion. Hence, gt stays forever constant at its present value g0.

7



It is convenient to rewrite this process applying a transformed time scale s, such that the

mean-reversion parameter is equal to unity. Let s be the transformed time scale (hence,

s = θt) and let xs, ρ, µ, σ
2 and ψ be the growth rate and the parameters, respectively,

that correspond to this transformation of the time scale. They are defined as

ρ :=
ρ

θ
, µ :=

µ

θ
, σ2 :=

σ2

θ3
, ψ := ρ− µ− 1

2
σ2,

xs :=
gt
θ
− µ− σ2,

(2.2)

where ψ is the modified discount rate, accounting for the expected future growth of the

cash flow and for the randomness in future growth. The transformed growth rate xt is

modified along two dimensions: (i) it is adjusted to the transformed time scale s and

(ii) it is measured in deviation from the expected long-term growth of the cash flow, see

Proposition 1 below. We use equation (2.2) to transform the benchmark parameters to

the new time scale.

Definition 2 The transformed benchmark parameters are

ρ = 0.80, µ = 0.20, σ2 = 0.32, ψ = 0.44. (2.3)

All figures use these benchmark parameters unless stated otherwise. Recall that an in-

vestment I is required for the realization of the asset. The flow of interest payments on

an investment I per unit of the transformed time scale s is equal to ρ I. Let y denote the

transformed cash flow. It is convenient to rescale the project such that the transformed

cash flow is equal to the interest payment on the investment I for y = 1. Hence,

y :=
f

θρI
=

f

ρI
, (2.4)

while the investment required for the realization of this asset is equal to ρ−1. Using these

definitions, the stochastic differential equations corresponding to equation (2.1) read

dxs = −(xs + σ2) ds+ σdWs, (2.5)

d lnys =
(
xs + µ+ σ2

)
ds.

Henceforth, we work in the transformed time scale t → s and the transformed state

variables (g, f)→ (x, y).

We deviate from the literature in assuming that the set of permissible investment

times Tλ set is generated independently of the diffusion {Xt}t≥0 by a Poisson process with

arrival rate λ ∈ (0,∞). The decision-maker is permitted to invest at one of the Poisson

arrival times; between two Poisson arrival times she is forced to wait. In our problem

formulation, therefore, the set Tλ consists of all Poisson arrival times {τ1, τ2, τ3, . . .}. As
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the intensity λ of our Poisson process increases to infinity, opportunities to invest are

generated continuously. This implies that classical stopping problems in the literature are

a limiting case of our (more general) formulation. Apart from its theoretical appeal, our

generalization is useful from a practical point of view, since the problem corresponding

to λ large but finite turns out to be mathematically and numerically more tractable than

the problem corresponding to λ =∞, as will be shown in Section 5.

2.2 ∗The distribution of (x, y)

This subsection derives the joint distribution of (x, y). Subsections preceded by an asterisk

may be skipped by readers mainly interested in our economic rationale.

Proposition 1 The distribution of the vector-valued stochastic process (xs, ln ys)
′ condi-

tional on (x0, ln y0)′ is multivariate normal with a mean ms and covariance matrix Σs,

where ms and Σs are given by

ms =

(
−σ2 + (x0 + σ2) e−s

ln y0 + µs+ (x0 + σ2) (1− e−s)

)
,

Σs = 1
2
σ2

(
1− e−2s (1− e−s)

2

(1− e−s)
2

2s− 4 (1− e−s) + (1− e−2s)

)
.

(2.6)

In the steady state, we have

xs ∼ N
(
−σ2, 1

2
σ2
)
,

lims→∞
ln ys − ln y0

s
∼ N (µ, σ2) .

(2.7)

Proofs of all propositions are presented in the Appendix. To the best of our knowledge, this

paper provides the first representation of the joint distribution of an Ornstein-Uhlenbeck

process and its integral. It follows from Proposition 1 that the marginal distributions of

xs and ln ys are again normal, with means and variances obtained by dropping irrelevant

rows and columns from ms and Σs. In the steady state, Ex = −σ2 = −0.32, while the

standard deviation of x is σ/
√

2 = 0.40 for our benchmark parameters (see Definition 2).

Remark 1 The correlation between a zero-drift Brownian motion and its integral is√
3/2 ≈ 86%. This follows from Proposition 1, which by e−s = 1− s+O (s2) implies that

the joint distribution of (xs, ln ys)
′ for small s (or, equivalently, θ = 0) is normal with mean

ms = [x0, ln y0 + (x0 + µ+ σ2) s]
′

and covariance matrix Σs = σ2
[(

1
3
s3, 1

2
s2
)
,
(

1
2
s2, s

)]
.
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3 The asset value

The asset value of the project described in section 2 as a function of the state variables xs

and ys at time s, denoted A(xs, ys), is the present value of all expected future cash flows

A(xs, ys) = Es

[ ∫ ∞
s

yt e−ρ(t−s) dt

]
, (3.1)

where Es represents an expectation conditional on the state variables (xs, ys). The stan-

dard method to characterize this asset value is through the Bellman equation correspond-

ing to the dynamic process (2.5). In our case, this equation takes the form

y := (ρ− L)A(x, y), ∀ (x, y) ∈ R× R≥0, where

L := (x+ µ+ σ2) y d/dy − (x+ σ2)d/dx+ 1
2
σ2d2/dx2,

(3.2)

where R≥0 denotes the set of non-negative real numbers, while L is a parabolic9 differential

operator of first and second order in x and y, respectively. This operator is known as the

‘generator’ of the process; see Karatzas and Shreve (2012). The return ρ−L on the asset

value A(x, y) is equal to the cash flow. The first term of the operator L captures the

effect on the asset value of the change in y over the interval ds, which is equal to the

growth rate x + µ + σ2 times the level of the cash flow y. The second term captures the

effect of the mean-reversion of the growth rate back to its expected level −σ2. The third

term follows from Itô’s lemma and captures the effect of the randomness of x. If A (x, y)

were linear in x, this effect would be zero since Es [dx ] = 0. However, because A (x, y) is

non-linear and E [(dx)2 /ds] = σ2, this effect cannot be ignored. The operator L contains

no second derivative with respect to y0, because the evolution of yt is non-random over

time scales of order ds, E [(dy)2 /ds] = 0.

This Bellman equation has no analytic solution, but we can use the joint distribution

of xs and ln ys conditional on the current state (x0, ln y0) given in Proposition 1. Since the

diffusion {Xs}s≥0 is Markov, we can focus on the calculation of the asset value at time 0.

As ln ys conditional on ln y0 is normal, it follows that ys is log-normal. The expectation

of a log-normal variable follows from E exp N(a, b2) = exp
(
a+ 1

2
b2
)
. Therefore, the asset

value given in equation (3.1) can be written as

A(x, y) =

∫ ∞
0

exp

[
m2,s +

1

2
Σ22,s − ρs

]
ds =: y a (x) ,

a (x) :=

∫ ∞
0

exp

[
−ψ s+ x

(
1− e−s

)
+
σ2

4

(
1− e−2s

)]
ds,

(3.3)

9The absence of a second derivative with respect to y implies that the differential operator L is
parabolic rather than elliptic. This implies that many classic tools for option valuation, such as the
principle of ‘smooth fit’, can no longer be relied upon. Such degenerate cases have not been considered
in the literature; even classic texts such as Øksendal (2007), Peskir and Shiryaev (2006), and Karatzas
and Shreve (2012) treat only the elliptic case.
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where m2,s and Σ22,s denote relevant entries of the vector ms and matrix Σs in Proposition

1. The expression for a (x) in the second line follows from substituting these entries

in the first equality in the first line. Note that the state variable y factors out: an

increase in y affects the asset value A (x, y) proportionally. The fact that A (x, y) can be

multiplicatively decomposed into the effects of y and a (x) facilitates our analysis. For

the integral in the second line to converge — and hence for the asset value to exist — we

need:

ψ > 0 ⇐⇒ 0 ≤ σ2 < 2(ρ− µ). (3.4)

In the sequel, we assume this condition to be satisfied, as is the case for our benchmark

parameters. It appears that our solution (3.3) is new. While this may be somewhat

surprising, this method of expressing the asset value is useful given that the standard

Bellman equation (3.2) has no analytic solution. Our solution A(x, y) in equation (3.3)

satisfies the PDE in equation (3.2), as can be verified by differentiating under the integral

sign.

3.1 ∗Numerical characterization of a (x)

Although a closed-form solution for the integral for a (x) in equation (3.3) does not exist,

we can derive some useful properties of this function. Moreover, we and provide a simple

and robust approximation.

Proposition 2 For ∀x ∈ R, a(x) satisfies

1 : a (0) = 1
2

exp
(
σ2

4

) (
σ
4

)−ψ/2
γ
(
ψ
2
, σ

2

4

)
,

2 : 0 < a′′ (x) < a′ (x) < a (x) ,

3 : a′′ (x) a (x) > a′ (x)2 ,

4 : limx→−∞

(
ψ − σ2

2
− x
)
a (x) = 1,

5 : limx→∞

[
xψ exp

(
−x− σ2

4

)
a (x)

]
= Γ (ψ) ,

where Γ (·) is the Gamma function and γ (·) the incomplete Gamma function; see Appendix

A.2.

Proposition 2 implies that limx→−∞ a
′ (x) /a (x) = 0, limx→−∞ a (x) = 0, and limx→∞ a

′ (x) /a (x) =

1. For the special case of deterministic growth, (σ2 = 0) we can provide an analytic solu-

tion, since the third factor in the integrand in equation (3.3) vanishes and the remaining

terms can be solved:

a (x)|σ2=0 = exx−ψγ (ψ, x) , a (0)|σ2=0 = ψ−1.

This expression is also useful when σ2 > 0, since it allows us to formulate lower and upper

bounds for a (x). Because 1−e−2s ∈ [0, 1) for s ∈ R≥0, the contribution of the third factor

11



Figure 2: The functions a (x) , a (x)(lower bound) , a (x)(upper bound), and a(1)(x) defined in
Remark 2.

in the integrand in equation (3.3) is positive for all s. A lower bound for a (x) can thus

be obtained by ignoring this term, while an upper bound can be obtained by setting it

equal to its maximum value of σ2/4. Hence,

a (x)(lower bound) = exx−ψγ (ψ, x) , (3.5)

a (x)(upper bound) = exp

(
σ2

4

)
a (x)(lower bound) .

Remark 2 A convenient and accurate approximation of a (x) can be obtained by a Taylor

series approximation of a (x) starting from the lower bound a (x)(lower bound) in equation

(3.5) which is accurate even for low orders of the approximation. We can prove that

a(n) (x) < a(n+1) (x) < a (x) < a (x)(upper bound) , ∀n ≥ 0,∀x ∈ R,

where the superscript (n) denotes the order of the Taylor approximation. In practice,

the upper bound gives a very accurate approximation of a (x) for almost all parameter

values. This is illustrated in Figure 2: a(n) (x) is very close to a (x)(upper bound), even for

n = 1. Since a(1) (x) < a (x) < a (x)(upper bound), a (x)(upper bound) provides an accurate

approximation of a (x) for most practical purposes.
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3.2 Excess short run volatility of the asset value

Proposition 3 compares the short and long run volatility of the cash flow and the asset

value in response to a shock in the growth rate x0.

Proposition 3

1. The infinitesimal drift and variance of lnA(x, y) satisfy

E

[
d lnA(xs, ys)

ds

]
= µ+ (xs + σ2)

(
1− a′

a

)
+

1

2
σ2a

′′a− a′2

a2
,

Var

[
d lnA(xs, ys)

ds

]
= σ2a

′2

a2
,

(3.6)

omitting for notational convenience the argument xs of the function a(xs). The drift

increases in the variable xs for small xs and converges to µ as xs → ∞, while the

volatility increases in xs for all xs and converges to σ2 as xs →∞.

2. The effect of a growth shock dx0 on the log cash flow ln ys and the log asset value

lnA(xs, ys) in the short term (s = 0) and the long term (s =∞) is:

Effect of growth shock dx0 s = 0 s =∞
d (E ln ys) /dx0 0 1

d lnA(Exs, e
E ln ys)/dx0 0 < a′(x)

a(x)
< 1 1

We draw three conclusions from the table in Proposition 3. First, in the short run, the

asset value is an order of magnitude more volatile than the cash flow in response to

shocks in x0. This explains the high short-run volatility in asset values compared to the

low short-run volatility in cash flows. Second, the long-run effect on the cash flow and the

asset value are both equal to unity. The equality of the long-run effects is a fundamental

feature of this process; the equality of both effects to unity is due to our transformation

of the unit of time from t to s, such that the coefficient of mean-reversion θ is normalized

to unity. Third, the response of the asset value is larger in the long run than in the

short run. There is thus persistence in the growth of the asset value: an increase in the

asset value today predicts a further increase in the near future. This is consistent with

the standard property that asset prices should be Markovian in the following sense. The

total initial return to an upward shock in the growth rate has two components: (i) the

higher cash flow and (ii) the indirect return of the growth in the asset value. Together,

both components should be equal to the return on capital, ρA (x0, y0). Initially, there is

no effect on the cash flow (see the entry for d (E ln y0) /dx0 in part two of Proposition 3),

so the full return must come from the second component: the growth of the asset value.

Over time, the cash flow increases such that it accounts for an increasing share of the

return on the asset; hence, the second component must decline over time. Eventually,
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the cash flow converges to its new steady-state level, as the growth rate mean-reverts in

expectation to its long-run equilibrium value, while the indirect return vanishes as the

initial shock yields no further growth of the cash flow.

4 The optimal stopping boundary

4.1 ∗The option value

This subsection characterizes the option value when opportunities to exercise the option

are generated by an exogenous Poisson process with intensity λ < ∞. Moreover, we

investigate the limit λ → ∞. The method described in this subsection may thus be

valuable to readers interested in solving similar American-type option valuation problems.

Recall from Section 2 that the opportunities to invest are collected in the set Tλ =

{τ1, τ2, . . .}. Analogous to equation (3.1) for the asset value A (xs, ys), the option value

Vλ(xs, ys) of being able to invest in the asset at some future time τ ∈ Tλ – conditional on

the state variables xs and ys – equals the present value of the asset value of the project

at the moment of investment τ minus the present value of the cost of investment

Vλ (xs, ys) := max
τ∈Tλ

Es[ e
−ρ τ (A(xτ , yτ )− ρ−1) ]. (4.1)

At each of the Poisson arrival times in the set Tλ = {τ1, τ2, . . .}, the decision-maker must

decide whether to continue waiting or to use the opportunity to invest. Since the asset

value does not depend explicitly on time, the decision to stop depends only on (xτ , yτ ) for

all τ ∈ Tλ. Thus, the optimal policy specifies a (closed) stopping region Sλ, such that the

decision-maker will stop at the earliest possible opportunity τ for which (xτ , yτ ) ∈ Sλ:

τ := min
s∈Tλ

{
s ≥ 0 : (xs, ys) ∈ Sλ

}
, (4.2)

where by assumption the minimum of an empty set equals infinity. It is useful to define

the (open) continuation region Cλ as the complement of Sλ, such that Cλ ∪Sλ = R×R≥0.

Hence,

Cλ =
{

(x, y) ∈ R× R≥0 : Vλ(x, y) > A(x, y)− ρ−1
}
,

Sλ =
{

(x, y) ∈ R× R≥0 : Vλ(x, y) ≤ A(x, y)− ρ−1
}
.

(4.3)

There is thus a two-way dependence between the value function Vλ(x, y) and the parti-

tioning of space: Cλ and Sλ determine Vλ(x, y) and in turn Cλ and Sλ can be read off from

Vλ(x, y).

