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Accelerating GARCH and Score-Driven Models:
Optimality, Estimation and Forecasting

by F. Blasques, P. Gorgi and S.J. Koopman

Abstract

We first consider an extension of the generalized autoregressive conditional heteroskedasticity

(GARCH) model that allows for a more flexible weighting of financial squared-returns for

the filtering of volatility. The parameter for the squared-return in the GARCH model is time-

varying with an updating function similar to GARCH but with the squared-return replaced by

the product of the volatility innovation and its lagged value. This local estimate of the first

order autocorrelation of volatility innovations acts as an indicator of the importance of the

squared-return for volatility updating. When recent volatility innovations have the same sign

(positive autocorrelation), the current volatility estimate needs to adjust more quickly than

in a period where recent volatility innovations have mixed signs (negative autocorrelation).

The empirical relevance of the accelerated GARCH updating is illustrated by forecasting daily

volatility in return series of all individual stocks present in the Standard & Poor’s 500 index.

Major improvements are reported for those stock return series that exhibit high kurtosis. The

local adjustment in weighting new observational information is generalised to score-driven

time-varying parameter models of which GARCH is a special case. It is within this general

framework that we provide the theoretical foundations of accelerated updating. We show that

acceleration in updating is more optimal in terms of reducing Kullback-Leibler divergence and

in comparison to fixed updating. The robustness of our proposed extension is highlighted in

a simulation study within a misspecified modelling framework. The score-driven acceleration

is also empirically illustrated with the forecasting of US inflation using a model with time-

varying mean and variance; we report significant improvements in the forecasting accuracy at

a yearly horizon.

Key words: GARCH models, Kullback-Leibler divergence, score-driven models, S&P 500

stocks, time-varying parameters, US inflation.
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1 Introduction

Economic and financial time series often exhibit intricate dynamic features. When the time series

is analysed by use of a parametric dynamic model, it needs to be sufficiently flexible to describe

its salient features. Oftentimes, time-varying parameter models provide the necessary flexibility.

However, for such dynamic models, the estimation and forecasting can become subject to particular

challenges. A possible challenge for parameter estimation (or filtering) is to account for the varying

amount of information that is contained in past observations. For example, in the case of analysing

time series of daily financial returns and filtering its time-varying volatility by means of the well-

known generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982)

and Bollerslev (1986), the parameters can be tuned in such a way that the conditional volatility

change slowly over time. But after specific events such as a financial crisis or a major news event,

one may need to change the updating process such that the conditional volatility adapts to its new

level quickly rather than slowly. We then need to change the values of the parameters temporarily

to accommodate such changes to a new volatility level. For such and other purposes, we introduce

a dynamic specification in order to update the time-varying parameter (in the example, conditional

volatility) quickly when the data is informative and slowly when the data is less informative. The

introduction of time-varying coefficients in the GARCH model has been considered elsewhere but

for different purposes and motivations. For example, Engle and Lee (1999) have introduced a

time-varying intercept in the GARCH model with the motivation to introduce a long-run, slowly

evolving component in conditional volatility. More recently, Quaedvlieg et al. (2016) introduce

time-varying parameters in realized volatility models by having them as functions of precision

measures that are computed from high-frequency data. In our case, we do not require additional

or external information. In the context of GARCH models, we only require other sample statistics

from the daily financial returns as we argue below.

Our proposed extension is first considered for the GARCH model with the purpose of having

more flexible weighting functions of past financial squared-returns for the filtering and forecasting

of volatility. The weighting parameter of the squared-return in the GARCH model is made time-

varying with an updating function that is similar to GARCH itself but with the squared-return

replaced by the product of the volatility innovation and its lagged value. This local estimate of the

first-order autocorrelation of volatility innovations provides an indication of the importance of the
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squared-return for volatility updating. When recent volatility innovations have the same sign, the

adjustment of the current volatility estimate needs to accelerate faster than in a period where these

innovations have mixed signs. The former hints towards a positive first-order autocorrelation in

innovations while the latter hints towards a negative autocorrelation. To let the weighting parameter

be a function of the local estimate of the correlation, the updating can be accelerated when a set of

consecutive innovations have the same sign. In this case, the adjustment to a new volatility level

will rapidly materialise. The empirical relevance of this accelerated GARCH (aGARCH) model

is investigated for all stocks present in the Standard & Poor’s 500 index. We present in-sample

and out-of-sample performance measures. Large improvements are reported for stock return series

with high kurtosis.

This mechanism of accelerated updating can also be introduced to other observation-driven

time-varying parameter models. For example, the class of score-driven time-varying parameter

models of Creal et al. (2013) encompasses many well-known dynamic models, including GARCH

and related models but also facilitates the formulation of new dynamic models. Recent examples

of score-driven models are provided by Harvey and Luati (2014) and Andres (2014) where they

consider location and scale models for fat-tailed distributions, Creal et al. (2014) where dynamic

factor models are explored, and Creal et al. (2011), Oh and Patton (2017) and De Lira Salvatierra

and Patton (2015) who adopt different dynamic copula models with time-varying coefficients. A

collection of all recent developments on score-driven models, also known as generalised autore-

gressive score (GAS) models of Creal et al. (2013) or dynamic conditional score (DCS) models

of Harvey (2013), is provided online at http://gasmodel.com. The extension of having a

dynamic parameter in the GARCH model is an illustration of the flexible framework that score-

driven models can provide. Within the updating of the parameter of interest, the score function

provides a sensible and optimal formulation of how the actual updating can be accelerated.

In the general setting, we propose a generalisation of the class of score-driven or GAS models:

the accelerating GAS (aGAS) models. We will discuss the intuition behind this specification and

provide a theoretical justification for our proposed method. In particular, we follow Blasques et al.

