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Abstract

We develop a vector autoregressive model with time variation in the mean and the variance.
The unobserved time-varying mean is assumed to follow a random walk and we also link it to
long-term Consensus forecasts, similar in spirit to so called democratic priors. The changes
in variance are modelled via stochastic volatility. The proposed Gibbs sampler allows the
researcher to use a large cross-sectional dimension in a feasible amount of computational time.
The slowly changing mean can account for a number of secular developments such as changing
inflation expectations, slowing productivity growth or demographics. We show the good fore-
casting performance of the model relative to popular alternatives, including standard Bayesian
VARs with Minnesota priors, VARs with democratic priors and standard time-varying param-
eter VARs for the euro area, the United States and Japan. In particular, incorporating survey
forecast information helps to reduce the uncertainty about the unconditional mean and along
with the time variation improves the long-run forecasting performance of the VAR models.

Keywords: Consensus forecasts, forecast evaluation, large cross-sections, state space models.

JEL Classification: C11, C32, C53, C55, E37.

∗ European Central Bank, e-mail: marta.banbura@ecb.europa.eu.
† Vrije Universiteit Amsterdam, e-mail: a.c.van.vlodrop@vu.nl.

We would like to thank Francisco Blasques, Adam Elbourne, Siem Jan Koopman, André Lucas, Emanuel Mönch,
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1 Introduction

We develop and evaluate an extension of vector autoregressive (VAR) models that allows for

variation in the level of the unconditional mean over time. In a standard VAR representation a

time-invariant filter is applied to variables in deviation from their time-invariant unconditional

mean. Our approach relaxes the latter assumption by considering a constant coefficient VAR for

variables in deviation from a local mean vector, which we allow to vary over time as a random walk.

We also allow additional “signal” on the unobserved local mean by linking it to some observable

variable, in our case long-term Consensus forecasts, via a measurement equation. Finally, we

allow for time variation in the variances by assuming stochastic volatility for all shocks.

The motivation for the time variation in the mean originates from relevant “low-frequency”

changes that can be observed in a number of key macroeconomic variables. For example, over the

last decades many advanced economies, including the euro area, the United States and Japan, ex-

perienced declining inflation and interest rates, reflecting, among other things, structural changes

to the conduct of monetary policy and to the formation of inflation expectations. Also aver-

age growth rates of output have been changing over time in many countries, related inter alia

to developments in demographics or productivity. Figure 1 plots the developments of these key

macroeconomic variables together with corresponding long-term forecasts from Consensus Eco-

nomics. First, the time series shown in the figure seem to invalidate approaches which take the

unconditional mean of these series to be constant over time. Second, the long-term forecasts

appear to track well low-frequency movements in GDP growth and inflation.

The common approach in the literature to handle structural changes in the VAR context is to

allow all the VAR coefficients to vary over time (as random walks). Examples of such time-

varying parameter VARs (TVP-VARs) include Cogley and Sargent (2005) and Primiceri (2005).

Such general case of time variation implies, however, a large number of time-varying parameters to

perform inference on. This becomes problematic as the number of variables included in the VAR

increases. Computational considerations arise from the time requirements of the MCMC sampler.1

Also, heavy parameterisation might lead to overfitting and large uncertainty associated with the

parameter estimates. Typically, TVP-VARs as specified in Cogley and Sargent (2001, 2005) and

Primiceri (2005) only include three variables and two autoregressive lags. Several approaches have

been proposed to address these problems. For example, Koop and Korobilis (2013) propose an

approximation to the posterior distribution by using forgetting factors to reduce the computational

burden related to repeated Kalman filter runs. Eisenstat, Chan, and Strachan (2016) propose

stochastic model specification search for TVP-VARs with stochastic volatility in order to deal

with overfitting and the typically imprecise inference in these highly parameterised models (see

also Frühwirth-Schnatter and Wagner, 2010; Belmonte, Koop, and Korobilis, 2014). de Wind and

Gambetti (2014) introduce cross-equation restrictions on the time variation.

1This is because more MCMC draws are needed, but also the MCMC steps itself become more demanding,
thereby explosively increasing the required computational time.
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Figure 1: Key macroeconomic variables and their long-term survey forecasts
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Notes: Blue lines show GDP growth, inflation and the short-term interest rate (in columns) for the euro area, the United
States and Japan (in rows). The dotted lines show the long-term survey forecasts for GDP growth and inflation from
Consensus Economics.

The approach proposed in this paper allows for time variation in the mean and the variance of

the variables but assumes that the coefficients of the VAR are constant over time. Therefore

it allows the researcher to consider a larger number of variables than in a “fully” time-varying

version and potentially limits estimation uncertainty. Similar approaches were recently adopted in

Garnier, Mertens, and Nelson (2015), Crump, Eusepi, and Moench (2016) and Andrle and Bruha

(2017). In particular, Garnier, Mertens, and Nelson (2015) fit such a VAR to inflation rates and

they associate the local mean with the inflation “trend”, in the spirit of the Beveridge-Nelson

decomposition since it coincides with the infinite horizon forecast. They find little evidence of

time variation in the VAR coefficients for the deviations of inflation rates from the trend.

As an additional element, we link the local mean with the long-term Consensus forecasts via a

measurement equation. Such “anchoring” allows for adding off-model information and for reducing

the dispersion of the posterior distribution of the local mean. The information value of survey

forecasts, such as of those collected by Consensus Economics, for model-based forecasting has been
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shown in many studies. Ang, Bekaert, and Wei (2007) and Faust and Wright (2013) show that

survey forecasts by themselves already have good forecasting properties for inflation compared to

model based forecasts. Wright (2013) shows the improved forecasting performance from including

long-term survey forecasts in VAR models via “democratic priors” on the unconditional mean.

Clark and McCracken (2006) and Clark and Doh (2014) show that detrending inflation using

survey forecasts can lead to better forecasting performance of (V)AR models compared to non-

detrended versions. Several studies exploit the information from survey forecasts to estimate

inflation expectations or trends (see e.g. Kozicki and Tinsley, 2012; Mertens, 2016; Chan, Clark,

and Koop, 2017; Lenza and Jarociński, 2016). Crump, Eusepi, and Moench (2016) use a term

structure of professional forecasts for GDP growth, inflation and interest rates to inform the

low-frequency evolution of these variables.

Besides time variation in the mean we introduce time variation in the variances, precisely we

allow for stochastic volatility. First, we assume stochastic volatility in the VAR innovations. A

number of studies provides empirical evidence that adding stochastic volatility to VARs improves

in-sample fit and forecast accuracy (see e.g. Clark, 2011), also in the case of large VARs (Carriero,

Clark, and Marcellino, 2016a,b). Moreover, Sims (2001) and Stock (2001) argue that when adding

stochastic volatility outliers are down-weighted and a part of the time variation in the coefficients

of TVP-VARs might disappear. Secondly, we assume stochastic volatility for the innovations in

the local mean process. As a result, the model nests the univariate unobserved components with

stochastic volatility (UCSV) model of Stock and Watson (2007), who document the importance of

allowing for stochastic volatility in trend inflation. The UCSV model has been shown to have good

forecasting properties for inflation and has become a popular benchmark in forecast evaluations.

Finally, we also consider stochastic volatility in the equation relating the local mean to long-term

survey forecasts, which can potentially account for periods in which the local mean differs more

strongly from the survey forecasts.

We adopt the Bayesian approach for inference and we approximate the posterior distribution of

the parameters using a Gibbs sampler. Conveniently, the model allows a linear Gaussian state

space representation.2 The Gibbs sampling step for inference on the local mean process is then

performed using a version of the simulation smoother of Carter and Kohn (1994). A key feature

of the local mean approach is that it admits the use of a large cross-sectional dimension.3 For the

coefficients of the VAR we take the Minnesota-type priors of Doan, Litterman, and Sims (1984).

Further, we adopt the triangularisation method of Carriero, Clark, and Marcellino (2016b), which

allows estimating VARs with a large cross-sectional dimension also when stochastic volatility is

assumed for the VAR innovations.

We analyse the in-sample properties of the model and evaluate it in an out-of-sample forecasting

2To be more precise, this holds when we condition on the stochastic volatility processes.
3Previous studies indicate that VARs with a larger cross-sectional dimension might be preferred over smaller

VAR models if an appropriate degree of coefficient shrinkage is adopted (see e.g. Bańbura, Giannone, and Reichlin,
2010).
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exercise for forecast horizons ranging from one-quarter to three years. We focus on the results

for the euro area but we also check the robustness of the results and the scalability of the model

using datasets for the United States and Japan. Given the availability of Consensus forecasts,

the evaluation sample runs from 2000Q1 until 2016Q3. The benchmark models include standard

VARs with Minnesota-type priors, VARs with democratic priors, standard TVP-VARs and the

UCSV model. The forecast evaluations indicate favourable forecasting performance of the model

compared to the benchmarks, in particular at longer horizons. In more detail, it appears that

the improved forecasting performance of the model is due both to the inclusion of the long-term

survey forecast information (as the “democratic prior” model is also competitive and a version

of the local mean VAR without the link to survey forecasts performs worse) and to allowing for

time variation in the mean (as the model often improves over the “democratic prior” model).

The good forecasting performance relative to TVP-VARs could indicate that the model captures

better the relevant dimension of time variation, is subject to reduced estimation uncertainty via

a lighter parameterisation and/or has an advantage from the reliance on off-model information.

Importantly, survey information reduces the dispersion of the posterior distribution of the local

(unconditional) mean. This results in smaller forecast revisions between consecutive forecast

updates, which is an important consideration for practitioners. The off-model information also

seems to be key when enlarging the cross-sectional dimension of the local mean VAR model.

This paper contributes to a growing literature on how best to model time variation in macro time

series models in a forecasting context. Recent studies include D’Agostino, Gambetti, and Gian-

none (2013) who report better forecasting performance of TVP-VARs over constant parameter

versions for inflation (but not for unemployment and the interest rate). Barnett, Mumtaz, and

Theodoridis (2014) show that some models with time variation tend to outperform constant pa-

rameter models but not consistently across variables and evaluation samples. Aastveit, Carriero,

Clark, and Marcellino (2017) document evidence for time variation in the VAR framework and

evaluate a range of constant parameter VARs and VARs allowing for some time variation. They

show that no model consistently beats the others; TVP-VARs tend to work well with smaller

systems but constant parameter models are in general hard to beat. Dijk, Koopman, Wel, and

Wright (2014) stress the importance of allowing for shifting endpoints in yield curve factors when

forecasting interest rates. In addition, they argue that “anchoring” such endpoints by exploiting

the information from survey forecasts yields good forecasting performance. Stock and Watson

(2010) recommend a Phillips curve for inflation in deviation from a stochastic trend and find that

the reaction to a gap measure is stable for such deviation. Stock and Watson (2012) indicate

the importance of first detrending the data before fitting a (constant coefficient) dynamic factor

model (DFM). Also Antolin-Diaz, Drechsel, and Petrella (2017) show that allowing for a time-

varying intercept for GDP within a DFM leads to improved forecasting performance. Götz and

Hauzenberger (2017) allow for time-varying intercepts in a mixed frequency VAR and they show

advantages with respect to both constant-parameter and fully time-varying versions.

The rest of this paper is organised as follows. Section 2 presents the local mean VAR model

we study in this paper. In Section 3 we describe the data, provide implementation details and
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present some in-sample estimation results. Section 4 contains the description and the results

of the forecast evaluations. Section 5 provides a more detailed analysis of the forecasts for the

euro area, furthermore this section reports impulse response functions for different models and

discusses forecasting conditional on scenarios for long-term expectations. Section 6 contains some

sensitivity analysis. A conclusion follows in Section 7.

2 Model description

2.1 Local mean VAR model

The local mean VAR model is a generalisation of the standard VAR model with a time-invariant

unconditional mean. Let yt denote the M -dimensional vector containing the variables of interest

at time t. Further, the vector ψt denotes the local mean of these variables at time t. Consider the

VAR for the variables in deviation from their local mean:

yt − ψt =

p∑
k=1

Bk (yt−k − ψt−k) + εt, εt ∼ N (0, Ht) , (1)

where Ht represents the (time-varying) covariance matrix of the innovations. We assume that the

VAR coefficients B1, . . . , Bp are time-invariant and that they satisfy the usual stability condition

required for stationary VARs.

We model the process for the local mean vector, ψt, as univariate random walk processes for each

of its elements:

ψt = ψt−1 + ηt, ηt ∼ N(0, Vt), (2)

where Vt is diagonal: Vt = diag(σ2
V,1,t, . . . , σ

2
V,M,t). Under these assumptions we have that:

limh→∞ Et [yt+h | ψt] = ψt, (3)

where Et denotes the expectation conditional on the information set available at time t. The

interpretation of (3) is that the point forecasts from the local mean VAR model in (1) and (2)

converge, as the forecast horizon increases, towards the local mean at time t.

2.2 Including information from long-term survey forecasts

Let zt denote the Mz-dimensional vector of long-term survey forecasts at time t for t = tz, . . . , T .

We note that the survey forecasts might be unavailable at the beginning of the sample, therefore

we indicate by tz the first point in time when these are available.4 We exploit the information

4For notational simplicity we use here a single tz for all the survey forecasts. The modification to the case with
individual survey forecasts starting in different points in time is straightforward.
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from survey forecasts on the long-term developments in the variables of interest by linking the

unobserved local mean to such forecasts through a measurement equation:

zt = ψt + gt, gt ∼ N (0, Gt) , (4)

where Gt is diagonal: Gt = diag(σ2
G,1,t, . . . , σ

2
G,Mz ,t

), since we assume no cross-sectional depen-

dence between the measurement equations defined in (4).