Analogous to equation (3.2), the option value Vλ(x, y) satisfies the following Bellman

equation:

(ρ− L)Vλ(x, y) = λ[A(x, y)− ρ−1 − Vλ(x, y)]+, ∀ (x, y) ∈ R× R≥0, (4.4)
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where X+ := max(X, 0) for all X ∈ R and where the operator L is defined in equation

(3.2). The return on the option value is equal to the arrival rate λ of opportunities to

invest times the wealth gain obtained at the moment the option is exercised. This wealth

gain is zero if Vλ(x, y) > A(x, y) − ρ−1; in that case, investment does not (yet) pay off

and it is better to wait for the arrival of another opportunity to invest. The wealth gain

is weakly positive if Vλ(x, y) ≤ A(x, y) − ρ−1, in which case it is optimal to invest (or

equivalently, (x, y) ∈ Sλ). Our solution method is based on the value of waiting Wλ(x, y),

which is defined as the difference between the option value Vλ(x, y) and the asset value

minus the cost of investment (that is, A(x, y)− ρ−1); i.e.

Wλ(x, y) := Vλ(x, y)− A(x, y) + ρ−1, ∀(x, y) ∈ R× R≥0. (4.5)

Hence, Wλ(x, y) > 0 for any (x, y) ∈ Cλ, while Wλ(x, y) ≤ 0 for any (x, y) ∈ Sλ; in the

latter case, the decision-maker will invest as soon as an opportunity to invest presents

itself. The value of waiting satisfies the Bellman equation10

(ρ+ λ− L)Wλ(x, y) = 1− y + λW+
λ (x, y). (4.6)

In this expression, Vλ(x, y) and A(x, y) no longer appear, while the value waiting Wλ(x, y)

and the infinitesimal value of waiting 1−y, which are arguably more fundamental quanti-

ties, emerge. The infinitesimal value of waiting is the interest payment on the investment

(unity) minus the foregone cash flow (y).

Since each Poisson time presents an opportunity (but no obligation) to realize the

asset, and since more opportunities are better than fewer, the value of waiting Wλ(x, y)

is non-decreasing in the Poisson intensity λ. We define W (x, y) as the pointwise limit of

Wλ(x, y); that is,

W (x, y) := lim
λ→∞

Wλ(x, y).

We have Wλ(x, y) ≤ W (x, y) for all λ ∈ (0,∞]. Equation (4.6) implies that for (x, y) ∈ Sλ,
the value of waiting Wλ(x, y) is negative almost everywhere (except on the line y = 1). A

negative value of waiting means that the decision-maker wants to invest, but is forced to

wait because investing is not permitted in the interval between two Poisson investment

opportunities. This implies that λW−
λ (x, y), where X− = max(−X, 0) for all X ∈ R,

can be usefully interpreted as a ‘penalty term’ associated with this restriction. This

observation links our approach with the penalty literature; see e.g. Forsyth and Vetzal

(2002). It has apparently gone unnoticed that this penalty term appears automatically if

the decision-maker is given the opportunity to invest only at a set of Poisson arrival times,

as in this paper. Since Wλ is increasing (or at least non-decreasing) in λ, it follows that

10This follows immediately from the PDE for Vλ(x, y) in equation (4.4) by subtracting (ρ−L)A(x, y) = y
from both sides and using 1 = (ρ − L)ρ−1 and [A(x, y) − ρ−1 − Vλ(x, y)]+ = W−λ (x, y) = W+

λ (x, y) −
Wλ(x, y).
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Sλ must be shrinking as λ increases. Conversely, the continuation set Cλ is expanding in

λ. This makes intuitive sense, since the decision-maker can afford to wait longer when

opportunities to exercise the option arrive more frequently. Thus, we define the limiting

stopping and continuation sets as follows:

S := lim
λ→∞
Sλ, C := lim

λ→∞
Cλ, (4.7)

where S is closed and C is its (open) complement.

Proposition 4

1. In the limit λ → ∞, we obtain S = {(x, y) ∈ R × R≥0 : W (x, y) = 0} and

C = {(x, y) ∈ R× R≥0 : W (x, y) > 0}.

2. For λ = ∞, a sufficient condition for continuation and a necessary condition for

stopping are as follows:

1− y > 0 ⇒ (x, y) ∈ C,
(x, y) ∈ S ⇒ 1− y ≤ 0.

(4.8)

3. In the limit λ→∞, the penalty term λW−
λ (x, y) converges pointwise as follows:

λW−
λ (x, y)→

{
0, (x, y) ∈ C,
y − 1 ≥ 0, (x, y) ∈ S \ ∂S,

(4.9)

where ∂S denotes the boundary of the (closed) set S.

Part one states that when λ goes to infinity, the decision-maker either waits (because

W (x, y) > 0) or invests immediately (in which case W (x, y) = 0). Hence, W (x, y) ≥ 0,

since if W (x, y) < 0, she would invest immediately, thereby setting W (x, y) = 0. Note

that for finite values of λ, Wλ(x, y) can be negative in between two opportunities to

invest. Part two says that the decision-maker will never invest when 1 − y > 0 (that

is: when the interest paid on the investment (unity) exceeds the rent on the investment

(y)). Note, however, that this does not mean that the decision-maker builds as soon as

y = 1. Rather, she waits until 1− y is sufficiently negative before making the irreversible

investment decision. Clearly, this implies that in the stopping region S we must have

1− y ≤ 0. Thus, as is standard in optimal stopping (see e.g. Øksendal (2007) p. 217-18),

we have a sufficient condition for continuation (1− y > 0) and a necessary condition for

stopping (1− y ≤ 0), where neither is both necessary and sufficient.

Part three gives an interpretation of the limit λ→∞ of the differential equation (4.6)

for Wλ(x, y). By subtracting λWλ(x, y) from both sides, we may write

(ρ− L)Wλ(x, y) = 1− y + λW−
λ (x, y), (4.10)
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where W+
λ −Wλ = W−

λ . The third term on the right-hand side can be viewed as a ‘penalty

term’, which penalizes the decision-maker whenever the value of waiting is negative. The

‘strength’ of this penalty increases as λ increases, such that the limiting function W (x, y)

is forced to be non-negative (a strictly negative part of W (x, y) would attract an infinity

penalty). Thus, W−
λ (x, y) must approach zero as λ→∞. However, the fact that W−

λ (x, y)

goes to zero says nothing about the limiting behavior of the penalty term λW−
λ (x, y),

which may still diverge to infinity. Part three of the proposition establishes that the

limit of the penalty term λW−
λ (x, y) is, in fact, bounded on bounded sets and converges

pointwise on R × R≥0 \ ∂S. This result will be sufficient for our purposes under the

relatively mild assumption that ∂S is of measure zero, where ∂S denotes the boundary

of the set S. That is, as long as the boundary ∂S is ‘thin’, we do not need to investigate

the asymptotics of λW−
λ (x, y) on ∂S, which appears to be a difficult exercise.

Proposition 5 Assume that ∂S has Lebesgue measure zero. Then Wλ(x, y) converges

uniformly on compact sets to a limiting function W (x, y) := limλ→∞Wλ(x, y), which

satisfies

W (x, y) =

∫ ∞
0

e−ρ s E(x,y)

[
1C(xs, ys) (1− ys)

]
ds, (4.11)

for all (x, y) ∈ R×R≥0, where 1C(x, y) denotes the indicator function11 of the set C. The

limiting function W (x0, y0) is continuously differentiable in x0, but merely continuous in

y0 (i.e. the classic principle of smooth fit does not hold true in the y direction).

Interestingly, Proposition 5 — the main result of this section — says that W (x, y) equals

the expected net present value of the infinitesimal value of waiting, that is 1− ys, which

is received conditional on (xs, ys) ∈ C. Hence, the infinitesimal value of waiting is realised

only in the continuation region C, which makes intuitive sense. The classic condition of

‘value matching’ is automatically satisfied, that is W (x, y) = 0 for (x, y) ∈ S. However,

another classic condition known as ‘smooth fit’ is violated. Equation (4.11) implies that

W (x, y) is merely continuous in y, rather than once continuously differentiable as required

by smooth fit. In one spatial dimension, it is well known that the principle of smooth fit

breaks down when the underlying process is deterministic or when the underlying pay-off

is non-smooth at the exercise boundary (see e.g. Alvarez (2001)). However, this paper

seems to be the first to document the failure of smooth fit in higher dimensions. The

reason is novel as well: smooth fit breaks down because the two-dimensional stochastic

process is driven by a single source of uncertainty, implying it is degenerate.12 Intuitively,

the the component ys is locally deterministic (i.e. when viewed on time scales of order

ds).

11The indicator function 1C(x, y) is equal to one if (x, y) ∈ C and zero otherwise.
12In the endnotes to their paper, Kwon and Lippman (2011) speculate that degenerate processes in

higher dimensions may cause smooth fit to fail; hence, we confirm their conjecture in two dimensions.
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4.2 Investment boundary y (x)

For λ = ∞, the boundary of the stopping region S satisfies some special conditions.

Define y (x) to be the minimum value of the normalized cash flow y for which investment

is optimal conditional on the modified growth rate x; any point for which y ≥ y (x) is

therefore part of the stopping region: y ≥ y (x) ⇔ (x, y) ∈ S. Hence, ∂S = y (x). The

boundary of the stopping region y (x) satisfies two necessary conditions, both of which

have a direct economic interpretation. The first condition is y (x) > 1 (see equation (4.8)):

if the reverse is true — the interest payment exceeds the cash flow — it is always better

to postpone investment. The second condition is that the asset value must be greater

than the cost of investment; otherwise, the investor would be worse off by making the

investment. Hence, ρA [x, y (x)] = ρ a (x) y (x) > 1. We do not have an explicit solution

for this equation, but Proposition 2 shows it converges to a linear relation between y and

x as x→ −∞:

ρ y (x) ≥ a(x)−1 = ψ − 1

2
σ2 − x + O

(
x−1
)
. (4.12)

The conditions (4.8) and (4.12) are necessary but not sufficient. If the cash flow only

just covers the interest on the investment, then it is better to delay investment (since the

stochastic law of motion of (x, y) might move the system back to the subset C). Similarly,

if the expected present value of the cash flow only just covers the cost of investment, then

it is better to delay (again because the system might move back to (x, y) ∈ C). Hence,

the function y (x) must be strictly north of the curves y (x) > 1 and ρa (x) y (x) > 1.

The stopping region S is therefore a subset of the convex subset of the (x, y) space that

is delimited by these conditions. We are unable to derive explicit statements about the

shape of y (x) and hence about A [x, y (x)]. However, the arguments above suggest that

the following conjecture holds.

Conjecture 1 The investment boundary y (x) for the Leontief case satisfies the following:

1 : y′ (x) < 0, y′′ (x) > 0;

2 : limx→∞ y (x) = 1;

3 : limx→∞A [x, y (x)] = limx→∞ a (x) =∞;

4 : limx→−∞ ρA [x, y (x)] = limx→−∞
ρ

ψ− 1
2
σ2−xy (x) > 1;

5 : dA[x,y(x)]
dx

> 0.

(4.13)

Part one is motivated by the fact that conditions (4.8) and (4.12) rule out that y (x) is a

straight line, since this would violate at least one of the necessary conditions. Moreover,

both conditions imply that (assuming that y (x) is twice differentiable) y′ (x) must be

negative and y′′ (x) positive for at least some values of x. Part two is motivated by the

fact that for high growth rates, the only reason for an investor to postpone investment

is that the current net cash flow is negative. As soon as y has grown to 1 (the interest
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payment on the investment), it is optimal to invest because high growth ensures the

net cash flow will grow afterwards. An immediate implication of this conjecture is that

when the growth rate tends to infinity, the asset value at the moment of investment is

infinite (part three). Part four states that for very low growth rates y (x) converges to

condition (4.12). The option value is zero at that point because the negative growth

implies that the project will move to the south-east in the state space (x, y), driving it

away from the investment boundary y (x); since waiting makes things worse, it is optimal

to invest as soon as the net present value of the project is positive.13 For that reason, the

cost of investment ρ−1 provides a lower bound for the asset value along the investment

boundary A [x, y (x)]. This lower bound will be attained for low growth rates x. Part five

generalizes the ideas in parts three and four by conjecturing that A [x, y (x)] is increasing

in x. Though we cannot prove this conjecture, our numerical analysis (presented below)

supports it consistently. Notice that this conjecture applies for λ = ∞ only. For finite

values of λ, yλ (x) will cross the horizontal line y = 1 for high values of x because it is

optimal to use the opportunity to invest even when the net cash flow is still negative

(since it might take some time for the next investment opportunity to arrive and the cash

flow y will almost certainly exceed unity shortly).

4.3 ∗Numerical implementation

For the numerical solution to the option value problem we use the value of waitingWλ(x, y)

as defined in equation (4.6). The advantage of this approach is that both Vλ(x, y) and

A(x, y) disappear from our expressions and are replaced by a single function Wλ(x, y).

This is convenient, since we have no closed-form solution for A(x, y). The PDE for the

value of waiting is particularly useful in that we can generate a sequence of lower bounds

for Wλ (x, y) which converge monotonically to the true value.

Proposition 6 The recursively defined sequence of functions

(ρ+ λ− L)W
(1)
λ (x, y) := 1− y,

(ρ+ λ− L)W
(n)
λ (x, y) := 1− y + λ

[
W

(n−1)
λ (x, y)

]+

, n ≥ 2,
(4.14)

is monotonically increasing and (at least pointwise) convergent to a limiting function

Wλ(x, y), which is bounded above by ρ−1.

13Note that E
[
dy
ds

]
=
(
x+ µ2 + σ2

)
y and E

[
dx
ds

]
= −

(
x+ σ2

)
. Hence, the expected drift for x→ −∞

is limx→−∞
dy
dx = limx→−∞−

(x+µ2+σ2)y
(x+σ2) = −y, while the slope of condition (4.12) is −ρ−1. Hence, for

y (x) > ρ−1 (that is: for large negative values of x), the south-bound drift in (x, y) will exceed the negative
slope of y (x) and hence the drift will move (x, y) further into the continuation region C.
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This is, to the best of our knowledge, a novel solution method.14 It also has an interesting

economic interpretation. A lower bound W
(1)
λ (x, y) of the value waiting at some Poisson

time τk for some k ∈ N is the expected discounted value of the cost of investment minus

the expected cash flow, (ρ+λ−L)−1 (1− y), until the next investment opportunity τk+1.

However, a higher and more precise estimate of the value of waiting, W
(2)
λ (x, y), takes

into account the net expected value of the investment cost minus the cash flow plus the

additional value of waiting until the next investment opportunity τk+1 (provided that this

additional value is positive). Thus, W
(2)
λ (x, y) ≥ W

(1)
λ (x, y). The difference operator L

implies that an increase in W
(n)
λ (x, y) from n to n+1 also increases W

(n+1)
λ (x±dx, y±dy)

for small displacements dx and dy. The value of waiting at a particular point (x, y) in

the state space is an increasing function of the value of waiting in neighboring areas in

the state space, since the stochastic dynamics of (x, y) might move the system to these

areas. Thus, every subsequent iteration accounts for a higher value of waiting at the next

investment opportunity τk+1, which in turn increases the value of waiting at the current

investment opportunity τk. However, even though the value of W
(n)
λ (x, y) is increasing

in n, it remains bounded for n → ∞. In fact, it can never exceed the present value of

investment, ρ−1, because the largest gain that can be obtained by postponing investment

is the cost of the investment itself.

While Proposition 6 gives the convergence of Wλ(x, y) in function space, we must work

in some finite-dimensional vector space for a numerical analysis. Thus we discretize the

state space (x, y) ∈ R × R≥0 using N equidistant grid points for both x and y on some

bounded region of interest.15 Discretization converts the function Wλ(x, y) on R × R≥0

into a matrix of dimension N ×N denoted Wλ, where we adopt the convention to denote

all matrices in bold. Define W λ :=Vec[Wλ]; all vectors will be underlined. Hence, the

vector W λ has length N2. Similarly, discretizing the differential operator L yields an

N2 × N2 matrix, denoted by L. The discretized system has the same form as the PDE

(4.6):

[(ρ+ λ) I− L]W λ = 1− y + λW+
λ , (4.15)

where I denotes the N2 × N2 identity matrix, 1 is a vector of ones of length N2 and

y :=Vec
[
y(N)1(N)′], and 1(N) and y(N) denote vectors of length N (hence y has length N2).