(2015) and show that acceleration in updating is more optimal in terms of reducing Kullback-

Leibler divergence when compared to fixed updating. Furthermore, we present a simulation study

to illustrate the role that our approach can play, the provision of more flexible models and the

improved approximation of an unknown data generating process. Finally, in the context of location

4



and scale models, we consider an empirical application for the modelling and forecasting of the

quarterly time series of US CPI inflation. Our proposed model is based on a fat-tailed density

with time-varying conditional mean and volatility. The accelerating updating equation renders our

aGAS model capable of jointly describing the fast changes in the inflation level during the 1970’s

and 1980’s, but also, the smooth and slow dynamic behaviour of the conditional mean during the

great moderation of two decades that followed the early 1980s.

The paper is structured as follows. Section 2 introduces the aGARCH model. Section 3

presents the general aGAS framework. Section 4 develops the optimal properties for the aGAS

models. Section 5 discuses the results of a simulation experiment. Section 6 gives evidence of the

empirical relevance of aGAS models for the S&P500 stock returns and for the US inflation series.

Section 7 concludes.

2 Accelerated GARCH model

In this section we motivate our extension for observation driven time-varying parameter models

by introducing the accelerated updating mechanism for the GARCH model. A natural updating

function of current and past squared-returns is proposed and discussed. The empirical relevance

of our extension for the GARCH model is investigated in a volatility forecasting study concerning

460 stock return series of U.S. companies from the S&P500 stock index.

2.1 Model formulation

The generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982)

and Bollerslev (1986) treats the clustering of large, but also small, shocks in time series of financial

returns {yt}t∈Z, with time index t. The variable yt typically represents daily differences of logged

closure prices of stocks traded at financial markets. A time series of financial returns can also be

based on stock indices, exchange rates, commodity prices and related variables. The basic GARCH

model is given by

yt =
√
htεt, ht+1 = ω + ᾱy2t + β̄ht, (1)

where the volatility {ht}t∈Z is the time-varying scaling for yt and the locally scaled return {εt}t∈Z
is assumed to be an independent identically distributed (i.i.d) sequence of random variables with
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zero mean and unity variance. The coefficients ω > 0, ᾱ > 0 and β̄ > 0 are treated as fixed

unknown parameters that need to be estimated; they determine the overall variance, the amount of

changes in volatility, the persistence of volatility, and other features of yt. The restriction bounds

on the coefficients ensure ht > 0 while ᾱ + β̄ < 1 ensures a weak stationary process for ht: see

the discussion in Nelson (1990). We focus in particular on the coefficient ᾱ that determines the

level of changes in the volatility ht; the coefficient determines how fast the volatility responds to

changes in the amount of clustering in the time series of returns yt. For given values of ω and β̄, we

may question whether the constancy of ᾱ is appropriate when we need to determine locally how

quickly the volatility ht must adapt to changes in the amount of clustering, especially when we

have a longer time series. A relatively small value for ᾱ can be appropriate when the current level

of volatility is appropriate. But in a more turbulent period, the ᾱ may need to be larger so that ht

can adjust faster to new information. To address this empirical feature in financial time series, we

present an extension of the GARCH model in which ᾱ is allowed to vary over time. We propose

a specification for the time-varying ᾱ, we investigate the consequences for the volatility ht and we

study the statistical properties of the new model. We refer to this extended GARCH model as the

accelerated GARCH model, or the aGARCH model.

Before we introduce a time-varying coefficient for ᾱ, we express the GARCH updating in its

innovation form, that is

ht+1 = ω + ᾱ(y2t − ht) + β ht

= ω + β ht + αht (ε2t − 1), (2)

where we have replaced y2t by htε
2
t as implied by the model for yt and with β = ᾱ + β̄ and

α ≡ ᾱ. We refer to prediction error y2t − ht as the volatility innovation and the term ε2t − 1 as

scaled volatility innovation (SVI) since ε2t − 1 = h−1t (y2t − ht). Assuming normality for εt, the

SVI has some convenient properties as it is a χ2 distributed variable with mean equal to zero and

variance equal to two. Its properties do not relate to ht or its updating function which is useful for

the development below. In this specification we require α < β to ensure that ht > 0 for all t. We

therefore specify the time-varying coefficient through the link function

αt = β · logit(ft+1), (3)
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where variable {ft}t∈Z is a time-varying scalar coefficient and logit(·) is the logistic function such

that logit(a) = exp(a) / (1 + exp(a)) for any a ∈ R. Given this link function, ft ∈ R can be

any unbounded process. Other such link functions can also be considered. Since we let ft be a

nonlinear function of past observations y1, . . . , yt−1, in a similar way as ht, we have the update

ht+1 = ω+β ht +αt (y2t −ht) for which yt is available and hence αt can be a function of ft+1 that

partly relies on yt.

For the time-varying process ft, we consider a similar updating scheme as for GARCH but

with the product of the current value of SVI, on time t, and its previous value, on time t− 1, as the

innovation term. More specifically, we propose the updating equation

ft+1 = ωf + βfft + αf (ε
2
t − 1)(ε2t−1 − 1), (4)

where the coefficients ωf , αf and βf have similar roles as ω, ᾱ and β̄, respectively, in the GARCH

model presented in equation (1). The equation (2) with a time-varying α given by (3) and (4) is

the accelerated GARCH model. The product of the contemporaneous and lagged SVI is treated as

indicative of whether or not αt needs to change more quickly or slowly. When two consecutive

values of SVI have the same sign, it may indicate that the level of volatility is either too low or

too high and that the model needs to adapt to this change more quickly. Hence a larger value for

αt is necessary. The resulting model is a straightforward extension of the GARCH model with

the additional updating equation (4) and the addition of two coefficients only, αf and βf , since ωf

is effectively replacing the static ᾱ coefficient in the GARCH model (1). Next we discuss some

further details of our aGARCH model.

