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Between spilling over and boiling down: network-mediated spillovers, 

absorptive capacity and productivity in European regions 

 

 

 

Nicola Cortinovis 

Frank van Oort 

 

 

Abstract  

Productivity across European regions is related to three types of networks that 

mediate R&D-related knowledge spillovers: trade, co-patenting and geographical 

proximity. Both our panel and instrumental variable estimations for European regions 

suggest that network relations are crucial sources of R&D spillovers, but with 

potentially different features. While co-patenting relations appear to affect local 

productivity directly, regions that link up to innovative leader regions via imports gain 

in productivity only when they have relatively high levels of human capital and 

absorptive capacity. From a policy perspective, this may frustrate recent European 

policy initiatives, such as Smart Specialization, that are designed to benefit all regions 

in Europe.  

 

 

1. Introduction 

 

Linkages between different peoples and countries, through trade, capital and cultural 

ties, have had large economic effects since the beginning of human civilization. Over 

the past few decades, the opportunities for exchanging goods, services, technologies 

and knowledge have dramatically increased, bringing the concepts of networks, 

interaction, and diffusion to the forefront of academic and political debates. 

Economics and economic geography have increasingly focused on the role of spatial 

and network relations and relate it to innovation and productivity performance. 

 

Departing from the crucial role of knowledge in fostering innovation, productivity 

and development (Romer 1986, Lucas 1988), different scholars have investigated how 

spatial and network relations mediate and allow for the diffusion of ideas and 

technologies across space (Jones 1995, Durlauf et al. 2001). Early contributions (Jaffe 

et al. 1993, Jaffe and Trajtenberg 1999, Grossman and Helpman, 1991, Coe and 

Helpman 1995) have focused on local spillover effects of patents and trade relations 
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as channels for knowledge exchange. More recently, these contributions have been 

extended by a number of scholars looking at spatial, market, investment and 

technological relations as sources of productivity and innovation both at country level 

(Keller 2002, Lumenga-Neso et al. 2005, Fracasso and Vitucci Marzetti 2015) and 

firm level (Keller and Yeaple 2009, Bloom et al. 2013, Lychagin et al. 2016). While 

studies at country and firm level focus on specific channels, economists have 

provided less detailed evidence at regional level, with most of the literature merely 

referring to spatial spillovers (Bottazzi and Peri, 2002, Le Gallo and Dall’Erba 2008). 

 

Building on older contributions of industrial districts (Becattini et al. 2009), economic 

geography literature focused more closely on the regional effects of space and 

networks. Putting as theoretical cornerstones the concepts of proximity and 

relatedness, this stream of research investigates and, with varying success, empirically 

tests, what types of relatedness mold knowledge interaction, learning and innovation 

(Torre et al. 1999, Boschma 2005, Ratti et al. 1997, Camagni 1991, Frenken et al. 

2007). Whereas traditionally more interested in the role of local factors and 

conditions, the proximity-based literature has increasingly investigated the role of 

wider spatial relations and networks. Different contributions have considered the 

effects of spatial spillovers, co-patenting, industrial and technological similarity, and 

migration as channels for the diffusion of knowledge (Maggioni et al 2007; Caragliu 

and Nijkamp 2015, Paci et al. 2014, Miguelez and Moreno 2015). Apart from co-

inventorship relations, these contributions (with the exception of Thissen et al. 2016) 

have paid less attention to the traditional factors – such as trade and investments – 

identified by growth literature.  

 

This paper wants to link these two successful streams of literature by investigating the 

productivity effects of spatial and network relations at regional level. More 

specifically, this paper is among the first to directly study the impact of import, co-

patenting and spatial relations vis-à-vis each other. Besides, given the unequal 

distribution of knowledge assets and innovating capabilities across regions, it can be 

expected that not all linkages are equally important for each and every region 

(Hoekman et al. 2009) and conditions for profiting from network relations may exist 
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(Miguelez and Moreno 2015). Based on these intuitions, we test whether linkages to 

most advanced regions provide a significant benefit for recipient1 regions 

 

The aim of this paper is three-fold. Firstly, we investigate in a spatial panel setting 

with region and year fixed effects whether and how network relations affect local 

productivity, once the spatial proximity dimension is controlled for. Secondly, we 

specifically model network relations with most knowledge and technologically 

advanced regions (Wintijes and Hollanders 2010, Cortinovis and Van Oort 2015) to 

study whether such linkages provide directed spillover effects. Thirdly, we test 

whether the stock of absorptive capabilities of regions (on an educational level) act as 

precondition for regions to profit (take in) from network relations with most advanced 

regions (Miguelez and Moreno 2015, Cortinovis and Van Oort 2015). Finally, we 

check the validity of our potentially endogenous results with an instrumental variable 

(IV) strategy, in which illiteracy rates and gross reproduction rates in European 

regions in the early 1930s are used as an instrument for current R&D expenditures. 

 

Our empirical analysis put forward a number of important results. First, both our 

spatial panel and IV estimates highlight that, even controlling for spatial effects in 

R&D spillovers and in the residuals, network relations affect regional productivity. In 

particular, cross-regional cooperation on patents is an important vector of 

technological diffusion, resulting in higher levels of productivity for regions. 

Similarly, trade relations (measured by import flows in intermediate goods) also have 

a direct effect on productivity, but only in the case of more technologically advanced 

imports. Second, whereas the effects of co-patenting-mediated R&D spillovers are not 

found to depend on local human capital, trade relations with most knowledge-

endowed regions provide productivity advantages to recipient regions only when 

conditions of absorptive capacity (including human capital) are met. At least with 

respect to trade relations, without interregional network linkages and strong 

absorptive capacity, spillovers do not occur. Instead, productivity advantages will boil 

down in only the most advanced and well-connected regions. This questions policy 

efforts to link catching-up European regions in terms of productivity (with currently 

                                                 
1 In the paper, we use the terms “linking-in”, “connecting” and “recipient” regions as synonyms. These 

refer to regions which are “in touch”, either via import or via co-patenting, with most innovative 

regions. These terms do not attribute any characteristic to the regions. For instance, a “recipient region” 

can be either a lagging region, an innovative follower or an innovation leader. 
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low starting values in Eastern Europe and low growth rates in Southern Europe) by 

the introduction of a European Research Area (Frenken et al. 2007) and smart 

specialization strategies (Foray 2015). 

 

To reach these conclusions, we structure our paper as follows. The theoretical 

underpinnings of spatial and network spillovers are discussed and related to 

absorptive capacity and knowledge capabilities in advanced regions in the second 

section of the paper. Based on the theoretical discussion, we pose two research 

questions and three testable hypotheses, followed, in the third section of the paper, by 

a discussion on the models, methods and data sources used in the empirical analysis. 

The results of our econometric exercises are reviewed and interpreted in the fourth 

section. The final part is devoted to the discussion of policy and research implications 

related to our findings. 

 

 

2. Theoretical framework: knowledge spillovers, absorptive capacity and 

linkages to advanced regions 

 

Localized knowledge and spatial spillovers 

The idea of spillovers has been widely studied by economists and geographers, 

especially in relation to agglomeration economies and knowledge flows across space. 

Agglomeration economies literature usually distinguishes between intra-sectoral and 

inter-sectoral spillovers, depending on whether the beneficial effects of 

agglomerations arise and are captured within the same industry or in the broader 

economic environment (Marshall 1920, Jacobs 1969, Glaeser et al. 1992, Beaudry and 

Shiffauerova 2009). Regardless of whether they come from a firm in the same sector 

or emerge from knowledge recombination in a diversified urban environment, these 

spillovers are considered as inherently localized, not spanning further than what face-

to-face interactions allow (Breschi and Lissoni 2001). Precisely because of their 

localized nature, knowledge externalities are used to explain the emergence and 

persistence of spatial disparities in development and economic performance (Capello 

2009, Lissoni and Miguelez 2014).  
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It is thus not surprising that the spatial dimension of knowledge spillovers has 

received significant attention in economic geography and regional studies. Especially 

since the development of spatial econometric tools, different studies have shown that 

knowledge exchanges occur across the borders of cities, clusters and regions, even 

though they are facilitated by geographical proximity and subject to distance decay 

(Dall’Erba and Le Gallo 2008, Arbia et al. 2010, Caragliu and Nijkamp 2015, Lissoni 

and Miguelez 2014). Empirical research has provided significant evidence in these 

respects, even estimating the range within which spillovers can be expected. Bottazzi 

and Peri (2002) show that within Europe, knowledge externalities have a significant 

impact within a range of 200-300 km, dying out once this distance threshold is 

crossed. Similarly, Crescenzi and Rodriguez-Pose (2011) find evidence of knowledge 

exchange within a range of a three-hour drive but not further than that. Works by 

Greunz (2003) and Moreno et al. (2005) find significant effects of knowledge 

spillover within comparable distance ranges. 

 

Whereas significant evidence has been produced empirically on the existence of 

spatial spillovers, these effects are conceptually justified by reference to the lower 

costs and the greater probability of meeting and having face-to-face interactions. This 

interpretation has however been criticized, in particular considering that geographical 

proximity without any other network infrastructure linking two individuals or firms 

does not lead to knowledge diffusion (Boschma 2005, Torre and Rallet 2005, Capello 

2009).  

 

Network-mediated knowledge spillovers 

The idea of socio-economic linkages as infrastructure that allows knowledge diffusion 

within localities, across space, among specific actors or in the broader community is 

not new (Granovetter 1973, Conly et al. 2002, Akerlof 1997, Camagni, 1991, 

Morrison and Rabelotti 2009, Bathelt et al. 2004). Boschma (2005) offers a general 

critique of the role of spatial proximity as the major catalyst for knowledge spillovers, 

suggesting that along with spatial closeness, other forms of networked proximity may 

facilitate knowledge spillovers. In this sense, connections with cognitively similar 

actors, even if located far away, can provide access to valuable information for firms 

and individuals (Nooteboom 1992, Frenken et al. 2007). Building on endogenous 

growth and evolutionary arguments, Huggins et al. (2012) and Huggins and 
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Thompson (2014) have developed the concept of “network capital” which theorize a 

tight conceptual link between local economic performance and the ability to access 

economically valuable knowledge through network linkages. 