The discretized problem (4.15) suggests an iterative solution method that is analogous to

the iterative method (4.14) in function space:

[(ρ+ λ) I− L] W
(n)
λ = 1− y + λ

[
W

(n−1)
λ

]+

, n ≥ 1, (4.16)

with W
(0)
λ = 0.

14A related proposition appears in Lange et al. (in prep) in the context of more general stochastic
processes, such as Hunt and Lévy processes.

15The method can be generalized by allowing Nx 6= Ny and by making the gridpoints not equidistant.
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Stopping region

Continuation region

Figure 3: The exercise boundaries yλ(x) and the conditions y > 1 and y > [ρ a (x)]−1 for
various values of λ.

Proposition 7 For an appropriately discretization L, the iterative method (4.16) results

in a non-decreasing sequence of finite-dimensional vectors {W (n)
λ }n∈N that converge to a

limiting vector W λ, which solves (4.15).

The appropriate discretization of the differential operator L that gives rise to the matrix

L requires us to think carefully about forward and backward finite differences, and is

discussed in Appendix A.10. The proposed numerical method is stable and converges

quickly.

4.4 Results

This subsection presents our numerical results for the benchmark parameters (2.3) and

various values of the Poisson intensity λ.

Figure 3 shows the investment boundaries y(x) for the benchmark parameters for

various values of λ, ranging from λ = 1 (since θ = 0.05, a unit of time on the transformed

time scale is 20 years; hence, λ = 1 corresponds to one opportunity to invest every 20

years) to λ = 256 (λ = 12.8 opportunities per annum). The figure16 shows the exercise

curves y (x) as well as the conditions for (x, y) ∈ Sλ (equation (4.8) y (x) > 1 and equation

(4.12) y (x) > [ρa (x)]−1).

Our calculations confirm that yλ (x) is increasing in λ (see equation (4.7)): the more

frequent the opportunities to invest, the less costly it is to wait for the next opportunity

16For each value of λ, we performed the calculation on a 501 × 401 grid, ranging from x = −4.5 to
x = 5.5 and y = 0 to y = 10 (implying step sizes ∆x = 0.02 and ∆y = 0.025). Note that only a subset
of the range used for our calculation is displayed. Experiments with larger grids and different boundary
conditions on the edge of the grid gave nearly identical results.
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Figure 4: The option value V (x, y) for y = yλ(x) for various values of λ.

(and hence the larger the continuation region Cλ). Also, the calculations confirm that

yλ (x) < 1 for low values of λ and high values of x: investors invest even though the

net cash flow is still negative, since it is more costly to wait for the next opportunity to

invest (as the cash flow will grow in the meantime). Finally, the results are consistent

with Conjecture 1. For x → ∞, y (x) converges to y = 1. Similarly, for x → −∞, yλ (x)

converges to condition (4.12), although Figure 3 reveals that the convergence is slow. The

curves yλ (x) for λ = 64 and λ = 256 are almost indistinguishable, suggesting that these

curves closely approximate the limiting function y (x).

Figure 4 shows the asset value Vλ (x, y) along the exercise boundary y = yλ (x) as a

function of the growth rate of the cash flow x. Again, the graphs for λ = 64 and λ = 256

are practically indistinguishable. All calculations for subsequent figures therefore use λ =

256. For this reason we henceforth drop the subscript λ. Figure 4 shows that the option

value is strongly increasing as a function of the growth rate at the moment the option is

exercised, consistent with part five of Conjecture 1 (since V [x, y (x)] = A [x, y (x)]−ρ−1).

Figure 5 shows the same asset value V (x, y), but now as a function of the level of

the cash flow y. For y ≥ y (x), V (x, y) = A (x, y) − ρ−1 = a (x) y − ρ−1, which is linear

in y. Irrespective of the value of x (and hence a (x)), these linear lines cross the vertical

axis at the negative value −ρ−1 = −1.25; see equation (2.3). Since a′ (x) > 0, the higher

x, the steeper the line a (x) y − ρ−1. For 0 < y < y (x), V (x, y) > a (x) y − ρ−1. The

point of departure of V (x, y) from the straight lines a (x) y − ρ−1 occurs at the exercise

boundary y(x). Since y′ (x) < 0 and a′(x) > 0, this lowest point of tangency is decreasing

in x. Finally, V (x, 0) = 0 for all x, since the law of motion of y in (2.1) implies that the
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Figure 5: The option value V (x, y) in the direction of y for various values of x.

Stopping region

Continuation region

Figure 6: The exercise boundary y (x) for various values of σ2.

23



potential cash flow will never depart from zero when its initial level is zero.

Finally, Figure 6 shows the exercise boundary y (x) for various values of σ2; this value

has little bearing on the trajectory of y (x). This conclusion is slightly deceptive due to

our transformation of the parameters, which relate the annual growth rate gt to xt by

xt := gt/θ − µ− σ2; see equation (2.2). A change in σ2 therefore implies a mean shift in

xt relative to the underlying growth gt. This transformation of gt to xt absorbs most of

the variation in the exercise boundary.

5 Generalization to Stone-Geary

5.1 The model

In this section we use the machinery developed in the previous section to extend our

analysis to the Stone-Geary case. In the Stone-Geary case, the owner of the asset must

make — on top of the fixed investment I — a variable investment K that enhances the

level of the cash flow. Specifically, we assume:

Definition 3 The Stone-Geary production function is defined as

cash flow = φKα y, (5.1)

where α ∈ [0, 1) and

φ := (1− α)α−1 α−α, I := ρ1/(α−1). (5.2)

As will be discussed below, the choices for φ and I are convenient normalizations. The

Leontief case as in Section 2 is a special case of Definition 3, obtained by setting α = 0.

Jointly, the fixed investment I = ρ1/(α−1) and the variable investment K are irreversible

in both downward and upward directions. The total investment is K + ρ1/(α−1). In the

context of a city, one can think of y as the location premium of land at that particular

location. In that context, there are several interpretations of the fixed investment ρ1/(α−1);

it can be seen as either the return on the alternative use of the land for agriculture, or

the fixed cost of construction that applies irrespective of the size of the building. In the

context of a firm, one can think of y as the TFP of that firm. We shall also consider

the limiting case of a full Cobb-Douglas technology where all investment is variable. The

elasticity of substitution between construction and land (or TFP for a firm) is equal to

unity for Cobb-Douglas, zero for Leontief, and between zero and one for Stone-Geary.

Empirically, the cost of construction usually constitutes some 60% of the total value of

a building, which seemingly corresponds to α = 0.60; see Davis and Heathcote (2007)

and Davis and Palumbo (2008). However, part of this 60% share of construction is the

fixed investment ρ1/(α−1). Hence, the actual value of α must be less than 0.60. As a fair
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compromise between the limiting cases of Leontief (α = 0) and Cobb-Douglas (no fixed

investment), we choose the following benchmark value for α:

Benchmark value: α = 0.30.

In this extended model, the owner of the option has to make two decisions: (i) at what

time τ to invest, and (ii) how much to invest at that time, that is, what is the optimal

level of K? A straightforward extension of equation (3.1) puts the value of the project at

time s as

B (xs, ys,K) := φKα Es

[∫ ∞
s

yt e−ρ(t−s) dt

]
= φKαA (xs, ys) . (5.3)

The optimal level of variable investment K maximizes this asset value minus the cost of

investment

K∗(x, y) := arg max
K≥0

[
φKαA(x, y) − K − ρ1/(α−1)

]
. (5.4)

The maximization problem (5.4) can be solved in closed form to give

K∗(x, y) = [αφA(x, y)]1/(1−α) ,

B∗ (x, y) = φK∗ (x, y)αA(x, y) = α̃ [φA(x, y)]1/(1−α) ,

α̃ := αα/(1−α).

(5.5)

Equation (5.5) implies K∗(x, y) = αB∗(x, y); i.e. the variable investment K∗(x, y) is a

fixed share α of the optimal value of the project B∗ (x, y). This is the standard result for

a Cobb-Douglas (or Stone-Geary) technology, where α is the share of total (or variable)

investment in value added. Equation (5.5) also implies that the optimal value B∗ (x, y) is

proportional to A (x, y) raised to the power (1− α)−1 ≥ 1. The option to adjust the level

of investment K to the state of the asset (x, y) at the moment of investment implies that

B∗ (x, y) is more sensitive to (x, y) than is A (x, y).

The increased sensitivity of B∗(x, y) to the state variables (x, y) implies that condition

(3.4) is no longer sufficient for the option value to be bounded. Although (3.4) guarantees

that A(x, y) and thus B∗ (x, y) = α̃ [φA(x, y)]1/(1−α) is bounded for (x, y) in bounded

sets, this condition is insufficient to guarantee that the option value is bounded. The

option value is an expectation, and EB∗ (x, y) need not be bounded even if the function

under the expectation sign is bounded on bounded sets. By equation (2.7), ln ys − ln y0

is normally distributed with a long-run expectation E[ln ys − ln y0] = sµ and variance

Var [ln ys − ln y0] = sσ2. Using the formula for the expectation of the log normal distribu-

tion, the long-run growth rate of y1/(1−α) is (1− α)−1 µ+ 1
2

(1− α)−2 σ2. This growth rate

must be smaller than the discount rate ρ for the value of the option to invest in B∗ (x, y)
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to be bounded for (x, y) in bounded sets. Hence, we require17

ρ > (1− α)−1 µ+
1

2
(1− α)−2 σ2 ⇒ (5.6)

α < 1− µ

2ρ
−

√(
µ

2ρ

)2

+
σ2

2ρ
,

which is a stricter condition than (3.4). In what follows we assume (5.6) to be satisfied.

For our benchmark parameters, condition (5.6) implies that we need α < 0.41 for the

option value to be bounded; our benchmark value α = 0.30 satisfies this constraint.

Finally, we provide the rationale for the normalization of φ and I; see equation (5.2).

We normalize our unit of currency such that 1 = ρ I1−α (recall that 1 = ρ I in the Leontief

case), such that I = ρ1/(α−1). For Leontief, y ≥ 1 was a necessary condition for the investor

to recover his interest payment ρ I on the fixed investment I (since I = ρ−1 for Leontief).

For Stone-Geary, φ is defined such that the same necessary condition applies: for y = 1,

the cash flow φ yK∗(x, y)α is (weakly) insufficient to cover the interest payment on the

total (fixed and variable) investment for any value of x ∈ R. Hence for y = 1 the cash

flow satisfies

φK∗ (x, 1)α ≤ ρK∗(x, 1) + ρα/(α−1), ∀x ∈ R,

where we use equation (5.2) to substitute for I. Since x appears only in K∗(x, 1), this

inequality must hold for all values of K := K∗ (x, 1) ∈ (0,∞). Thus, φ solves

ρα/(α−1) = maxK>0 [φKα − ρK] = φ
(
αφ
ρ

)α/(1−α)

− ρ
(
αφ
ρ

)1/(1−α)

,

= (ρ−αααφ)
1/(1−α)

(1− α) .

Solving this equation for φ yields the expression for this parameter in equation (5.2). For

the benchmark value α = 0.30, this implies φ ≈ 1.842.

5.2 Cobb-Douglas

For a Cobb-Douglas production function, in which case I = 0, the normalization 1 =

ρ I1−α is undefined. Since the normalization is arbitrary in this case, the pragmatic

choice is simply to ignore the fixed cost ρα/(α−1). The Cobb-Douglas case can be solved

analytically for the limiting case λ = ∞, which is of interest in this section. We use the

Bellman equations (4.4) to write

(ρ− L)V (x, y) = 0, ∀ (x, y) ∈ C,
(ρ− L)A(x, y) = y, ∀ (x, y) ∈ R× R≥0,

(1− α)B∗(x, y) = V (x, y), ∀ (x, y) ∈ ∂S.
(5.7)

17In the second line, only the lower root for α is relevant, since the upper root is greater than unity.
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The first two lines are the Bellman equations for the option value and the realized project,

while the third line gives the value-matching condition: at the moment of investment, the

option value must be equal to the value of the project after investment φK∗(x, y)A(x, y)

minus the cost of the (variable) investment K∗(x, y), which represents a share α of the

value of the project. The Bellman equation for the optimally scaled project (that is,

(1− α)B∗(x, y)) reads

(ρ− L) (1− α)B∗(x, y) =

φ y [αφ y a(x)]α/(1−α)

[
1− ρα a(x)− σ2

2

α

1− α
a′(x)2

a(x)

]
,

(5.8)

which follows from the chain rule and the Bellman equation for A(x, y) given above (see

Appendix A.11 for the derivation). For α = 0 we recover the Bellman equation for A(x, y).

The pre-factor on the right-hand side of (5.8) is recognized as φ yK∗(x, y)α, while the terms

inside square brackets, which play a prominent role in the next Proposition, account for

the received cash flow, the cost of the interest payment on the variable investment, and

the opportunity cost of fixing K, which can no longer be changed after the moment of

investment.

Proposition 8 The following statements hold for the exercise boundary for a Cobb-

Douglas production function:

1. The optimal moment to invest does not depend on the current level of the cash flow

y.

2. Investment is always optimal when x ≤ x∗ and is never optimal when x > x∗.18 The

critical threshold x∗ is less than or equal to xo, where xo solves

0 = 1− ρα a (xo) − σ2

2

α

1− α
a′ (xo)2

a (xo)
. (5.9)

The solution xo to equation (5.9) is unique, finite, and decreasing in α.

Proposition 8 yields two counterintuitive conclusions. First, the optimal moment of in-

vestment does not depend on the current level of the cash flow y. The intuition for this

result is that the optimal investment is proportional to y. Regardless of the value of y, the

optimal investment is always a fixed multiple α
1−α of the option value. Because any change

in y will affect both the cost and the benefit of investment proportionally, the optimal

moment to invest does not depend on y. Second, investment should be postponed for high

rather than for low levels of the growth rate x. By postponing investment, the investor

(i) saves the interest payments on the investment, and (ii) benefits from the additional

18In our standard notation, S = {x ∈ R : x ≤ x∗} and C = {x ∈ R : x > x∗}.
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Figure 7: The values V (x, 1) , (1− α)B∗ (x, 1), and KαA (x, 1) as a function of x.

information on the evolution of (x, y) that comes to light during the period of delay,

enabling her to tailor any future investment to this new information. The right-hand

side of equation (5.9) captures the cash flow minus the interest bill on the investment,

both scaled per unit of φ yK∗(x, y)α. For a high growth rate, the interest bill might ex-

ceed the cash flow, since the optimal investment accounts for the future growth in y and

therefore exceeds the level that is efficient for the current level of y. The final term is

the opportunity cost of fixing K: any additional information received during the interval

ds allows the investor to adapt the level of investment to the evolution of (x, y). One

therefore expects the threshold xo to decrease as a function of α, ρ and σ2: a higher share

of investment, a higher interest rate, and greater uncertainty make it more attractive to

postpone investment.19

In Appendix A.13 we provide a numerically simple solution method for computing the

exact threshold x∗ as the solution to (a non-standard version of) Hermite’s differential

equation. This equation has two independent solutions, both of which are confluent

hypergeometric functions. The boundary condition at positive infinity prescribes that we

take a particular linear combination, such that only one constant remains. The constant

can be found in conjunction with x∗ by applying the standard principles of value matching

and smooth pasting.

The proof of Proposition 8 has an interesting economic interpretation. Consider three

asset values displayed in Figure 7 for y = 1:

19This proof is simple for α. For ρ and σ2 we provide no formal proof, since these parameters also
affect the function a (x).
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1. the option value of investing in the project at any future time, V (x, y);

2. the value of the project minus the cost of investment, where the investment is set

at today’s optimal level K∗(x, y) = αB(x, y), that is, (1− α)B∗(x, y);

3. the value of the project at some arbitrary, not necessarily optimal, level K; again

minus of the cost of investment, φKαA(x, y)−K.