2.2 Discussion of the aGARCH model

We have argued that the coefficient ᾱ in the GARCH model (1) is of key importance to determine

how much information in the most recent squared returns, that is y2t , must be provided to ht+1.

The time-varying αt facilitates the possibility that for some time periods the squared returns may

be more informative than in other periods. For instance, the necessity for a time-varying αt can be

due to a break in the level of the variance. Before the break, the variance may be changing slowly

and therefore the magnitude of the innovations should be small. After the break, however, the

new observations are informative about the new variance level and thus the parameter αt should
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increase in order to give more prominence to the information in y2t . To illustrate the motivation for

the aGARCH model further and the role of a time-varying αt, we consider the estimation of the

true variance that we observe as the squared return y2t which is subject to error. The time series

of squared returns are filtered by means of GARCH updating (1), with a small and a large value

ᾱ, and with ᾱ replaced by a time-varying αt based on equations (3) – (4). Figure 1 illustrates the

effects on the filtered variance paths for the three different cases. For a fixed ᾱ we observe the

trade-off between the fact of being exposed to the disturbance component and the need to update

quickly when the level of the variance has changed. We can compare the volatility paths for a small

and a large value of ᾱ in Figure 1. The small-ᾱ path is far too slow in adapting to the new variance

level after the break while the large-ᾱ path is too volatile in the pre- and post-break periods. The

advantage of our aGARCH time-varying αt volatility path: it adapts quickly to the variance level

after the break and is robust against the disturbance component in periods when the true variance

is constant.

A further convenient property of the aGARCH updating scheme becomes apparent when αt

approaches or gets close to the value of β. In this case the aGARCH model mimics the first-

order autoregressive conditional heteroskedasticity (ARCH) model of Engle (1982). It implies

that the filtered variance depends only on the most recent observations. Whereas, when αt is

close to zero, the impact of the most recent squared return y2t is lower since the effect is averaged

with the contributions of the earlier (lagged) squared returns. As a result, a large αt after the

break leads to a shorter memory of the filtered variance. This effect is highly intuitive since these

recent observations are very informative about the new variance level while the filtered variance

ht, constructed from the squared returns before the break, is not very informative.

The updating mechanism of the time-varying αt in equation (4) has an intuitive interpretation.

In particular, it is driven by products of SVIs. Therefore, αt increases when past innovations are

positively correlated, decreases when the correlation is negative and remains constant when the

correlation is zero. A positive correlation indicates that for repeated observations the SVI tend to

be either above or below its expectation. This is indeed an indication that the variance should be

updated more quickly. In the same way, a negative correlation indicates that consecutive SVIs tend

to have opposite signs. This may indicate that the variance is being updated too quickly as the

disturbance component affect the path of the filtered variance and hence SVIs are more likely to

have opposite sign. Finally, a correlation equal to zero suggests a situation of equilibrium where
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Figure 1: Filtered estimates of time-varying parameter ft and volatility ht from the aGARCH
model. In the upper graph, the filtered estimate of ft is presented with reference to fixed values of
ft corresponding to ᾱ = 0.2 and ᾱ = 0.02. In the lower graph, the true volatility path is presented
together with filtered estimates of volatility ht from the aGARCH model with time-varying αt =
logit(ft) and from GARCH models with ᾱ = 0.2 and ᾱ = 0.02.

the variance is being updated in the right way. In Section 4, we also show for a more general case

that the updating mechanism considered for αt has an optimality property.

Time-varying coefficients in the GARCH model have also been considered by Engle and Lee

(1999) who introduce a time-varying parameter for ω with the motivation to introduce a long-run

component in conditional volatility. Engle and Lee show that the GARCH model with a time-

varying ω can be formulated as a higher-order GARCH model, with two lags for both y2t and ht.

In our case, the aGARCH model does not have a higher-order GARCH representation because the

variance recursion becomes a nonlinear function of past y2t when αt is time-varying. The features

of the two different extensions will be explored next in a volatility forecasting study for a large

collection of time series of daily financial returns.
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2.3 Illustration: volatility forecasting for all series in S&P500

We evaluate the performance of the aGARCH model through a comparison with other GARCH

models using the stocks that are currently in the S&P500 index. Daily stock returns from 2008

to 2015 are considered. The series of the S&P500 that are not available since 2008 are excluded

from the study. The resulting number of time series is 460. The performances of the GARCH

models are evaluated both in-sample and out-of-sample. The in-sample evaluation is based on fit

and the Akaike information criterion (AIC). We have opted for the AIC statistic because GARCH

models can be viewed as filters in a misspecified modeling framework for which the AIC provides

a meaningful interpretation. The out-of-sample evaluation is based on the log-score criterion as

given by n−1
∑n

i=1 log pT+i(yT+i), where T is the in-sample time series length, n is the out-of-

sample length and pt(·) is the conditional density of yt given the past observations up to t − 1.

This criterion is widely known and is regularly used in the context of evaluating density forecasts;

see, for example, Geweke and Amisano (2011). The in-sample evaluation is based on the whole

sample, whereas, the out-of-sample period consists of all daily observations in 2015. For the out-

of-sample evaluation, the training sample used for estimation is from 2008 to 2014. The static

parameters are estimated only once; we are not using expanding or rolling sample windows for

estimation.

Full Dataset Top 10% Kurtosis
In-sample Out-of-sample In-sample Out-of-sample

No. Pct. No. Pct. No. Pct. No. Pct.