 

In this sense, while geographical distance makes it costlier and harder to diffuse ideas 

and technologies, network relations still make such exchanges possible. In these 

respects, the literature has theoretically discussed and empirically investigated 

whether and how different linkages enable knowledge to diffuse2. 

 

The mechanisms linking international trade, innovation and growth have been studied 

in a long tradition (Fagerberg 1988, Romer 1986). While technological and 

knowledge transfers are not automatic in trade relations, international economists 

have realized how trade connections can give access to relevant cognitive resources 

(Grossman and Helpman 1994). Coe and Helpman (1995) provide theoretical 

arguments establishing the link between international trade and R&D spillovers. 

Based on the idea that most international trade is in intermediate goods, the importing 

economy can increase its production thanks to the technological progress and 

innovation from trading partners. In this sense, the effects of using more 

technologically advanced imported inputs is complemented by the possibility for the 

importing firms to learn about new technologies, process, materials and 

organizational practices. Empirical evidence on these mechanisms has confirmed the 

beneficial effects of import-mediated foreign R&D across countries (Coe and 

Helpman 1995, Coe et al. 2009, Fracasso and Vitucci Marzetti 2015) as expenditures 

in R&D by trading partners contribute to local productivity in the importing country. 

At firm level, however, the impact of import-mediated R&D appears to be weaker 

(Keller and Yeaple 2009). Finally, in a regional perspective, Thissen et al. (2016) 

have recently demonstrated the relevance of trade networks for European regions, 

showing that trade relations can explain sectoral growth in productivity across EU 

regions. 

 

                                                 
2 In addition to trade and various forms of proximity, different studies have highlighted how investment 

flows (Iammarino and McCann 2013, Keller and Yeaple 2009), migration networks (Lissoni 2016, 

Hornung, 2010) and global value chains (Giuliani 2005, Morrison et al. 2008) work as channels for 

knowledge diffusion. For sake of brevity, we do not discuss these in this paper. 
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Following Boschma (2005), different empirical studies have investigated the role of 

different forms of proximity in the diffusion of knowledge concluding that, while 

geographical closeness facilitates the acquisition of new knowledge, other forms of 

proximity seem to act as conditioning factors (Caragliu and Nijkamp 2015, Paci et al. 

2014, Morrison and Rabellotti 2009). In these studies, co-patenting and collaborative 

relations among inventors — used as a proxy for relational closeness — are of large 

hypothesized importance (Maggioni et al. 2007, Maggioni and Uberti 2009; Miguelez 

and Moreno 2015). The conceptual link between co-patenting networks and 

knowledge spillovers is rather straightforward: co-patenting is a process that involves 

a substantial and successful exchange of knowledge between individuals, which leads 

to the acquisition of a patent. By taking part in processes of collective learning based 

on knowledge sharing, local actors have the opportunity to acquire fresh knowledge 

that has originated elsewhere and bring it to the local context. While this has a direct 

effect on the local performance through innovation and eventually growth (Caragliu 

and Nijkamp 2015), the effects of collaborative relations have mostly been assessed 

with respect to local innovation performance only (Maggioni et al. 2007, Ponds et al. 

2010, Hoekman et al. 2009, Paci et al. 2014). A notable exception is Basile et al. 

(2012), whose paper reach similar conclusions, demonstrating the synergic effects 

between spatial and relational/social proximities on productivity growth. 

 

From this short discussion of the literature on spillovers, three main channels for the 

transmission of knowledge surface. The literature on agglomeration economies 

strongly focuses on the spatial dimension of knowledge spillovers, stressing their 

localized nature (Lissoni and Miguelez 2014, Bottazzi and Peri 2002, Keller 2002). 

Similarly, studies on growth and international trade suggest that through imports, 

local actors can acquire and capitalize on knowledge that has originated elsewhere 

(Coe and Helpman 1995, Lumenga-Neso et al. 2005, Keller and Yeaple 2009). 

Finally, scientists in the field of geography of innovation claim co-inventorship and 

co-patenting relations, as a form of relational proximity (Boschma 2005), affect local 

economic performance (Basile et al. 2012). Supportive, but sometimes suggestive, 

empirical evidence has been produced for each of these channels individually. 

However, only a few attempts have been made to analyze these contributions 

simultaneously or vis-à-vis one another. As the influence of space and network affect 
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the regional economy concurrently, we formulate the first research question that we 

will address in this paper: 

 

RQ 1: Once spatial proximity is controlled for, do networked trade and networked co-

patenting relations affect regional productivity, and is any of these two channels more 

relevant than the other? 

 

Origin of knowledge and absorptive capacity of the recipient 

While significant attention has been devoted to understanding whether knowledge 

externalities really exist, less attention has been paid to the characteristics of the 

parties involved in the knowledge exchange and especially to the features of 

organization or the place from which the knowledge originates. Most country-level 

studies (Grossman and Helpman 1990, Coe and Helpman 1995, Coe et al. 2009) and 

regional studies (Caragliu and Nijkamp 2015, Basile et al. 2012, Paci et al. 2014, 

Greunz 2003) assume that regardless of whether knowledge spillovers originate from 

a highly advanced economy or a more backwashed one, the inflow of knowledge 

outside-in will be equally beneficial. A relevant exception in this case is Mancusi 

(2008), who looks at patents and patent citations and finds that technologically 

leading countries act as spillovers sources rather than recipients. 

 

Conceptually, the issue of the source of knowledge spillovers is partially addressed by 

the idea of network capital (Huggins et al. 2012, Huggins and Thompson 2014). With 

their network capital, regions acquire the ability to “access and subsequently utilize 

appropriate economically beneficial knowledge” (Huggings and Thompson, 2014, p. 

532). The relation between economically valuable knowledge, network and local 

performance thus suggest that linkages to most advanced economies, which embody 

most valuable knowledge, should provide access to potentially groundbreaking know-

how. The international business literature has also reached similar conclusions, 

showing that spillovers to domestic firms are influenced by factors on the “input” 

side, such as the origin of the multinational, the type of industry, and the mode and 

reason for entry (Crespo and Fontoura 2007, Fu et al. 2011). 

 

Unlike the issue of the source of knowledge, different contributions have shown that 

some preconditions are necessary for a recipient (firm, country or region) to benefit 
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from knowledge externalities (Abreu et al. 2004). As for firm absorptive capacity, 

which depends on the amount of prior related knowledge that the firm has (Cohen and 

Levinthal, 1990, Knoben et al. 2016), regions and countries may face preconditions 

for translating knowledge spillovers into innovation and growth (Benhabib and 

Spiegel 2005, Nelson and Phelps 2006, Caragliu and Nijkamp, 2008). While this has 

been shown to be the case for agglomeration externalities within the boundaries of the 

local economy (Cortinovis and Van Oort, 2015), similar arguments hold for cross-

border spillovers and knowledge exchanges (Caragliu and Nijkamp 2008, Beugelsdijk 

et al. 2008, Miguelez and Moreno 2015). 

 

Based on the discussion of the sources of knowledge and recipient’s absorptive 

capacity, we theorize that different regions produce knowledge spillovers of different 

qualities according to their level of technological progress. Connections to most 

advanced places may then provide access to particularly valuable spillovers, 

generated from state of art knowledge. At the same time, as advanced knowledge 

tends to be particularly complex and requires specific skills and competences (Balland 

and Rigby 2015, Miguelez and Moreno 2015), greater absorptive capacity may be 

needed for regions to fruitfully assimilate those spillovers. On these bases, we put 

forward our second research question: 

 

RQ 2: Do relations to most advanced regions provide a particular advantage for in-

linking regions for regional productivity, and are absorptive capacities necessary to 

substantiate these benefits? 

 

Research hypotheses  

The relationship between knowledge spillovers, either mediated by space or networks, 

and economic performance has been studied in different streams of economic 

research. In spite of recent exceptions (Bloom et al. 2013, Lychagin et al. 2016), 

studies in the growth and cross-border R&D spillover literature tend to ignore the sub-

national territorial dimension and almost exclusively focus on spillovers mediated by 

trade (Coe and Helpman 1995, Coe et al. 2009, Fracasso and Vitucci Marzetti 2015) 

and FDI relations (Cipollina et al. 2012, Beugelsdijk et al. 2008, Gorodnichenko et al. 

2014, Keller and Yeaple 2009). On the other hand, regional level studies have largely 

overlooked the role of trade linkages as channels for knowledge spillovers, focusing 



 10 

more explicitly on the importance of spatial relations (Gleaser et al. 1992, Frenken et 

al. 2007, Le Gallo and Dall’Erba, 2008) and, more recently, of assessing the role of 

various other forms of proximity (Greunz 2003, Paci et al. 2014, Caragliu and 

Nijkamp 2015). In addition, while different studies discuss the importance of 

absorptive capacity for an economy to benefit from knowledge spillovers, the effect 

of spillovers from particularly advanced regions to recipient regions has received little 

attention.  

 

In order to close the gap in the literature highlighted by our two research questions, 

we put forward the following three hypotheses. First, the discussion on the theoretical 

section suggests a positive relation between network-mediated R&D spillovers and 

local productivity. Following Coe and Helpman (1995) and Coe et al. (2009), we 

theorize that regions can access new knowledge assets through its import relations, 

and that such relations will have a productivity-enhancing effect at local level. 

Similarly, in light of the debate on different sources of proximity (Boschma 2005, 

Breschi and Lissoni 2009, Maggioni and Uberti 2009, Maggioni et al. 2007), we 

expect that intense co-patenting cooperation, as a proxy for relational proximity, will 

lead to substantial knowledge spillovers, thus having a positive effect on regional 

productivity. 