As illustrated in Figure 7, the following weak inequalities hold:

V (x, y) ≥ (1− α)B∗(x, y) ≥ φKαA(x, y)−K, ∀ (x, y) ∈ R× R≥0.

The option to invest in the project at any time is weakly larger than the option to invest

today, since the option to invest at any time includes the option to invest today. Equality

applies only in stopping zone S (that is, for x ≤ x∗), in which case it is optimal to

invest today. Likewise, the value of the project for the optimal level of investment in

the current state is weakly larger than the value of the project at some arbitrary level of

investment K, since (1− α)B∗(x, y) = maxK [φKαA(x, y)−K]. Hence, both are equal

only for K = arg maxK [φKαA(x, y)−K] = K∗ (x, y). It follows that the three lines in

Figure 7 are tangent at x = x∗.

The threshold xo that solves condition (5.9) is derived by considering the expected

return on postponing investment for an infinitesimally short time interval ds.20 If the

expected return on an infinitesimally small delay is positive at the point (x, y), then the

investor should wait (i.e. (x, y) ∈ C). This enables her to tailor the investment K to new

information regarding the state variables (x, y) that comes to light during the interval ds.

However, the trade-off is that she forgoes the net cash flow that would otherwise have been

obtained during this short time interval ds. The additional value of the option V (x, y) on

top of the net value of the project at optimal investment (1− α)B∗(x, y) is that V (x, y)

includes the option to postpone investment even further after the time interval ds. Hence,

x∗ ≤ xo.

Tables 1 and 2 provide critical growth rates and the share of cities that should not

invest in real estate due to high growth for various values of α and σ2. For ease of

interpretation, we use the annual growth rates g∗ = θ (x∗ + µ+ σ2) rather than x; see

equation (2.2). The cell in bold (in the center of the table) corresponds to our benchmark

parameters. The critical growth rate g∗ (above which investment should be delayed) can

be quite low: less than 3% for higher values of α and σ2. It follows that up to 20%

of cities should optimally delay further construction. These numbers show that stalling

new construction and waiting for the market to ‘settle’ is a realistic possibility affecting

a substantial number of cities.

20The expected return on postponing during ds is (1− α) (L − ρ)B∗(x, y) ds.
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Table 1: Cobb-Douglas critical growth rates g∗ = θ (x∗ + µ+ σ2).
σ2 = 0.24 0.28 0.32 0.36 0.40

α = 0.25 6.65% 6.20% 5.72% 5.21% 4.64%
0.30 5.27% 4.76% 4.20% 3.57% 2.82%
0.35 3.97% 3.36% 2.62% 1.65% 0.00%

Table 2: Share of cities where investment should be postponed.
σ2 = 0.24 0.28 0.32 0.36 0.40

α = 0.25 0.1% 0.3% 0.9% 2.4% 5.2%
0.30 0.7% 2.2% 5.5% 11.3% 20.8%
0.35 4.3% 10.4% 20.9% 38.0% 68.9%

Proposition 8 depends crucially on the form of the production function. The unit

elasticity of substitution between construction and land in the Cobb-Douglas production

function implies that the investment in construction is a fixed share of the asset value at

the moment the option is exercised. Since both cost and revenue are proportional to the

cash flow parameter y, its level is irrelevant for the moment of investment. This result no

longer holds as soon as the elasticity of substitution between both inputs is less than one,

as is the case with a production function of the Stone-Geary type, which is considered in

the next subsections.

5.3 ∗Stone-Geary: numerical aspects

This subsection shows that the optimal stopping problem in the Stone-Geary case can be

solved by the same method as we used for the Leontief case. In analogy with equation

(4.4), we write the Bellman equation satisfied by the option value Vλ(x, y) as

(ρ− L)Vλ(x, y) = λW−
λ (x, y),

Wλ(x, y) := Vλ(x, y)− (1− α)B∗(x, y) + ρ1/(α−1),
(5.10)

where the value of waiting Wλ(x, y) is defined in analogy with (4.5). The following propo-

sition presents the Bellman equation for the value of waiting Wλ(x, y), along with an

algorithm for solving the discretized problem in the Stone-Geary case.

Proposition 9 In the Stone-Geary case, the value of waiting Wλ(x, y) satisfies the Bell-

man equation

(ρ+ λ− L) Wλ(x, y) = d(x, y) + λW+
λ (x, y), (5.11)

where d(x, y), the expected return of a small delay, is

d(x, y) := ρα/(1−α) − φ y [αφ y a(x)]α/(1−α)

[
1− ρα a(x)− σ2

2

α

1− α
a′(x)2

a(x)

]
. (5.12)
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The recursively defined sequence of functions W
(n)
λ as defined in (4.14), but with 1 − y

replaced by d(x, y), is non-decreasing and (at least pointwise) convergent (as n → ∞)

to the solution Wλ. For an appropriate discretization L, the recursively defined vector

sequence W
(n)
λ defined in (4.16), but with 1 − y replaced by Vec(D), where D is the

(matrix) discretization of d(x, y), is non-decreasing and convergent (as n → ∞) to the

limiting vector W λ.

Proposition 9 is a generalization of Propositions 6 and 7. Note that in the Leontief case

(α = 0), the expected return of a small delay simplifies to d(x, y) = 1− y. For the Stone-

Geary case (α > 0), unfortunately, no simplification occurs; thus, the functions a (x) and

a′ (x) appearing in d(x, y) must be computed. This can, of course, be done by computing

a numerical integral (using standard software) or by using our approximation in Remark

2. The same discretization L as in Proposition 7 can be used (the construction of L is

discussed in Appendix A.10).

We note that Proposition 9 is more widely applicable to multidimensional optimal

stopping problems. It generalizes to other stochastic processes, corresponding to differ-

ent generators L, and other pay-off functions, which affect the algorithm through the

definition of the expected return on a small delay, defined as d(x, y) := (L − ρ) [(1 −
α)B∗(x, y)− ρ1/(α−1)], which depends both on the stochastic process (through L) and the

pay-off structure (in square brackets).

5.4 The investment boundary y (x) for Stone-Geary

In the Leontief case (see Section 4), the stopping region S was found to be a subset of the

space delineated by two necessary conditions that must hold on the stopping boundary:

(i) y(x) ≥ 1, the cash flow must exceed the interest payment on the investment, and

(ii) ρA (x, y(x)) ≥ 1, the value of the project must exceed that of the investment; see

equations (4.8) and (4.12). The equivalent conditions for the Stone-Geary case are as

follows:
(1− α) (ρ− L)B∗ (x, y) ≥ ρα/(α−1), (x, y) ∈ ∂S,

(1− α) ρB∗(x, y) ≥ ρα/(α−1), (x, y) ∈ ∂S.
(5.13)

The first condition states that a share 1−α of the return on the asset value must exceed the

interest payment on the fixed investment, where the share α is used to pay for the interest

on the variable investment.21 This condition is equivalent to requiring that d(x, y) ≤ 0

for (x, y) ∈ ∂S, where d(x, y) was defined in (5.12). Solving for y(x) (see Appendix A.15)

21To see the equivalence with condition (4.8), y ≥ 1, note that the Bellman equation (3.2) implies
(ρ− L)A (x, y) = y.
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gives rise to the inequality

y(x) ≥ ρα (1− α)1−α

a(x)α
[
1 − ρα a(x) − σ2

2
α

1−α
a′(x)2

a(x)

]1−α ≥ 1, ∀x < xo, (5.14)

which holds for x < xo, because the right-hand side has a singularity at xo. This has an

important economic consequence: in both the Cobb-Douglas and the Stone-Geary cases

it is never optimal to invest for x ≥ xo (i.e. for particularly high growth).

The second condition in (5.13) states that a share 1− α of the present value of the

net cash flow must exceed the value of the fixed investment, which is ρ1/(α−1). These

considerations justify the following conjecture.

Conjecture 2 The investment boundary y (x) for Stone-Geary satisfies

1 : y′′ (x) > 0;

2 : y (x) = ∅ for x > x∗;

3 : lim
x→x∗

A [x, y (x)] = lim
x→x∗

a (x) y (x) =∞;

4 : lim
x→−∞

A [x, y (x)] = lim
x→−∞

αα
(1− α) ρy (x)

ψ − σ2 − x
= 1;

5 :
dA [x, y (x)]

dx
> 0,

(5.15)

where x∗ is defined in Proposition 8.

This conjecture is analogous to Conjecture 1. Part one is motivated by the global convexity

of the right-hand side of (5.14). This implies that y′′ (x) must be positive at least for some

x. Part two indicates that it is never optimal to invest for any growth rate x > x∗, where

x∗ is the same critical threshold as for the Cobb-Douglas case. The reason for this is that

y (x) is known to converge to infinity for some threshold value x∗ ≤ xo. For that value,

the fixed investment is nearly irrelevant relative to K∗(x, y), which diverges to infinity,

and the model therefore converges to the Cobb-Douglas case. Part three suggests that in

that case the asset value A [x, y (x)] must be infinite since limx→x∗ y (x) = ∞. Part four

is motivated by the second equation of (5.14) and Proposition 2, part three. Part five

generalizes the ideas in parts three and four. Although we provide no formal proof for

Conjecture 2 beyond the arguments given above, all our numerical results support it (as

was the case with Conjecture 1).

Figure 8 shows the function y (x), the conditions (5.13), and the thresholds x∗ and xo.

The stopping region S has an asymptote at x∗, while the condition (1− α) (L − ρ)B∗ [x, y (x)] =

ρα/(1−α) has an asymptote at xo. The boundary y (x) of the stopping zone reaches a min-

imum for x < Ex. For higher values of x — that is, for more than 50% of cities — the

curve y (x) slopes upward. This holds a fortiori for the distribution of x conditional on the

moment of construction (i.e. when the process (x, y) crosses the boundary y (x)). This
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Stopping region

Continuation region

Figure 8: The functions y (x), (1− α) (ρ− L)B∗ [x, y (x)] = ρα/(α−1) and
(1− α) ρB∗ [x, y (x)] = ρα/(α−1).

is much more likely to happen for positive than for negative values of x, since it requires

y to move up (keeping x fixed). The upward-sloping part of the trajectory of y (x) is

therefore not a remote possibility that occurs in extreme corners of the state space; it is

relevant for more than 50% of new construction.

Figure 9 shows the function y (x) for a range of values of α. The smaller α, the more

the function looks like the Leontief case discussed in Section 5. However, the upward-

sloping part is relevant for a value of α as low as 0.15; in that case, if x is two standard

deviations above the mean of the steady state distribution, y (x) is approximately 20%

higher than its minimum value.

Figure 10 shows the optimal level of variable investment at the moment of investment

as a function of the growth rate x. The optimal level of construction varies strongly, in

particular for higher values of α.

Figure 11 shows the option value in the direction of y for different values of the growth

rate x. In stark contrast with Figure 4, we see that the option is exercised for high y if the

growth rate is low or high, whereas the lowest y required to invest is found for moderate

growth rates. Note that the dotted lines represent the value of (optimal) investment, i.e.

(1− α)B∗(x, y)− ρ1/(α−1) ∝ y1/(1−α), which is non-linear as a function of y.
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Stopping region

Continuation

region

Figure 9: The function y (x) for various values of α. The solid green line is the same as
in Figure 8.

Figure 10: Optimal variable investment at the moment of investment K∗ [x, y (x)] for
various values of α.
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Figure 11: Option value V (x, y) for various levels of x.

6 A city-level model

6.1 The Leontief case

Interpreting the model in the context of cities requires us to flesh out the model from the

previous section in a way similar to Capozza and Li (1994), Lucas and Rossi-Hansberg

(2002), and Rossi-Hansberg and Wright (2007). People who live in a city can use a public

good located in the city center, which is assumed to be concentrated in a ‘point’ such that

it does not take up any space. This is similar to the Central Business District (CBD) in

the model of Rossi-Hansberg and Wright (2007). Let y0 denote the cash flow of a house

(i.e. its rental income) in the CBD. This cash flow is determined by the attractiveness of

the CBD. People who live at a distance d > 0 from the CBD travel from their homes to

the city center to enjoy the benefits of the CBD. Suppose that travel cost is determined

by a standard iceberg technology, such that the cash flow yd generated by a house at a

distance d from the CBD is

yd = y0 e−δ d. (6.1)

A fixed share of the cash flow is lost for every additional unit of distance of travelling,

as in Lucas and Rossi-Hansberg (2002). All results from the previous section continue to

apply, except that all functions must be indexed by the distance d to the CBD and the

cash flow y must be replaced by the location-specific term y0 e−δ d. Let D be the distance

from the edge of the city to the CBD. Locations outside the city, d > D, are vacant.

We assume that land has no alternative use beyond its transformation into residential
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Figure 12: Leontief case for a city with D = 1, δ = 1/2 and various growth rates x.

use. If land does have an alternative use, then the fixed investment can be thought of as

compensation for the value of the alternative use.

Figure 12 illustrates the situation of a city that is currently constructing new houses.

The distance to the city center d is plotted on the horizontal axis, the house/land price

on the vertical axis. The house price Ph(x, y0, d) is equal to the asset value of the project

as defined in equation (3.1) and (3.3):

Ph(x, y0, d) = A
(
x, y0 e−δ d

)
= a (x) y0 e−δ d.

In the CBD (d = 0), the house price is Ph(x, y0, 0) = a (x) y0, as in Section 3. Moving

away from the center, the house price declines exponentially at a rate δ, until we reach

the edge of the city at D. Since the city is currently constructing new houses, the cash

flow net of commuting cost at the edge of the city has to be equal to the construction

threshold, i.e.

y0 e−δD = y (x) , (6.2)

where y(x) is the exercise curve of the option to build as defined in Section 4. Hence,

Ph(x, y0, D) = a(x) y(x).

The bold black curve in Figure 12 is the ratio of the house price at location d relative

to that at the edge D of the city

Ph(x, y0, d)

Ph(x, y0, D)
=
A
(
x, y0 e−δ d

)
A (x, y (x))

= e−δ (d−D),
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where we use equation (3.1) in the second step. This ratio does not depend on x. For

d ≥ D, land is still vacant. Hence, the function for the price of a house is dotted for

these (vacant) locations. The price of vacant land Pl(x, y0, d) outside the city (i.e. d ≥ D)

satisfies

Pl(x, y0, d) = V
(
x, y0 e−δ d

)
≥ a (x) y (x) e−δ(d−D) − ρ−1,

where equality applies only at the edge of the city, for d = D, because the value-matching

condition implies that the value of an vacant plot of land equals the value of a house a (x)

y (x) minus the construction cost ρ−1 at the moment of construction. Outside the city,

a vacant plot of land is more valuable than the value of a house minus the construction

cost. The further away from the edge of the city, the higher the difference between the

price of a vacant plot of land and the value of a house minus its construction cost; the

difference is equal to the value of waiting. The ratio

Pl(x, y0, D)

Ph(x, y0, D)
=
a (x) y (x)− ρ−1

a (x) y (x)

is the land share in the value of a newly constructed house on the edge of the city. The land

share is an increasing function of the growth rate x. Figure 12 also depicts the value of

vacant land beyond the edge of the city, Pl(x, y0, d)/Ph(x, y0, D), for three different levels

of x: Ex and Ex±2Stdx. The land share at the edge of a city is 61% for x = Ex+ 2Stdx,

41% for x = Ex, and 25% for x = Ex − 2Stdx; see Figure 12. The higher x, the smaller

the relative decline in the value of land for locations further away from the edge of the

city. The reason is that for high growth rates x, construction may commence shortly;

even on vacant plots located some distance away from the city edge.