GARCH 59 12.8% 66 14.3% 0 0.0% 10 21.7%
ELGARCH 183 39.8% 156 33.9% 4 8.7% 11 23.9%
aGARCH 84 18.3% 96 20.9% 27 58.7% 17 37.0%
aELGARCH 134 29.1% 142 30.9% 15 32.6% 8 17.4%
Total 460 100.0% 460 100.0% 46 100.0% 46 100.0%

Table 1: The number and percentage of series in the S&P 500 index where each model outperforms
the others. The in-sample performance is based on the Akaike information criterion. The out-of-
sample performance is based on a log-score criterion. In the first panel, all 460 stocks in the
S&P500 index are considered. In the second panel, the 46 stocks with the highest in-sample
kurtosis are considered.

In our illustration we consider standard GARCH models with time-varying parameter exten-

sions: the Engle and Lee (1999) with a time-varying ω, denoted by ELGARCH, our aGARCH
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model with the time-varying αt and the accelerating ELGARCH model, denoted by aELGARCH,

which includes both time varying αt and ω. Table 1 reports the number of series in the S&P500

index where a model outperforms the others. When considering all stocks, the in-sample fit of

the aGARCH model produces the smallest AIC for 18.3% of the series, whereas the aELGARCH

in-sample fit produces the smallest AIC in 29.1% of the cases. The out-of-sample performance, as

measured by the smallest log-score value in 2015, is similar, although aGARCH and aELGARCH

have a slightly larger number of stocks in which they perform best. We can say that the aGARCH

together with the aELGARCH model have the best in-sample and out-of-sample performance for

about 50% of the series. Furthermore, the aGARCH and aELGARCH models appear to per-

form particularly well for stock returns that have a high kurtosis (or have heavy-tailed densities).

For example, when we consider the 10% of stocks with the highest in-sample kurtosis for their

GARCH residuals, the aGARCH and aELGARCH models perform best for more than 90% of the

series. This interesting finding is further highlighted in Figure 2. Figure 2 presents the percentage

of stocks for which a particular model performs best for a finer sub-selection of stocks with the

highest in-sample kurtosis. We can clearly conclude that the performance of our aGARCH model

increases as we select the series with fatter tailed return densities. We may conclude that in general

the aGARCH and aELGARCH models outperform the GARCH and ELGARCH models when the

distribution of the daily return series has fat tails.
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Figure 2: Percentage of series where each model outperform the others in terms of AIC. The
percentage is computed only for those series with their GARCH residual kurtosis above a certain
quantile. The quantile levels are indicated on the horizontal axis.
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3 Accelerated score-driven time series models

In the previous section we have introduced a time-varying coefficient in the GARCH model and

have discussed the merits of this extension. In this section we introduce a similar time-varying

coefficient for the general class of score-driven time series models of Creal et al. (2013) and Harvey

(2013). We refer to this class of models as generalised autoregressive score (GAS) models. In the

introductory Section 1 we have given a short review of GAS models with further references. We

introduce the accelerated GAS updating equation in a similar way as it is done for the aGARCH

model. The aGARCH model is a special case of the accelerated GAS (aGAS) model.

For a time series variable {yt}t∈Z, the GAS model is given by

yt ∼ p(yt|λt; θ), λt+1 = ωλ + βλλt + αλsλ,t, (5)

where p(·|λt; θ) is a parametric conditional density with λt as the time-varying parameter of interest

and θ as an unknown vector containing all static parameters in the model, including ωλ, βλ, and αλ,

and sλ,t is an innovation term. The time-varying parameter evolves as an autoregressive process of

order 1 with intercept ωλ, autoregressive coefficient βλ and scale parameter α. The distinguishing

feature of a GAS model is the choice of the innovation sλ,t as the local score or gradient of density

p(yt|λt; θ) with respect to λt. We specify the scaled innovation by

sλ,t = Sλ,t uλ,t, uλ,t =
∂ log p(yt|λt; θ)

∂λt
,

where Sλ,t is a strictly positive scaling factor and uλ,t is the innovation term defined as the first

derivative of the conditional density contribution for a single observation at time t. Many standard

models can be derived from this framework as is shown by Creal et al. (2013). For example, in

case of having p(yt|λt; θ) as the normal distribution with time-varying mean λt and some static

variance, we obtain the autoregressive moving average model, of order (1, 1). When we switch

mean and variance, that is, we have some static mean and time-varying variance λt, we obtain

the GARCH(1, 1) model as considered in Section 2. This flexible framework can be used in a

general and flexible manner for the introduction of a time-varying parameter in a model. Various

theoretical properties of GAS models are studied. For example, Blasques et al. (2015) show that

score-driven updating is optimal in terms of reducing Kullback-Leibler divergence.
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The accelerated GAS (aGAS) model is defined as the GAS model (5) with a time-varying αλ

coefficient that we specify as

αλ,t = g(ft+1; θ), ft+1 = ωf + βfft + αfsf,t, (6)

where g(·) is a strictly increasing link function and the time-varying variable ft+1 determines the

time-variation of αλ,t, for all time indices t, and it evolves according to an autoregressive process of

order 1 with innovation term sf,t, intercept ωf , autoregressive coefficient βf , and scale parameter

αf . The time-varying αλ,t is subject to a link function but the overall framework is similar to

the GAS model itself. The scaled innovation term relies on the first derivative of the conditional

density contribution at time t, that is

sf,t = Sf,t uf,t, uf,t =
∂ log p(yt|λt; θ)