Survey forecasts might only be available for a selection of the variables, Mz ≤ M . In case of

such partial coverage we use a selection matrix, Pψ, that selects the Mz elements in the ψt vector

corresponding to the variables for which the survey information is available and we replace ψt by

Pψψt in (4), see Section 3.2 for an example.

Compared to the detrending of VAR variables using survey forecasts, one of the advantages of

the approach proposed here is that shorter samples and other cases of missing observations in the

survey forecasts can be easily handled using Kalman filtering techniques.

We shall refer to the local mean VAR model augmented with survey forecasts as the survey local

mean (SLM) VAR model. For brevity we shall often omit the VAR part and refer to it as the SLM

model. We note that the SLM model described by equations (1)-(2) and (4) can conveniently be

cast in a state space form (see Appendix A for the details).

2.3 Stochastic volatility

Stochastic volatility is assumed for the innovations in each of the equations (1)-(2) and (4). For

Ht in (1) we follow Carriero, Clark, and Marcellino (2016b) and decompose it as:

Ht = A−1Λt
(
A−1

)′
, Λt = diag

(
σ2
H,1,t, . . . , σ

2
H,M,t

)
, (5)

where A is a (time-invariant) lower triangular matrix with ones on its diagonal and Λt is a

diagonal matrix with the time-varying variances of the shocks on the diagonal. The covariance

matrices Vt and Gt from (2) and (4) are both taken to be diagonal. What remains is to specify

the stochastic processes for the variances. We follow the standard approach and take logarithmic

transformations and model these as random walk processes:5

lnσ2
H,i,t = lnσ2

H,i,t−1 + uH,i,t, uH,i,t ∼ N(0, φH,i), i = 1, . . . ,M, (6)

lnσ2
V,i,t = lnσ2

V,i,t−1 + uV,i,t, uV,i,t ∼ N(0, φV,i), i = 1, . . . ,M, (7)

lnσ2
G,i,t = lnσ2

G,i,t−1 + uG,i,t, uG,i,t ∼ N(0, φG,i), i = 1, . . . ,Mz. (8)
5The random walk specification is more parsimonious compared to a mean-reverting version and therefore might

be preferable for forecasting. Clark and Ravazzolo (2015) evaluate different forms of time-varying volatility in the
Bayesian VAR framework and find that stochastic volatility dominates other specifications in terms of forecasting
performance and that there is little difference between the mean-reverting and random walk specifications.
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2.4 Prior distributions

The set of parameters in the model is {{ΛT , V T , GT }, {φH , φV , φG}, A,B, ψT }, where the super-

script T denotes the full time series of a parameter and B = [B1 : . . . : Bp]
′ collects the VAR

coefficients. We base our specifications of the prior distributions for these parameters mainly on

common conventions in the literature on Bayesian VARs.

For the VAR coefficients we take an independent normal prior:6

vec (B) ∼ N
(
µ
B
,ΩB

)
, (9)

where we specify the prior variances in the diagonal matrix ΩB following the ideas behind the

Minnesota prior of Doan, Litterman, and Sims (1984). Precisely, we impose more shrinkage on

more distant lags and we make the distinction between the coefficients relating variables to their

own lags (the diagonal elements of the Bk matrices) and the coefficients relating to lags of other

variables (the off-diagonal elements). For the diagonal coefficients we set the prior variances as:

var
(
B

(i,i)
l

)
=
λ2

l2
, i = 1, . . . ,M, l = 1, . . . , p, (10)

and for the variances of the off-diagonal VAR coefficients we take:

var
(
B

(i,j)
l

)
= τ

λ2

l2
σ2
i

σ2
j

, i, j = 1, . . . ,M, i 6= j, l = 1, . . . , p. (11)

The hyperparameter λ controls the degree of overall shrinkage towards the prior means, i.e. how

important the priors are compared to the information in the data. For λ→∞ the priors become

uninformative, while as λ→ 0 the posterior distributions of the VAR coefficients are increasingly

shrunk towards the prior means. With the hyperparameter τ more shrinkage is imposed on the

off-diagonal elements. Furthermore, the prior on the off-diagonal elements takes into account the

relative scales of the variables through σ2
i /σ

2
j .

For the local mean process ψp+1, . . . , ψT we set a Gaussian prior on the initial value ψp+1:

ψp+1 ∼ N
(
µ
ψ
,Ωψ

)
. (12)

Turning to the prior distributions for the parameters related to the covariance matrices in the

VAR, for the A matrix in the decomposition in (5) we specify the priors row by row as in Cogley

and Sargent (2005). Let ai, i = 2, . . . ,M , denote the ith row of the below diagonal part of the

matrix A. The vector ai is of dimension i− 1 and we use the following prior distributions:

ai ∼ N
(
µ
a,i
,Ωa,i

)
, i = 2, . . . ,M. (13)

6We refer to Kadiyala and Karlsson (1997) and Karlsson (2013) for a discussion of priors on B.
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For the stochastic volatility processes we specify the distribution of the initial value and the prior

distributions for the variance parameters φ governing the amount of time variation in the process

as follows:

lnσ2
H,i,p+1 ∼ N (0, vH) , φH,i ∼ IG

(
dφH × φH,i, dφH

)
, i = 1, . . . ,M, (14)

lnσ2
V,i,p+2 ∼ N (0, vV ) , φV,i ∼ IG

(
dφV × φV,i, dφV

)
, i = 1, . . . ,M, (15)

lnσ2
G,i,tz ∼ N (0, vG) , φG,i ∼ IG

(
dφG × φG,i, dφG

)
, i = 1, . . . ,Mz, (16)

2.5 Gibbs sampler

We specify a Gibbs sampling algorithm to approximate the posterior distribution of the parame-

ters, the details of which are provided in Appendix A. We emphasise two elements of our inference

approach. First, it is computationally feasible for a large cross-section of time series. Notably,

we implement the recently proposed triangularisation method of Carriero, Clark, and Marcellino

(2016b) to sample the VAR coefficients B equation by equation, which allows for having both a

large cross-sectional dimension as well as stochastic volatility in the VAR innovations. Second,

the inference on the local mean process can be performed through standard simulation smoothing

methods, where we use a version of the simulation smoother of Carter and Kohn (1994).
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3 Data, implementation details and in-sample results

3.1 Data

Our dataset consists of quarterly observations for key macroeconomic variables as well as survey

based long-term forecasts for some of those variables for the euro area, the United States and

Japan. For each economy we consider real GDP, investment and consumption growth, as well

as inflation and the nominal short-term interest rate, for the period 1970Q2-2016Q3.7 Detailed

information on the dataset is provided in Table A1 in Appendix B. Most of the results reported

in this paper are for a three-variable system with real GDP growth, inflation and the short-term

interest rate for the euro area.

The long-term survey forecasts are provided by Consensus Economics and correspond to the

average 6 to 10 year ahead expectations. Only a very short time series is available for the short-

term interest rate forecasts for the euro area and we do not use it in the analysis. Prior to 2003

the survey forecasts for the euro area are derived by aggregating the forecasts for the (available)

euro area countries. The forecasts are released in April and October of each year. We assign the

April value to Q1 and Q2 and the October value to Q3 and Q4.8

3.2 Implementation details

The applications in this paper involve quarterly data and we make the common choice to include

p = 4 lags in the VAR. For the hyperparameters λ and τ in the Minnesota prior on the VAR

coefficients B we take the usual values in the literature, i.e. λ = 0.2 and τ = 0.5.9 Regarding

the variance scaling parameters σ2
i , we take them as the residual variances of univariate AR(4)

models estimated on a training sample. For the prior mean for B we take µ
B

= 0 as is commonly

done for stationary VARs. We further impose stationarity of the VAR equation in (1) by rejecting

instable draws of B.

For the local mean process we set the prior mean µ
ψ

for ψp+1 equal to the average values of the

variables in the training sample. We then obtain a diffuse initialisation by setting Ωψ = 1, 000×IM .

For the stochastic volatility processes we specify diffuse initial conditions. For the hyperparame-

ters in the inverse Gamma prior on the variance of the innovations we take dφ = 10 and φ = 0.01

7All the data considered have the same time stamp, therefore we do not take into account data revisions over
time.

8Alternatively we could treat the data as missing in two quarters of each year. Forecast accuracy is comparable
when following this approach. The results are available upon request. As of 2014 long-term Consensus forecasts
are available on a quarterly basis.

9For the larger cross-section of 15 variables we increase the shrinkage as advocated by e.g. Bańbura, Giannone,
and Reichlin (2010), i.e. we set λ = 0.1.
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for each equation. For the rows of the A matrix we specify an uninformative prior, i.e. µ
a,i

= 0

and Ωa,i = 1, 000× Ii−1 for i = 2, . . . ,M .

For the Cholesky decomposition of the covariance matrix Ht in (5) we need to decide on the

ordering of the variables, which matters slightly for the posterior distribution, as mentioned by

e.g. Primiceri (2005). Our choice corresponds to the common practice in the literature on Bayesian

VARs with stochastic volatility, namely we follow the insight of slow and fast-moving variables of

Bernanke, Boivin, and Eliasz (2005). The ordering is as displayed in Table A1.

We note that the survey forecast data is not available for the early period, where we treat them

as missing data (see Appendix A for details). Further, as mentioned above, our data set does

not include long-term survey forecasts of the short-term interest rate. We specify the selection

matrix Pψ such that all the local means, except those for the short-term interest rate, are linked

to long-term survey forecasts. For example, the equation relating survey forecasts to the local

mean in (4) for the three-variable system is as follows:

zt = Pψψt + gt, Pψ =

[
1 0 0
0 1 0

]
. (17)

We start the Gibbs sampling algorithm with a burn-in sample of 10, 000 draws which we then

discard and consider the following 25, 000 draws for inference purposes.10 To generate forecasts,

for each Gibbs draw (generated over the estimation sample) we produce forecast paths in two

steps: in the first step we simulate the time-varying parameters out-of-sample; in the second step

the paths of the variables (innovations) are simulated. To increase the accuracy, we repeat these

two steps 25 times for each of the Gibbs draws.

3.3 In-sample results

In this section we look at the posterior distributions of the local mean and the stochastic volatility

processes in the SLM model for the three-variable system (real GDP growth, inflation and the

short-term interest rate, in this order) for the euro area. The training sample runs from 1970Q2

until 1981Q1 and the estimation period (for which we show the in-sample posterior distribution)

is 1980Q2-2016Q3. As explained above, only the local means for GDP growth and inflation are

anchored by the long-term survey forecasts.

Figure 2 depicts the posterior distribution of the local mean process. The posterior median and

the 68% and 90% (symmetric) coverage bands are shown together with the data and the survey

10Casual checks confirm that a burn-in sample of 10, 000 draws is enough to reach convergence. Furthermore,
the inefficiency factors show satisfactory mixing properties of the proposed Gibbs sampling algorithm for the three-
variable VARs, but also for the large cross-section of 15 variables. This indicates that the Gibbs sampling algorithm
is able to handle also larger cross-sections efficiently. The results are available upon request.

11



Figure 2: Posterior distribution for the local mean in the SLM model
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Notes: In-sample estimates of the local mean process from the SLM model with three variables. The posterior distribution
is summarised by the median (dashed line) and the 68% (light grey area) and 90% (dark grey area) coverage bands. The
blue line corresponds to the data and the squares to the long-term survey forecasts.

forecasts. For GDP growth and inflation there is a strong anchoring of the local mean process

towards the survey forecasts when the latter become available.11 Also, over the full sample period

the local mean process captures well a slowly declining trend in these variables. For the short-

term interest rate, as there is no anchoring by long-term forecasts, the posterior distribution of

the local mean process is wider and there is more pronounced time variation (the local mean

“tracks” the data more). It is noteworthy that at the end of the sample the local mean process

moves upwards, while the short-term interest rate remains around zero. This appears to be the

result of the fact that the actual inflation has remained below its local mean for some time and

that the estimated time-invariant VAR relationships suggest that this should be associated with

the interest rate likewise remaining below its corresponding local mean (consistent with a Taylor

rule principle).

11Note that we have selected rather diffuse priors on the variances in (1) and (4), therefore the strong anchoring
is the result of the inference in the model (rather than being imposed).
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Figure 3: Posterior distribution for the stochastic volatility in the SLM model

1985 1995 2005 2015
0

5

10

GDP Growth

1985 1995 2005 2015
0

1

2

Inflation

1985 1995 2005 2015
0

0.3

0.6

S.T. Int. Rate

1985 1995 2005 2015
0

0.01

0.02

1985 1995 2005 2015
0

0.01

0.02

1985 1995 2005 2015
0

0.2

0.4

1985 1995 2005 2015
0

0.005

0.01

1985 1995 2005 2015
0

0.005

0.01
σ
2

G,t

σ
2

V,t
σ
2

V,t

σ
2

H,tσ
2

H,t

σ
2

G,t

σ
2

V,t

σ
2

H,t

Notes: In-sample estimates of the stochastic volatility processes. The rows report the posterior distributions of the
stochastic volatility for respectively: the shocks in the VAR; the error in the local mean process; and the error in the
measurement equation linking the local mean to the survey forecasts. The posterior distribution is summarised by the
median (dashed line) and the 68% (light grey area) and 90% (dark grey area) coverage bands.

Figure 3 shows the posterior distributions of the stochastic volatility processes. The top panels

summarise the posterior for the variances of the shocks in the VAR in (1). Some time variation

can be found in the shock variances for GDP growth and inflation. For example, during the

recent financial crisis of 2008 these variances increased strongly. For the short-term interest rate

there does not seem to be much time variation in the variance.12 For the posterior distributions

of the innovation variances in the random walk equation for the local mean in (2) and in the

second measurement equation given by (4) we find less evidence of time variation, especially in

the second part of the sample. However, to keep the model specification general we allow for

stochastic volatility in the errors in each of relationships (1)-(2) and (4).