In a standard model of cities without a persistent growth rate, the probability that a

city is currently transforming vacant land into suburbs at time s is zero. This is due to the

excess volatility of a random walk on an infinitesimal interval ds. Any movement of the

potential cash flow at the edge of the city, y0 e−δ D, above the construction threshold y (x)

is immediately offset by new construction. The equality y0 e−δ D = y (x) is immediately

restored by an increase of D. This correction occurs in an infinitesimally short time inter-

val. Afterwards, as soon as a negative shock arrives, y0 e−δ D drops below the construction

threshold, at which point it takes a strictly positive amount of time to restore it. Hence,

intervals at the construction threshold are infinitesimal, while intervals below the thresh-

old take a strictly positive amount of time (and therefore Pr
[
y0 e−δ D < y (x)

]
= 1).22

This is not the case for our model, where the growth follows an Ornstein-Uhlenbeck pro-

cess. In our case, ys is differentiable with respect to s. If the growth is positive, this

rate will remain positive for the next short time interval ds. In the steady state, the

22This can be proven by applying the reflection principle, which allows us to calculate the probability
distribution of y0 e−δ D, which has no mass point at a reflecting boundary.
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probability that a city has a positive growth rate is

Pr
[
x+ µ+ σ2 > 0

]
= Φ

(√
2µ

σ

)
, (6.3)

where Φ (·) is the cumulative distribution function of a standard normal distribution; see

equations (2.2) and (2.7).23

The model developed in this section implies a relation between growth rates of the

cash flow yd and the total population of the city. We assume the land use per person is

fixed; without loss of generality, it is normalized to unity. Then, the population of a city,

N , equals the surface of a circle with radius D, the distance from the CBD until the edge

of the city; in logs

lnN = lnπ + 2 lnD.

This relation between lnN and lnD is linear; both series therefore have the same degree

of persistence in an AR(1) regression. Substitution of equation (6.1) in equation (6.2)

yields:

ln yd = ln y (x) + δ (D − d) .

For a city with a constant growth rate x, which is currently constructing new housing on

its edge, the log cash flow generated by a house at a particular location d, ln yd, grows

linearly with the radius D of the city. Even as x varies over time, y(x) remains fairly

constant as long as x > 0, see Figure 3. Hence the persistence of the population growth

of expanding cities in this Leontieff model reasonably approximates the persistence of the

cash flow growth in those cities.24 For x < 0 this argument fails, but in any event shrinking

cities are unlikely to be constructing new housing. This is consistent with the argument

by Glaeser and Gyourko (2005) that house prices in shrinking cities are more responsive

to economic fluctuations, while construction is more responsive in growing cities.

6.2 Extension to the Stone-Geary case

In the more general Stone-Geary case, the density of construction varies with the growth

rate at the moment of construction; see Section 6. The price of a house and the price of

23Positive growth is not a sufficient condition for a city to be extending its built area, since x+µ+σ2 > 0
does not necessarily imply that y0 e−δ D = y (x). A growing city might be larger than is optimal from a
current investor’s perspective, since y0 has shrunk in the past. Since construction is irreversible, a city
must first grow for some time before it hits the construction threshold again.

24Equality in the persistence of the growth in lnN and ln yd holds exactly for x > 0 if we replace the
exponential law in (6.1) by the power law yd = y1d

−δ for δ > 0. A power law fits the data well; see e.g.
Figures 2.1 and 2.2 in Glaeser (2008). However, it implies the price of land at d = 0 is infinite; hence the
cash flow is normalised at d = 1. We can interpret this model if the CBD covers the area d < 1, while
commuting costs are relative to the edge of the CBD located at d = 1.
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vacant land therefore satisfy

Ph(x, y0, d,K) = φ Kα A
(
x, y0 e−δ d

)
,

Pl(x, y0, d) = V
(
x, y0 e−δ d

)
.

By equation (3.1), lnPh(x, y0, d) satisfies the log linear relation

lnPh(x, y0, d,K) = lnφ+ α lnK + ln a (x) + ln y0 − δ d. (6.4)

For large x, ln a(x) ≈ constant+[a′(x)/a(x)]x ≈ constant+x. This follows by Proposition

2, which implies limx→∞ [a′ (x) /a (x)] = 1. The unit coefficient on the growth rate x for

the limiting case limx→∞ is due to the application of our transformed time scale s = θt.

The advantage of this equation is that it can be estimated.

The relation between the log house price and the density of construction is determined

by an additive term α lnK. Within the city, the density of existing buildings varies only

with the historical growth rate of the city, denoted by x̄, prevalent when these buildings

were constructed. If the decision to build was optimal, then the historical cash flow in

the CBD, denoted by ȳ0, and the historical growth rate x̄ are related through the relation

y(x̄) = ȳ0e−δd, where y(x) is the critical curve for the Stone-Geary investment decision as

defined in section 5. If, moreover, the density of historical construction, denoted by K̄,

was optimal, then

K̄ = K∗[x̄, ȳ0 e−δ d] = K∗[x̄, y(x̄)].

Thus K̄ = K̄(x̄). Moreover, this function is one-to-one. The growth rate x̄ that applied

at the time that various locations d were added to the city varies across locations within

the city; hence, x̄ is a function of this location index d, x̄ (d). This variation in historical

growth rates x̄ and corresponding densities K̄ across the city implies that equation (6.4)

can be estimated in practice.25

The Stone-Geary production technology implies that the marginal value of construc-

tion satisfies
dPh (x, y0, d,K)

dK
= α

Ph (x, y0, d,K)

K
.

Other things (i.e.: x, y, and d) being equal, the value of the marginal unit of construction

declines as a function of its density: d2Ph (x, y0, d,K) / (dK)2 < 0. At the edge of a growing

city, the value of the marginal unit of construction K must be equal to its construction

25In a richer, more realistic model, one would also allow for the demolition of old, low-density buildings
or buildings with different purposes (e.g. industrial buildings) in order to replace them with new con-
struction, the density of which is optimally adjusted to the current growth rate x and the current cash
flow net of commuting cost y0 e−δ d. This would provide an additional source of variation in observed
densities K̄, thereby further facilitating the estimation of (6.4).
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cost,
dPh (x, y0, D,K)

dK
= α

Ph (x, y0, D,K)

K
= 1.

The share of (fixed and variable) construction in the house price evaluated at the marginal

price of construction is

construction share =
K + ρ−1

Ph (x, y0, D,K)
= α

ρK + 1

ρK
.

The share of construction for newly constructed buildings therefore decreases with the

variable investmentK, and for high densitiesK converges to the level α. The declining cost

share is due to the minimum necessary investment of ρ−1 per unit of land or, equivalently,

the fact that the elasticity of substitution between land and construction in the production

of housing services is smaller than unity. If a city continues growing after the moment of

construction at location d, then the current marginal value of construction at that location

exceeds the cost of construction. The reverse holds when a city has been shrinking since

the moment of construction.

Let Pl (x, y0, d) denote the price of vacant land as a function of x, y0 and d (for d > D,

since all land located within the city, d ≤ D, is already transformed into built area).

Assume the city is extending on its edge, such that y0 e−δ D = y(x). It follows from

equation (5.5) that the price of vacant land at the moment of construction is equal to

Pl (x, y0, D) = (1− α) α̃A [x, y (x)]1/(1−α) − ρ−1.

Hence, the price elasticity of land with respect to the city’s growth rate is

d lnPl (x, y0, D)

dx
=

α̃A(x, y)1/(1−α)

(1− α) α̃A(x, y)1/(1−α) − ρ−1

[
a′ (x)

a (x)
+
y′ (x)

y (x)

]
.

This expression exceeds the direct effect a′ (x) /a (x) for relevant values of x for two

reasons. First, the ratio before the term in square brackets is larger than one. For a

Cobb-Douglas technology, the value of construction is a fixed share of the value of a

house. For a Stone-Geary technology, the share of construction is a declining function

of the house price due to the declining share of the fixed investment. An increase in

the growth rate therefore increases the value of vacant land more than proportionally.

Second, the relevant part of the exercise boundary y (x) is upward sloping (see Figure 9;

the relevant part is x > Ex, since there is hardly any construction for x ≤ Ex). The

elasticity for vacant land is therefore greater than the elasticity for constructed houses

(which is a′ (x) /a (x)). Hence an increase in the growth rate x has a larger effect on the

the price of vacant land than on the prices of existing houses in the city.

This conclusion has important policy implications. Glaeser and Gyourko (2002) have

argued that high prices of vacant land point to the presence of regulatory constraints
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with regard to city extension. We show that the price of vacant land on the edge of

a city is particularly sensitive to the city’s growth rate. Our model contains no market

distortions; hence, from the price of vacant land alone, we cannot draw immediate conclu-

sions regarding the efficiency of the transformation of agricultural land into suburbs. In

fact, city planners and real estate developers may be acting rationally in leaving valuable

vacant land untouched for some time before commencing construction.

7 Conclusion

One would expect the optimal moment to exercise the option to build on vacant land to

be described by a trade-off between the level of the cash flow and its growth: commence

construction when either the cash flow or its growth is high. We show that for a practically

relevant range of positive growth rates of the cash flow, the slope of this trade-off runs

counter to this simple intuition. The reason for this counterintuitive result is twofold.

First, due to the irreversibility of construction, when the growth rate is high the investor

chooses the density of construction, keeping in mind the expected future increased cash

flow. She therefore chooses a density that is higher than justified by the current cash flow.

This makes the project less attractive under current market conditions. The current rental

income might not even cover the interest on the investment. In this case, delaying the

investment is the optimal response. This argument becomes all the more pertinent at

high growth rates. Second, during the period of delay, new information on the future

evolution of the growth rate comes to light, which can be used to better tailor the density

of construction to its future use. The higher the growth, the greater the value of this

additional information. Our numerical results show that this finding is by no means a

rare phenomenon relevant only in the extreme right tail of the distribution of the city’s

growth rates; rather, it applies to all growing cities and hence all new construction.

These results were obtained under the assumption that the growth of the cash flow

follows an Ornstein-Uhlenbeck process. Although the asset value of a project with this

characteristic has no closed-form solution, we provide convenient and accurate approxi-

mations using the standard Gamma function. We expect this formulation to have many

applications outside the realm of cities; for example, in the valuation of the equity of

high-growth companies. The model gives a more realistic representation of cash flows

than the standard random-walk cum drift assumption, which implies, unrealistically, that

the current growth rate has no predictive power for future growth. Extrapolating from

current growth rates, one would expect that in the coming decade, Google will grow and

the newspaper industry will decline. The available empirical evidence on the growth of

cities supports our assumption; see e.g. Albouy et al. (2014) and Nur and Teulings (in

prep). Our model provides a natural explanation of why, in the short run, asset values are

substantially more volatile than cash flows. It might be interesting to combine these ideas
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with uncertainty shocks as in Bloom (2009); a shock in the level of the growth rate can

have a major impact on the level of investment in the short run, leading to an increase in

volatility.

The counterintuitive positive relation between the critical level of the cashflow and its

growth at the exercise boundary implies that the price of vacant land at the edge of a city

is highly sensitive to the city’s growth. This calls into question a suggested interpretation

in Glaeser and Gyourko (2002): that the high price of land in cities is a tell-tale sign of

regulatory constraints. Rather, the higher the city’s growth rate, the higher the price of

land.

We have analyzed these issues in a simple model of a city where the magnitude of the

cash flows is treated as an exogenous process, independent of new construction. In this

case there are no agglomeration externalities; hence, private landownership generates an

efficient outcome in both the timing and the density of construction. In the more gen-

eral case where new construction generates agglomeration externalities, private ownership

yields inefficiencies; see Rossi-Hansberg (2004). Private investors do not account for the

positive externalities that new construction generates for the city’s incumbent population.

The interaction of these externalities and the option value of postponing investment is a

topic for future research.
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A Appendix

A.1 Proof of Proposition 1

The pair of SDEs (2.5) can be written jointly in matrix form as

d

(
xs

ln ys

)
=

(
−1 0

1 0

)(
xs

ln ys

)
ds+

(
−σ2

µ+ σ2

)
ds+

(
σ 0

0 0

)(
dW

(1)
s

dW
(2)
s

)
.

Following Karatzas and Shreve (2012) (section 5.6, p. 354), the solution can be written as

(
xs

ln ys

)
= M(s)

[(
x0

ln y0

)
+

∫ s

0
M−1(z)

(
−σ2

µ+ σ2

)
dz +

∫ s

0
M−1(z)

(
σ 0

0 0

)(
dW

(1)
z

dW
(2)
z

)]
,

where dW
(i)
z for i = 1, 2 are the increments of two independent Brownian motions, and the (unknown) 2× 2 matrix M(s)

satisfies a first-order differential equation with initial condition as follows

M(0) =

(
1 0

0 1

)
,

d

ds
M(s) =

(
−1 0

1 0

)
M(s).

It is straightforward to work out that M(s) and its inverse M−1(s) are given by

M(s) =

(
e−s 0

1− e−s 1

)
, M−1(s) =

(
es 0

1− es 1

)
.

It follows that (xs, ln ys)′ is jointly normally distributed with mean

ms = M(s)

[(
x0

ln y0

)
+

∫ s

0
M−1(z)

(
−σ2

µ+ σ2

)
dz,

]

=

(
e−s 0

1− e−s 1

)[(
x0

ln y0

)
+

∫ s

0

(
ez 0

1− ez 1

)(
−σ2

µ+ σ2

)
dz

]
,

=

(
−σ2 + (x0 + σ2)e−s

ln y0 + µ s+ (x0 + σ)(1− e−s)

)
,

and covariance matrix

Σs = M(s)

∫ s

0
M−1(z)

(
σ 0

0 0

)2

(M−1(z))′dz

 M(s)′,

=

(
e−s 0

1− e−s 1

)∫ s

0

(
ez 0

1− ez 1

)(
σ 0

0 0

)2(
ez 1− ez

0 1

)
dz

 ( e−s 1− e−s

0 1

)
,

= 1
2
σ2

(
1− e−2s

(
1− e−s

)2(
1− e−s

)2
2s− 4

(
1− e−s

)
+
(
1− e−2s

) ) .
The steady-state distribution follows by taking the limit s→∞.

A.2 Representation by Gamma function

For three parameters a, c ∈ R>0 and b ∈ R, it holds that

∫ ∞
0

exp
[
−a t+ b

(
1− e−c t

)]
dt =

eb

c

[
b−a/cγ(a/c, b)

]
, for b 6= 0, (A.1)∫ ∞

0
exp

[
−a t+ b

(
1− e−c t

)]
dt = a−1, for b = 0,
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where γ(·, ·) denotes the incomplete lower Euler gamma function. The incomplete lower Euler gamma function is defined as

γ(a, b) =
∫ b
0 t

a−1e−tdt. For reference, the incomplete upper Euler gamma function is defined by Γ(a, b) =
∫∞
b ta−1e−tdt.

The sum of both Euler gamma functions equals the complete Euler gamma function, denoted by Γ(a) = γ(a, b) + Γ(a, b) =∫∞
0 ta−1e−tdt.

To prove our statement above, we define a new time coordinate τ = be−ct such that τ ∈ [0, b] or τ ∈ [b, 0], since b

might be negative. Hence we may write τ ∈ [min(0, b),max(0, b)]. Note that if b < 0, then τ < 0, such that τ has the same

sign as b. The inverse transformation, that is from τ to t, is given by t = c−1 ln |b| − c−1 ln |τ |, while the differential form

is dt = −(cτ)−1dτ . The integrand then reads

exp
[
−a t+ b

(
1− e−c t

)]
dt = −(cτ)−1 exp [−a/c ln |b|+ a/c ln |τ |+ b− τ ] dτ,

= −sign (b) c−1 |b|−a/c |τ |a/c−1 eb−τdτ.

where we have used 1/τ = sign(b)/|τ |. It follows that the integral can be written as

∫∞
0 exp

[
−a t+ b

(
1− e−c t

)]
dt = −sign (b) e

b

c
|b|−a/c

∫ 0
b |τ |

a/c−1 e−τdτ

= sign (b) e
b

c
|b|−a/c

∫ b
0 |τ |

a/c−1 e−τdτ,

= eb

c

[
b−a/cγ(a/c, b)

]
.