 

Hypothesis 1a: The level of productivity in region R is positively related to the level of 

R&D in regions from which R imports. 

 

Hypothesis 1b: The level of productivity in region R is positively related to the level of 

R&D in regions which R patents with. 

 

To address our second research question, a second set of hypotheses specifically takes 

into account the relations with regions that are at the forefront in terms of innovative 

and technological capabilities. Given the great amount of knowledge resources that 

most advanced regions are bound to have, being connected via import or co-patenting 

relations with top innovators may provide privileged access to highly valuable 

knowledge assets. 
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Hypothesis 2a: The positive relation between the level of productivity in region R and 

the level of R&D in regions which R import from is stronger, if the trade partner 

regions are innovation leaders. 

 

Hypothesis 2b: The positive relation between the level of productivity in region R and 

the level of R&D in regions which R patents with is stronger, if the co-patenting 

partner regions are innovation leaders. 

 

Finally, given the potential conditioning role of absorptive capacity (Cohen and 

Levinthal 1990), we expect that regions with higher levels of human capital will be 

better able to profit from highly advanced knowledge spilling over through trade and 

co-patenting networks. 

 

Hypothesis 3: The positive relation between the level of productivity in region R and 

the R&D spillovers from trade and co-patenting with highly advanced partners is 

conditional on higher level of absorptive capacity. 

 

3. Modeling, methodology and data sources 

 

We model the level of productivity 3  in region r as a function of its own R&D 

expenses and the R&D of its neighbors and partners, weighted by import and co-

patenting intensity. Unlike in previous studies (Coe and Helpman 1995, Coe et al. 

2009, Maggioni et al. 2007), we study the effects of spillovers deriving from two 

different network channels simultaneously and extensively controlling for spatial 

effects. We test the three hypotheses put forward in the previous section resorting to 

three panel data models. 

 

The baseline model, reported in Equation 1, is used to estimate the impact of network 

spillovers on the level of regional productivity while controlling for spatial relations 

(Hypothesis 1a and 1b): 

 

                                                 
3 The choice of studying regional productivity levels rather than growth is made in consideration of the 

economic recession characterizing the period of analysis and the limited number of years available in 

our sample. This choice is not uncommon in the literature, as in the case of Coe and Helpman (1995), 

Coe et al. (2009), and Fracasso and Vitucci-Marzetti (2015). 
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𝑙𝑜𝑔_𝑇𝐹𝑃𝑟,𝑡 = 𝛼𝑟 + 𝜏𝑡 + 𝛽𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝛿𝑾𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝛿𝑻𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 +

𝛿𝑷𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑟,𝑡−1 + 𝜆 𝑾𝜀𝑟,𝑡 + 𝑢𝑟,𝑡, 

(1) 

 

where 𝑙𝑜𝑔_𝑇𝐹𝑃𝑟,𝑡 represents the level of total factor productivity in region r at time t 

(in logs) and 𝑾𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 is the distance-weighted per capita R&D, 𝑻𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 

captures the import-mediated spillovers, and 𝑷𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 refers to co-patenting-

mediated effects. In order to fully control for spatial dependence, the error terms is 

split in a spatially lagged term (𝜆 𝑾𝜀𝑟,𝑡) and in the residuals (𝑢𝑟,𝑡). Finally, 𝛼𝑟 and 𝜏𝑡 

represent the cross-sectional and time fixed effects. 

 

Hypotheses 2a and 2b consider the heterogeneity in the effects due to relations with 

most knowledge-endowed regions. To capture the potential spillovers deriving from 

network relations with technological leaders, we compute two new variables, 

𝑻𝑬𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡  and 𝑷𝑬𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡 , which capture the intensity of trade and co-

patenting linkages between the most advanced regions and linking-in regions4. To 

guarantee some degree of heterogeneity, we decide not to apply the same 

transformation to 𝑾𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡.  In Equation 2, the terms 𝑻𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡  and 

𝑷𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡  are substituted by the newly computed variables ( 𝑻𝑬𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡  and 

𝑷𝑬𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡). 

 

𝑙𝑜𝑔_𝑇𝐹𝑃𝑟,𝑡 = 𝛼𝑟 + 𝜏𝑡 + 𝛽𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝛿𝑾𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝛿𝑻𝑬𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 +

𝛿𝑷𝑬𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑟,𝑡−1 + 𝜆 𝑾𝜀𝑟,𝑡 + 𝑢𝑟,𝑡, 

(2) 

 

In the last specification, we introduce a term interacting the import-weighted (or co-

patenting-weighted5) level of R&D with the level of human capital in the region 

𝑇𝑒𝑟_𝐻𝐾𝑟,𝑡 . We do this both for the variables capturing the general trade and co-

patenting relations (Equation 3) and for those focused on relations with most 

advanced regions. In this way, we can consider whether stronger capabilities are 

                                                 
4  Linking-in regions may of any type, i.e., other advanced regions, innovation followers, or less 

developed areas. 
5 For sake of brevity, only the model referring to import relations is reported in Equations 3 and 4. 
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required to profit from relations to most technological leaders, as we theorize in 

Hypothesis 36.  

 

 

𝑙𝑜𝑔_𝑇𝐹𝑃𝑟,𝑡 = 𝛼𝑟 + 𝜏𝑡 + 𝛽𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝛿𝑾𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝛿𝑻𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 +

𝛿𝑷𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝜑𝑻𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 ∗ 𝑇𝑒𝑟_𝐻𝐾𝑟,𝑡−1 + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑟,𝑡−1 + 𝜆 𝑾𝜀𝑟,𝑡 +

𝑢𝑟,𝑡, 

(3) 

 

𝑙𝑜𝑔_𝑇𝐹𝑃𝑟,𝑡 = 𝛼𝑟 + 𝜏𝑡 + 𝛽𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝛿𝑾𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝛿𝑻𝑬𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 +

𝛿𝑷𝑬𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 + 𝜑𝑻𝑬𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡−1 ∗ 𝑇𝑒𝑟_𝐻𝐾𝑟,𝑡−1 + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑟,𝑡−1 +

𝜆 𝑾𝜀𝑟,𝑡 + 𝑢𝑟,𝑡, 

(4) 

 

Construction of the weight matrices 

A crucial step in our analysis is to construct the weight matrices to track the intensity 

of the spatial and network relations between regional economies. Unlike other 

contributions (Jaffe et al. 1993, Bloom et al. 2013, Lychagin et al. 2016), we follow 

the spatial econometric literature in computing our weight matrices (Ertur and Koch 

2011). 

 

Starting from geographical relations, the literature on spatial knowledge spillovers 

suggests that knowledge exchanges usually take place within boundaries of 200-300 

km (Bottazzi and Peri 2002, Crescenzi and Rodriguez-Pose 2011). To ensure the 

capture of most knowledge flows across space, we construct the spatial matrix W, 

using Eurostat geographical data, on the basis of the following definition: 

 

 
𝑾𝑖,𝑗 = {

𝑑𝑖𝑗
−1, 𝑖𝑓 0 < 𝑑𝑖𝑗 ≤ 𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

 

where, 𝑑𝑖𝑗 represents the distance between the centroids of regions i and j, while 𝑑 

represents the threshold of maximum distance we allow for. In other words, for every 

region, we define as spatially related two region located within a 300 km radius. 

Additionally, to account for the fact that greater distances reduce knowledge 

                                                 
6 Because of potential collinearity issues, we do not include both interaction terms at the same time. 
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exchanges, the entries in the spatial matrix will take the value of the inverse of the 

distance between the neighboring regional centroids (Elhorst 2014). Finally, as is 

customary in spatial econometrics (LeSage and Pace 2009), the spatial matrix is row-

standardized. 

 

To capture the strength of trade relations, we use the intensity of import for 

intermediate goods between each pair of European regions. The Planbureau voor de 

Leefomgeving (PBL) has computed the yearly trade flows among EU regions for six 

main sectors, for the period 2000-2010 (Thissen et al. 2016; for a technical 

description, see Thissen et al. 2014a, 2014b). In order to exploit the broad sectoral 

categories offered by the data, we construct three import weight matrices, one for all 

sectors (matrix T below), one for trade in more advanced sectors (matrix A) 

encompassing chemicals, petroleum, electronics, etc., and one for less advanced 

sectors (matrix L below), capturing imports in agriculture, leather, food and 

beverages industries. The import matrices used in our analysis are computed as 

follows:  

 

 
𝑻𝑖,𝑗 =

𝐼_2000_2003𝑖𝑗

∑ 𝐼_2000_2003𝑖𝑗𝑟
 (6) 

 

where 𝐼_2000_2003𝑖,𝑗 is the value at constant prices of imports in intermediate goods 

that region i imported from region j between 2000 and 2003. When building our 

import intensity matrices, we try to limit the concerns for potential endogeneity 

between trade intensity and economic performance in the following ways. First, as 

clearly shown in Equation 6, we consider only import data on years that are 

antecedent to the period considered in our study, so to ensure that the intensity in 

trade is not driven by regional performance. Second, as single-year trade flows may 

not offer an accurate picture as for import intensity, we approximate a measure of 

import stock by summing different yearly import flows. Finally, as for the W matrix, 

we row-standardize the trade matrix (Lumenga-Neso et al. 2005). 

 

The matrix P, capturing cross-regional patent collaboration, is constructed using the 

OECD REGPAT database, which contains detailed information on patent cooperation 

between inventors residing in different regions. From the raw data, only information 
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on co-patenting relations involving more than one European region between 1988 and 

2003 is used. An equal share of each of these patents is allocated across the different 

inventors, before aggregating the patent counts to regional level. Regionalized 

information on co-patents is then used to compute the weight matrix as shown in 

Equation 7. 

 

 
𝑷𝑖,𝑗 =

𝑠ℎ𝑎𝑟𝑒_𝑝𝑎𝑡_1988_2003𝑖𝑗

∑ 𝑠ℎ𝑎𝑟𝑒_𝑝𝑎𝑡_1988_2003𝑖𝑗𝑟
 (7) 

 

As in the case of trade, we use information on the years before 2004 to reduce the 

concern for endogeneity. As for the spatial and import matrices, the co-patenting 

matrix is row-standardized. 