12The setting for the interest rate is also different. The local mean is not anchored and can move more freely,
thereby potentially taking away a part of the time variation in the variance. In addition, as the interest rate is
ordered as last, it is also affected by the other two shocks (due to the Cholesky decomposition). Finally, the interest
rate is characterised by less volatility than GDP growth and inflation.
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4 Forecast evaluation

4.1 The forecasting exercise

The out-of-sample period on which the forecasts are evaluated is 2000Q1-2016Q3. We use the

first 10-year period, 1970Q2-1981Q1, as a training sample. For the first forecast we use data from

1980Q2-1999Q4 to run the Gibbs sampler, we then recursively expand this estimation window

by one quarter for each new forecast in the evaluation sample.13 Comparisons based on rolling

window estimation are considered in the sensitivity analysis in Section 6.

We consider forecast horizons of 1, 4, 8 and 12 quarters. Given the convergence of the point

forecasts to the unconditional or local mean, the relative accuracy over longer forecast horizons

is of particular interest for evaluating the SLM model.

Forecast accuracy is evaluated using two measures. For the point forecasts we compute the

root mean squared error (RMSE), comparing the mean of the simulated forecasts with the out-

of-sample observations. The density forecasts, constructed by fitting a Gaussian kernel to the

simulated forecasts, are evaluated with the log predictive score (LPS). Alternative measures of

accuracy are considered in Section 6.

The target variables in the forecast evaluations are the annualised GDP growth rate, the annu-

alised inflation rate and the level of the short-term interest rate. To abstract from volatility, for

GDP growth and inflation for the horizons of 4, 8 and 12 quarters we take the annualised averages,

over respectively the first, second and third year (for the forecast and the target variable). For

the short-term interest rate we forecast the level for each horizon.

In order to evaluate whether the SLM model can be applied also for larger datasets we look at

three different sizes of the cross-section in the VARs. The smallest dataset contains the three

target variables. To obtain a medium-size dataset we add investment and consumption, resulting

in a five-variable VAR. We construct the largest dataset by merging the medium-size datasets

for the three economies, obtaining a cross-sectional dimension of 15 variables.14 For a VAR with

time-varying parameters and stochastic volatility, 15 variables is generally considered to be a

relatively large dataset.15

In this section we consider pure out-of-sample forecasting with the SLM model. We defer to

Section 5.5 a discussion on how the SLM model can be used for forecasting conditional on a

13We use a single data vintage and therefore forecast comparisons abstract from the issue of real-time data
revisions.

14The ordering is as follows: for each variable (category) we put first the series for the United States, followed by
the euro area and Japan, we then order the categories as in Table A1.

15We note that, at least from a computational point of view, the SLM model is well able to handle larger datasets
than those we use here.
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future scenario for the long-term survey forecasts.

In terms of time variation the SLM model falls in between the constant parameter VARs and the

TVP-VARs. Accordingly, we split the forecasting exercises in two parts. All models allow for time

variation in the variance of the shocks via stochastic volatility. The results for implementations

with constant variance are reported in Section 6.

4.2 Comparison to constant coefficient VARs

4.2.1 Benchmark models

The first benchmark model is the standard Bayesian VAR with constant coefficients and intercept:

yt = c+

p∑
k=1

Bkyt−k + εt, εt ∼ N (0, Ht) , (18)

with Minnesota-type priors for c and Bk’s. In what follows we label this model as the constant

coefficients (CC ) VAR model. The SLM model extends on this benchmark by allowing for time

variation in the unconditional mean as well as by anchoring it to the long-term survey forecasts.

To better understand the role of the two elements just mentioned we also consider the democratic

prior (DP) approach of Wright (2013). First, under the stability conditions on Bk mentioned in

Section 2.1 we can reparameterise (18) into:

yt − µ =

p∑
k=1

Bk (yt−k − µ) + εt, εt ∼ N (0, Ht) , (19)

where µ represents the time-invariant unconditional mean. Villani (2009) proposes to put an

informative prior on µ and the DP approach uses the long-term survey forecasts as the mean of

this prior. As a result, the DP benchmark model allows for an anchoring of the unconditional

mean to survey forecasts, but assumes the unconditional mean to be time-invariant.16

To put the two benchmark models a priori on an equal footing with the SLM model the prior

settings for Bk’s and for the parameters related to stochastic volatility are the same as in the

latter model. The prior for c in specification (18) is diffuse. For the DP approach, when the

survey forecast is available it is taken as the prior mean for the corresponding element in µ and

the prior variance is set at 0.05. When, instead, no survey forecast is available we take a diffuse

prior. This coincides with the standard implementation as in Wright (2013) (with the exception

of stochastic volatility).

16Furthermore, for a given estimation sample, it only relates the unconditional mean to survey forecasts at the
end of the sample, while ignoring the historical values of these forecasts. One could even be more critical and argue
that the way survey forecasts enter as a prior in these models is not purely Bayesian, because survey respondents
can observe the past values of the variables before stating their forecasts and therefore the prior information comes
partly from the estimation sample.
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4.2.2 Results

Table 1: Forecast evaluation results for three-variable VARs

euro area United States Japan
RMSE CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.26 0.96∗∗∗ 0.94∗∗∗ 2.62 0.98 0.98 4.43 1.00 1.01
Growth 4Q 2.17 0.94∗∗ 0.86∗ 2.03 0.90∗∗ 0.92∗ 2.57 0.99 1.00

8Q 2.47 0.94∗∗ 0.87∗∗ 2.21 0.92∗∗ 0.89∗ 2.52 1.00 1.01
12Q 2.51 0.94∗∗∗ 0.90∗∗∗ 2.23 0.93∗∗ 0.93∗∗ 2.48 1.02◦◦◦ 1.01◦

Inflation 1Q 1.27 1.03◦ 0.99 2.25 1.01 0.99 1.56 1.00 0.99
4Q 1.01 1.01 0.95 1.26 1.02 0.98 1.06 1.05 1.03
8Q 1.21 0.98 0.92 1.37 0.95 0.92 1.15 1.02 1.05

12Q 1.22 1.01 0.92 1.41 0.95∗∗ 0.93 1.16 0.98 1.02

S.T. Int. 1Q 0.28 5.02◦◦◦ 1.00 0.41 2.00◦◦◦ 0.97 0.12 6.65◦◦◦ 1.33◦◦◦

Rate 4Q 1.05 1.48◦◦◦ 0.88 1.36 1.00 1.00 0.31 2.74◦◦◦ 1.18◦◦

8Q 1.80 1.16◦◦◦ 0.82 2.34 0.90 0.95 0.43 2.11◦◦◦ 1.33◦◦

12Q 2.17 1.09◦◦ 0.82∗ 2.81 0.86 0.88∗ 0.49 2.08◦◦◦ 1.52◦◦◦

LPS CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.18 −0.04∗∗∗ −0.07∗∗∗ 2.36 −0.04∗∗∗ −0.03 2.90 0.00 0.02
Growth 4Q 2.90 −0.18∗∗ −0.34∗∗ 2.21 −0.17∗∗∗ −0.11 2.55 −0.03 0.05

8Q 3.41 −0.31∗∗ −0.61∗ 2.42 −0.17∗∗∗ −0.20∗∗ 2.58 0.00 0.06
12Q 3.25 −0.23∗∗∗ −0.49∗∗ 2.43 −0.09∗∗∗ −0.16∗∗ 2.52 −0.01∗∗∗ 0.03

Inflation 1Q 1.73 0.00 −0.03 2.35 −0.02 −0.03 1.90 −0.01 −0.02
4Q 1.45 −0.02 −0.06 1.67 −0.01 0.00 1.55 −0.01 −0.03
8Q 1.59 −0.03 −0.03 1.82 −0.05 −0.08 1.64 −0.01 0.00

12Q 1.62 −0.04 −0.02 1.90 −0.06 −0.10 1.60 −0.03 0.02

S.T. Int. 1Q 0.30 −0.01∗ 0.50◦◦◦ 0.58 −0.03∗∗∗ 0.08◦◦◦ −0.15 0.00 0.29◦◦◦

Rate 4Q 1.46 −0.02∗∗∗ 0.13 1.79 −0.14∗∗ −0.07 0.73 0.01 0.11◦◦◦

8Q 2.04 −0.04∗∗∗ −0.11 2.58 −0.31∗∗ −0.29 1.16 0.03 0.07◦◦◦

12Q 2.25 −0.06∗∗∗ −0.17∗∗ 2.89 −0.44∗∗ −0.48∗∗ 1.38 0.03 0.08◦◦◦

Notes: Forecast evaluation results for the standard VAR with constant coefficients and Minnesota-type priors (CC), the
VAR with democratic priors (DP) and the SLM model, for the euro area, the United States and Japan. The top panel
displays the RMSE and the bottom panel (minus) the LPS. For the CC model the values of the RMSE and LPS are shown.
For the remaining two models the RMSE is divided by the RMSE of the CC model (hence values smaller than one indicate
that the CC forecasts are less accurate on average), while for the LPS we subtract the LPS of the CC model (hence the
negative values indicate that the CC forecasts are less accurate). The Diebold and Mariano (1995) tests indicate whether
the MSE and LPS values of the DP and SLM models are significantly different from the CC model. These take account of
the finite sample adjustment of Harvey, Leybourne, and Newbold (1997). For the (few) cases were the estimated variance
is negative we use a Bartlett kernel for the variance estimation and then apply the standard Diebold and Mariano (1995)
test. We consider one-sided alternative hypothesis. The superscripts ∗, ∗∗ and ∗∗∗ indicate that the DP or SLM model is
performing better at significance level 10%, 5% and 1%, respectively. Conversely, the superscript ◦ indicates that the CC
model is doing significantly better.

Table 1 summarises the results of the forecast evaluations for the three-variable systems for the

euro area, the United States and Japan. The top panel reports the accuracy of the point forecasts,

while the density forecast evaluations are shown in the bottom panel. For the CC model we display

the RMSE and (minus) LPS values17, for the DP and SLM models these are shown relative to

17Therefore lower values indicate better performance. For brevity we will refer to the LPS instead of minus LPS.
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Table 2: Forecast evaluation results for 15-variable VARs

euro area United States Japan
RMSE CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.15 0.99∗ 1.01 2.32 0.98∗ 0.97 4.36 1.00 1.00
Growth 4Q 1.96 0.97∗∗∗ 0.96 1.99 0.89∗∗ 0.91∗ 2.78 1.00 0.95

8Q 2.45 0.95∗∗ 0.87∗ 2.17 0.90∗∗ 0.92 2.70 1.01 0.97
12Q 2.49 0.95∗∗ 0.90∗∗ 2.21 0.95∗∗∗ 0.95∗ 2.58 1.02 0.98

Inflation 1Q 1.36 0.98 0.95∗ 2.20 0.98∗∗ 0.98 1.62 1.04 1.03
4Q 1.10 0.97 0.88 1.28 0.97∗ 0.96 1.18 1.01 1.16
8Q 1.30 0.92∗ 0.85 1.38 0.96∗∗ 0.92 1.34 0.94 1.10

12Q 1.30 0.92∗∗ 0.86 1.43 0.95∗∗∗ 0.93 1.35 0.93 1.06

S.T. Int. 1Q 0.30 2.50◦◦◦ 1.40◦◦ 0.53 1.28◦◦ 0.90∗∗ 0.38 1.79◦◦◦ 0.41∗∗∗

Rate 4Q 0.88 1.31◦◦◦ 1.23◦ 1.51 0.95 0.92 0.75 1.08 0.33∗∗

8Q 1.47 1.12◦◦◦ 1.07 2.37 0.92∗ 0.92 0.99 0.94 0.37∗∗∗

12Q 1.93 1.14◦◦◦ 0.93 2.75 0.90∗∗ 0.90 1.12 0.93 0.39∗∗∗

LPS CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.11 −0.01 0.00 2.25 −0.04∗∗∗ −0.03 2.85 0.01 0.00
Growth 4Q 2.65 −0.05∗∗ −0.12 2.22 −0.20∗∗∗ −0.14∗ 2.55 0.02 0.02

8Q 3.43 −0.20∗∗ −0.64∗ 2.41 −0.20∗∗ −0.18∗∗ 2.63 0.02 −0.01
12Q 3.32 −0.16∗∗∗ −0.55∗ 2.43 −0.11∗∗∗ −0.10∗∗ 2.52 0.01 0.02

Inflation 1Q 1.77 −0.02∗∗ −0.09∗ 2.28 −0.01∗∗ −0.04 1.93 0.01 0.03
4Q 1.58 −0.04 −0.18 1.71 −0.04∗∗ −0.04 1.68 −0.03 0.10
8Q 1.70 −0.05 −0.15 1.83 −0.06∗∗∗ −0.10 1.80 −0.12 0.02

12Q 1.67 −0.05 −0.10 1.88 −0.04 −0.10 1.77 −0.16 0.02

S.T. Int. 1Q 0.45 0.02◦◦ 0.42◦◦◦ 0.83 −0.03∗∗∗ 0.05◦ 0.53 −0.07∗∗∗ 0.34◦◦◦

Rate 4Q 1.33 0.06◦ 0.21◦◦◦ 1.88 −0.09∗∗ −0.14 1.15 −0.12∗∗∗ 0.07
8Q 1.86 0.09 0.03 2.56 −0.18∗∗ −0.29 1.46 −0.12∗∗ −0.03

12Q 2.15 0.14◦ −0.11∗∗ 2.80 −0.26∗∗ −0.41∗ 1.63 −0.12∗∗∗ −0.06∗∗

Notes: See notes to Table 1 for further information.

the CC model. The RMSE values are shown as a ratio compared to the CC model (i.e. values

less than one indicate better performance compared to the CC model), while for the LPS values

we subtract the LPS of the CC model (therefore, negative values indicate better performance

compared to the CC model). Values in bold indicate the best performing model for a given target

variable, forecast horizon and evaluation metric. Furthermore, significance of the differences with

respect to the CC model is indicated based on one-sided Diebold and Mariano (1995) tests. The

asterisk superscripts indicate the significance level in case the DP or SLM model is performing

better, while the circle superscripts indicate this when the CC model does better.