The final equality follows by the definition of the incomplete lower Euler gamma function above. Note that for b < 0 in

conjunction with a/c < 1, both b−a/c and γ(a/c, b) are imaginary numbers. However, as shown in the penultimate step,

their product is a real positive number. Hence the term in square brackets is always real and positive. In computing the

term in square brackets, some computer packages will produce a very small imaginary part, which can safely be ignored.

Other computer programs simply do not compute the incomplete lower Euler gamma function γ(a/c, b) for b < 0 and

produce the output zero in this case. For such packages the penultimate line must be used.

A.3 Proof of Proposition 2

It is convenient to write equation (3.3) as

a (x) =

∫ ∞
0

eg(x,s)ds, g (x, s) := x
(
1− e−s

)
+
σ2

4

(
1− e−2s

)
− ψs, g (x, 0) = 0,

a′ (x) =

∫ ∞
0

gx (x, s) eg(x,s)ds, gx (x, s) = 1− e−s

a′′ (x) =

∫ ∞
0

∫ ∞
0

g2
x (x, s) eg(x,s)ds,

gs (x, s) = xe−s +
σ2

2
e−2s − ψ, gss (x, s) = −xe−s − σ2e−2s.

We prove each part in turn:

1. By taking a = ψ, b = σ2/4 and c = 2 in equation (A.1), we obtain

a (0) =
1

2
exp

(
σ2

4

)(σ
4

)−ψ/2
γ

(
ψ

2
,
σ2

4

)
> ψ−1. (A.2)

2. This follows immediately from gx (x, s) = 1− e−s ∈ [0, 1) for all s ∈ R≥0.

3. The proof is an analogous to Jensen’s inequality, which implies that E
[
z2
]
>E[z]2 for a random variable z with

strictly positive variance. In this context, a (x)−1 eg(x,s) can be interpreted as a density function of s. Hence

a′ (x)

a (x)
= E [gx (x, s)] ,

a′′ (x)

a (x)
= E

[
gx (x, s)2

]
.

It follows that (
a′ (x)

a (x)

)2

<
a′′ (x)

a (x)
. (A.3)
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4. We decompose the integral in parts

∫ ∞
0

eg(x,s)ds =

∞∑
k=1

∫ k|x|−2/3

(k−1)|x|−2/3
eg(x,s)ds.

Since for x < σ2, gs (x, s) < 0 and gss (x, s) > 0, g (x, s) satisfies for s− ≤ s ≤ s+

g
(
x, s−

)
+ gs

(
x, s−

) (
s− s−

)
≤ g (x, s) ≤ g

(
x, s−

)
+ gs

(
x, s+

) (
s− s−

)
.

Integrating the exponential of these three expressions from s = s− to s+ yields

eg(x,s
−)
∫ s+

s−
egs(x,s−)(s−s−)ds ≤

∫ s+

s−
eg(x,s)ds ≤ eg(x,s

−)
∫ s+

s−
egs(x,s+)(s−s−)ds.

Evaluating the integrals in the first and third expression and multiplying by gs
(
x, s−

)
yields

eg(x,s
−)
[
1− egs(x,s−)(s+−s−)

]
≥ −gs

(
x, s−

) ∫ s+

s−
eg(x,s)ds ≥

gs
(
x, s−

)
gs (x, s+)

eg(x,s
−)
[
1− egs(x,s+)(s+−s−)

]
.

For the part for k = 1, s− = 0 and s+ = |x|−2/3

eg(x,0)
[
1− egs(x,0)|x|−2/3

]
≥ −gs (x, 0)

∫ |x|−2/3

0
eg(x,s)ds ≥

gs (x, 0)

gs
(
x, |x|−2/3

) eg(x,0)

[
1− egs

(
x,|x|−2/3

)
|x|−2/3

]
.

Consider the limit x→ −∞. Since limx→−∞ gs (x, 0) |x|−2/3 = limx→−∞ gs
(
x, |x|−2/3

)
|x|−2/3 = −∞, limx→−∞ gs (x, 0) /gs

(
x, |x|−2/3

)
=

1, and exp [g (x, 0)] = 1, this implies

1 ≥ lim
x→−∞

(
−gs (x, 0)

∫ |x|−2/3

0
eg(x,s)ds

)
≥ 1.

Since, limx→−∞ exp
[
g
(
x, (k − 1) |x|−2/3

)]
= 0, a similar argument for all k > 1 yields

lim
x→−∞

(
−gs

[
x, (k − 1) |x|−2/3

] ∫ k|x|−2/3

(k−1)|x|−2/3
eg(x,s)ds

)
= 0.

Hence

lim
x→−∞

(
−gs (x, 0)

∫ ∞
0

eg(x,s)ds

)
= lim
x→−∞

(−gs (x, 0) a (x)) = 1.

5. Define

z := s− ln
x

ψ
.

Substitution in g (x, s) and a (x) =
∫∞
0 eg(x,s)ds yields

g

(
x, z + ln

x

ψ

)
= x− ψe−z +

σ2ψ2

4
−
σ2

4
x−2e−2z − ψ

(
z + ln

x

ψ

)
a (x) = exp

(
x+

σ2ψ2

4
− ψ ln

x

ψ

)∫ ∞
− ln(x/ψ)

exp

(
−ψe−z −

σ2

4
x−2e−2z − ψz

)
dz
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Rearranging and taking limits yields

lim
x→∞

[
exp

(
−x−

σ2ψ2

4
+ ψ ln

x

ψ

)
a (x)

]
= lim

x→∞

[∫ ∞
− ln(x/ψ)

exp

(
−ψe−z −

σ2

4
x−2e−2z − ψz

)
dz

]

= lim
x→∞

[
ψψ
∫ x/ψ

0
yψ−1e−ydy

]
= ψψΓ (ψ) .

where we apply the variable transformation y := ψe−z in the second step.

A.4 A Taylor series representation of a (x)

The function a (x) as defined in equation (3.3) can be approximated by a Taylor expansion starting from a (x)|σ2=0 as

follows:

a(n) (x) : = exx−ψγ(ψ, x) +

n∑
k=1

σ2k

k!

∂k a (x)

(∂σ2)k

∣∣∣∣∣
σ2=0

, lim
n→∞

a(n) (x)→ a (x) ,

0 <
∂k a (x)

(∂σ2)k

∣∣∣∣∣
σ2=0

<
1

4

∂(k−1) a (x)

(∂σ2)(k−1)

∣∣∣∣∣
σ2=0

,

where the superscript (n) refers to the order of approximation and where the mode of convergence is (at least pointwise)

monotone because of
∂k a(x)

(∂σ2)k

∣∣∣∣
σ2=0

> 0. The proof uses that for two parameters a, b ∈ R and with a > 0, we have

∂k a(x)

(∂σ2)k

∣∣∣∣
σ2=0

:= 4−k
∫ ∞

0
(1− e−2s)k exp

[
−a s+ b

(
1− e−s

)]
ds

= 4−k
√
πebΓ[k + 1]

{
1
2

Γ
[
a
2

]
1F̃2

[
a
2

;
(

1
2
, a

2
+ k + 1

)
; b

2

4

]
−
b

4
Γ

[
a+ 1

2

]
1F̃2

[
a+ 1

2
;

(
3

2
,
a+ 3

2
+ k

)
;
b2

4

]}
,

(A.4)

where pF̃q(a; b; z) is the regularized generalized hypergeometric function, defined as

pF̃q(a; b; z) = pFq(a; b; z)/(Γ[b1] . . .Γ[bq ]).

Otherwise, the proof is straightforward. This series representation is useful because the hypergeometric function can be

evaluated to arbitrary precision using standard software packages. The derivatives are all positive and converge to zero

quickly. Hence, this Taylor expansion converges more quickly than a Taylor expansion of the function exp( 1
4
x) with respect

to x, since in that case the k-th derivative is exactly equal to the (k − 1)-th derivative divided by four.

A.5 Proof of Proposition 3

1. Equation (3.3) and (2.1) imply

d lnA(xs, ys) = d ln a(xs) + d ln ys,

=
a′

a
dxs +

1

2

a′′a− a′2

a2
dx2
s + (xs + µ+ σ2)ds+O(ds2),

=

[
µ+

(
1−

a′

a

)
(xs + σ2) +

σ2

2

a′′a− a′2

a2

]
ds+

a′

a
σdWs +O(ds2).

The second line follows by Itô’s lemma; the third line uses the expressions for dxs. For the slope of the drift with

respect to xs: for xs → −∞, limxs→−∞ a′/a = 0 and limxs→−∞
(
a′′a− a′2

)
/a2 = 0, see Proposition 2. We have

not been able to provide a general proof that the drift is increasing in xs for all xs since a is a function of xs. For

the slope of the variance with respect to xs: d (a′/a) /ds > 0, see Proposition 2.

2. By Proposition 2, d ln ys/dx0 is proportional to 1 − e−s. Hence, d (E ln y0) /dx0 = 0, while d (E ln y∞) /dx0 = 1.
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Since lnA (x, y) = ln y + ln a (x),

d (E ln ys) /dx0 = d (E ln ys) /dx0 +
a′ (Exs)

a (Exs)

dExs

dx0
.

Since dEx0/dx0 = 1, while dExs/dx0 = 0 (because xs is mean-reverting) this proves the proposition.

A.6 Proof of Proposition 4

1. Note that for (x, y) ∈ C we have Wλ(x, y) > 0 for some large enough value of λ > 0, because the sets Cλ are

expanding to the limiting set C as λ increases. Thus W (x, y) > 0 for all (x, y) ∈ C. The contrapositive statement is

that W (x, y) ≤ 0 implies x ∈ S. At the same time, if (x, y) ∈ S then Wλ(x, y) ≤ 0 for all λ > 0, thus W (x, y) ≤ 0.

Together this implies S = {(x, y) : W (x) ≤ 0}.

Next we show that the ‘≤’ sign in S = {(x, y) : W (x) ≤ 0} can be replaced by a ‘=’ sign. The value of waiting

Wλ(x, y) satisfies (ρ+ λ− L)Wλ(x, y) = (1− y) + λW+
λ (x, y), such that

(ρ+ λ− L)Wλ(x, y) ≥ (1− y) ⇒ Wλ(x, y) ≥ (ρ+ λ− L)−1 (1− y), (A.5)

The inverse (ρ + λ − L)−1 can be defined rigorously via the resolvent formalism, see e.g. Revuz and Yor (1999)

(pp. 89-90, 290-1) or Rogers and Williams (2000) (pp. 234-8). As an intuition for this formalism, consider two

functions, h1(x, y) and h2(x, y), which can be interpreted as the asset value and the cash flow respectively, and two

stochastic differential equations describing the evolution of x and y over time. The relation between both functions

can be described either by a Bellman equation (h2(x, y) as a function h1(x, y)) or by a present value of all expected

future cash flows (h1(x, y) as a function of h2(x, y)):

(ρ− L)h1(x, y) = h2(x, y) ⇔ h1(x0, y0) = E(x0,y0)

[∫ ∞
0

e−ρ s h2(xs, ys) ds

]
.

The equivalence of both functional equations suggests that the definition of the inverse operator (ρ − L)−1 acting

on the function h2(x, y) should be

(ρ− L)−1 h2(x0, y0) := E(x0,y0)

[∫ ∞
0

e−ρ s h2(xs, ys) ds

]
. (A.6)

The inverse (ρ − L)−1 is known the resolvent operator. In the sequel, we use five well-known resolvent properties

discussed in e.g. Rogers and Williams (2000) (pp. 234-8):

• Linearity, that is (ρ− L)−1
[
h1(x, y) + h2(x, y)

]
= (ρ− L)−1h1(x, y) + (ρ− L)−1h2(x, y),

• Order-preserving property, that is h1(x, y) ≥ h2(x, y),∀(x, y) implies (ρ−L)−1h1(x, y) ≥ (ρ−L)−1h2(x, y), ∀(x, y).

• Contraction, that is 0 ≤ h(x, y) ≤ C for some constant C ≥ 0 implies (ρ− L)−1h(x, y) ≤ C/ρ,

• Semi-group property, that is limλ→∞ λ(ρ+ λ− L)−1h(x, y) = h(x, y) if h(x, y) is a continuous function,

• Hille-Yosida property, that is limλ→∞ λ[1−λ(ρ+λ−L)−1]h(x, y) = (ρ−L)h(x, y) as long as Lh(x, y) exists.

The first four follow directly from the definition of the resolvent in (A.6). The Hille-Yosida property can be

understood intuitively by using the Taylor expansion λ(ρ+ λ− L)−1 = 1− (ρ− L)/λ+O(λ−2), valid for large λ,

inside the square brackets.

Let us now return to equation (A.5). For (ρ + λ − L)−1 with ρ + λ > 0 operating on the function 1 − y to exist,

it is sufficient that e−ρsE(ys) is bounded for all s ≥ 0. Recall that, asymptotically, ys grows at the (exponential)

rate µ; see Proposition 1. This is strictly slower than ρ+ λ for all λ > 0, because µ < ρ; see equation (3.4). Hence

(ρ+ λ− L)−1(1− y) exists for all λ > 0. Since Wλ(x, y) is non-decreasing in λ, it follows from (A.5) that

(ρ+ λ− L)−1 (1− y) ≤ Wλ(x, y) ≤ W (x, y) ≤ 0, (x, y) ∈ S ⊆ Sλ, (A.7)

where the last inequality holds because S = {(x, y) : W (x) ≤ 0}, as derived above. In the limit λ → ∞, the

left-hand side of this equation converges to zero. The sandwich (A.7) thus gives W (x, y) = 0 on S. This completes

the proof of part one of Proposition 4.
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2. Apart from the last inequality, equation (A.7) holds for all (x, y) ∈ R×R≥0, that is

(ρ+ λ− L)−1(1− y) ≤Wλ(x, y) ≤W (x, y), ∀(x, y) ∈ R×R≥0.

If (ρ + λ − L)−1(1 − y) > 0 for some point (x, y), then W (x, y) > 0, and thus (x, y) ∈ C, since C := {(x, y) ∈
R×R≥0 : W (x, y) > 0}. In other words, (ρ+ λ− L)−1(1− y) > 0 is a sufficient condition for continuing. To see

what this means, we multiply by λ and consider λ(ρ + λ − L)−1(1 − y) > 0 in the limit where λ → ∞. We have

already established (in part one above) that (ρ+ λ−L)−1(1− y) exists for all λ > 0. Furthermore, the semi-group

property of the resolvent formalism (see references above) tells us that λ(ρ + λ − L)−1 converges to the identity

function in the limit as λ→∞. (For this result it is important that 1− y is a continuous function.) We thus have

the implication 1 − y > 0 ⇒ (x, y) ∈ C, which is the first statement in part two of Proposition 4. Conversely, the

sufficient condition for continuing cannot be satisfied on S, hence (x, y) ∈ S implies 1− y ≤ 0.

3. To demonstrate the pointwise convergence on C, fix some location (x, y) ∈ C. Recall that W (x, y) ≥ Wλ(x, y) > 0

for all (x, y) ∈ Cλ. This means that there is exists some λmin, such that Wλ(x, y) > 0 for all λ > λmin. Since

Wλ(x, y) is strictly positive on C for sufficiently large λ, it holds that the negative part of Wλ(x, y), that is W−λ (x, y),

is identically zero on C for these sufficient large values of λ. This gives the first part of (4.9).