 

In addition to concerns regarding endogeneity, a second issue we consider is the 

overlap between spatial proximity and other channels of knowledge transmission, due 

to the fact that trade and co-patenting relations are facilitated when actors are located 

physically close to one another (Caragliu and Nijkamp 2015). The previous literature 

has dealt with this issue in different ways, for instance combining the different 

matrices in one (Hazir et al. 2014) or setting to zero the entries for the cells in the 

network matrices that have non-zero values in the spatial matrix (Maggioni et al. 

2007). A closer inspection to our data however provides reassuring evidence. As 

reported in Table 1, the highest average row-wise correlation (49%) between the 

weight matrices is found between the spatial matrix W and the co-patenting matrix P. 

Even in this case, however, the correlation does not appear to be particularly 

worrisome. 

 

Table 1: Row-wise correlation among weight matrices 

 
W-T W-A W-L W-P T-P A-P L-P 

Min. -0.06183 -0.11556 -0.02039 -0.04347 -0.0217 -0.04258 -0.02246 

1st Quart. 0.08422 -0.01285 0.26642 0.34333 0.1279 0.0346 0.26364 

Median 0.19771 0.07265 0.41972 0.52198 0.2326 0.1314 0.41942 

Mean 0.23825 0.11435 0.41659 0.48778 0.2815 0.17641 0.42233 

3rd Quart. 0.37167 0.20059 0.58147 0.66504 0.4114 0.27169 0.58681 

Max 0.80552 0.68881 0.91811 0.98005 0.9222 0.9253 0.99516 
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Finally, our last two sets of hypotheses consider the case of relations with top regions, 

from which we hypothesize a greater quantity and better quality of spillovers can be 

obtained. To this aim, we consider the position of regions in the per capita distribution 

of patents for the period 1988-2003, and define as innovation leaders those regions in 

the top quartile of the distribution7. 

 

 

Figure 1 represents the geographical distribution of regions categorized as 

“Innovation Leaders” (orange). Most of advanced regions are located in the core of 

Europe, between Southeast England, and the North of Italy, with the greatest 

concentration in Germany and in Sweden. 

 

Data and sources 

                                                 
7 Cortinovis and Van Oort (2015) divided regions in three technological regimes on the basis of a 

previous classification by Wintijes and Hollanders (2011). Using the same approach to identify the 

regions with higher knowledge and technological endowment, by considering regions in our sample 

belonging to the “high technological regime” as areas particularly rich in knowledge and technologies, 

leads to comparable results. 

Figure 1: Classification of EU regions in terms of innovation performance 
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In addition to the data provided Eurostat for the spatial matrix and PBL for trade 

flows and the OECD REGPAT for the co-patenting matrix, we construct our database 

using information from Cambridge Econometrics (CE) and Eurostat. More precisely, 

we estimate our dependent variable - the regional level of Total Factor Productivity 

(TFP - tfp) - by taking the residuals from the following model: 

 

𝑙𝑜𝑔_𝐺𝑉𝐴𝑝𝑐𝑟,𝑡 = 𝛼𝑟 + 𝜏𝑡 + 𝛽 ∗ 𝑤𝑜𝑟𝑘𝑒𝑑_ℎ𝑜𝑢𝑟𝑠𝑟,𝑡 + 𝛾 ∗ 𝐾_𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑟,𝑡 + 𝜀𝑟,𝑡. (8) 

In the model above, the number of hours worked per capita (𝑤𝑜𝑟𝑘𝑒𝑑_ℎ𝑜𝑢𝑟𝑠𝑟,𝑡 ) 

captures the amount of labour employed in region r at time t. Besides, following 

Beugelsdijk et al. (2015), we estimate the stock of capital (𝐾_𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑟,𝑡), starting 

from gross fixed capital formation and applying the permanent inventory method. 

 

Our main variables of interest are the level of R&D of each region as well as the 

network-weighted levels of R&D. As for the former, Eurostat provides information on 

the level of R&D in each region. We therefore use the log of R&D per capita in PPS 

(R&D pc) to construct our other main explanatory variables. More precisely, as 

spatially and network-weighted measures of R&D, which we use as a proxy for 

knowledge spillovers, we interact the row-standardized weight matrices with the 

vector of R&D pc. Equation 9 shows the formula for the spatially weighted R&D 

level, and we apply the same procedure for matrices T, A, L, P, TE, AE and PE. 

 

𝑾𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡 = 𝑾* 𝑙𝑜𝑔𝑅&𝐷𝑟,𝑡. (9) 

 

In addition to these explanatory variables, we include different control variables 

(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑟,𝑡  in Equations 1-3). Based on data from Eurostat, US HK and Te HK 

measure the share of the workforce with upper-secondary and tertiary education to 

control for the levels and quality of human capital endowment within each region. 

Additionally, when testing Hypothesis 3, Te HK interacts with network-weighted 

R&D measures 8 . We include in all specifications four more control variables 

computed from the CE database. As is customary in the literature on agglomeration 

economies, we include a measure of population density (Popd) to control for the 

                                                 
8Both Ter HK and the weighted measures of R&D are mean-centered before estimating Eq. 3 and 4. 
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heterogeneity between highly urbanized and rural areas. We also include a variable 

approximating9 the stock of foreign population in the region (For. Pop.), in order to 

partially control for migration, another important channel of knowledge diffusion 

(Breschi and Lissoni 2009, Miguelez and Moreno 2015, Hornung, 2010). Finally, to 

partially control for the economic structure of regions, we include the variables Share 

Agr and Share Manuf capturing the share of worked hours in manufacturing over the 

total number of hours worked. 

 

In conclusion, our dataset contains information on 233 European regions at the NUTS 

2 level, for a period of 9 years (2004-2012). Because our dataset has been built using 

different data sources, some regions and countries cannot be included in the analysis. 

While most of EU-27 regions are included, a lack of data on trade flows and co-

patenting forces us to exclude Danish, Finnish, Bulgarian and Romanian regions. 

Additionally, because network data are not regionalized for Slovenia, we must use 

information on the whole country. 

 

Descriptive statistics 

 

Tables 3 and 4 report the summary statistics and the correlation across the variable 

included in the models. While most of the cells in Table 4 have the expected 

magnitude and size, some of the correlation scores are especially interesting. In 

particular, the correlation between the levels of R&D at local, space-mediated and 

network-mediated levels are relatively strong. This suggests that regions highly 

investing in research and development tend to be proximate both in a geographical 

and network sense.  

 

 

 

 

 

                                                 
9 Eurostat does not provide information on foreign population at regional level. In order to overcome 

this issue we took the foreign population at country level and redistribute it according to the share of 

national population accruing to each region. 
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Table 4: Correlation matrix 

 
 

a b c d e f g h i l m n o p q 

TFP a 1 
              

Pop. Density b 0.32 1 
             

For. Pop. c 0.5 0.46 1 
            

Share Agr. d -0.58 -0.54 -0.44 1 
           

Share Manuf. e -0.37 -0.11 -0.02 0 1 
          

Sec. HK f -0.34 -0.04 -0.04 -0.03 0.54 1 
         

Ter. HK g 0.46 0.37 0.38 -0.42 -0.36 -0.3 1 
        

R&D pc h 0.71 0.4 0.56 -0.58 -0.16 -0.09 0.5 1 
       

W-R&D pc i 0.57 0.28 0.39 -0.48 0.03 0.01 0.26 0.5 1 
      

T-R&D pc l 0.49 0.24 0.44 -0.5 0.05 0.18 0.4 0.54 0.58 1 
     

A-R&D pc m 0.51 0.15 0.28 -0.42 -0.17 -0.01 0.38 0.49 0.46 0.84 1 
    

P-R&D pc n 0.31 0.06 0.34 -0.23 0.11 0.04 0.21 0.38 0.47 0.48 0.26 1 
   

TE-R&D pc o -0.15 -0.1 0.01 0.01 0.03 -0.18 0.25 0.05 -0.05 0.17 0.2 0.07 1 
  

AE-R&D pc p -0.14 -0.11 0.06 0.01 -0.01 -0.21 0.21 0.03 -0.05 0.12 0.15 0.07 0.94 1 
 

PE-R&D pc q 0.14 0.07 0.25 -0.18 0.16 0.09 0.13 0.24 0.25 0.26 0.12 0.66 0.04 0.02 1 

 

 

 

Table 3: Descriptive statistics 

VARIABLES Source N mean sd min max 

TFP Own calc. 1,864 -0.0238 0.503 -1.474 1.022 

Pop. Density EUROSTAT 1,864 5.087 1.132 1.129 9.159 

For. Pop. EUROSTAT 1,864 8.861 0.998 5.394 10.75 

Share Agr. CE 1,864 0.0627 0.0575 0.000193 0.401 

Share Manuf. CE 1,864 0.184 0.0694 0.0364 0.499 

Sec. HK EUROSTAT 1,864 0.443 0.132 0.0924 0.775 

Ter. HK EUROSTAT 1,864 0.233 0.0784 0.0668 0.646 

R&D pc EUROSTAT 1,864 5.519 1.036 1.872 7.812 

W-R&D pc EUROSTAT 1,864 5.493 0.941 0 7.037 

T-R&D pc EUROSTAT 1,864 6.203 0.275 4.965 6.676 

A-R&D pc EUROSTAT 1,864 6.281 0.225 5.444 6.772 

P-R&D pc EUROSTAT 1,864 6.143 0.814 0 7.156 

TE-R&D pc EUROSTAT 1,864 6.635 0.116 6.307 6.989 

AE-R&D pc EUROSTAT 1,864 6.672 0.12 6.352 7.103 

PE-R&D pc EUROSTAT 1,864 6.525 1.177 0 7.427 

Number of reg1 
 

233 
    

Years   8 (2004-2012)         



 20 

In addition to check the correlation among the spatial and network-weighted R&D 

measures, Figure 2 represents graphically the relations between two main variables of  

interests (T-R&D pc and P-R&D pc) and the spatial R&D spillovers (W-R&D pc). 