∂ft
, (7)

where Sf,t is a strictly positive scaling factor and uf,t is the innovation term defined as the first

derivative of the conditional density contribution for a single observation at time t. The time

index t for the time-varying parameters λt and ft indicates that the parameters are functions of

past observations up to time t − 1, that is {yt−1, yt−2, . . . }. It is straightforward to show that the

innovation sf,t in (7) can be expressed as

sf,t = Cf,tuλ,tuλ,t−1, (8)

where Cf,t is a positive scaling factor and is a function of the scaling factors Sλ,t and Sf,t. The

expression (8) for sf,t is highly convenient as it is expressed directly in terms of uλ,t and hence

there is no need to derive and compute other derivatives. Perhaps even more importantly, the ex-

pression (8) shows that the score-driven update is a local estimate of the first-order autocorrelation

of the innovation term of the time-varying parameter of interest λt. The innovation term uf,t of

the dynamic ft is driven by the standardized product of current and past score innovations. The

parameter αt increases when there is positive autocorrelation in past score innovations. The same

intuitive interpretation for the aGARCH model applies. Positive correlation means that past score

innovations tend to have the same sign. Therefore, it is natural to think that the step size αt should

increase as this is an indication that the parameter αt is being updated too slowly.
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The use of scaling factors Sλ,t and Sf,t for the score innovation terms is standard practice in

analyses based on GAS models. The choice typically depends on the model at hand. Creal et al.

(2013) propose the use of the Fisher information It to account for the curvature of the score.

For example, we can consider the inverse of the Fisher Information, the square root of the Fisher

Information inverse or simply the identity matrix as scaling factors. The use of the inverse of the

square root of It as the scaling factor implies that the conditional variance of the score innovation

equals the unity matrix. It has the convenient effect that the variability of the innovation of the

autoregressive process in (5) is determined solely by αt.

4 Optimality properties

We next provide a theoretical justification for the aGAS specification in (5) and (6). Blasques et al.

(2015) have developed a framework from which optimality features for the GAS updating can be

derived. We build on these developments and show that the use of the score-based innovation in

(8) for αt has an optimality justification. Furthermore, we show that, under certain conditions,

the updating mechanism of the aGAS model outperforms standard GAS updating in terms of its

local Kullback-Leibler (KL) divergence reduction. The results are based on a misspecified model

setting where the objective is to consider the dynamic specification that allows to minimize the

KL divergence between a postulated conditional distribution and the unknown true distribution of

the DGP. The Section is structured as follows: Section 4.1 introduces the framework considered,

Section 4.2 delivers the optimality of the score update for αt and Section 4.3 shows how flexible

GAS models can outperform classic GAS models.

4.1 A general updating mechanism

Assume that the sequence of observed data {yt}Tt=1 with values in Y ⊆ R is generated by an

unknown stochastic process that satisfies

yt ∼ pot (yt), t ∈ N,

where pot is the true unknown conditional density. We consider a conditional density for the ob-

servations as in (5), yt ∼ p(yt|λt; θ), where θ ∈ Θ is a static parameter and λt is a time-varying
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parameter that takes values in Λ ⊆ R. Note that also the model density p(·|λt; θ) is allowed to be

misspecified and there may not exist a true λot and θ0 such that pot = p(·|λot ; θ0).

The objective is to specify the dynamics of the time-varying parameter λt in such a way that

the conditional density p(·|λt; θ) implied by the model is as close as possible to the true conditional

density pot . To evaluate the distance between these two conditional densities, a classical approach

is to consider the Kullback-Leibler (KL) divergence introduced in Kullback and Leibler (1951) as

a measure of divergence, or distance, between probability distributions. The KL divergence plays

an important role in information theoretic settings Jaynes (1957, 2003) as well as in the world of

statistics (Kullback, 1959; Akaike, 1973). The importance of the KL divergence in econometric

applications is reviewed in Maasoumi (1986) and Ullah (1996, 2002).

The ideal specification of λt minimizes the KL divergence between the true conditional density

pot and the model-implied conditional density p(·|λt; θ). In other words, a sequence {λt}t∈N is

optimal if for each t ∈ N, the value of λt minimizes the following KL divergence

KLY
(
pot , p(·|λt; θ)

)
=

∫
Y

pot (y) log
pot (y)

p(y|λt; θ)
dy, (9)

where Y denotes the set over which the local KL divergence is evaluated; see Hjort and Jones

(1996), Ullah (2002) and Blasques et al. (2015) for applications of the local KL divergence. As-

suming that {λ∗t}t∈N is an optimal sequence that minimizes the KL divergence for any t ∈ N,

we would like our model to deliver a filtered time-varying parameter {λt}t∈N that approximates

arbitrarily well the trajectory of {λ∗t}t∈N.

Of course, from the outset, there is no reason to suppose that the score driven recursion

λt+1 = ωλ + βλλt + αλsλ,t

would ever deliver such a result. Lemma 1, reminds us however of the simple fact that, a time-

varying updating of the type

λt(ft) = ωλ + βλλt−1 + g(ft)sλ,t−1,

could deliver a better approximation to {λ∗t}t∈N.

Lemma 1. If an optimal sequence {λ∗t}t∈N exists, then for any given initialization, λ0 ∈ Λ there
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exists a sequence {ft}t∈N of points such that λt(ft) = λ∗t ∀t ∈ N. Moreover, ft is almost surely

constant if and only if there is some c ∈ R such that sλ,t = (λ∗t+1 − ωλ − βλλt)/g(c) almost surely

for every t ∈ N.

In practice, the problem is however how to specify the dynamics of ft. Below, we will address

the issue by providing a theoretical justification for the score-based update for ft.

4.2 Optimality of score innovations

We build on the work of Blasques et al. (2015) that provides optimality arguments for a score-

based updating equation. Specifically, Blasques et al. (2015) shows that considering an updating

scheme of the form

λt+1 = λt + αλsλ,t

reduces locally the KL divergence between the model density and the true probability density, in

particular, they show that the variation in the KL divergence obtained by updating the time-varying

parameter from λt to λt+1 satisfies

KLY
(
pot , p(·|λt+1; θ)

)
− KLY

(
pot , p(·|λt; θ)

)
< 0,

when the update is local λt ≈ λt+1 and the set Y is a neighborhood of yt. This result is subject to

the fact that the parameter αλ has to be positive because otherwise the information provided by the

score is distorted. Clearly, as this optimality concept regards only the direction of the update we

can conclude that the optimality holds also when αλ is time-varying as long as it is positive. This

justifies the use of a positive link function g in (6), which ensures the positivity of g(ft).