For point forecasts of GDP growth and inflation the SLM model is outperforming the CC as well

as the DP model for the euro area and the United States. Also for the short-term interest rate the

SLM model is performing well in point forecasting for the euro area and the United States. For

Japan the story is different, we find that the DP and SLM models are not doing better than the

CC model. The main explanation appears to be that for Japan the long-term survey forecasts do
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not provide accurate information on long-term developments. The results for the density forecasts

are qualitatively similar to those for the point forecasts. For the euro area and the United States

the DP and SLM models provide more accurate density forecasts compared to the CC model.

The performance of the SLM model relative to the DP model varies depending on the country

and variable, with good relative performance for the euro area.

Turning to systems with a larger cross-sectional dimension, Table A2 in Appendix C shows similar

patterns for five-variable systems. For the 15-variable VARs Table 2 reports the forecast evaluation

results. For the euro area and the United States the SLM model is overall the best performer

followed by the DP and the CC model, respectively. For Japan the results are more mixed.

Overall we find that the SLM model is outperforming the CC as well as the DP model in most

cases. The better (long-term) forecasting performances for the DP and SLM models over the CC

model illustrate the relevance of exploiting the information from the long-term survey forecasts.

Moreover, the relevance of allowing for the time variation in the mean is supported by the overall

better forecasting performance of the SLM model compared to the DP model.

4.3 Comparison to time-varying parameter models

4.3.1 Benchmark models

Having established the good forecasting performance of the SLM model compared to constant

coefficient VARs, the first obvious benchmark is the general time-varying parameter (TVP) VAR,

which allows all the coefficients to vary over time:

yt = ct +

p∑
k=1

Bk,tyt−k + εt, εt ∼ N (0, Ht) ,

vec(Bc
t ) = vec(Bc

t−1) + ηt, ηt ∼ N (0, V ) ,

(20)

with Bc
t = [ct : B1,t : . . . : Bp,t]

′ containing all the VAR coefficients at time t (see e.g. Primiceri,

2005; Cogley and Sargent, 2005). The TVP model is more flexible compared to the SLM model as

it allows for time variation both in the unconditional mean and in the impulse response functions.18

The flexibility comes at the cost of a higher computational burden - the standard TVP-VAR is

commonly used for small cross-sectional dimensions - and lack of parsimony. The latter might

potentially lead to overfitting and poor forecasting performance. Ultimately, how much flexibility

is needed or feasible is an empirical question.

18We consider the standard specification of the TVP-VAR, which has a more flexible form of stochastic volatility,
since also the matrix A in the decomposition of Ht in Equation (5) is allowed to be time-varying. For more details
on the specification of the TVP-VAR model we refer to Primiceri (2005) and D’Agostino, Gambetti, and Giannone
(2013).
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The second benchmark model we consider is given by a restricted version of the SLM model in

which we do not exploit the information from the survey forecasts. Precisely, we drop the second

measurement equation given by (4) and obtain the model given by:

yt − ψt =

p∑
k=1

Bk (yt−k − ψt−k) + εt, εt ∼ N (0, Ht) ,

ψt = ψt−1 + ηt, ηt ∼ N(0, Vt).

(21)

We label this restricted version as the local mean (LM ) VAR model. Using the LM model as a

benchmark allows to assess the effect of anchoring the local mean by long-term survey forecasts.

Finally, we compare the accuracy of the SLM forecasts of inflation to those from the univariate

unobserved components stochastic volatility (UCSV ) model of Stock and Watson (2007):

yt = ψt + εt, εt ∼ N (0, ht) ,

ψt = ψt−1 + ηt, ηt ∼ N(0, vt).
(22)

The UCSV model is also a restricted version of the SLM (and the LM) model: it is univariate,

the VAR coefficients B are set to zero and there is no anchoring of ψt to long-term survey

forecasts.19 It has become the standard benchmark for evaluating inflation forecasts (see e.g.

Stock and Watson, 2010; Faust and Wright, 2013).

4.3.2 Results

Table 3 reports the relative forecasting performance of the TVP and LM models compared to the

SLM model for the three-variable system. Here the SLM model is taken as the base case - in the

columns corresponding to the TVP and LM models, values of the RMSE greater than one and

positive LPS values indicate better relative performance of the SLM model. The SLM model is

outperforming the benchmarks for the euro area and the United States in most cases, both for

point and density forecasts. For Japan the SLM model is also performing well with respect to the

benchmarks for GDP growth and inflation. For forecasting the Japanese short-term interest rate

the TVP and LM models are performing better. Interestingly, the SLM model is often strongly

outperforming the more flexible TVP model, which suggests that the time-varying mean might

capture the relevant dimension of time variation and/or that the latter model might suffer from

over-fitting. The better forecasting performance of the SLM model compared to the LM model,

in particular for longer forecast horizons of 8 and 12 quarters, shows the advantage of anchoring

the local mean to long-term survey forecasts.

Finally it should be noted that the TVP and LM models are not well able to handle larger cross-

sections. Apart from the computational considerations relevant for the TVP model as mentioned

19For the UCSV model we use a different prior on the stochastic volatility processes, i.e. we set φ = 0.2 in line
with Stock and Watson (2007), who instead fix the φ parameters at these values.
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Table 3: Forecast evaluation results for three-variable VARs

euro area United States Japan
RMSE SLM TVP LM SLM TVP LM SLM TVP LM

GDP 1Q 2.12 1.05∗∗ 1.00 2.57 1.00 1.03 4.46 0.97◦ 1.06
Growth 4Q 1.87 1.19∗∗ 1.23 1.87 1.10∗∗ 1.24∗ 2.57 0.99 1.26

8Q 2.14 1.20∗∗∗ 1.45∗ 1.96 1.13∗∗ 1.47∗∗ 2.56 1.00 1.20
12Q 2.27 1.14∗∗∗ 1.30∗∗∗ 2.07 1.00 1.48∗∗ 2.49 1.00 1.24∗

Inflation 1Q 1.25 1.11∗∗ 1.09∗∗ 2.23 1.13∗ 1.05 1.54 1.04 1.06∗

4Q 0.97 1.19 1.19∗ 1.24 1.48 1.21 1.09 1.00 1.13∗

8Q 1.12 1.26 1.30∗ 1.26 1.35∗∗ 1.16 1.21 0.99 1.13
12Q 1.12 1.33∗∗ 1.40∗∗∗ 1.32 1.42∗∗ 1.17∗∗∗ 1.18 1.02 1.08

S.T. Int. 1Q 0.29 1.01 1.25 0.40 0.87◦ 0.97 0.17 0.60◦◦ 0.70◦◦

Rate 4Q 0.92 1.17 1.28 1.36 0.94 0.94 0.37 0.70◦◦◦ 0.64◦◦◦

8Q 1.49 1.34∗ 1.29∗ 2.22 1.08 0.93 0.58 0.85 0.64◦◦

12Q 1.79 1.42∗∗ 1.32∗∗ 2.47 1.24∗ 0.98 0.75 0.87 0.59◦◦

LPS SLM TVP LM SLM TVP LM SLM TVP LM

GDP 1Q 2.11 −0.07 −0.03 2.33 0.02 0.05 2.92 0.01 0.01
Growth 4Q 2.56 0.85∗ −0.31 2.10 0.04 0.22 2.60 0.28 −0.05

8Q 2.80 1.96∗ −0.21 2.22 0.10 0.53 2.64 0.47 −0.04
12Q 2.75 1.51∗ −0.15 2.28 0.07 0.68 2.56 0.51∗ 0.03

Inflation 1Q 1.69 0.14∗∗ 0.07 2.32 0.15∗∗ 0.09 1.88 0.11∗ 0.05∗

4Q 1.40 0.15∗∗ 0.21∗∗ 1.68 0.23∗ 0.16 1.52 0.07 0.11∗

8Q 1.56 0.30∗∗ 0.45∗∗∗ 1.74 0.41∗ 0.14 1.64 0.09 0.11∗∗

12Q 1.60 0.44∗∗∗ 0.62∗∗∗ 1.80 0.51∗∗ 0.20 1.62 0.12∗∗ 0.16∗∗∗

S.T. Int. 1Q 0.80 −0.83◦◦◦ −0.15◦◦◦ 0.66 −0.50◦◦◦ 0.26∗∗∗ 0.14 −0.98◦◦◦ −0.05◦◦◦

Rate 4Q 1.60 −0.16 0.03 1.71 −0.07 0.07 0.83 −0.48◦◦◦ −0.13◦◦◦

8Q 1.94 0.38 0.16 2.30 0.11 −0.11 1.23 −0.22◦◦ −0.17◦◦◦

12Q 2.08 0.48∗∗ 0.21∗∗ 2.41 0.31∗∗ −0.04 1.46 −0.11 −0.20◦◦◦

Notes: Forecast evaluation results for the SLM, TVP and LM models for three-variable systems. The RMSE and LPS
are reported in absolute values for the SLM model and relative to the SLM model for the remaining two models. The
superscripts ∗ denote significantly better performance of the SLM model, while the superscripts ◦ denote that the TVP
or the LM model is doing significantly better. See notes Table 1 for further information.

earlier, also shrinkage of the coefficients is important to control for overfitting in higher dimensional

VARs. For the LM model the anchoring of the local mean by off-model information, as in the

SLM model, becomes even more crucial for higher dimensional VARs.

Table 4 shows the point and density forecasting accuracy of the SLM and UCSV models for

inflation. For the United States and Japan the SLM model provides better point and density

forecasts. For the euro area instead there is not much difference in point forecast accuracy, except

for three years ahead, when the SLM model is doing better. The improvement of the SLM model

over the UCSV model for the euro area lies in the long-term density forecasts. To shed more

light on the sources of those differences, Figure A1 in Appendix C reports the 12-quarter-ahead

density forecasts for the SLM model (left panel) and the UCSV model (right panel) together with

the data realisations. It turns out that forecasts from the UCSV model are more volatile between
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Table 4: Forecast evaluation results for the SLM and the UCSV models

euro area United States Japan
RMSE SLM UCSV SLM UCSV SLM UCSV

Inflation 1Q 1.25 1.03 2.23 1.08 1.54 1.05
4Q 0.97 0.98 1.24 1.26 1.09 1.12
8Q 1.12 0.99 1.26 1.17 1.21 1.12

12Q 1.12 1.06 1.32 1.18∗∗∗ 1.18 1.09∗

LPS SLM UCSV SLM UCSV SLM UCSV

Inflation 1Q 1.69 0.02 2.32 0.01 1.88 0.03
4Q 1.40 −0.01 1.68 0.27∗∗ 1.52 0.11
8Q 1.56 0.13 1.74 0.31 1.64 0.17∗

12Q 1.60 0.33∗∗ 1.80 0.57∗∗ 1.62 0.33∗∗∗

Notes: Forecast evaluations for the three-variable SLM model and the univariate UCSV model for inflation. The SLM
model is taken as the base case here. The superscripts ∗ denote significantly better performance of the SLM model, while
the superscripts ◦ indicate that the UCSV model is doing significantly better. See notes Table 1 for further information.

the updates and have become much more dispersed following the financial crisis.

5 More detailed analysis for the euro area

To highlight the relevant features of the SLM model (also relative to the other approaches) this

section provides more detailed illustrations focusing on the euro area. Precisely, we look at the

properties of the density forecasts of the SLM model, we investigate more in detail the performance

of the model relative to the CC model, we analyse the posterior distributions of the end-of-sample

unconditional and local means and of the impulse response functions from different models and

finally we construct conditional forecasts from the SLM model based on different scenarios for the

long-term inflation expectations.

5.1 Calibration of density forecasts

Figure 4 shows the density forecasts of the SLM model together with the data realisations. For

brevity we only focus on forecast horizons of 4 and 12 quarters. For GDP growth the density

forecasts typically include the realisation with the exception of the financial crisis period when

the outcomes were much lower than the forecasts. After the crisis the coverage bands widened

considerably, in particular for the longer forecast horizon. For inflation the realisations are mostly

within the coverage bands and the effect of the crisis on inflation forecasts is less pronounced than

for GDP growth. What is more striking is the systematic over-prediction of inflation in the recent

years. This is due to the persistently low inflation rates combined with the relatively high survey
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Figure 4: Density forecasts for the SLM model
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Notes: Predictive distributions for the SLM model with three variables for the euro area for forecast horizons of 4 (left
panel) and 12 quarters (right panel). The forecasts and realisations correspond to average rates over the first (for 4-
quarter ahead forecasts) and third (for 12-quarter ahead forecasts) year. The x-axes indicate the time of the realisations.
The density forecasts are summarised by the median (dashed line) and the 68% (light grey area) and 90% (dark grey
area) coverage bands. Realisations are indicated by white circles.

forecasts for inflation in this period (which push the SLM model forecasts up). Lastly, for the

interest rate the predictive coverage bands include the observations but are relatively wide.

To investigate the calibration of the predictive densities more formally we look at the probability

integral transforms (PITs). The PITs are the values of the predictive cumulative distribution

function (CDF) evaluated at the out-of-sample realisations and for well calibrated density forecasts

they should follow a uniform distribution on the interval [0 1].20 Given that our out-of-sample

period is relatively short we look at the histograms of the PITs instead of doing formal tests.

Figure 5 shows the histograms for the three variables of interest and the four forecast horizons.