Both graphs show a clear positive relation between the two variables. Three main 

points deserve to be noticed. First, assuming that R&D expenditures increased 

overtime, trade-mediated spillovers appear to be subject to greater change than both 

spatial and co-patenting relations, as suggested by the more marked vertical 

orientation of the scatterplot. In other words, whereas for most of EU regions spatial 

spillovers changed to a limited extent only, import mediated spillovers have markedly 

Figure 2: Nework vs spatially weighted R&D measures 

Panel A: R&D weighted by total trade (T-R&D pc) vs spatially weighted R&D (W-R&D pc) 

 

Panel B: R&D weighted by co-patenting (P-R&D pc) vs spatially weighted R&D (W-R&D pc) 
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increased. The same is not true for co-patenting spillovers, whose change is more 

aligned with the change in spatially weighted R&D. Second, as also shown by Table  

3, co-patenting spillovers are more concentrated and less spread along the vertical  

axis. to have. Lastly, some regions have do not receive any spillovers due to either  

remoteness (GR43, SE33), lack of network connections (GR41, GR22), or both 

(GR42). 

 

Table 5: Spatial, trade and co-patenting relations 

VARIABLES 
Standard  

panel 
Space 

Total  

Trade (T) 

Advanced  

Trade (A) 

Low-tech  

Trade (L) 

Co-patenting 

(P) 

All Net 

(TP) 

All Net 

(AP) 

Pop. Density -0,0823 -0,022 0,0211 0,0146 0,000265 0,0128 0,0482 0,0474 

 
(0.209) (0.280) (0.289) (0.291) (0.285) (0.275) (0.283) (0.285) 

For. Pop. 0,0946 0,0379 -0,0171 -0,0076 0,00894 0,00211 -0,0435 -0,0411 

 
(0.259) (0.295) (0.304) (0.304) (0.302) (0.286) (0.295) (0.295) 

Share Agr. -0.593*** -0,0853 -0,0734 -0,0742 -0,0813 -0,0756 -0,0651 -0,0644 

 
(0.184) (0.137) (0.139) (0.139) (0.137) (0.123) (0.124) (0.124) 

Share Manuf. -0.492*** -0.246* -0.264* -0.263* -0.249* -0.253* -0.268** -0.269** 

 
(0.181) (0.138) (0.138) (0.138) (0.137) (0.134) (0.135) (0.134) 

Sec. HK 0.231*** 0.123* 0.130* 0.131* 0.122* 0,117 0.123* 0.125* 

 
(0.0806) (0.0743) (0.0738) (0.0735) (0.0740) (0.0726) (0.0725) (0.0720) 

Ter. HK 0,175 0,094 0,0988 0,101 0,0928 0,0915 0,0956 0,098 

 
(0.111) (0.0827) (0.0836) (0.0831) (0.0827) (0.0810) (0.0819) (0.0812) 

R&D pc 0.0361*** 0,011 0,0105 0,0112 0,0103 0,00785 0,00746 0,00801 

 
(0.00866) (0.00726) (0.00718) (0.00715) (0.00743) (0.00715) (0.00710) (0.00704) 

W-R&D pc 
 

0.0633*** 0.0544** 0.0569** 0.0577** 0,0297 0,0229 0,0238 

  
(0.0237) (0.0243) (0.0236) (0.0262) (0.0248) (0.0253) (0.0248) 

T-R&D pc 
  

0,116 
   

0,0991 
 

   
(0.0958) 

   
(0.0901) 

 
A-R&D pc 

   
0.152* 

   
0.148* 

    
(0.0855) 

   
(0.0851) 

L-R&D pc 
    

0,0278 
   

     
(0.0472) 

   
P-R&D pc 

     
0.102*** 0.0988*** 0.100*** 

      
(0.0337) (0.0345) (0.0341) 

lambda 
 

0.667*** 0.669*** 0.670*** 0.666*** 0.659*** 0.661*** 0.662*** 

  
(0.0442) (0.0425) (0.0422) (0.0440) (0.0459) (0.0442) (0.0438) 

         
Observations 1,864 1,864 1,864 1,864 1,864 1,864 1,864 1,864 

R-squared 0,119 0,463 0,397 0,462 0,48 0,289 0,23 0,273 

Number of reg1 233 233 233 233 233 233 233 233 

Region FE YES YES YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES YES YES 

R-Squared (w) 0,119 0,0829 0,0435 0,0366 0,0725 0,0792 0,0491 0,0404 

Log-likelihood 4002 4328 4331 4334 4328 4344 4346 4349 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 



 22 

 

 

4. Econometric analysis 

 

Tables 5 and 6 report the estimated coefficients for our models. Each column of each 

table refers to a different specification, for which the weight matrix used is indicated 

in the header of the column. 

 

The first column of Table 4 shows the baseline mode that only includes a spatially 

weighted error term, the only coefficient that is strongly positive and significant. This 

result suggests a strong pattern of spatial dependency in regional TFP. The second 

column includes, along with the spatial error term, a spatially weighted measure of 

R&D. This latter coefficient is strongly positive and significant, suggesting that an 

increase in the R&D expenditures in geographically proximate regions is positively 

related to future level of TFP in the focal region. An increase by 1 percent increase in 

W-R&D pc increases the level of productivity by around 0.06 percent. With respect to 

the control variables we notice most of them, throughout the specifications, do not 

appear to significantly relate on regional TFP, with the only exception of Manuf. 

share. Whereas this may be surprising, we suspect that the reason is the inclusion of 

the fixed effects and limited overtime variation that characterizes these variables. 

 

Looking at the effects of trade-weighted R&D spillovers (columns 3 to 5), only R&D 

spillovers deriving from trade in more advanced goods (A-R&D pc) have an impact 

on local TFP, while the coefficients for T-R&D pc and L-R&D pc are not different 

from zero. In terms of magnitudes of the coefficients, the effect of A-R&D pc is 

stronger than the of W-R&D pc: a 1 percent increase in A-R&D pc would lead to an 

increase in TFP of 0.15 percent. Besides, it is interesting to notice that in column 4, 

the spatially-weighted R&D term is still positive significant, though slightly smaller 

than in column 2. The inclusion of co-patenting mediated R&D slightly change the 

pictured presented so far by Table 5. Similar to the case of trade, the estimated 

coefficient for P-R&D pc appears to be substantial, with a 1 percent increase in co-

patenting spillovers leading to an increase in TFP of 0.1 percent. Besides, once the 

spillovers from co-patenting relations are accounted for (columns 5, 6 and 7), the 

coefficient of W-R&D pc becomes insignificant, while the spatial error terms reduces 
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in size. This would suggest that a substantial portion of what the spatially-weighted 

R&D term actually captures co-patenting relationships, as also indicated by other 

literature (Miguelez and Moreno 2015). The last column of Table 5 shows that the 

effect A-R&D pc is robust to the inclusion of P-R&D pc leaves virtually unchanged 

the coefficient of A-R&D pc. 

 

Table 6: Spatial, trade and co-patenting relations with Innovation Leaders 

VARIABLES 
Total  

Trade (TE) 

Advanced  

Trade (AE) 

Low-tech  

Trade (LE) 

Co-patenting  

(PE) 

All Net 

(TEPE) 

All Net 

(AEPE) 

Pop. Density -0.00512 0.0409 -0.0206 -0.0186 -0.00269 0.0414 

 
(0.288) (0.319) (0.283) (0.286) (0.294) (0.318) 

For. Pop. 0.0274 -0.0283 0.0376 0.0329 0.0236 -0.0281 

 
(0.302) (0.331) (0.298) (0.301) (0.308) (0.331) 

Share Agr. -0.0846 -0.0878 -0.0858 -0.0888 -0.0873 -0.0861 

 
(0.137) (0.138) (0.137) (0.137) (0.137) (0.137) 

Share Manuf. -0.264* -0.250* -0.252* -0.246* -0.263* -0.251* 

 
(0.140) (0.138) (0.140) (0.138) (0.140) (0.138) 

Sec. HK 0.120 0.114 0.123* 0.122 0.118 0.115 

 
(0.0738) (0.0733) (0.0742) (0.0764) (0.0759) (0.0750) 

Ter. HK 0.0934 0.0934 0.0960 0.0929 0.0926 0.0939 

 
(0.0825) (0.0836) (0.0832) (0.0824) (0.0822) (0.0834) 

R&D pc 0.0110 0.0105 0.0110 0.0110 0.0110 0.0105 

 
(0.00722) (0.00731) (0.00724) (0.00725) (0.00720) (0.00730) 

W-R&D pc 0.0624*** 0.0612*** 0.0633*** 0.0626*** 0.0619** 0.0615** 

 
(0.0240) (0.0237) (0.0239) (0.0240) (0.0244) (0.0239) 

TE-R&D pc 0.133    0.132  

 
(0.144)    (0.142)  

AE-R&D pc  0.107    0.111 

 
 (0.127)    (0.131) 

LE-R&D pc   0.0446    

 
  (0.133)    

PE-R&D pc    0.00799 0.00608 -0.00409 

 
   (0.0475) (0.0471) (0.0489) 

lambda 0.671*** 0.668*** 0.669*** 0.667*** 0.671*** 0.667*** 

 
(0.0435) (0.0441) (0.0443) (0.0441) (0.0435) (0.0443) 

       
Observations 1,864 1,864 1,864 1,864 1,864 1,864 

R-squared 0.453 0.290 0.456 0.459 0.446 0.288 

Number of reg1 233 233 233 233 233 233 

Region FE YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES 

R-Squared (w) 0.0368 0.0437 0.0606 0.0800 0.0364 0.0435 

Log-likelihood 4329 4329 4328 4328 4329 4329 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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In Table 6, we address our second research question, looking exclusively at network 

relations with most advanced regions in terms of technology and innovation. Our 

hypotheses are that connections to these regions can be particularly beneficial due to 

the high quality and quantity of knowledge resources they have accumulated. The first 

three columns of Table 6 relate to trade relations, the fourth column to co-patenting 

relations and the fifth and sixth one look at spatial, trade and co-patenting relations 

jointly. Unlike in Table 5, the coefficient of W-R&D pc is positive significant in all 

the specifications. Differently, no significant effect is found for any kind of trade-

mediated R&D from most innovative regions. Finally, a positive significant effect is 

found for PE-R&D pc; while this coefficient is slightly smaller than those reported in 

Table 6, it suggests that relations to technological leaders via co-patenting have a 

direct effect on local productivity. Overall, the results in Table 6 are not fully in line 

with hypotheses 2a and 2b: relations to most advanced regions, while having a direct 

effect in the case of PE-R&D pc, do not necessarily imply any stronger effect in terms 

of R&D spillovers on local productivity. 