It is also worth mentioning that the optimality concept in Blasques et al. (2015) is shown to

hold for (ωλ, βλ) ≈ (0, 1). This because the reduction of local KL divergence from the update

is considered with respect to pot . In practice, what we really want is to reduce the KL divergence

with respect to pot+1 as the updated time-varying parameter λt+1 is used to specify the conditional

probability measure of yt+1. The problem is that λt is updated using information from pot and

therefore, without imposing any restriction on the true sequence of conditional densities, it is

impossible to say if the updating scheme makes any sense with respect to pot+1. Blasques et al.

(2015) show that having (ωλ, βλ) ≈ (0, 1) is optimal also with respect to the density pot+1 only if
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the true conditional density varies sufficiently smoothly over time. This justify the possibility that

in practice it may be reasonable to consider also (ωλ, βλ) 6= (0, 1).

We now add to the results of Blasques et al. (2015) by considering the more flexible updating

scheme in (6) for the time-varying parameter ft and showing that it has a similar optimality jus-

tification. More specifically, we provide an optimality reasoning for the updating scheme in (6)

setting (ωf , βf ) ≈ (0, 1),

ft+1 = ft + αfsf,t. (10)

At time t− 1, the parameter ft is used to update λt−1 by the recursion in (5), namely

λt(ft) = ωλ + βλλt−1 + g(ft)sλ,t−1,

then, at time t we observe yt and the parameter ft is updated to ft+1. We consider optimal an

updating mechanism that process properly the information provided by yt. The idea is that ft has

to be updated in such a way that the model density with the updated ft is closer to the true density

pot than the model density p(·|λt(ft); θ). We consider the following definition

Definition 1. The realized KL variation for the parameter update from ft to ft+1 is

∆t+1
f,t = KLY

(
pot , p(·|λt(ft+1); θ)

)
− KLY

(
pot , p(·|λt(ft); θ)

)
.

A parameter update for ft is said to be optimal in local realized KL divergence if and only if

∆f,t < 0 for any (ft, θ) ∈ F ×Θ and almost every yt ∈ Y .

The results we present are local in the sense that we will show that at each step the score update

gives the right direction to reduce a local realized KL divergence. As in Blasques et al. (2015), we

focus on sets of the form

Y = B(yt, εy) = {y ∈ Y : |yt − y| < εy}

F = B(ft, εf ) = {ft+1 ∈ R : |ft − ft+1| < εf}.

We set some regularity assumptions on the score sλ,t. In particular, the score is nonzero with prob-

ability 1 to ensure that the parameter ft is always updated, and it also have some differentiability

properties.
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Assumption 1. The score uλ,t = uλ(yt, λt, θ) is continuously differentiable in yt and λt, and

almost surely uλ(yt, λt, θ) 6= 0 for any (λt, θ) ∈ Λ×Θ and t ∈ N.

The next proposition states that the score update for ft is optimal in the sense of Definition 1

Proposition 1. Let Assumption 1 hold, then the update from ft to ft+1 in (10) is optimal in local

realized KL divergence as long as αf is positive.

The next proposition stress the fact that only the score uf,t provides the right direction to update

ft

Proposition 2. Let Assumption 1 hold, then any parameter update from ft to ft+1 is optimal in

local realized KL divergence if and only if sign(ft+1 − ft) = sign(sf,t) almost surely for any

ft ∈ F .

4.3 Relative optimality

The optimality concept developed in the previous section is only related to the update of ft, but, in

practice, the update of ft is only a tool to improve the update of λt(ft). The idea is to compare the

score update from λt(ft) to λt+1(ft+1) with the score update from λt(ft) to λt+1(ft). As before, the

quality of the updates is measured in terms of KL reduction. We are thus interested in comparing

the variation in KL divergence obtained by updating the parameter from λt(ft) to λt+1(ft+1),

∆t+1
λ,t+1 = KLY

(
pot , p(·|λt+1(ft+1); θ)

)
− KLY

(
pot , p(·|λt(ft); θ)

)
,

against the variation in KL divergence obtained under the parameter update from λt(ft) to λt+1(ft)

∆t
λ,t+1 = KLY

(
pot , p(·|λt+1(ft); θ)

)
− KLY

(
pot , p(·|λt(ft); θ)

)
.

Clearly, the first type of update is better if it can ensure a greater reduction in KL divergence.

Definition 2. The parameter update from λt(ft) to λt+1(ft+1) is said to dominate the parameter

update from λt(ft) to λt+1(ft) in local realized KL divergence, if and only if

∆t+1
λ,t+1 −∆t

λ,t+1 < 0.
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The notion of dominance in local realized KL divergence in Definition 2 provides a line of com-

parison for the parameter updates. We can say that the parameter update from λt(ft) to λt+1(ft+1)

outperforms the parameter update from λt(ft) to λt+1(ft) if ∆t+1
λ,t+1 < ∆t

λ,t+1. The result we obtain

are local in the sense that the KL divergence is evaluated locally and the innovations sλ,t−1 and

sλ,t are in a neighborhood of zero. Moreover, we also impose that the observation yt lies in a

neighborhood of yt−1. More formally, the realized KL divergence in Definition 1 is evaluated is a

sets of the form

Y = B(yt, εy) = {y ∈ Y : |yt − y| < εy},

with yt ∈ B(yt−1, εy) and sλ,t−1, sλ,t ∈ B(0, ελ). The result is stated in the following proposition

Proposition 3. Let Assumption 1 hold. Then, the parameter update from λt(ft) to λt+1(ft+1)

generated by (10) dominates the the parameter update from λt(ft) to λt+1(ft) in local realized KL

reduction for every λt−1 ∈ Λ and ft ∈ R.