For GDP growth and inflation the density forecasts seem to reflect the distribution of the outcomes

reasonably well. For longer forecast horizons perhaps too many realisations fall in the left tail

of the predictive distribution, suggesting some over-prediction. For the short-term interest rate

the predictive distributions seem too wide, in particular for the shorter forecast horizons. For the

longer horizons there is again some evidence of over-prediction.

20From the set of simulated forecasts we obtain the PIT value as the proportion of simulated forecasts falling
below the realisation.
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Figure 5: Probability integral transforms for the SLM model

0 0.5 1
0

10

G
D
P

G
r
o
w
t
h

h = 1Q

0 0.5 1
0

10

h = 4Q

0 0.5 1
0

10

h = 8Q

0 0.5 1
0

10

h = 12Q

0 0.5 1
0

10

In
fl
a
t
io
n

0 0.5 1
0

10

0 0.5 1
0

10

0 0.5 1
0

10

0 0.5 1
0

10

20

0 0.5 1
0

10

20

0 0.5 1
0

10

20

0 0.5 1
0

10

20

S
.T
.
In
t
.
R
a
t
e

Notes: The histograms show the PITs for the SLM model with three variables for the euro area. The columns correspond
to the forecast horizons and the rows to the variables.

5.2 Comparison to the CC model

We first look at the forecast paths, commonly referred to as “tentacle” plots, for the target variables

at different points in the evaluation sample, see Figure 6. For GDP growth the forecasts from the

CC model initially converge to somewhat too high values, as the unconditional mean is estimated

on the sample dominated by the early period of higher growth rates. For the SLM model this

is not the case, illustrating the advantage of including off-model information in the presence of

structural changes. For inflation, we can observe some instability in the unconditional mean in

the CC model, as the crisis observations influence the long-term forecasts to an implausible extent

(we return to this issue in the next section). This shows the advantage of using survey forecasts

to better anchor the unconditional or local mean and consequently the long-term forecasts. On

the other hand, using the information from long-term survey forecasts appears to exacerbate the

inflation over-prediction problem in the recent years (the CC forecasts are lower than the SLM

forecasts). For the short-term interest rate forecasts we can again observe the instability of the

unconditional mean estimates in the CC model as a few additional observations can result in a

fundamentally different long-term forecast. These patterns can also be observed in the density

forecasts, see Figure A2. In particular, compared to the SLM model, the PIT histograms for the

CC model (see Figure A3) exhibit more outcomes in the left tail of the predictive distribution for

GDP growth and less for inflation (consistent with the stronger over-prediction of GDP by the

CC model and of inflation by the SLM model).

To investigate how the relative performance of the SLM and CC models evolves over time we look
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Figure 6: Forecast paths for the SLM and CC models
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Notes: Forecast paths (up to 12 quarters ahead) for the SLM (left panels) and CC (right panels) models with three
variables for the euro area. The first forecast path originates in 2000Q1; subsequently, for better readability, we show
forecast paths with origins six quarters apart.

at the cumulative sums of the squared forecast errors for point forecasts and the log predictive

score values for the density forecasts, see Figure 7. We subtract the cumulative sum for the CC

model from that of the SLM model. Hence, declining cumulative sums indicate better performance

of the SLM model in that period, and vice versa for upward sloping lines. For brevity we only

consider forecast horizons of 4 and 12 quarters. In line with the results shown in Figure 6, we

see that for GDP growth the SLM model performs better than the CC model for the period until

and including the financial crisis. Thereafter, the accuracy of both models is comparable. For

inflation, the better performance of the SLM model persists till around 2013. Thereafter, the

relative accuracy of the SLM model deteriorates, reflecting the over-prediction issues mentioned

above. For the short-term interest rate the picture is a bit mixed across horizons and accuracy

measures. The SLM model mostly outperforms the CC model till the recent period where both

models appear to have comparable accuracy. The exception is the density forecasts 4 quarters

ahead where the CC model does better.
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Figure 7: Relative forecast performance of the SLM model compared to the CC model
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Notes: Differences of the cumulative sums over time of squared forecast errors (left panels) and of LPS values (right
panels) between the SLM and the CC models with three variables for the euro area. The cumulative sum for the CC
model is subtracted from that of the SLM model; therefore, declining values indicate a better performance of the SLM
model. Blue and black lines correspond to the forecast horizons of 4 and 12 quarters, respectively. The x-axes indicate
the time of the realisations.

Overall, the long-term survey forecasts appear to carry useful (forward-looking) off-model infor-

mation, with the exception of inflation in the most recent period, and help to make the forecast

revisions less volatile.

5.3 Posterior distribution of the local mean

The posterior distribution of the end-of-sample local or unconditional mean is highly relevant for

forecasting as it determines the end point of the forecast path.21 In this section we analyse the

evolution of the posterior distribution of the end-of-sample local or unconditional mean for the

SLM, DP, TVP and CC models. Precisely, for each point s in the forecast evaluation sample

we report the posterior distribution of the local or unconditional mean at time s − 1, with the

21For time invariant B1, . . . , Bp satisfying the stability condition, the point forecast will converge towards the
local or unconditional mean, see also Equation (3).
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Figure 8: Posterior distributions for the end-of-sample local and unconditional means
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Notes: Posterior distributions of the end-of-sample local and unconditional means for the SLM, DP, TVP and CC models
with three variables for the euro area. These posterior distributions are obtained recursively in the out-of-sample forecast
evaluations. The x-axes indicate the end of the estimation sample (the forecast origin). The posterior distributions are
summarised by the median (dashed line) and the 68% (light grey area) and 90% (dark grey area) coverage bands. The
blue lines in the first column correspond to the data.

parameters estimated over t = 1, . . . , s− 1. For the SLM and DP models the local and uncondi-

tional means, respectively, are sampled directly. For the CC model we obtain the draws of the

unconditional mean µ(i) from

µ(i) = (I −B(i)
1 − . . .−B

(i)
p )−1c(i), (23)

for each of the Gibbs draws, i, of B and c. We proceed analogously for the TVP model, where

we take the end-of-sample values Bc
s−1.

Figure 8 shows the end-of-sample posterior distributions over 1999Q4-2016Q2. For the SLM

model the posterior distribution is tightly concentrated around the median for GDP growth and

inflation and changes little over time. For the short-term interest rate the posterior distribution

is somewhat more disperse, as there is no anchoring through the survey forecasts. These findings

are in line with the results on the in-sample posterior distribution of the local mean shown in
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Figure 9: Impulse response functions
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Notes: Impulse response functions to a 100 basis points increase in the euro area short-term interest rate for VARs with
three variables estimated over the full sample. For the TVP model the IRFs are based on the end-of-sample parameters.
The posterior distribution is summarised by the median (dashed line) and the 68% (light grey area) and 90% (dark grey
area) coverage bands.

Figure 2. For the DP model the posterior distributions are somewhat wider but we still see a

strong anchoring for GDP growth and inflation.22 By contrast, the distributions for the TVP and

CC models show much more dispersion and variation over time, especially for inflation and the

short-term interest rate. This explains the occasional occurrence of considerable changes between

consecutive forecast updates for the CC model reported in Figure 6.

5.4 Impulse response functions

A common comparison between different VAR models is to look at the impulse response functions

(IRFs) to an identified monetary policy shock. In this section we consider IRFs to a 100 basis

22We have also experimented with a prior variance of 0.01 on the unconditional mean. This yields a stronger
anchoring but in terms of forecast accuracy there was no improvement.
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points shock to the short-term interest rate, identified via a Cholesky scheme with the interest

rate ordered as last in the VAR.

Figure 9 displays the IRFs for the SLM, DP, TVP and CC models based on the parameters

estimated over the full sample for the three-variable VAR for the euro area.23 For the TVP model

the IRFs are based on the end-of-sample parameters, i.e. they are representative for 2016Q3.

For the SLM model the IRFs go to 0 after around 3 to 4 years. By contrast, in case of the CC

and DP models, the IRFs for inflation and interest rate are significantly different from 0 even

after 6 years. This is contrary to what would be expected for a temporary shock and highlights

the problematic assumption of a constant unconditional mean in those models, which translates

into high persistence in the coefficients B. For the TVP model, the median responses are also

relatively persistent, but the coverage bands are much wider and as a result the responses are not

significantly different from 0 for inflation. As for GDP growth, whereas the IRFs from the SLM

model are negative and significant, those from the DP, TVP and CC models are essentially equal

to 0. Finally, all the models suffer from the so called price puzzle, i.e. inflation rises in response

to monetary policy tightening. This is a common problem in small VARs and can be solved by

enlarging the dataset, see e.g. Bańbura, Giannone, and Reichlin (2010).

5.5 Scenarios for long-term expectations

The forecasting exercises considered so far did not incorporate any information on the possible

future evolution of survey forecasts. In this subsection we extend this setting by constructing

forecasts conditional on scenarios for the long-term expectations of inflation.

We obtain such conditional forecasts following the ideas of data augmentation, i.e. by treating the

out-of-sample forecasts as latent variables and sampling them alongside the model parameters in

an (additional) Gibbs sampling step. Let z∗T+1, . . . , z
∗
T+h denote an h step-ahead scenario and let

Z∗ contain the in-sample survey forecasts as well as the scenario. Similarly, let Y ∗ contain the in-

sample observations (i.e. y1, . . . , yT ) as well as the part we want to forecast (i.e. y∗T+1, . . . , y
∗
T+h).

Given (some initial) values of the parameters we can sample y∗T+1, . . . , y
∗
T+h from

p
(
y∗T+1, . . . , y

∗
T+h | {ΛT , V T , GT }, {φH , φV , φG}, A,B, ψT , {Y,Z∗}

)
, (24)

by iteratively sampling h times from the VAR equation in (1).24 Then conditional on values for

{Y ∗, Z∗} we can use the usual Gibbs sampling steps to sample the parameters.25

23We also considered the same setting for the five variable dataset and found no significant differences.
24These values are sampled at step 6 of the algorithm explained in Appendix A (the previous step 6 becomes

step 7).
25With the difference that the time series is now of length T + h instead of T . For reasonable scenarios the

approach does not lead to a distortion of the posterior distribution of the parameters. For example, Figure A4
in the Appendix shows that forecasts conditional on the long-term survey forecasts remaining constant are very
similar to the pure out-of-sample forecasts and we also find only small differences in the posterior distribution of
the parameters.
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Figure 10: (Conditional) forecasts for inflation
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Notes: 12-quarter-ahead forecasts for euro area inflation for the SLM, DP, TVP and CC models with three variables.
The in-sample period ends at 2016Q3 and the forecast period is 2016Q4 to 2019Q3. The forecasts for the SLM model
are conditional on different scenarios for future developments in the long-term survey forecasts: 1 - kept at the value
of 2016Q3; 2 - linearly declining to 1.5% in 2019Q3; 3 - linearly declining to 1% in 2019Q3. For the DP, TVP and CC
models the forecasts are unconditional. The forecast distribution is summarised by the median (dashed line) and the 68%
(light grey area) and 90% (dark grey area) coverage bands. For the SLM model, the distribution is shown for scenario 1,
for the remaining scenarios only the median is reported.

As an illustration we look at inflation forecasts conditional on three scenarios for the long-term

inflation expectations for the three-variable VAR for the euro area. Precisely, we take the full data

sample (till 2016Q3) and we forecast 12 quarters ahead conditional on the following assumptions

for the long-term survey forecasts of inflation (over 2016Q4-2019Q3):

Scenario 1 The forecasts are held constant at the value of 2016Q3;

Scenario 2 The forecasts decline linearly over 12 quarters, reaching 1.5% in 2019Q3;

Scenario 3 The forecasts decline linearly over 12 quarters, reaching 1.0% in 2019Q3.

For GDP growth, the long-term survey forecasts are held constant at the value of 2016Q3 in all

the scenarios.

The resulting forecasts for inflation are shown in the upper left panel of Figure 10. For scenario 1

we display the median together with the 68% and 90% coverage bands, whereas only the median

is reported for scenarios 2 and 3 for better readability. The forecasts for scenarios with declining
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expectations are clearly lower, showing the relevance of the survey forecasts for the SLM model

forecasts. For comparison, the figure also shows the unconditional forecasts from the DP, TVP

and CC models. The forecasts from the TVP and CC models are relatively low, close to those

from the SLM model with scenario 3, as it appears that the local and unconditional means in

these models are affected by the low inflation outcomes in recent years.26

6 Sensitivity analysis

This section reports a range of robustness checks for the forecast evaluations, whereby we vary a

number of implementation choices. We take as benchmarks the constant coefficient three-variable

VARs considered in Section 4.2. The tables we refer to below can be found in Appendix C.

Rolling window estimation

In the main forecasting exercises an expanding estimation window was used. However, in the

presence of time variation in the data generating process, rolling estimation windows might result

in better forecasting performance, especially for constant parameter models, because the early

part of the estimation sample might distort the parameter estimates. Table A3 reports the results

of forecast evaluations for the CC, DP and SLM models for a rolling estimation window of 80

quarters. We find that also with this implementation the SLM model comes out best.27

Constant parameters out-of-sample

To generate forecasts in the main setup we simulated the out-of-sample paths of the time-varying

parameters. For the CC and DP models this amounts to simulating the stochastic volatility

processes for the VAR innovations for t = T +1, . . . , T +h. For the SLM model also the stochastic

volatility process in the random walk for the local mean and the local mean process are simulated.

Table A4 compares the forecasting accuracy of the three models for the case when the values of

the time-varying parameters at t = T +1, . . . , T +h are kept at the sampled values at t = T . This

setup does not change the conclusion that the SLM model provides the most accurate forecasts.