To prove the second part of (4.9), we first note that λW−λ (x, y) can be written as

λW−λ (x, y) = max
{

0,−λWλ(x, y)
}
,

= max
{

0, λ (ρ+ λ− L)−1(y − 1)− λ2(ρ+ λ− L)−1W+
λ (x, y)

}
,

→ max
{

0, y − 1
}
, ∀(x, y) ∈ S \ ∂S,

= y − 1, ∀(x, y) ∈ S \ ∂S,

(A.8)

We separately consider each step of the above calculation. The second line holds because

(ρ+ λ− L)Wλ(x, y) = (1− y) + λW+
λ (x, y).

The limit in the third line holds because

λ (ρ+ λ− L)−1(y − 1) → y − 1 as λ→∞,

which follows by again by the semi-group property of the resolvent. For the other term inside the max operator, we

have
0 ≤ λ2(ρ+ λ− L)−1W+

λ (x, y) ≤ λ2(ρ+ λ− L)−1W (x, y),

= λ
[
λ(ρ+ λ− L)−1 − 1

]
W (x, y), (x, y) ∈ S \ ∂S,

→ (L − ρ)W (x, y), (x, y) ∈ S \ ∂S,
= 0, (x, y) ∈ S \ ∂S.

The first line holds because 0 ≤W+
λ (x, y) ≤W+(x, y) = W (x, y) by the order-preserving property of the resolvent.

The second line holds because W (x, y) is identically zero on S \ ∂S. The limit in the third line follows by the

Hille-Yosida property of the resolvent. The last equality holds because W (x, y) is identically zero on the interior

of S, such that (L − ρ)W (x, y) = 0. Comparing the first and last lines of the above calculation, it follows that

limλ→∞ λ2(ρ + λ − L)−1W+
λ (x, y) is bounded above and below by zero. Hence the third line in (A.8) follows.26

Finally, the last line in (A.8) follows because (x, y) ∈ S \ ∂S implies y − 1 ≥ 0 (recall part one of the proof). This

completes the proof of Proposition 4.

A.7 Proof of Proposition 5

The value of waiting satisfies (ρ− L)Wλ(x, y) = 1− y + λW−λ (x, y) or, what is equivalent,

Wλ(x, y) = (ρ− L)−1
[
1− y + λW−λ

]
. (A.9)

26The present argument be generalised to all stochastic processes with continuous sample paths; see e.g. Lange et al.

(in prep) who provide a generalisation of the classic Hille-Yosida property of the resolvent. The key point is to take (x, y)

in the interior of S, i.e. away from the boundary ∂S, such that the function of interest, in this case W (x, y), is identically

zero in a little ball around the point (x, y).
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Taking the limit λ → ∞, we have Wλ(x, y) → W (x, y) in a pointwise sense on the left. The crucial part of the proof is

to show that we may may push the limit λ → ∞ through the resolvent operator (ρ − L)−1 on the right-hand side. From

the definition of the resolvent in (A.6), we know that (ρ − L)−1 must be viewed as an integral operator with respect to

the probability density of the stochastic process, as well as with respect to time. We must therefore show that Lebesgue’s

dominated convergence theorem applies. When this is established, the result in Proposition 5 follows almost directly. To

see why, recall that Proposition 4 showed

λW−λ (x, y)→
{

0, (x, y) ∈ C,
y − 1 ≥ 0, (x, y) ∈ S \ ∂S.

Under the relatively mild assumption that ∂S is of Lebesgue measure zero, taking the limit λ → ∞ under the resolvent

(ρ− L)−1 in equation (A.9) gives

W (x, y) := lim
λ→∞

Wλ(x, y) = lim
λ→∞

(ρ− L)−1
[
1− y + λW−λ

]
= (ρ− L)−1

[
1C(1− y)

]
, (A.10)

where 1C is the indicator function of the set C, which equals one if (x, y) ∈ C and zero otherwise. Finally, we use the

representation of the resolvent as in (A.6) to obtain

W (x, y) = (ρ− L)−1
[
1C(1− y)

]
=

∫ ∞
0

e−ρ s E(x,y)

[
1C(1− y)

]
ds,

which is the desired result. It only remains to be shown that Lebesgue’s dominated convergence theorem applies. For this

purpose, assume the point (x, y) to be fixed.

First, we consider (ρ− L)−1
[
1− y

]
on the right-hand side of equation (A.9). This term is bounded because

(ρ− L)−1(1− y) = ρ−1 − (ρ− L)−1y.

The quantity (ρ − L)−1y is finite because ys grows asymptotically at the (exponential) rate µ, which is assumed to be

strictly smaller than the discount rate ρ, i.e. µ < ρ. We use this fact several times below.

Second, we consider (ρ−L)−1
[
λW−λ

]
on the right-hand side of equation (A.9). The penalty term λW−λ (x, y), which

appears under the resolvent (ρ− L)−1, remains bounded because

λW−λ (x, y) = max
{

0,−λWλ(x, y)
}
,

= max
{

0, λ (ρ+ λ− L)−1(y − 1)− λ2(ρ+ λ− L)−1W+
λ (x, y)

}
,

≤ max
{

0, λ (ρ+ λ− L)−1(y − 1))
}
,

→ max
{

0, y − 1
}
.

The second line holds because (ρ+λ−L)Wλ(x, y) = 1−y+λW+
λ (x, y). The third line holds because we disregard the term

0 ≤ λ2(ρ + λ − L)−1W+
λ (x, y). The convergence in line four holds because y − 1 is a continuous function. The resolvent

(ρ−L)−1 can act on this function because ys grows asymptotically at the (exponential) rate µ < ρ. We conclude that the

penalty term λW−λ (x, y) remains bounded for all bounded y.

Now we consider the entire term (ρ− L)−1
[
λW−λ

]
on the right-hand side of equation (A.9), which remains bounded

as λ→∞ because

0 ≤ lim
λ→∞

(ρ− L)−1[λW−λ (x, y)] ≤ lim
λ→∞

(ρ− L)−1 max
{

0, λ (ρ+ λ− L)−1(y − 1))
}
,

≤ lim
λ→∞

(ρ− L)−1 max
{

0, λ (ρ+ λ− L)−1 max{0, y − 1})
}
,

= lim
λ→∞

(ρ− L)−1λ (ρ+ λ− L)−1 max{0, y − 1},

= (ρ− L)−1 max{0, y − 1} < ∞.

The first line holds because the penalty term is non-negative and because λW−λ (x, y) can be bounded by the above arguments.

The second line holds because y − 1 ≤ max{0, y − 1}. The third line holds because 0 ≤ λ(ρ + λ − L)−1 max{0, y − 1}.
Finally, the fourth line holds because λ(ρ+ λ−L)−1 goes to the identity operator by the semi-group property. The result

is again bounded for fixed locations (x, y), because ys grows asymptotically at the (exponential) rate µ < ρ.

Having shown that the right-hand side of (A.9) remains bounded for (x, y) in bounded sets, we may consider its

pointwise limit. We may look under the resolvent to see what happens as λ → ∞ for an arbitrary but fixed location
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(x, y) ∈ R×R≥0. Since the boundary of S is assumed to have zero Lebesgue measure, the convergence of the penalty term

in Proposition 4 gives us the pointwise limit of λW−λ (x, y) for almost all points (x, y). Lebesgue’s dominated convergence

theorem then gives the desired result.

The resulting function W (x, y) given in Proposition 4 is continuous under our standing assumption that the boundary

∂S has measure zero. Under this assumption, it follows that the indicator function in the integrand can be approximated

by a family of lower- or upper semicontinuous functions. The resolvent preserves both forms of semi-continuity, such that

W (x, y) is both lower- and upper-semicontinuous, hence continuous.

Since L is a differential operator of second and first order in x and y, respectively, it follows that the resolvent operator

(ρ − L)−1 does the exact opposite: it adds two and one orders of differentiability in the x and y directions, respectively.

(The details are omitted, but this can be verified explicitly by using the integral representation of the resolvent together

with the law of the process (xs, ys) as derived in Proposition 1.) In this case, the function (1−y)1C(x, y) under the resolvent

is discontinuous across the boundary ∂S. Adding two orders of differentiability in the x direction implies W (x, y) is once

continuously differentiable in x. For the y direction, however, the same does not hold; here, we only add one order of

differentiability. Hence the resulting function W (x, y) is merely continuous in the y direction.

Finally, since Wλ(x, y) is a monotonic non-decreasing and since the pointwise limit W (x, y) is continuous, Dini’s

theorem ensures that convergence is uniform on bounded sets.

A.8 Proof of Proposition 6

First we note that W
(1)
λ (x, y) is bounded above, because

W
(1)
λ (x, y) := (ρ+ λ− L)−1 (1− y) ≤ (ρ+ λ− L)−11 = (ρ+ λ)−1 < ∞.

The bound follows because from the contraction property of the resolvent, because function under the resolvent (ρ+λ−L)−1,

that is (1 − y), is bounded above by the constant function one. To show non-decreasing monotonicity of the sequence

{W (n)
λ }n∈N, we use the fact that the resolvent operator (ρ+ λ− L)−1 is linear and order-preserving. Thus

W
(2)
λ (x, y) := (ρ+ λ− L)−1

(
1− y + λ

[
W

(1)
λ (x, y)

]+)
≥ (ρ+ λ− L)−1 (1− y) =: W

(1)
λ (x, y).

Thus the algorithm is non-decreasing at the first step. It is useful to define W
(0)
λ (x, y) := 0, so that the above statement

can be equivalently written for n = 1 as follows:

W
(n+1)
λ (x, y) := (ρ+ λ− L)−1

(
1− y + λ

[
W

(n)
λ (x, y)

]+)
,

≥ (ρ+ λ− L)−1

(
1− y + λ

[
W

(n−1)
λ (x, y)

]+)
=: W

(n)
λ (x, y).

Because this statement holds for n = 1, it also holds for n = 2 and hence, by induction, it holds for all n ∈ N, such that

non-decreasing monotonicity of {W (n)
λ }n∈N is established.

Having shown the algorithm is non-decreasing, we show that it is convergent by using the contractive property. To

prove that the iterations in Proposition 6 define a contraction, we define

0 ≤ ∆
(n+1)
λ (x, y) := W

(n+1)
λ (x, y)−W (n)

λ (x, y),

= λ (ρ+ λ− L)−1

([
W

(n)
λ (x, y)

]+
−
[
W

(n−1)
λ (x, y)

]+)
,

with ∆
(1)
λ (x, y) := W

(1)
λ (x, y) since W

(0)
λ (x, y) = 0. Next, note that

0 ≤
[
W

(n)
λ (x, y)

]+
−
[
W

(n−1)
λ (x, y)

]+
≤ W

(n)
λ (x, y)−W (n−1)

λ (x, y) = ∆
(n)
λ (x, y).

It follows that

0 ≤ ∆
(n+1)
λ (x, y) = λ (ρ+ λ− L)−1

([
W

(n)
λ (x, y)

]+
−
[
W

(n−1)
λ (x, y)

]+)
≤ λ (ρ+ λ− L)−1∆

(n)
λ (x, y).

By the contraction property of the resolvent, ∆
(n+1)
λ (x, y) cannot exceed the global maximum of the function λ/(ρ +

λ)∆
(n)
λ (x, y), which, in turn, cannot exceed the global maximum of λ2/(ρ + λ)2∆

(n−1)
λ (x, y), etcetera. Since ∆

(1)
λ (x, y) is
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bounded above by (ρ+ λ)−1, this implies

∆
(n+1)
λ (x, y) ≤

(
λ

ρ+ λ

)n
(ρ+ λ)−1.

Hence

Wλ(x, y) = W
(1)
λ (x, y) +

∞∑
k=1

∆
(k+1)
λ (x, y) ≤ (ρ+ λ)−1 +

∞∑
k=1

(
λ

ρ+ λ

)k
(ρ+ λ)−1,

=

∞∑
k=0

(
λ

ρ+ λ

)k
(ρ+ λ)−1,

=
1

1− λ
ρ+λ

1

ρ+ λ
= ρ−1.

Hence the sequence {W (n)
λ }n∈N is monotone non-decreasing and bounded above by the constant function ρ−1.

A.9 Proof of Proposition 7

Recall that the infinity norm of a matrix A, which is defined as the maximum of the absolute row sums, i.e. ‖A‖∞ =

maxi
∑
j |Aij |. Recall also that a matrix is said to be diagonally dominant if for every row of the matrix, the absolute value

of the diagonal element is weakly greater than the sum of the absolute values of the off-diagonal elements. Now let L be a

weakly diagonally dominant matrix with non-positive diagonal elements and non-negative off-diagonal elements. Then:

1. for any ρ, λ > 0, the matrix (ρ+ λ) I − L is invertible, [(ρ+ λ) I− L]−1 contains non-negative entries and the

infinity norm of [(ρ+ λ) I− L]−1 does not exceed (ρ+ λ)−1.

2. for any ρ, λ > 0, the iterative scheme (4.16) generates a sequence that is monotonically non-decreasing for n ≥ 1,

i.e., W
(n)
λ ≥W (n−1)

λ and convergent to a solution Wλ of the problem (4.15).

Both statements are implied by classic matrix properties. Part 1 uses that (ρ+ λ) I − L is a Z-matrix (defined as matrix

with all off-diagonal elements non-positive) as well as an M -matrix (defined as a Z-matrix whose eigenvalues have positive

real parts). From Plemmons (1977), it follows that all elements of the inverse of an M -matrix are non-negative. The bound

on the norm of the inverse follows from Ahlberg and Nilson (1963). Part 2 relies entirely on the fact that [(ρ+ λ) I− L]−1

is an order-preserving operator with a norm bounded above by (ρ+λ)−1; the order-preserving property of [(ρ+ λ) I− L]−1

gives us the monotonicity of the sequence in (4.16), while the norm gives us the contraction.

A.10 Disretization of L

In Proposition 7, the question that remains is how to choose the N2 ×N2 matrix L such it is weakly diagonally dominant

with non-positive diagonal elements and non-negative off-diagonal elements. For the infinitesimal generator L defined in

equation (4.4), the five-point stencil below generates a discretization L that satisfies these requirements:

y (x+µ+σ2)+

∆y

σ2

2∆2
x

+
(x+σ2)−

∆x

− σ2

∆2
x
− (x+σ2)+

∆x
− (x+σ2)−

∆x

− y (x+µ+σ2)−

∆y
− y (x+µ+σ2)+

∆y

σ2

2∆2
x

+
(x+σ2)+

∆x

y (x+µ+σ2)−

∆y

where (·)+ = max{0, ·}, (·)− = max{0,−·}, while ∆x and ∆y denote the horizontal and vertical spacing of x and y. This

stencil satisfies the assumptions above, since the center value, which is placed on the diagonal of L, is constructed to be

non-positive, while the values corresponding to its four neighbors, which are placed on the off diagonal elements of L, are

constructed to be non-negative. Diagonal dominance of L follows trivially, since the value in the center, which ends up on

the diagonal of L, is not exceeded in absolute value by sum of the other values in the stencil.

In the approximation of second derivatives with respect to x, we have used a central difference scheme, which uses grid

points to the left and right of the center point. In the approximation of first derivatives with respect to x, in contrast, we

use either a ‘forward’ or ‘backward’ approximation. This means that, in addition to the center point, we use either the left-

or right-hand neighbor, but never both. Which one is chosen depends on the direction of the drift, such that the nearest

neighbor on the right gets a positive value if the drift is towards the right. The same reasoning is applied to derivative with

respect to y, and this leads to the desirable result that negative values are guaranteed to end up at the center of the stencil.
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While forward and backward approximations of derivatives are only first-order accurate in the grid spacing, the resulting

‘upwind’ scheme guarantees numerical stability, which is our main concern here.

We must also consider boundary conditions. When we reach the edge of our grid, some points in our stencil may

not be ‘available’. One method for dealing with such ‘ghost points’ besides the grid is simply to ignore the stencil value

corresponding to the non-existent neighbor, which leads to Dirichlet boundary conditions. Alternatively, the stencil value

corresponding to the non-existent neighbor may be re-assigned to the center value, leading to Neumann boundary conditions.