The result in Proposition 3 is related to the fact that when the updating steps are small enough

and the information provided by the data changes smoothly, yt−1 is close to yt, then the the update

from λt−1 to λt(ft) and the update from λt(ft) to λt+1(ft) are in the same direction. In this situa-

tion, the score update for ft leads to ft+1 > ft and therefore an update from λt(ft) to λt+1(ft+1) in

the same direction as the update from λt(ft) to λt+1(ft) but larger in absolute value. This means

that for some small enough sλ,t and sλ,t+1 the update from λt(ft) to λt+1(ft+1) reduces the local

KL divergence more than the update from λt(ft) to λt+1(ft).

5 Monte Carlo experiment

We present a simulation study as an intuitive illustration of the role that the time-varying parameter

αt can play. The simulation study has a simple design. We generate time series from a stochastic

process and we subsequently compare the predictive ability of GAS and aGAS models. The time

series are generated by the data generation process (DGP) as given by

yt = µot + ηt, t ∈ Z, (11)

19



where µot is a deterministic mean and {ηt}t∈Z is an i.i.d. sequence of Gaussian random variables

with zero mean and unit variance. The deterministic mean µot takes values in {0, δ}, δ > 0, and

is defined to switch every γ × 102 time periods from 0 to δ and vice versa. More formally, µot is

specified as

µot =

0 if sin (γ−110−2(πt− 1)) ≥ 0

δ if sin (γ−110−2(πt− 1)) < 0.

(12)

Figure 3 shows a realization from the DGP with δ = 3 and γ = 2. We consider this particular DGP

to provide an intuition for the circumstances under which the time-varying αt of the aGAS model

can be relevant. In time periods where the true µot is constant, the noise component ηt should not

affect the filtered path of the mean very much. This situation requires a small value for αt. On

the other hand, when a break in the level occurs, we need to attain a new level of µot rapidly. This

situation requires a relatively large value for αt.
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Figure 3: A realised time series of length T = 1000 from the DGP (11) – (12) with δ = 3 and
γ = 2. The solid thick (red) line represents the deterministic mean µot .

To estimate the time-varying mean µot from each simulated series, we consider the GAS model

(5) with p(yt|λt; θ), for any t ∈ Z, as a Gaussian density with time-varying mean λt = µt and

time-invariant variance σ2. The full specification of this GAS model is given by

yt = µt + εt, εt
iid∼ N(0, σ2), (13)

with time-varying mean µt given by the updating equation

µt+1 = µt + αµsµ,t,
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where αµ is a fixed unknown coefficient and sµ,t is the scaled score function which reduces to

the scaled prediction error sµ,t = yt − µt. This local level GAS model can be represented as

an ARIMA(0, 1, 1) model; we can show this by taking first differences and by observing that we

obtain the MA(1) model yt − yt−1 = (αµ − 1)εt−1 + εt. The accelerated GAS model replaces αµ

by a time-varying parameter that, after a transformation, has the updating equation

αt = exp(ft+1/2), ft+1 = ωf + βfft + αfsf,t,

where ωf , βf and αf are treated as fixed unknown coefficients, sµ,t = yt−µt and sf,t = sµ,tsµ,t−1.

These expressions for the innovations sµ,t and sf,t are obtained as special cases of the general treat-

ment for (5) and (6). In this model specification, the Fisher information is constant and therefore

the scaling of the score is irrelevant as it only leads to a reparametrization of the model. The GAS

model is simply obtained by treating αt of the aGAS model as a static parameter, that is αt = αµ

for any t ∈ Z.

γ = 1.0 γ = 1.5 γ = 2.0 γ = 2.5
GAS aGAS GAS aGAS GAS aGAS GAS aGAS

δ = 0.0 3.86 3.99 3.86 3.99 3.86 3.99 3.86 3.99
δ = 0.5 22.34 22.33 20.19 20.19 18.17 18.13 17.05 16.94
δ = 1.0 31.69 31.40 28.57 28.07 25.70 24.91 23.99 22.89
δ = 1.5 39.21 38.13 35.25 33.56 31.66 29.14 29.48 26.31
δ = 2.0 45.78 43.50 41.05 37.62 36.81 31.97 34.21 28.47
δ = 2.5 51.78 48.29 46.30 41.26 41.45 34.64 38.47 30.60
δ = 3.0 57.38 53.09 51.18 45.02 45.75 37.58 42.40 32.83
δ = 3.5 62.71 58.05 55.80 48.98 49.79 40.91 46.08 35.54

Table 2: We present the square root of the mean squared error (MSE) where the error is between
the true µot and the filtered parameter µt from GAS and aGAS models, for different true values of δ
and γ. The mean is over all time points t and all Monte Carlo replications.

In our Monte Carlo study we generate 1, 000 time series of sample size T = 1, 000 from

the data generation process, DGP, (11) for different values of δ and γ. For each of the 1, 000

generated series, we estimate by maximum likelihood the parameters in the aGAS model (13) and

its standard GAS counterpart. To evaluate the performance of the models, the filtered means for

µt of these two models are compared with the true mean µot . We compute the square root of the

mean square error (MSE) between the filtered µt and true mean µot , over all time points t and all
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Monte Carlo replications. The results of the experiment are collected in Table 2. We learn from

these results that the aGAS model can outperform the GAS model. In particular, the MSE of the

aGAS model is smaller for all DGPs except for the DGP with δ = 0. This indicates that the aGAS

filter is able to better approximate the true µot in terms of quadratic error. In case δ = 0, the true

mean µot is constant for all t and hence there are no benefits in using a time-varying αt but there is

only the drawback of having more parameters in the model and hence more estimation uncertainty.