Constant variance

Table A5 compares the forecasting accuracy under the assumption of no time variation in the

26As the local mean (trend) in the UCSV model tends to follow actual inflation quite closely, the uncondi-
tional forecasts from this model starting in 2016Q3 are the lowest among the models considered. They are also
characterised by the widest coverage bands, see Figure A5.

27Qualitatively similar results are obtained for rolling estimation windows of 40 and 60 quarters. Interestingly,
the SLM model performs best for the expanding estimation window. It appears that once we account for time
variation in the mean, the early part of the sample provides useful information. The results are available upon
request.
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variances of the innovations.28 Also in this case the SLM model provides the best forecasts.29

Robust evaluation criteria

The forecast evaluation criteria we considered, the RMSE and the LPS based on a fitted Gaussian

distribution, might be disproportionately affected by a few large forecast errors. Table A6 reports

the more robust mean absolute errors (MAE) for the point forecasts, but also LPS values based on

a fitted standardised t-distribution and the continuous ranked probability score (CRPS) (Gneiting

and Raftery, 2007), for the density forecasts. These robust evaluation criteria lead to the same

conclusion that the SLM model is overall the best performer.

Comparison to pure survey forecasts

Previous studies such as Faust and Wright (2009), Faust and Wright (2013) and Aiolfi, Capistrán,

and Timmermann (2011) show that survey forecasts by themselves provide excellent point fore-

casts compared to model-based forecasts. Table A7 confirms these findings for our evaluation

sample. Compared to the long-term Consensus forecasts, the SLM model forecasts result in some

modest improvements for short horizons for the euro area and the United States and more siz-

able improvements for Japan (where as mentioned above, survey forecasts do not track so well

the long-term developments in the variables of interest). For longer horizons survey forecasts

are overall comparable in terms of accuracy to those from the SLM model for the euro area and

the United States. This is not so surprising, given that survey forecasts provide an “anchor”

for the model-based forecasts. However, even when model-based forecasts do not (significantly)

improve upon survey forecasts, they offer many features not offered by surveys, such as predictive

distributions for a variety of forecast horizons, scenarios and also flexibility in terms of target

variables.

7 Conclusion

The focus of this paper is how to model time variation in VAR models in a forecasting context.

Precisely, we propose a local mean VAR model which allows for time variation in the unconditional

mean, but keeps the VAR coefficients constant over time. Furthermore, we anchor the local mean

to long-term Consensus forecasts (off-model information). From a computational point of view,

the model can be used for relatively large cross-sections.

Through out-of-sample forecasting exercises we show that the local mean VAR model has better

28We implement this by putting a very tight prior on φJ,i, ∀ {J, i} in (14)-(16), this results in constant σ2
J,i,t over

time.
29In fact the differences in forecasting accuracy between the model versions with stochastic volatility and with

constant variance are very small, suggesting that this element might not be crucial for the evaluation sample
considered in this paper.
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forecasting performance compared to constant coefficient VARs and general time-varying param-

eter VARs. The off-model information can provide a useful signal on the “endpoints” and, in

particular, reduces the uncertainty around them. The proposed framework not only results in

better forecasting performance but also in more reasonable impulse response functions. It can be

also used for scenario analysis, considering e.g. different future paths for long-term expectations.

The forecasting performance of the model studied here is strongly linked to how well the off-

model information can capture the low frequency movements in the target variables. Long-term

survey forecasts provided by Consensus Economics seem to offer a good “anchor” for the main

macroeconomic variables for the euro area and the United States. For Japan and more recently

for inflation in the euro area they appear to provide a less useful signal. Other types of off-model

information, e.g. potential output growth estimates or short-term inflation expectations, could

also be considered. A systematic evaluation of such anchors is left for future research.
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Appendices

A Details on the Gibbs sampler

We obtain draws from the posterior distribution of {{ΛT , V T , GT }, {φH , φV , φG}, A,B, ψT } via a

Gibbs sampling scheme.

Let {Y,Z} denote the full set of observations on the variables (Y ) and the survey forecasts (Z).

Further, let ST = {sTH , sTV , sTG} denote the mixture states in the algorithm of Kim, Shephard, and

Chib (1998) (from now on referred to as the KSC algorithm). We incorporate the corrigendum of

Del Negro and Primiceri (2015) and sample the mixture states ST in the last step of the Gibbs

sampling scheme.

Given a set of starting values for the parameters, the Gibbs sampler proceeds by drawing recur-

sively from the following conditional distributions:

1. p
(
{ΛT , V T , GT } | {φH , φV , φG}, A,B, ψT , ST , {Y,Z}

)
2. p

(
{φH , φV , φG} | {ΛT , V T , GT }, A,B, ψT , ST , {Y,Z}

)
3. p

(
A | {ΛT , V T , GT }, {φH , φV , φG}, B, ψT , ST , {Y,Z}

)
4. p

(
B | {ΛT , V T , GT }, {φH , φV , φG}, A, ψT , ST , {Y,Z}

)
5. p

(
ψT | {ΛT , V T , GT }, {φH , φV , φG}, A,B, ST , {Y,Z}

)
6. p

(
ST | {ΛT , V T , GT }, {φH , φV , φG}, A,B, ψT , {Y,Z}

)

We next explain these steps in detail.

1. Sampling from p
(
{ΛT , V T , GT } | {φH , φV , φG}, A,B, ψT , ST , {Y,Z}

)
Part a: ΛT

Consider the innovations εt from the VAR equation at time t

εt = (yt − ψt)−
p∑
i=1

Bi (yt−i − ψt−i) , t = p+ 1, . . . , T. (25)

Conditional on B and ψT the series of εt is observable. Recall that εt ∼ N
(

0, A−1Λt
(
A−1

)′)
where Λt = diag

(
σ2
H,1,t, . . . , σ

2
H,M,t

)
. Hence, the standardised innovations ε̃t = Aεt have a

theoretical variance of Λt. We next show how we use the KSC algorithm to sample from the
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posterior distributions of the diagonal elements of Λt for t = p + 1, . . . , T . For i = 1, . . . ,M we

square the series of ε̃i,p+1, . . . , ε̃i,T , take logarithms and obtain the following linear state space

model:

ln
(
ε̃2
i,t + 0.001

)
= ln

(
σ2
H,i,t

)
+ ln

(
γ2
H,i,t

)
, (26)

lnσ2
H,i,t+1 = lnσ2

H,i,t + uH,i,t, (27)

where ln
(
γ2
H,i,t

)
follows a log χ2 (1) distribution. As in the KSC algorithm we obtain an approxi-

mating linear Gaussian state space model by replacing ln
(
γ2
H,i,t

)
with a seven state Gaussian mix-

ture approximation, with the state-dependent means and variances given by (mj−1.2704) and v2
j

respectively (for further details we refer to Kim, Shephard, and Chib, 1998). Let sH,i,t ∈ {1, . . . , 7}
denote the state, then conditional on all the states sTH we have a linear Gaussian state space model.

Taking the initial conditions lnσ2
H,i,p+1 ∼ N (0, 10) we obtain a draw from the conditional distri-

bution by using the Carter and Kohn (1994) simulation smoother.

Part b: V T

The elements of the matrices Vt = diag
(
σ2
V,1,t, . . . , σ

2
V,M,t

)
, t = p + 1, . . . , T are sampled in a

similar manner as in part a. Conditional on the local mean process ψT we observe the innovations

ηt for t = p+ 2, . . . , T , since

ηt = ψt − ψt−1. (28)

Given the initial conditions lnσ2
V,i,p+2 ∼ N (0, 10), we use the KSC algorithm to obtain the draws.

Part c: GT

Let tz,i denote the index of the first available data point for the survey forecasts for variable i.

Similarly as in parts a and b, conditional on ψT the innovations gi,t, t = tz,i, . . . , T are observable

since

gt = zt − Pψψt. (29)

As above, we use the KSC algorithm to obtain the draws (with initial conditions lnσ2
G,i,tz,i

∼
N (0, 10)).

2. Sampling from p
(
{φH , φV , φG} | {ΛT , V T , GT }, A,B, ψT , ST , {Y,Z}

)
A natural conjugate inverse Gamma prior is specified for the elements in the M -dimensional vector

φH , with hyperparameters dφH and φ
H

. Then conditional on ΛT we observe the innovations uH,i,t,

i = 1, . . . ,M , since

uH,i,t = lnσ2
H,i,t − lnσ2

H,i,t−1. (30)
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We can then sample the elements φH,i, i = 1, . . . ,M , from

φH,i ∼ IG

dφH × φH +
T∑

t=p+2

u2
H,i,t

 , (dφH + T − p− 1)

 . (31)

Similarly, given the IG prior for φV with parameters dφV and φ
V

, φV,i, i = 1, . . . ,M is sampled

from

φV,i ∼ IG

dφV × φV +
T∑

t=p+3

u2
V,i,t

 , (dφV + T − p− 2)

 , (32)

then for the Mz elements of φG we sample from

φG,i ∼ IG

dφG × φG +

T∑
t=tz,i+1

u2
G,i,t

 , (dφG + T − tz,i)

 . (33)

3. Sampling from p
(
A | {ΛT , V T , GT }, {φH , φV , φG}, B, ψT , ST , {Y, Z}

)
Recall that conditional on B and the local mean process ψT the VAR innovations εt are observed

and ε̃t = Aεt, where ε̃t ∼ N (0,Λt). Recall also that the priors for the rows ai, i = 2, . . . ,M of

A are Gaussian, i.e. ai ∼ N
(
µ
a,i
,Ωa,i

)
. As shown by Cogley and Sargent (2005), the posterior

distributions for the rows ai, i = 2, . . . ,M , of A are Gaussian:

ai ∼ N
(
µa,i,Ωa,i

)
. (34)

For a detailed description of the derivation and the implementation of these conditional posterior

distributions we refer to Cogley and Sargent (2005).

4. Sampling from p
(
B | {ΛT , V T , GT }, {φH , φV , φG}, A, ψT , ST , {Y, Z}

)
We use the recently proposed method of Carriero, Clark, and Marcellino (2016b) to sample the

VAR coefficients B. Consider the Cholesky decomposition εt = A−1Λ0.5εt, where εt is a vector of

orthogonal shocks, i.e. εt ∼ N(0, I). This decomposition can be written as:
ε1,t

ε2,t
...

εM,t

 =


1 0 . . . 0

a∗2,1 1
...

... 1 0
a∗M,1 . . . a∗M,M−1 1



σH,1,t 0 . . . 0

0 σH,2,t
...

... . . . 0
0 . . . 0 σH,M,t




ε1,t
ε2,t
...

εM,t

 , (35)

where a∗i,j denotes element (i, j) of A−1. Next, we denote by b(i,k) the vector of VAR coefficients

for equation i with lag k, i.e. the ith row of Bk. Let j index the specific elements of the vector
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b(i,k). Then we can rewrite the VAR equations as:

y1,t − ψ1,t =

p∑
k=1

M∑
j=1

b
(1,k)
j (yj,t−k − ψj,t−k) + σH,1,tε1,t,

y2,t − ψ2,t =

p∑
k=1

M∑
j=1

b
(2,k)
j (yj,t−k − ψj,t−k) + a∗2,1σH,1,tε1,t + σH,2,tε2,t,

...

yM,t − ψM,t =

p∑
k=1

M∑
j=1

b
(M,k)
j (yj,t−k − ψj,t−k) + a∗M,1σH,1,tε1,t

+ . . .+ a∗M,M−1σH,M−1,tεM−1,t + σH,M,tεM,t,

or in general for variable i:

(yi,t − ψi,t)−
(
a∗i,1σH,1,tε1,t + . . .+ a∗i,i−1σH,i−1,tεi−1,t

)
=

p∑
k=1

M∑
j=1

b
(i,k)
j (yj,t−k − ψj,t−k) + σH,i,tεi,t.

(36)

Given this representation the sampling from the conditional posterior distribution of B is per-

formed by sampling iteratively the vectors b(i,1:p) for i = 1, . . . ,M . Note that Equation (36) is

equivalent to a linear gaussian regression equation.30 Then given the prior mean µ
B,i

and variance

ΩB,i we use standard results for the posterior distributions in linear regression models to find the

posterior mean µB,i and the posterior variance ΩB,i. After B is sampled we verify whether it

satisfies the stability condition (by checking the eigenvalues of the companion form). If not step

4 is repeated.

We refer to Carriero, Clark, and Marcellino (2016b) for further derivations, which show that the

resulting draw of B comes from the appropriate conditional posterior distribution.

5. Sampling from p
(
ψT | {ΛT , V T , GT }, {φH , φV , φG}, A,B, ST , {Y, Z}

)
We first show that we can cast the SLM model into a linear state space representation. We derive

the representation for p = 4 (the lag length used in this paper), an adjustment for different values

of p is straightforward. The measurement equation is given by:

[
zt
yt

]
=

[
Pψ 0 0 0 0
I I 0 0 0

]
ψt

yt − ψt
yt−1 − ψt−1

yt−2 − ψt−2

yt−3 − ψt−3

+

[
I
0

] [
gt
]
, (37)

30We condition on the first p time series observations y1, . . . , yp. Furthermore in line with the conditioning on
the initial observations we set the vectors ψ1, . . . , ψp equal to the average over y1, . . . , yp.
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and the transition equation by:
ψt

yt − ψt
yt−1 − ψt−1

yt−2 − ψt−2

yt−3 − ψt−3

 =


I 0 0 0 0
0 B1 B2 B3 B4

0 I 0 0 0
0 0 I 0 0
0 0 0 I 0




ψt−1

yt−1 − ψt−1

yt−2 − ψt−2

yt−3 − ψt−3

yt−4 − ψt−4

+


I 0
0 I
0 0
0 0
0 0


[
ηt
εt

]
, (38)

where gt ∼ N (0, Gt), ηt ∼ N (0, Vt), and εt ∼ N (0, Ht). Further gt, ηt and εt are uncorrelated

and we take a diffuse distribution for ψp+1. Conditional on the other parameters we have a

linear Gaussian state space representation and we can take a draw from the conditional posterior

distribution of ψT using a version of the simulation smoother of Carter and Kohn (1994). As

the covariance matrix of the shocks in the transition equation is singular we adapt the simulation

smoother following Kim and Nelson (1999, chap. 8.2).