In our numerical analysis, using Dirichlet or Neumann boundary conditions makes no noticeable difference.

Finally, a note on numerical efficiency. The vector W
(n)
λ in equation (4.16) may be obtained from the vector W

(n−1)
λ by

explicitly computing the inverse matrix [(ρ+ λ) I− L]−1. However, this is computationally inefficient, because the N2×N2

matrix (ρ+ λ) I−L is sparse — containing fewer than 5N2 non-zero entries when generated by the five-point stencil above

— while its inverse is dense. Hence, it is computationally more efficient to use ‘implicit’ sparse linear algebra techniques to

solve the N2 equations in (4.16).

A.11 Derivation of (5.8)

Using B∗(x, y) = α̃[φA(x, y)]1/(1−α), we write

(L − ρ) (1− α)B∗(x, y) = (1− α) α̃ (L − ρ) [φA (x, y)]1/(1−α) . (A.11)

We compute LA1/(1−α)(x, y) using the chain rule

LA(x, y)1/(1−α) =
1

1− α
A(x, y)α/(1−α) LA(x, y)

+
σ2

2

α

(1− α)2
A(x, y)1/(1−α)

(
Ax(x, y)

A(x, y)

)2

,
(A.12)

where the second term on the right-hand side appears because L contains a second-order derivative with respect to x.

Substitution of (A.12) into (A.11) and using LA(x, y) = ρA(x, y)− y as in (3.2) and A(x, y) = y a(x) as in (3.3) gives

(1− α) α̃ (L − ρ) [φA (x, y)]1/(1−α)

= α̃ φ [φ y a(x)]α/(1−α) [���ρ y a(x) − y] +
σ2

2

α1/(1−α)

1− α
[φ y a(x)]1/(1−α)

(
ax(x)

a(x)

)2

− ρ α̃ (�1 − α) [φ y a(x)]1/(1−α).

Two terms (as indicated by the strike-outs) cancel and the factor

α̃ [φ y]1/(1−α) a(x)α/(1−α) = φ y [αφy a(x)]α/(1−α) = φ yK∗(x, y)α

can be pulled outside brackets, to obtain

(1− α) α̃ (L − ρ) [φA (x, y)]1/(1−α) =

−φ y [αφy a(x)]α/(1−α)

[
1− ρα a(x)−

σ2

2

α

1− α
ax(x)2

a(x)

]
,

which is equivalent to (5.8).

A.12 Proof of Proposition 8

1. Optimal investment does not depend on y: We conjecture that the option value of the project V (x, y) can

be written

V (x, y) = y1/(1−α) ex/(1−α) v(x), ∀ (x, y) ∈ C. (A.13)

For this conjecture to be valid, it must solve the Bellman equation (ρ− L)V (x, y) = 0, see equation (5.7). Several

lines of algebra gives the following ODE for v(x):

0 =
σ2

2
v′′(x)−

(
x−

ασ2

1− α

)
v′(x) + ν v(x), ∀x ∈ R, (A.14)
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where ν := µ
1−α + σ2

2(1−α)2
− ρ < 0 is strictly negative; recall our assumption (5.6). This is an ordinary differential

equation (ODE) of v(x); it no longer depends on y. Thus our conjecture is a possible solution to the Bellman

equation as long as v(x) satisfies this ODE. Appendix A.13 shows that this ODE has two independent solutions.

However, the boundary condition at x→∞ requires that we take a particular linear combination of both solutions.

This leaves one overall multiplicative constant, which we denote by C. Hence there are two remaining unknowns: the

multiplicative constant C and the boundary point x∗. These two constants can be determined jointly by requiring

that the solution must satisfy value matching and smooth pasting conditions, which, by equation (5.5), read as

follows:
V (x, y) = φK∗ (x, y)α A (x, y)−K∗ (x, y) ,

= (1− α) α̃ [φA (x, y)]1/(1−α) , ∀ (x, y) ∈ ∂S,

Vx (x, y) = α̃ [φA (x, y)]1/(1−α) Ax (x, y)

A(x, y)
,

=
V (x, y)

1− α
Ax (x, y)

A(x, y)
, ∀(x, y) ∈ ∂S,

If the boundary ∂S consists of a single point denoted by x∗, then we may rewrite these conditions using A(x, y) =

a(x)y and equation (A.13) to yield

ex
∗/(1−α) v (x∗) = (1− α) α̃ [φa (x∗)]1/(1−α) ,

ex
∗/(1−α) [(1− α)v(x∗) + v′(x∗)] = α̃ φ1/(1−α) a (x∗)α/(1−α) a′ (x∗) ,

=
ex
∗/(1−α) v(x∗)

1− α
a′(x∗)

a(x∗)
.

The smooth pasting condition can be further simplified to read

(1− α)2 =
a′(x∗)

a(x∗)
− (1− α)

v′(x∗)

v(x∗)
.

2. Critical upper bound for x: Consider again the value of the project when investment is fixed at K and when

investment can be set at its optimal value K∗ (x, y):

φKαA (x, y)−K, ∀ (x, y) ∈ R× R≥0,

(1− α) α̃ [φ A (x, y)]1/(1−α) , ∀ (x, y) ∈ R× R≥0.

The value matching condition stipulates that both should be equal at (x, y) ∈ ∂S. Moreover, the investor should

wait (i.e. not invest) if the expected return on the (optimally scaled) asset (1−α)α̃[φA(x, y)]α/(1−α) is larger than

the risk-free return ρ on this asset. Thus the following implication holds:

(1− α) α̃ (L − ρ) [φA (x, y)]1/(1−α) > 0 ⇒ (x, y) ∈ C. (A.15)

(The converse statement is not true.) Given that the left-hand side is continuous, we may also investigate the

implication

0 = (L − ρ)A(x, y)1/(1−α) ⇒ (x, y) ∈ C. (A.16)

We will find this equation to define a curve in (x, y) space given by x = constant. Substitution of (A.12) for

LA(x, y)1/(1−α) and using LA(x, y) = ρA(x, y)− y as in (3.2) and A(x, y) = y a(x) as in (3.3) gives

0 =
1

1− α
[y a(x)]α/(1−α) [ρ y a(x)− y] − ρ [y a(x)]1/(1−α)

+
σ2

2

α

(1− α)2
[y a(x)]1/(1−α)

(
ax(x)

a(x)

)2

.

This equation can be simplified27 to give

1 = ρα a(x) +
σ2

2

α

1− α
ax(x)2

a(x)
, (A.17)

27We multiply by 1− α, after which two terms cancel, we recognise that the factor y1/(1−α) in all terms drops out, and

finally we divide by a(x)α/(1−α) to obtain the result.
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which is stated in Proposition (8). We call the solution of this equation xo. The existence and uniqueness of xo

follow from Proposition 2 because the right-hand side is monotonically increasing in x, zero in the limit x → −∞
and ∞ in the limit x → ∞. Because the right-hand side is increasing in x, it follows that (A.15) holds for all

x > xo. This means the investor should not invest for any x > xo. Indeed, the optimal decision rule is to invest

when x ≤ x∗, where x∗ ≤ xo with equality only in the case σ2 = 0. Hence we should not invest when x ≥ xo. The

next section in this appendix shows that we should invest as soon as x ≤ x∗.

3. Comparative statics: α does not affect a (x) while it increases the right hand side; since the right hand side is

increasing in x, this implies that the solution for x must be decreasing in α.

A.13 Solution for Cobb-Douglas case

This section solves the ODE (A.14) satisfied by the unknown function v(x). To solve the ODE, it is useful to introduce

the coordinate transformation x 7→ z(x), where z := x− ασ2

1−α . Furthermore, let w(·) = v(·+ ασ2

1−α ), such that w(z) = v(x).

Because z is equal to x shifted by a constant, it follows that v′(x) = w′(z) and v′′(x) = w′′(z). Hence equation (A.14) can

equivalently written as

0 =
σ2

2
w′′(z)− z w′(z) + ν w(z), ∀z ∈ R, (A.18)

which is recognized as Hermite’s ODE. If ν were a positive integer (which it is not), then a possible solution would be

Hν(z/σ), where Hν(·) is a Hermite polynomial of degree ν. However, we shall see that the desired solution can still be

written as Hν(z/σ), as long as the Hermite polynomial is interpreted in a generalized sense, where ν is allowed to be

non-integer and negative.

To show that this is the case, we propose a series expansion w(z) =
∑∞
i=0 ciz

i as our candidate solution. For w′′(z),

we have
σ2

2
w′′(z) =

σ2

2

d2

dz2

∞∑
i=0

ciz
i = σ2 c2 +

σ2

2

∞∑
i=1

ci+2 (i+ 2) (i+ 1) zi,

while for w′(z) it holds that

−zw′ (z) = −z
d

dz

∞∑
i=0

ciz
i = −

∞∑
i=1

i ci z
i.

Substituting these equalities into Hermite’s ODE (A.18) gives

0 = σ2c2 + ν c0 +

∞∑
i=1

[
σ2

2
ci+2(i+ 2)(i+ 1)− (i− ν) ci

]
zi,

=

∞∑
i=0

[
σ2

2
ci+2(i+ 2)(i+ 1)− (i− ν) ci

]
zi, ∀z ∈ R.

This equation holds only if coefficient in square brackets is zero for every single value of i = 0, 1, 2, 3, · · · . Hence we need

ci+2 =
2

σ2

i− ν
(i+ 2)(i+ 1)

ci, ∀i = 0, 1, 2, 3, · · ·

This recursive equation relates ci+2 to ci. Two independent solutions wk(z) for k = 1, 2 may be obtained by starting with

an arbitrary value of c0 (or c1) and considering only even (or odd) powers as follows:

w1(z) = c0

[
1 +

2

σ2

0− ν
2× 1

z2 +
22

σ4

0− ν
2× 1

2− ν
4× 3

z4 + · · ·
]

=: c0 1F1

(
−ν
2
,

1

2
,
z2

σ2

)
,

w2(z) = c1

[
z +

2

σ2

1− ν
3× 2

z3 +
22

σ4

1− ν
3× 2

3− ν
5× 4

z5 + · · ·
]

=:
c1 z

σ
1F1

(
−(ν − 1)

2
,

3

2
,
z2

σ2

)
,

where, on the far right-hand side, we use the definition of the confluent hypergeometric function of the first kind, denoted

by 1F1(·, ·, ·), see e.g. Abramovich and Stegun (1972), p. 504, their equation (13.1.2). In the limit where z → ∞, these

functions behave like

w1(z) = c0 1F1

(
−ν
2
,

1

2
,
z2

σ2

)
≈ c0

√
π

Γ
(−ν

2

) ( z
σ

)−(1+ν)
ez

2/σ2
, as z →∞,

w2(z) = c1 z 1F1

(
−(ν − 1)

2
,

3

2
,
z2

σ2

)
≈ c1

√
π

2Γ
(

1−ν
2

) ( z
σ

)−(1+ν)
ez

2/σ2
, as z →∞,

(A.19)

see e.g. Abramovich and Stegun (1972), p. 504, their equation (13.1.4). By the approximation sign “≈”, we mean that the
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ratio of the quantities on its left and right goes to unity as z →∞. Next we recall Proposition 1, which says that the steady-

state distribution of x is normal with a variance of σ2/2. It follows that the steady-state distribution of z = x−ασ2/(1−α)

is also normal with a variance equal to σ2/2. This implies that the steady-state probability density of z decays proportional

to exp(−z2σ2) in the limit where z →∞. Hence, if we multiply the steady-state density by w1(z) or w2(z), then as z →∞
the product looks like (z/σ)−(1+ν), which is not an integrable function (recall that ν < 0). Hence, for c0, c1 ≥ 0, we have

E
[
w1(z)

∣∣z > 0
]

= E
[
w2(z)

∣∣z > 0
]

= ∞.

In such circumstances, Dixit and Pindyck (1994) (pp. 181-2) use a ‘no-bubble argument’ to rule out a solution with

undesirable asymptotic properties. In our case, however, this rules out both our candidate solutions. Hence we must pick

c0 and c1 so that the linear combination w(z) = w1(z) +w2(z) grows much slower than (x/σ)−(1+ν) exp(z2σ2) in the limit

where z →∞. From (A.19), it follows that the following choice is adequate:

c0 = C 2ν
√
π

Γ
(

1−ν
2

) , c1 = −C 2ν
2
√
π

Γ
(−ν

2

) ,
where the factors of 2 are introduced for convenience and C is an arbitrary constant. While it is clear that c0 and c1 must

be of opposite sign for the desired cancellation to happen, our choice c0 > 0 and c1 < 0 is arbitrary (but convenient). When

this choice is made, the full solution reads

w(z) = w1(z) + w2(z),

= C 2ν
√
π

[
1

Γ
(

1−ν
2

) 1F1

(
−ν
2
,

1

2
,
z2

σ2

)
−

2 z/σ

Γ
(−ν

2

) 1F1

(
−(ν − 1)

2
,

3

2
,
z2

σ2

)]
,

= C Hν
( z
σ

)
,

(A.20)

where the third equality holds only if the Hermite polynomial is understood in a generalized sense, in which case it is defined

as in the second line. Some computer packages, such as Wolfram’s Mathematica, automatically compute Hν(·) for negative

non-integer values of ν by using the second line in (A.20) as the definition of the third.28. Other software packages, notably

Matlab, return an error message, in which case the second rather than the third equality in (A.20) must be used.

Collecting our results so far and transforming back into our original variable x, the non-negative function V (x, y) that

behaves appropriately as x→∞ reads

V (x, y) = C y1/(1−α) ex/(1−α) Hν

(
x

σ
−

ασ

1− α

)
,

where ν = µ
1−α + σ2

2(1−α)2
− ρ < 0. This function is appropriately behaved at x → ∞ because Hν(x) ≈ (2x)ν for x → ∞.

Finally, only two unknowns remain: (i) C and (ii) x∗. These can be found by using a numerical procedure based on

two remaining conditions (value matching and smooth pasting) as explained in part one of Appendix A.12. A simple

implementation in Wolfram’s Mathematica based on the function FindRoot is available on request.

A.14 Proof of Proposition 9

The Bellman equation for Vλ(x, y) in (5.10) in conjunction with the definition of Wλ(x, y) in (5.10) implies that

(ρ− L)Wλ(x, y) = (ρ− L)Vλ(x, y) − (ρ− L)
[
(1− α)B∗(x, y) − ρ1/(α−1)

]
,

= λW−λ (x, y) + d(x, y)

where d(x, y) was defined in (5.12). Adding to both sides λWλ(x, y) and using that W−λ (x, y) +Wλ(x, y) = W+
λ (x, y), we

obtain (5.11). The other statements in Proposition 9 follow by the same arguments as in Propositions 6 and 7.

28See http://functions.wolfram.com/05.01.26.0002.01.
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A.15 Proof of equation (5.14)

The equation d(x, y) = 0 may be solved for y to give

d(x, y) = 0 ⇒ y =
ρα

φa(x)α α̃1−α
[
1 − ρα a(x) − σ2

2
α

1−α
a′(x)2

a(x)

]1−α ,
=

ρα (1− α)1−α

a(x)α
[
1 − ρα a(x) − σ2

2
α

1−α
a′(x)2

a(x)

]1−α ,

where we have used φ := α−α(1 − α)α−1 and α̃ := αα/(1−α), such that φ Ãα̃1−α = (1 − α)α−1. The optimal stopping

boundary y(x) must lie above the curve d(x, y) = 0, such that on the domain x ∈ (−∞, xo), we have

y(x) ≥
ρα (1− α)1−α

a(x)α
[
1 − ρα a(x) − σ2

2
α

1−α
a′(x)2

a(x)

]1−α ,
≥

ρα (1− α)1−α

a(x)α [1 − ρα a(x) ]1−α
≥ 1.

The last inequality follows because the function ρα (1−α)1−αa(x)−α[1−ραa(x)]α−1 has a global minimum at a(x) = ρ−1,

where the value of the function is 1.
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