 

As discussed in the theoretical framework, spillovers from advanced regions may 

require particularly high levels of absorptive capacity for regions to benefit from 

them. We test this hypothesis through Model 3 and 4, whose estimates are reported in 

Table 7. Results in Table 7 highlight new relevant insights, in particular with respect 

to the role of trade. Like in the previous estimates, the coefficients are insignificant. 

However, the interaction term TE-R&D pc * L.Te_HK is now positive significant, 

suggesting that the effect of trade from most technologically advanced regions varies 

positively for higher levels of human capital. The same holds true for AE-R&D pc * 

L.Te_HK. This is made more evident by comparing the graph reported in Panels A 

and B of Figure 3. As the left-hand graph show, the effect of TE-R&D pc on TFP is 

positive and different from zero (right-hand side vertical axis) for regions with a level 

of human capital (horizontal axis and bar distribution in the background with mean 

centered at 0) at around .14, i.e. two standard deviations above the mean (see Table 

3). Panel B shows a similar patterns, with the effect of AE-R&D pc becoming positive 

and different from zero for marginally lower levels of human capital. It is also 

interesting to notice that, at least for regions with very high levels of human capital, 

the marginal effects of TE-R&D pc appear to exceed those deriving from AE-R&D pc. 

Going back to Table 7, unlike TE-R&D pc * L.Te_HK and AE-R&D pc * L.Te_HK, 
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no significant interaction effect is found for A-R&D pc, P-R&D pc and PE-R&D pc. 

However, the effects of R&D spillovers from trade in advanced inputs (A-R&D pc) 

and co-patenting relations (P-R&D pc) remain comparable to those reported in Table 

5. 

 

Table 7: Spatial, trade and co-patenting relations with interaction terms 

VARIABLES 
Total  

Trade (TP) 

Total  

Trade (TEPE) 

Advanced  

Trade (AP) 

Advanced  

Trade (AEPE) 

Co-patenting 

(PT) 

Co-patenting 

(PETE) 

Co-patenting 

(PA) 

Co-patenting 

(PEAE) 

Ter. HK 0.0782 0.0376 0.0890 0.0264 0.100 0.105 0.110 0.1000 

 

(0.0842) (0.0794) (0.0823) (0.0817) (0.0806) (0.0800) (0.0779) (0.0831) 

R&D pc 0.00875 0.0140** 0.00888 0.0131* 0.00805 0.00933 0.00886 0.00909 

 

(0.00698) (0.00707) (0.00705) (0.00714) (0.00718) (0.00779) (0.00717) (0.00783) 

W-R&D pc 0.0265 0.0674*** 0.0261 0.0729*** 0.0215 0.0609** 0.0228 0.0604** 

 

(0.0254) (0.0244) (0.0248) (0.0238) (0.0256) (0.0246) (0.0250) (0.0241) 

T-R&D pc 0.119    0.107    

 

(0.0893)    (0.0893)    

TE-R&D pc  0.203    0.134   

 

 (0.141)    (0.141)   

A-R&D pc   0.154*    0.162*  

 

  (0.0855)    (0.0844)  

AE-R&D pc    0.129    0.104 

 

   (0.133)    (0.131) 

P-R&D pc 0.0997***  0.103***  0.105***  0.108***  

 

(0.0348)  (0.0345)  (0.0339)  (0.0337)  

PE-R&D pc  0.0132  0.00102  0.00776  -3.86e-05 

 

 (0.0471)  (0.0491)  (0.0473)  (0.0492) 

T-R&D pc*Ter. HK 0.231        

 

(0.191)        

TE-R&D pc*Ter. HK  0.935***       

 

 (0.261)       

A-R&D pc*Ter. HK   0.152      

 

  (0.203)      

AE-R&D pc*Ter. HK    0.821***     

    (0.228)     

P-R&D pc*Ter. HK     0.0888  0.0972  

 

    (0.0776)  (0.0790)  

PE-R&D pc*Ter. HK      -0.0452  -0.0368 

      (0.0493)  (0.0504) 

lambda         

         

Observations 1,864 1,864 1,864 1,864 1,864 1,864 1,864 1,864 

R-squared 0.230 0.102 0.283 0.210 0.204 0.413 0.222 0.325 

Number of reg1 233 233 233 233 233 233 233 233 

Region FE YES YES YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES YES YES 

R-Squared (w) 0.0479 0.0378 0.0400 0.0595 0.0463 0.0343 0.0362 0.0444 

Log-likelihood 4348 4352 4350 4350 4348 4330 4351 4330 

 Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 



 26 

 

 

 

5. Robustness checks on causality 

 

Endogeneity is an obvious concern when studying the relation between R&D 

spillovers and local productivity. Whereas the use of panel settings allow us to control 

for the potential bias of time-invariant omitted variables and the inclusion of lagged 

regressors somewhat reduce the problem of reverse causality, the coefficients 

discussed in the previous may still be affected by endogeneity. 

 

To correctly identify the effects of R&D on local productivity, the instrument should 

be correlated to current R&D expenditure but not with current productivity. For doing 

this, we exploit historical data on regional illiteracy rates (ILLIT) and gross 

reproduction rates (GRR) in the early 1930s (Kirk 1946). While literacy rates have 

been used to proxy current quality of local institutions (Tabellini 2010), the level of 

illiteracy is likely to even better capture the (lack of) propensity to invest in 

knowledge. Similarly, GRR, a measure of replacement fertility capturing the average 

number of female newborns per fertile woman, relates to the local ability to invest in 

human capital. The negative relation between fertility rates, human capital 

investments is generally accepted10 in development economics (Todaro and Smith 

                                                 
10 Todaro and Smith (2011, p. 296) argue that “it is generally agreed that large family size and low 

incomes restrict the opportunities of parents to educate all their children. At the national level, rapid 

population growth causes educational expenditures to be spread more thinly, lowering quality for the 

Figure 3: Marginal Effects (the dashed lines indicates 10% confidence interval) 

Panel A: Marginal Effect of  TE-R&D pc Panel B: Marginal Effect of  AE-R&D pc 
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2011). We thus expect both the illiteracy rate and GRR to be negatively related to the 

current level of regional R&D. Looking at the geographical distribution of current 

R&D expenditures, illiteracy rates and infant mortality rates in the 1930s confirms 

this idea. Generally speaking, regions investing more in R&D (darker shades in the 

map in Panel A of Figure 4 below) appear to be closely matched by lower levels of 

illiteracy and infant mortality (lighter shades in the maps in Panels B and C). A clear 

negative relation is shown in scatterplots in Figure 5 and 6. Following Bloom et al. 

(2013), we build the instruments for the space- and network-weighted variables 

interacting the respective matrix with ILLIT and GRR. 

 

In order for the instruments to be valid, they should not be correlated with current 

level of productivity. Current productivity dynamics are likely to be influenced by 

many factors, some of which only slowly changing over time (Tabellini, 2010). 

However, it is safe to assume our instruments to be exogenous from current 

productivity dynamics, especially considering the profound economic, cultural, social 

and political transformation undergone by European societies since the early 1930s.  

                                                                                                                                            
sake of quantity. This in turn feeds back on economic growth because the stock of human capital is 

reduced by rapid population growth”. 
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Figure 4: Maps of R&D per capita expenditure, illiteracy rates and GRR 

Panel A:  Average R&D exp. pc (2004-2012) Panel B:  ILLIT (1930-1931) Panel C:  GRR (1930-1931) 
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Figure 5: Correlation between average R&D exp. pc (2004-2012) and the illiteracy rates 
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Figure 6: Correlation between average R&D exp. pc (2004-2012) and GRR 
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Whereas our illiteracy rates and GRR appear to be promising instruments, we observe 

them only at one point in time. Instrumental variable estimation in a panel model with 

fixed effects instead would require an instrument whose overtime variation closely 

mimic the one of the endogenous variable. As such variable is probably impossible to 

find, we choose to move from panel to cross-sectional settings and identify the effects 

of network-mediated R&D spillovers. Since we can no longer rely on regional fixed 

effects for capturing time invariant factors affecting regional productivity, we slightly 

modified the model reported in Equation 1. Firstly, we select as dependent variable 

the level of regional TFP in 2012. Secondly, we include the 2004 value of the control 

variables and the network-related R&D spillovers, used in the previous estimations. 