We further deal with missing zt values by setting the Kalman gain equal to zero when these are

not available, for further implementation details we refer Durbin and Koopman (2012).

6. Sampling from p
(
ST | {ΛT , V T , GT }, {φH , φV , φG}, A,B, ψT , {Y, Z}

)
Conditional on the values of the other parameters ε̃2

i,t, η
2
i,t and g2

i,t are observable and we can

sample the states, i.e. the elements of ST = {sTH , sTV , sTG}, independently from the following

discrete distributions:

p(sH,i,t = j | ε̃2
i,t, σ

2
H,i,t) ∝ fN (ln(ε̃2

i,t + 0.001) | lnσ2
H,i,t +mj − 1.2704 , v2

j ), (39)

p(sV,i,t = j | η2
i,t, σ

2
V,i,t) ∝ fN (ln(η2

i,t + 0.001) | lnσ2
V,i,t +mj − 1.2704 , v2

j ), (40)

p(sG,i,t = j | g2
i,t, σ

2
G,i,t) ∝ fN (ln(g2

i,t + 0.001) | lnσ2
G,i,t +mj − 1.2704 , v2

j ), (41)

where j ∈ {1, . . . , 7} indexes the states and fN (x | µ, σ2) denotes the normal probability density

function with mean µ and variance σ2 evaluated at the point x. For further details we refer to

Kim, Shephard, and Chib (1998), who also provide the values for the state-dependent means, mj ,

and variances, v2
j .
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B Data

Table A1: Description of the data

Variable Transformation Survey forecast Small VAR Source

euro area

GDP (real) 400×∆ ln 1990Q1 + Eurostat1

Consumption (private, real) 400×∆ ln 1990Q1 - Eurostat1

Investment (total, real) 400×∆ ln 1998Q3 - Eurostat1

Inflation (HICP) 400×∆ ln 1990Q1 + ECB
Short-term interest rate - - + ECB1

United States

GDP (real) 400×∆ ln 1990Q1 + BEA
Consumption (personal, real) 400×∆ ln 1990Q1 - BEA
Investment (business, real) 400×∆ ln 1998Q3 - BEA
Inflation (CPI) 400×∆ ln 1990Q1 + BLS
Short-term interest rate - - + FRB

Japan

GDP (real) 400×∆ ln 1990Q1 + CAO2

Consumption (private, real) 400×∆ ln 1990Q1 - CAO2

Investment (business, real) 400×∆ ln 1998Q3 - OECD
Inflation (CPI) 400×∆ ln 1990Q1 + MIC2

Short-term interest rate - - + OECD

Notes: Description of the data used in the forecast evaluations. The third column indicates the first quarter for which the
long-term survey forecast is available. The fourth column indicates whether the variable is included in the three-variable
VAR.
1: Official data backdated using the Area Wide Model database (Fagan, Henry, and Mestre, 2001); 2: Official data
backdated using the OECD database.
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C Additional results

Table A2: Forecast evaluation results for five-variable VARs

euro area United States Japan
RMSE CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.23 0.95∗∗ 0.95∗∗ 2.32 0.98∗ 0.99 4.33 1.00 1.02◦◦

Growth 4Q 2.14 0.93∗∗ 0.88∗ 1.90 0.90∗∗ 0.95∗ 2.62 0.98 1.00
8Q 2.48 0.92∗∗ 0.87∗ 2.19 0.91∗ 0.92∗∗ 2.56 1.00 1.00

12Q 2.51 0.92∗∗∗ 0.92∗ 2.21 0.93∗∗ 0.95∗∗∗ 2.50 0.98 1.00

Inflation 1Q 1.29 1.00 0.99 2.27 0.99 1.00 1.50 1.00 0.97
4Q 1.03 0.97 0.96 1.27 1.03◦◦ 1.00 1.05 1.01 1.02
8Q 1.27 0.98 0.91 1.37 1.04◦◦ 0.93 1.15 1.03 1.05

12Q 1.29 0.94 0.88 1.41 1.01 0.93 1.15 1.01 1.03

S.T. Int. 1Q 0.30 3.37◦◦◦ 0.94 0.42 2.39◦◦◦ 0.98 0.13 4.20◦◦◦ 1.28◦◦◦

Rate 4Q 1.08 1.39◦◦◦ 0.82 1.33 1.13 1.01 0.34 1.80◦◦◦ 1.12
8Q 1.87 1.13◦◦ 0.78 2.26 0.91 0.97 0.48 1.40◦◦ 1.26◦◦◦

12Q 2.24 1.03 0.79∗ 2.71 0.88 0.89 0.54 1.46◦◦◦ 1.46◦◦◦

LPS CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.17 −0.04∗∗∗ −0.05∗∗∗ 2.24 −0.03∗∗∗ −0.01 2.88 0.00 0.02◦◦

Growth 4Q 2.85 −0.16∗∗ −0.23∗∗ 2.12 −0.15∗∗∗ −0.07 2.57 −0.05 0.03
8Q 3.39 −0.34∗∗ −0.57∗ 2.40 −0.18∗∗ −0.16∗∗ 2.58 −0.01 0.04

12Q 3.23 −0.27∗∗∗ −0.47∗∗ 2.40 −0.11∗∗ −0.11∗∗ 2.51 −0.03∗∗∗ 0.03

Inflation 1Q 1.73 −0.01 −0.04 2.35 −0.02∗∗ 0.00 1.84 −0.03 −0.03
4Q 1.46 −0.03 −0.05 1.68 −0.02 0.04 1.53 −0.02 −0.02
8Q 1.62 −0.05 −0.05 1.83 −0.04 −0.08 1.62 0.00 0.02

12Q 1.66 −0.06 −0.05 1.88 −0.04∗∗ −0.11 1.59 −0.04 0.04

S.T. Int. 1Q 0.33 −0.01∗ 0.39◦◦◦ 0.59 −0.03∗∗∗ 0.10◦◦◦ −0.09 −0.01∗∗ 0.27◦◦◦

Rate 4Q 1.47 −0.03∗∗∗ 0.08 1.75 −0.12∗ −0.03 0.78 0.00 0.09◦◦◦

8Q 2.04 −0.05∗∗∗ −0.13 2.48 −0.30∗ −0.23 1.22 0.00 0.05◦◦◦

12Q 2.26 −0.08∗∗∗ −0.20∗∗ 2.77 −0.44∗∗ −0.42∗∗ 1.44 0.00 0.05◦◦◦

Notes: The VAR includes GDP growth, consumption growth, investment growth, inflation and the short-term interest
rate. See notes to Table 1 for further information.
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Figure A1: 12-quarter-ahead density forecasts for inflation
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Notes: Predictive distributions for euro area inflation 12 quarters ahead for the SLM model with three variables (left
panel) and the (univariate) UCSV model (right panel). Average rates over the third year are shown (both for the forecasts
and the realisations). The x-axes indicate the time of the realisations. The predictive distributions are summarised by the
median (dashed line) and the 68% (light grey area) and 90% (dark grey area) coverage bands. Realisations are indicated
by white circles.
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Figure A2: 12-quarter-ahead density forecasts
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Notes: Predictive distributions for the SLM (left panel) and CC (right panel) models with three variables for the euro
area for a forecast horizon of 12 quarters. Average rates over the third year are shown (both for the forecasts and the
realisations). The x-axes indicate the time of the realisations. The predictive distributions are summarised by the median
(dashed line) and the 68% (light grey area) and 90% (dark grey area) coverage bands. Realisations are indicated by white
circles.
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Figure A3: Probability integral transforms for the CC model
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Notes: The histograms show the PITs for the CC model with three variables for the euro area. The columns correspond
to the forecast horizons and the rows to the variables.

Figure A4: Conditional and unconditional forecasts from the SLM model for inflation
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Notes: 12-quarter-ahead forecasts for euro area inflation for the SLM model with three variables. The in-sample period
ends at 2016Q3 and the forecast period is 2016Q4 to 2019Q3. The left panel shows the forecasts conditional on the scenario
that keeps the long-term expectations constant out-of-sample. The right panel shows the unconditional forecasts. The
forecast distribution is summarised by the median (dashed line) and the 68% (light grey area) and 90% (dark grey area)
coverage bands.
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Figure A5: (Conditional) forecasts for inflation
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Notes: 12-quarter-ahead forecasts for euro area inflation for the SLM model with three variables and the UCSV model.
The in-sample period ends at 2016Q3 and the forecast period is 2016Q4 to 2019Q3. The forecasts for the SLM model
are conditional on different scenarios for future developments in the long-term survey forecasts: 1 - kept at the value
of 2016Q3; 2 - linearly declining to 1.5% in 2019Q3; 3 - linearly declining to 1% in 2019Q3. For the UCSV model the
forecasts are unconditional. The forecast distribution is summarised by the median (dashed line) and the 68% (light grey
area) and 90% (dark grey area) coverage bands. For the SLM model, the distribution is shown for scenario 1, for the
remaining scenarios only the median is reported.
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Table A3: Forecast evaluation results for three-variable VARs, rolling window estimation

euro area United States Japan
RMSE CC DP SLM CCR DP SLM CC DP SLM

GDP 1Q 2.17 0.93∗∗∗ 0.95∗∗ 2.66 0.98 0.96∗∗ 4.46 1.00 1.01
Growth 4Q 2.12 0.91∗∗ 0.90 2.01 0.93∗∗ 0.89∗ 2.53 1.00 1.01

8Q 2.46 0.92∗∗∗ 0.90 2.13 0.95∗ 0.91∗ 2.50 1.03◦◦ 1.02
12Q 2.53 0.93∗∗∗ 0.93∗∗ 2.16 0.98∗ 0.94∗ 2.48 0.98∗ 1.00

Inflation 1Q 1.30 1.00 0.98 2.29 1.00 1.00 1.57 1.00 1.02
4Q 1.05 0.98 0.94∗∗ 1.29 1.01 1.01 1.04 1.03 1.11
8Q 1.23 0.94∗∗ 0.93 1.38 0.99 0.91∗ 1.15 1.10 1.06

12Q 1.23 0.97 0.92 1.45 1.01 0.91∗∗∗ 1.16 0.98 0.95

S.T. Int. 1Q 0.31 3.44◦◦◦ 1.10◦◦ 0.37 2.41◦◦◦ 1.08◦ 0.12 7.89◦◦◦ 1.78◦

Rate 4Q 1.12 1.24◦ 0.99 1.30 1.11◦◦ 1.02 0.29 2.93◦◦◦ 1.25◦◦

8Q 1.85 1.04 0.93 2.32 0.93 0.94 0.40 2.40◦◦◦ 1.42◦◦

12Q 2.21 1.06 0.89∗∗ 2.86 0.91∗ 0.87∗∗ 0.43 2.53◦◦◦ 1.65◦◦

LPS CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.14 −0.03∗∗∗ −0.06∗∗ 2.36 −0.04∗∗∗ −0.06∗∗ 2.94 0.00 0.02◦

Growth 4Q 2.84 −0.14∗∗ −0.37 2.27 −0.16∗∗ −0.21∗ 2.66 0.03 −0.01
8Q 3.33 −0.25∗∗ −0.46∗ 2.60 −0.14∗∗∗ −0.29∗ 2.67 0.04 0.02

12Q 3.15 −0.19∗∗∗ −0.33∗∗∗ 2.65 −0.07∗∗∗ −0.26 2.49 −0.01 0.05

Inflation 1Q 1.75 −0.01 −0.04 2.43 −0.02 0.01 1.93 −0.04 −0.02
4Q 1.67 −0.01 −0.09 1.77 −0.01 0.05 1.57 −0.07 −0.01
8Q 1.96 −0.01 −0.05 1.90 −0.05 −0.09∗ 1.71 −0.04 −0.07

12Q 1.89 0.01 −0.02 2.00 −0.07 −0.10∗ 1.67 −0.14 −0.09

S.T. Int. 1Q 0.21 −0.01∗ 0.20◦◦◦ 0.37 −0.03∗∗ 0.13◦◦◦ −0.42 0.01◦◦ 0.32◦◦◦

Rate 4Q 1.49 −0.01 −0.01 1.77 −0.12∗ −0.04 0.39 0.09◦◦ 0.22◦◦◦

8Q 2.07 −0.02∗ −0.06 2.64 −0.29∗ −0.26 0.79 0.17◦◦ 0.27◦◦

12Q 2.25 −0.04∗∗ −0.12∗∗ 3.00 −0.43∗∗ −0.51∗∗ 1.01 0.18 0.33◦◦

Notes: Forecast evaluation results for the implementation where parameters are estimated over a rolling window of 80
quarters. See notes to Table 1 for further information.
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Table A4: Forecast evaluation results for three-variable VARs, constant parameters out-of-sample

euro area United States Japan
RMSE CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.26 0.96∗∗ 0.94∗∗∗ 2.62 0.96∗ 0.98 4.43 1.01 1.01
Growth 4Q 2.16 0.95∗∗ 0.86∗ 2.03 0.88∗∗ 0.92∗ 2.57 1.00 1.00

8Q 2.47 0.93∗∗∗ 0.87∗∗ 2.21 0.92∗∗ 0.89∗ 2.52 1.02 1.01
12Q 2.51 0.92∗∗∗ 0.90∗∗∗ 2.24 0.93∗∗ 0.93∗∗ 2.48 0.98 1.01◦

Inflation 1Q 1.27 0.98 0.99 2.25 1.00 0.99 1.56 1.00 0.99
4Q 1.01 0.97 0.95 1.26 0.99 0.98 1.06 1.06 1.03
8Q 1.21 0.97 0.92 1.37 0.97 0.93 1.15 1.03 1.05