To the existing control variables, we add the 2004 level of TFP in order to control for 

the historical productivity conditions of the regions. Thirdly, given the high 

collinearity of R&D pc and W-R&D pc and their instruments, we sum the two terms 

and enter them as a single variable. As the spatial weight matrix has all 0s in the 

diagonal, the new variable captures the total effect of R&D expenditures in the region 

and in neighboring areas. Fourthly, we include macro-regional dummies (at NUTS1 

level) to capture the residual spatial relations of regions, as we cannot include a 

spatial error term11. In mathematical notation, our 2SLS model can be represented as 

follows:  

 

𝑙𝑜𝑔_𝑇𝐹𝑃𝑟,2012 = 𝑙𝑜𝑔_𝑇𝐹𝑃𝑟,2004 + 𝛼log _𝑡𝑜𝑡_𝑙𝑜𝑐𝑅&𝐷𝑟,2004 + 𝛿𝑻𝑙𝑜𝑔𝑅&𝐷𝑟,2004 +

𝜃𝑷𝑙𝑜𝑔𝑅&𝐷𝑟,2004 + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑟,2004 + 𝜑𝑁𝑈𝑇𝑆1𝑅 + 𝑢𝑟. 

(10) 

 

The second stage results of our IV regressions are reported in Table 8, along with the 

standard tests for relevance and exogeneity of the instruments. Starting from the 

bottom part of the table, throughout the 5 specifications, both the tests on the 

relevance of the excluded instruments and the tests on over-identification provide 

convincing evidence on the validity of our IV strategy. The only exception is the 

significant Hansen J test in fifth column of the table. Also, it should be noticed that, of 

                                                 
11 Whereas Stata allows to estimate spatial error IV regressions using – spivreg – , such command does 

not allow for thorough testing of the validity of the instruments and does not make available the first 

stage results of the regression. This motivated our decision to drop the spatial error term from the 

model. 
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the 233 regions which were included in our panel, around 40 have dropped out from 

the 2SLS regression due to missing values for the instruments.  

 

 
Table 8: Instrumental variable estimation using historical data 

VARIABLES RD+W ILL 

GRR 

T - ILL GRR A - ILL GRR P - ILL GRR T P - ILL GRR A P - ILL GRR 

       
TFP 2004 0.971*** 0.971*** 0.977*** 0.995*** 0.988*** 0.997*** 

 (0.0702) (0.0707) (0.0687) (0.0732) (0.0737) (0.0707) 

Pop. Density 0,0108 0,00984 0,0111 0,0122 0,0116 0,0122 

 (0.00859) (0.00851) (0.00834) (0.00819) (0.00825) (0.00814) 

For. Pop. -0.0128** -0.0138** -0.0141*** -0.0114** -0.0114** -0.0121** 

 (0.00549) (0.00566) (0.00534) (0.00525) (0.00532) (0.00512) 

Share Agr. 0,0337 0,00766 0,0631 0,166 0,159 0,172 

 (0.141) (0.148) (0.135) (0.115) (0.111) (0.113) 

Share Manuf. -0,0215 -0,036 -0,013 0,0198 0,0195 0,0219 

 (0.0923) (0.0929) (0.0896) (0.0816) (0.0828) (0.0810) 

Ter. HK -0,259 -0.266* -0,266 -0,187 -0,204 -0,194 

 (0.164) (0.160) (0.164) (0.149) (0.150) (0.153) 

Sec. HK -0.176** -0.197** -0.210** -0.199** -0.202** -0.216** 

 (0.0884) (0.0918) (0.0912) (0.0878) (0.0882) (0.0889) 

Tot. Loc. R&D pc 0.0415* 0.0421* 0.0434* 0.0397* 0.0451* 0.0404* 

 (0.0247) (0.0246) (0.0241) (0.0235) (0.0240) (0.0229) 

T-R&D pc  0,0371   -0,00326  

  (0.0417)   (0.0345)  

A-R&D pc   0.0768*   0,0413 

   (0.0418)   (0.0360) 

P-R&D pc    0.0472* 0,0451 0.0422* 

    (0.0274) (0.0274) (0.0251) 

       

Observations 192 192 192 190 190 190 

R-squared 0,881 0,881 0,885 0,888 0,887 0,89 

NUTS1 FE YES YES YES YES YES YES 

K-P LM 28,97*** 29,64*** 30,06*** 29,02*** 30,67*** 28,64*** 

LM P-val 5,11E-07 1,64E-06 1,34E-06 2,22E-06 3,58E-06 9,24E-06 

S-W F Loc 9,263*** 6,667*** 6,088*** 6,269*** 5,155 4,832*** 

S-W F P-val Loc 0,000185 0,000346 0,000702 0,000565 0,000757 0,00125 

S-W F N1  40,27*** 46,78*** 29,6*** 32,57*** 34,28*** 

S-W F P-val N1  0 0 0 0 0 

S-W F N2     23,26*** 24,15*** 

S-W F P-val N2     0 0 

Hansen J 0,816 2,922 3,384 1,751 6,015 2,773 

J P-val 0,366 0,232 0,184 0,417 0,111 0,428 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

When considering the size and significant coefficients of the instrumented variables, 

we find substantial confirmation of the results reported in Table 4. In particular, along 

with significant local-spatial R&D spillovers, the effects of R&D externalities from 

network relations are found for both imports of advanced intermediate goods 

(columns 3 and in Table 7) and co-patenting relations (columns 4 and in Table 7). It is 

interesting to notice that the sizes of the coefficients in these 2SLS regressions are 

smaller but comparable to those reported in Tables 4 and 6. According to our IV 

estimates, a 1 percent increase in R&D expenditures in regions from which an 



 33 

average region buys advanced intermediate goods induces an increase in the local 

productivity of 0.08 percent. Similarly, incrementing R&D expenditures in co-

patenting partners by 1 percent increases local productivity by 0.04 percent. As in the 

previous results, A-R&D pc has a stronger effect than P-R&D pc. The last two 

columns of Table 7 do not report any significant coefficient for the network-mediated 

R&D a part from the coefficient for Tot. Loc. R&D pc which is positive significant. 

Such imprecise estimates are likely to be due to the high correlation scores among the 

instruments (see Table 9 in the Appendix) and limited variation in our cross-sectional 

data. 

 

6. Conclusions 

 

The aim of this paper is to contribute to the debate on knowledge spillovers, which 

involves different sub-disciplines in economics and economic geography. In doing 

this, we adopt a regional perspective and we assess how the regional level of 

productivity is affected by R&D externalities deriving from trade and co-patenting 

relations with other regions on a European regional scale. The attention devoted to 

import-mediated R&D spillover is particularly innovative for the regional economic 

literature, as it compares the trade networks vis-à-vis other kinds of relations (spatial 

and co-inventorship). A second, more qualitative contribution of this work relates to 

the study of the direction of network relations, i.e., import- and co-patenting-mediated 

relations to regions that are innovation leaders. A third substantial innovation is 

represented by the instrumental variable strategy, which provides more robust 

evidence on the causal effects linking network-related R&D spillovers and local 

productivity. 

 

After a short review of the extensive literature on knowledge spillovers, we put 

forward our research questions and hypotheses. First, based on the empirical research 

on agglomeration economies, we expect R&D spillovers deriving from network 

relations to have a strong impact on local productivity (Hypothesis 1a and 1b). Our 

estimates consistently confirm these hypotheses, especially for what concerns 

spillovers from advanced imports and spillovers from co-patenting relations. Both 

these effects find confirmation in our 2SLS estimations. Our expectations on the role 

of R&D spillovers from innovation leaders, expressed in Hypotheses 2a and 2b are 
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instead not confirmed. According to our estimates, the superior knowledge 

endowment that top innovating regions have does not necessarily spill over and 

translate into higher productivity for trade partners and co-inventors. A potential 

explanation for this, conceptualized in Hypothesis 3, refers to the lack of absorptive 

capacity in recipient regions. Including an interaction between the network-mediated 

spillovers with human capital endowments, our analysis suggests that preconditions 

exist for regions to profit from connections with most advanced areas. Interestingly, 

knowledge embodied in goods and technologies and diffused via trade seems to be 

harder to assimilate by recipients, whereas co-patenting spillovers are not influenced 

by local conditions in terms of absorptive capacity. 

 

Different insights in terms of policy implications can be drawn from the results of our 

analysis. Our results show that network relations do complement localized knowledge 

endowments of regions and contribute to a higher levels of productivity. These results 

are informative in the light of the recent debates concerning restrictions on trade and 

political decisions on freedom of movements, potentially jeopardizing knowledge 

collaborations. However, our results also suggest that some conditions may exist for 

network effects to materialize. In particular, the strongest impact of trade-mediated 

knowledge spillovers occurs when the receiving region has abundant human capital 

and knowledge assets. From the one hand, this result indicates the crucial importance 

of investments in absorptive capacity. From the other hand, our estimates question the 

applicability of recent European policy initiatives, such as smart specialization 

opportunities for all regions in Europe. Lagging regions in Europe may not fully 

benefit from trade relations, as they lack the necessary and dedicated skills and human 

capital to absorb the knowledge embedded in the networks and put it to use in local 

productive economies. Instead of regionally spilling over in the networks, valuable 

knowledge may keep boiling down in the closed “old boys” network of most 

advanced EU regions (Desdoigts 1999, Hoekman et al. 2009). 
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APPENDIX 

 

  

Figure 7: Correlation between nework and spatially weighted R&D measures: advanced trade and space (top), low-tech trade and 

space (bottom) 

 

 



 36 

 

 

  

Figure 8: Correlation between nework and spatially weighted R&D measures: total trade and co-patenting  (top), advanced trade and 

co-patenting (bottom) 
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Figure 9: Correlation between Tot. Loc. R&D pc and ILLIT+W*ILLIT (above), and between Tot. Loc. R&D pc and GRR+W*GRR 