12Q 1.22 0.96 0.92 1.41 0.99 0.93 1.16 1.03 1.02

S.T. Int. 1Q 0.28 3.63◦◦◦ 1.00 0.41 2.19◦◦◦ 0.97 0.12 5.55◦◦◦ 1.32◦◦◦

Rate 4Q 1.05 1.40◦◦◦ 0.88 1.36 1.04 1.00 0.31 2.62◦◦◦ 1.18◦◦

8Q 1.80 1.20◦◦◦ 0.83 2.34 0.90 0.95 0.43 2.28◦◦◦ 1.34◦◦

12Q 2.17 1.17◦◦◦ 0.83∗ 2.81 0.87 0.88∗ 0.49 2.26◦◦◦ 1.53◦◦◦

LPS CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.18 −0.04∗∗∗ −0.07∗∗∗ 2.36 −0.04∗∗∗ −0.03 2.90 −0.01 0.02
Growth 4Q 2.90 −0.17∗∗ −0.32∗∗ 2.21 −0.17∗∗∗ −0.10 2.54 −0.03 0.07

8Q 3.44 −0.32∗∗ −0.58∗ 2.43 −0.17∗∗∗ −0.20∗∗∗ 2.58 0.00 0.11
12Q 3.30 −0.22∗∗∗ −0.45∗∗ 2.44 −0.10∗∗∗ −0.15∗∗∗ 2.52 −0.01∗∗ 0.11

Inflation 1Q 1.73 0.00 −0.03 2.35 −0.02 −0.02 1.90 −0.01 −0.01
4Q 1.45 −0.01 −0.06 1.68 −0.01 0.01 1.55 −0.01 −0.01
8Q 1.59 −0.03 −0.04 1.83 −0.05 −0.06 1.64 −0.01 0.02

12Q 1.61 −0.04 −0.03 1.90 −0.06 −0.06 1.61 −0.04 0.01

S.T. Int. 1Q 0.30 −0.01∗ 0.39◦◦◦ 0.58 −0.03∗∗∗ −0.01 −0.15 0.00 0.17◦◦◦

Rate 4Q 1.46 −0.02∗∗∗ 0.05 1.79 −0.14∗∗ −0.04 0.72 0.01 −0.02
8Q 2.04 −0.04∗∗∗ −0.17 2.60 −0.32∗∗ −0.07 1.15 0.03 −0.04∗

12Q 2.25 −0.05∗∗∗ −0.23∗∗∗ 2.92 −0.46∗∗ −0.20 1.37 0.03 −0.02

Notes: Forecast evaluation results for the implementation in which the time-varying parameters are kept constant out-of-
sample (at the values from the last point of the estimation sample). See notes to Table 1 for further information.
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Table A5: Forecast evaluation results for three-variable VARs, constant variance

euro area United States Japan
RMSE CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.30 0.98∗ 0.94∗∗∗ 2.63 0.97∗∗ 0.98 4.46 0.99 1.00
Growth 4Q 2.19 0.95∗ 0.85∗ 2.02 0.90∗∗ 0.93∗ 2.60 1.00 1.00

8Q 2.47 0.91∗∗ 0.86∗∗ 2.20 0.91∗ 0.90∗ 2.52 1.01 1.01
12Q 2.50 0.91∗∗∗ 0.90∗∗∗ 2.22 0.93∗∗ 0.93∗∗ 2.49 0.99 1.00

Inflation 1Q 1.27 1.03 0.99 2.25 0.99 0.99 1.56 1.03 0.99
4Q 1.02 1.03 0.96 1.26 0.95 0.98 1.06 1.08 1.04
8Q 1.21 1.00 0.93 1.38 0.99 0.92 1.15 1.07 1.05

12Q 1.21 1.00 0.93 1.41 0.96∗ 0.93 1.16 1.08 1.03

S.T. Int. 1Q 0.28 4.36◦◦◦ 1.02 0.44 1.88◦◦◦ 0.94 0.13 5.46◦◦◦ 1.35◦◦◦

Rate 4Q 1.05 1.42◦◦◦ 0.88 1.39 0.99 0.99 0.33 2.56◦◦◦ 1.17◦

8Q 1.82 1.11◦◦ 0.81 2.35 0.89∗ 0.95 0.46 2.12◦◦◦ 1.33◦◦◦

12Q 2.21 1.03 0.80∗ 2.80 0.88∗ 0.87∗ 0.52 2.03◦◦◦ 1.53◦◦◦

LPS CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.23 −0.04∗∗∗ −0.08∗∗∗ 2.37 −0.04∗∗∗ −0.03 2.93 −0.01 0.02
Growth 4Q 2.83 −0.19∗∗ −0.33∗∗ 2.22 −0.17∗∗∗ −0.10 2.50 −0.03 0.05

8Q 3.26 −0.30∗∗ −0.55∗∗ 2.40 −0.16∗∗∗ −0.21∗∗ 2.50 0.00 0.07
12Q 3.17 −0.23∗∗∗ −0.47∗∗ 2.38 −0.09∗∗∗ −0.15∗∗ 2.44 −0.02∗∗ 0.04

Inflation 1Q 1.74 0.00 −0.04 2.41 0.00 −0.01 1.89 −0.01 −0.01
4Q 1.47 −0.01 −0.06 1.70 −0.01 0.00 1.53 0.01 0.00
8Q 1.60 −0.03 −0.02 1.84 −0.06 −0.10 1.62 0.00 0.01

12Q 1.60 −0.03 0.01 1.88 −0.06∗ −0.09 1.60 −0.03 0.02

S.T. Int. 1Q 0.35 −0.01∗ 0.52◦◦◦ 0.68 −0.03∗∗∗ 0.08◦◦ −0.02 0.00 0.26◦◦◦

Rate 4Q 1.49 −0.03∗∗∗ 0.16 1.79 −0.14∗∗ −0.07 0.84 0.01 0.07◦◦◦

8Q 2.04 −0.05∗∗∗ −0.09 2.53 −0.30∗ −0.28 1.26 0.02 0.03◦◦

12Q 2.25 −0.06∗∗∗ −0.16∗ 2.82 −0.43∗∗ −0.47∗∗ 1.46 0.02 0.04◦◦

Notes: Forecast evaluation results for model versions with constant variance. See notes to Table 1 for further information.
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Table A6: Forecast evaluation results for three-variable VARs, robust evaluation criteria

euro area United States Japan
MAE CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 1.43 0.97∗ 0.95∗ 1.98 0.97 0.99 3.04 1.01 1.02◦

Growth 4Q 1.46 0.93∗ 0.84∗∗ 1.55 0.89∗∗ 0.89∗∗ 1.72 0.99 1.01
8Q 1.67 0.93 0.85∗∗ 1.47 0.86∗∗∗ 0.84∗∗ 1.62 1.03 1.03

12Q 1.67 0.93∗∗∗ 0.89∗∗ 1.48 0.89∗∗∗ 0.85∗∗∗ 1.56 1.05◦◦ 1.02

Inflation 1Q 0.96 1.03 0.99 1.45 1.02 1.01 1.06 1.03 1.04
4Q 0.76 1.03 0.97 0.95 1.03 1.01 0.72 1.21◦◦ 1.20◦◦

8Q 1.02 0.98 0.90 1.05 0.97 0.95 0.78 1.12 1.11
12Q 0.99 0.98 0.88 1.11 0.92∗ 0.93 0.80 1.11 1.14◦

S.T. Int. 1Q 0.20 5.23◦◦◦ 1.11◦ 0.29 2.16◦◦◦ 1.01 0.08 6.98◦◦◦ 1.52◦◦◦

Rate 4Q 0.73 1.61◦◦◦ 0.99 1.09 0.99 1.01 0.23 2.74◦◦◦ 1.31◦◦

8Q 1.42 1.21◦◦◦ 0.87 2.01 0.86 0.94 0.35 1.95◦◦◦ 1.47◦◦

12Q 1.87 1.08◦ 0.83∗∗ 2.52 0.82∗ 0.85∗ 0.40 2.00◦◦◦ 1.69◦◦

LPS (t) CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 2.11 −0.04∗∗∗ −0.06∗∗∗ 2.35 −0.04∗∗∗ −0.03 2.84 0.00 0.01
Growth 4Q 2.45 −0.14∗∗ −0.23∗ 2.19 −0.16∗∗∗ −0.12∗ 2.38 −0.01 0.04

8Q 2.74 −0.22∗∗∗ −0.35∗∗ 2.28 −0.16∗∗∗ −0.18∗∗∗ 2.39 0.00 0.06
12Q 2.62 −0.17∗∗∗ −0.25∗∗∗ 2.28 −0.11∗∗∗ −0.13∗∗∗ 2.35 −0.03∗∗ 0.01

Inflation 1Q 1.68 0.00 −0.02 2.13 −0.02 0.00 1.83 0.01 0.01
4Q 1.42 −0.02 −0.05 1.64 0.00 0.01 1.51 0.03 0.01
8Q 1.60 −0.03 −0.04 1.77 −0.03 −0.06 1.59 0.02 0.04

12Q 1.61 −0.03 −0.03 1.83 −0.04 −0.08 1.56 0.00 0.05

S.T. Int. 1Q 0.27 −0.01∗ 0.46◦◦◦ 0.55 −0.04∗∗∗ 0.08◦◦◦ −0.21 0.00 0.32◦◦◦

Rate 4Q 1.45 −0.02∗∗∗ 0.11 1.77 −0.14∗∗ −0.05 0.67 0.02 0.14◦◦◦

8Q 2.04 −0.04∗∗ −0.12 2.56 −0.29∗∗ −0.25 1.10 0.04◦ 0.10◦◦◦

12Q 2.26 −0.05∗∗∗ −0.18∗∗ 2.87 −0.41∗∗ −0.44∗∗ 1.31 0.06 0.11◦◦◦

CRPS CC DP SLM CC DP SLM CC DP SLM

GDP 1Q 1.10 −0.05∗∗∗ −0.07∗∗ 1.42 −0.05∗∗∗ −0.04 2.26 0.00 0.02
Growth 4Q 1.13 −0.09∗∗ −0.17∗∗ 1.13 −0.14∗∗∗ −0.12∗∗ 1.30 0.00 0.01

8Q 1.33 −0.14∗∗∗ −0.22∗∗ 1.16 −0.14∗∗∗ −0.16∗∗ 1.28 0.01 0.03
12Q 1.31 −0.13∗∗∗ −0.15∗∗∗ 1.16 −0.10∗∗∗ −0.12∗∗∗ 1.25 −0.02∗ 0.00

Inflation 1Q 0.70 0.00 −0.01 1.08 0.00 0.01 0.80 0.02 0.02
4Q 0.55 −0.01 −0.02 0.69 0.00 0.00 0.57 0.05 0.04
8Q 0.68 −0.02 −0.04 0.76 −0.02 −0.05 0.62 0.03 0.04

12Q 0.68 −0.02 −0.04 0.79 −0.02 −0.05 0.62 0.02 0.04

S.T. Int. 1Q 0.16 0.00 0.06◦◦◦ 0.22 −0.01∗∗∗ 0.01 0.09 0.00 0.03◦◦◦

Rate 4Q 0.55 −0.01∗ 0.02 0.76 −0.08∗∗ 0.00 0.21 0.01 0.04◦◦◦

8Q 1.02 −0.03∗ −0.14 1.43 −0.23∗ −0.12 0.32 0.04◦◦ 0.06◦◦◦

12Q 1.28 −0.06∗∗ −0.23∗∗ 1.79 −0.35∗∗ −0.31∗ 0.40 0.07◦◦ 0.09◦◦◦

Notes: Forecast evaluation results based on robust criteria. The top panel displays the mean absolute error (MAE), the
middle panel the LPS based on a t-distribution and the bottom panel the continuous ranked probability score (CRPS).
As in Table 1 the accuracy measures are reported in absolute terms for the CC model and relative to the CC model for
the remaining two models (for the CRPS we subtract the CRPS value of the CC model from those of the DP and SLM
models). See notes to Table 1 for further information.
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Table A7: Forecast evaluation results for the SLM model with three and 15-variables, comparison
to survey forecasts

euro area United States Japan
RMSE Survey SLM 3 SLM 15 Survey SLM 3 SLM 15 Survey SLM 3 SLM 15

GDP 1Q 2.55 0.83∗ 0.85∗ 2.62 0.98 0.86∗ 4.31 1.03◦ 1.01
Growth 4Q 2.09 0.89∗ 0.90∗ 1.93 0.97 0.94 2.52 1.02 1.05◦

8Q 2.15 0.99 0.99 2.00 0.98 1.00 2.61 0.98 1.00
12Q 2.22 1.02 1.01 2.08 0.99∗∗ 1.01 2.55 0.98 0.99∗

Inflation 1Q 1.39 0.90∗ 0.92 2.25 0.99 0.95 1.94 0.80∗∗∗ 0.86∗∗∗

4Q 1.01 0.95 0.96 1.27 0.98 0.97 1.54 0.71∗∗ 0.89∗

8Q 1.06 1.06 1.05 1.27 0.99 1.00 1.54 0.79∗ 0.96
12Q 1.09 1.03 1.02 1.32 1.00 1.00 1.47 0.80 0.97∗∗∗

Notes: Point forecast evaluation results for long-term survey forecasts and the SLM models with three and 15 variables.
The RMSEs are reported in absolute terms for the survey forecasts and relative to the survey forecasts for the SLM
models. See notes to Table 1 for further information.
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