(below) 
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Table 9: Correlation table for endogenous variables and instruments 

    a b c d e f g h i j k l m n o 

R&D pc a 1.00 
              

ILLIT b -0.54 1.00 
             

GRR c -0.53 0.71 1.00 
            

W-R&D pc d 0.53 -0.57 -0.48 1.00 
           

W_ILLIT e -0.49 0.95 0.68 -0.69 1.00 
          

W-GRR f -0.44 0.81 0.79 -0.61 0.87 1.00 
         

T-R&D pc g 0.56 -0.69 -0.57 0.60 -0.69 -0.66 1.00 
        

T-ILLIT h -0.47 0.83 0.61 -0.50 0.84 0.74 -0.86 1.00 
       

T_GRR i -0.39 0.77 0.60 -0.43 0.79 0.75 -0.85 0.95 1.00 
      

A-R&D pc j 0.53 -0.52 -0.45 0.51 -0.51 -0.51 0.84 -0.60 -0.64 1.00 
     

A_ILLIT k -0.43 0.78 0.60 -0.44 0.79 0.74 -0.81 0.90 0.91 -0.75 1.00 
    

A-GRR l -0.33 0.65 0.48 -0.35 0.66 0.63 -0.75 0.77 0.89 -0.77 0.89 1.00 
   

P-R&D pc m 0.38 -0.33 -0.25 0.47 -0.36 -0.35 0.48 -0.42 -0.36 0.29 -0.20 -0.21 1.00 
  

P-ILLIT n -0.41 0.75 0.61 -0.40 0.80 0.77 -0.61 0.74 0.72 -0.46 0.68 0.59 -0.53 1.00 
 

P-GRR o -0.27 0.50 0.66 -0.23 0.53 0.72 -0.43 0.50 0.52 -0.32 0.46 0.37 -0.52 0.69 1.00 
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Table 10: First stage regression results (the header refers to different columns in Table 8) 

 T8, Col. 1 T8, Col. 2 T8, Col. 3 T8, Col. 4 T8, Col. 5 T8, Col. 6 

VARIABLES 1st - 

RD+W 

ILL GRR 

1st - 

RD+W 

ILL GRR 

1st - T ILL 

GRR 

1st - 

RD+W 

ILL GRR 

1st - A ILL 

GRR 

1st - 

RD+W 

ILL GRR 

1st - P ILL 

GRR 

1st - 

RD+W 

ILL GRR 

1st - T ILL 

GRR 

1st - P ILL 

GRR 

1st - 

RD+W 

ILL GRR 

1st - A ILL 

GRR 

1st - P ILL 

GRR 

              

TFP 2004 0.843** 0.829** -0,00582 0.846** -0,00202 0.881** -0,187 0.864** 0,000315 -0,163 0.905** 0,0153 -0,187 

 (0.337) (0.341) (0.0657) (0.348) (0.0657) (0.346) (0.159) (0.352) (0.0653) (0.160) (0.364) (0.0662) (0.164) 

Pop. Density 0,0871 0,0864 0,00584 0,0875 -0,0169 0.0950* 0,00249 0.0976* 0,00502 0,00972 0,0957 -0,0111 0,00558 

 (0.0535) (0.0537) (0.0115) (0.0541) (0.0116) (0.0570) (0.0416) (0.0573) (0.0105) (0.0417) (0.0584) (0.0107) (0.0425) 

For. Pop. 0,0534 0,0526 -0,00497 0,0537 -0,000486 0,0514 -0,00645 0,054 -0,0033 -0,00141 0,054 -0,0022 -0,00329 

 (0.0323) (0.0334) (0.00914) (0.0327) (0.00730) (0.0347) (0.0258) (0.0350) (0.0100) (0.0263) (0.0353) (0.00727) (0.0265) 

Share Agr. 0,442 0,402 0,0954 0,451 0,0216 0,517 0,0866 0,516 0,105 0,21 0,594 0,0628 0,12 

 (0.598) (0.620) (0.130) (0.615) (0.0992) (0.615) (0.257) (0.650) (0.131) (0.287) (0.655) (0.0994) (0.273) 

Share Manuf. 1.887** 1.800* -0,0769 1.903** -0.550* 2.106** 0,257 2.123** -0,0507 0,552 2.255** -0,435 0,378 

 (0.867) (0.943) (0.361) (0.875) (0.326) (0.886) (0.565) (0.943) (0.348) (0.633) (0.885) (0.297) (0.561) 

Ter. HK 3.103*** 3.105*** -0,289 3.113*** -0,216 3.159*** -0,0999 3.224*** -0,285 -0,0186 3.234*** -0,181 -0,00639 

 (0.722) (0.734) (0.257) (0.731) (0.174) (0.738) (0.418) (0.749) (0.242) (0.445) (0.756) (0.178) (0.440) 

Sec. HK 0,388 0,427 -0,0257 0,411 -0,143 0,45 0,568 0,579 -0,0108 0,643 0,53 -0,0872 0,708 

 (0.676) (0.760) (0.164) (0.711) (0.151) (0.673) (0.479) (0.754) (0.168) (0.548) (0.696) (0.155) (0.514) 

GRR TOT LOC -0.404*** -0.403*** -0,0167 -0.403*** -0,0011 -0.407*** 0,011 -0.409*** -0,0186 0,0069 -0.405*** -0,00136 0,0116 

 (0.106) (0.106) (0.0236) (0.107) (0.0191) (0.107) (0.0577) (0.107) (0.0237) (0.0579) (0.106) (0.0193) (0.0560) 

ILLIT TOT LOC -0.00551** -0.00550** 3,46E-05 -0.00539** 0,000148 -0.00461* 0,0021 -0,00442 0,000248 0,00244 -0,00394 0,000608 0.00267* 

 (0.00242) (0.00246) (0.000770) (0.00250) (0.000586) (0.00273) (0.00164) (0.00284) (0.000865) (0.00158) (0.00292) (0.000625) (0.00158) 

T-GRR  0,25 -0.863***     0,424 -0.827*** -0,159    

  (0.835) (0.230)     (0.855) (0.231) (0.382)    

T-ILLIT  -0,00761 -0.0207**     -0,00712 -0.0207** 0,0129    

  (0.0209) (0.00846)     (0.0201) (0.00791) (0.0102)    

A-GRR    -0,0479 -1.375***      -0,314 -1.414*** 0,0638 

    (0.650) (0.323)      (0.722) (0.296) (0.467) 

A-ILLIT    0,00459 -0,0122      0,0233 -0,0084 0,0127 

    (0.0295) (0.00981)      (0.0341) (0.00972) (0.0188) 

P-GRR      -0,129 -1.106*** -0,147 0,0344 -1.149*** -0,126 -0,093 -1.126*** 

      (0.260) (0.254) (0.275) (0.108) (0.259) (0.274) (0.103) (0.251) 

P-ILLIT      -0,00326 -0.0210*** -0,00377 -0,00235 -0.0219*** -0,00433 -0,000218 -0.0216*** 

      (0.00470) (0.00483) (0.00478) (0.00230) (0.00429) (0.00551) (0.00221) (0.00445) 

              

Observations 192 192 192 192 192 190 190 190 190 190 190 190 190 

Robust standard errors in parentheses 
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*** p<0.01, ** p<0.05, * p<0.1 
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Table 11: First stage regression results for the IV on national outlays for R&D (the header refers to different columns in Table 9) 

VARIABLES 1st - RD GUF-

No_GUF 

1st - RD+W GUF-

No_GUF 

1st - RD+W GUF-

No_GUF 

1st - T GUF-

No_GUF 

1st - RD+W GUF-

No_GUF 

1st - A GUF-

No_GUF 

1st - RD+W GUF-

No_GUF 

1st - P GUF-

No_GUF 

         

Pop. Density -0.217 -0.161 -0.133 -0.181 -0.142 -0.0944 -0.392 -0.390 

 (0.838) (0.582) (0.562) (0.145) (0.563) (0.182) (0.616) (0.351) 

For. Pop. 0.102 -0.0259 -0.0119 0.263 -0.0241 0.0726 0.0803 0.399 

 (1.189) (0.840) (0.821) (0.191) (0.823) (0.204) (0.818) (0.473) 

Share Agr. -1.748*** -1.595*** -1.607*** -0.208*** -1.612*** -0.0793 -1.562*** -0.839** 

 (0.610) (0.425) (0.399) (0.0754) (0.413) (0.0733) (0.455) (0.367) 

Share Manuf. 0.875 0.325 0.344 0.168* 0.353 0.0916 0.415 0.597** 

 (0.771) (0.457) (0.440) (0.0985) (0.446) (0.101) (0.471) (0.293) 

Ter. HK 0.00162 -0.0991 -0.0838 -0.0701 -0.0914 -0.0418 -0.148 -0.147 

 (0.308) (0.200) (0.203) (0.0629) (0.201) (0.0621) (0.210) (0.145) 

Sec. HK 0.856*** 0.527*** 0.556*** 0.0308 0.540*** -0.0640 0.374* 0.331** 

 (0.272) (0.167) (0.156) (0.0407) (0.162) (0.0420) (0.199) (0.129) 

GUF R&D pc 0.0157        

 (0.0488)        

No-GUF R&D pc 0.0848***        

 (0.0281)        

GUF Loc. R&D pc  0.107** 0.100** 0.00650 0.105** 0.00303 0.143*** 0.0786** 

  (0.0496) (0.0484) (0.00848) (0.0494) (0.00741) (0.0448) (0.0376) 

No-GUF Loc. R&D pc  0.0951*** 0.110*** 0.0188*** 0.0989*** 0.00756** 0.182*** 0.0599*** 

  (0.0299) (0.0283) (0.00554) (0.0297) (0.00361) (0.0647) (0.0152) 

GUF T-R&D pc   0.0509 0.0588***     

   (0.0468) (0.0185)     

No-GUF T-R&D pc   -0.0806** 0.00323     

   (0.0378) (0.0100)     

GUF A-R&D pc     0.0392 0.0574***   

     (0.0344) (0.0170)   

No-GUF A-R&D pc     -0.0516* 0.0159**   

     (0.0273) (0.00619)   

GUF P-R&D pc       -0.000704 -0.00322 

       (0.0331) (0.0197) 

No-GUF P-R&D pc       -0.123** -0.0260 

       (0.0596) (0.0160) 

         

Observations 1,764 1,747 1,747 1,747 1,747 1,747 1,731 1,731 
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Number of reg1 232 230 230 230 230 230 228 228 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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