Similarly, we learn from Table 2 that the improvement due to the dynamic parameter αt tends to

increase as the size of the jumps increases.

To gain more insights into the effect of the dynamic parameter αt, Figure 4 reports various

simulation results for the DGP with δ = 3 and γ = 2. In the upper graph, we can see that the

90% variability bounds for the aGAS are narrower than those for the GAS in time periods when

µot is constant. It implies that the true mean is predicted with greater accuracy by the aGAS model

and that the corresponding filter is less exposed to the noise component. The opposite situation

occurs right after the breaks: the variability bounds of the aGAS are larger for a few time periods.

It is a consistent finding as the aGAS filter is reacting faster to the change in the level and is then

more exposed to the noise component. In the middle graph of Figure 4, the mean squared errors

tend to be larger for the GAS model in most time periods. Furthermore, the 90% level confidence

bounds show that the aGAS model seems to outperform the GAS not only on average but for

almost all individual Monte Carlo draws. Finally, the bottom graph illustrates the behavior of the

time-varying αt. In particular, the dashed line is the average filtered αt from the aGAS model and

the solid line is the average estimate of the static αµ from the GAS model. The dynamic αt is close

to zero when µot is constant and it increases after the breaks. The aGAS model clearly offers the

flexibility for which it is designed for: it allows the filtered mean to be updated at different speeds

in different time periods, where needed.

6 Applications and empirical illustrations

6.1 Conditional volatility Student’s t models: at-GARCH and at-GAS

We have argued that the aGARCH model (3) and (4) is a special case of the aGAS model (5)

and (6) when considering λt as the time-varying variance of the Gaussian conditional density
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Figure 4: First plot: the red line represents µot , the continuous lines represent 90% variability
bounds for the GAS µt, and the dashed lines represent 90% variability bounds for the aGAS µt.
Second plot: cumulative squared error difference between the aGAS and the GAS. The shadowed
area denotes a 90% confidence region. Third plot: the continuous line is the average estimate of α
for the GAS, and the dashed line is the average estimate of αt for the aGAS.

p(yt|λt; θ). The time-varying process for αt is driven by the product of current and lagged volatility

innovations. Models with other densities than the Gaussian can also be considered. For example,

we can replace the Gaussian by the Student’s t density that has fatter tails than the normal. In the

case of the GARCH model, we obtain the t-GARCH model as explored by Bollerslev (1986). The

accelerated version of the t-GARCH is simply obtained by introducing the time-varying process

αt which is driven by the product of the current and lagged volatility innovation. However, when

considering the GAS model (5) with λt = σ2
t as the time-varying variance of the Student’s t

conditional density p(yt|λt; θ), we do not obtain the t-GARCH model since the score function is

not simply y2t − σ2
t . In this case, we obtain the t-GAS model of Creal et al. (2013). We extend the

t-GAS model by introducing a time-varying αt to obtain the accelerated t-GAS (at-GAS) model
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as given by

yt = σtεt, σ2
t+1 = ω + βσ2

t + αtσ
2
t sσ,t,

αt = β logit(ft+1), ft+1 = ωf + βfft + αfsσ,tsσ,t−1,

where {εt}t∈Z is an i.i.d. sequence of Student’s t distributed random variables with zero mean unit

variance and ν degrees of freedom. As in Creal et al. (2013), the score innovation sσ,t has the

following expression

sσ,t =
(ν + 1)ε2t

(ν − 2) + ε2t
− 1.

The limiting case of ν → ∞ for the at-GAS model coincides with the aGARCH model. Further-

more, setting αt = α to a static parameter reduces the model to the t-GAS model.

6.2 Illustration (ctd.): volatility forecasting for all series in S&P500

We continue our empirical study from Section 2.3 and compare a range of models based on the

Student’s t density in their abilities to forecast conditional volatility accurately. The models con-

sidered are the t-GAS, ELt-GAS, at-GAS and aELt-GAS, as well as the GARCH, ELGARCH,

aGARCH and aELGARCH models with Student’s t densities, which we denote as t-GARCH,

ELt-GARCH and at-GARCH, respectively. The specific feature of the t-GAS model specification

is that it takes account of the heavy tails in both the observation equation for yt and the updating

equation for the variance σ2
t . In particular, the impact of extreme return observations on σ2

t is

attenuated. It is discussed in Creal et al. (2013) that this feature provides various benefits in its

treatment of heavy tailed financial time series. Table 3 reports the number of series in the S&P

index where each model is outperforming the others, together with the corresponding percentages.

The in-sample results show that the four GAS models are the best models for more that 80% of

the series. However, this result does not seem to be consistent with the out-of-sample results,

for which the four GAS models are the best for less than half of the series. We find that the at-

GARCH, aELt-GARCH, at-GAS and aELt-GAS are the best models for a significant proportion

of the series, both in-sample and out-of-sample. As in our initial analysis, we can reconsider these

results for the 10% of the series with the highest kurtosis. The four GAS models are again the

best in-sample specifications for all series. The out-of-sample results are also rather coherent with
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this finding. Overall we can say that the the at-GARCH, aELt-GARCH, at-GAS and aELt-GAS

models are the best models for a large number of series.

Full dataset Top 10% Kurtosis
In-sample Out-of-sample In-sample Out-of-sample

No. Pct. No. Pct. No. Pct. No. Pct.

t-GARCH 24 5.2% 11 2.4% 0 0.0% 0 0.0%
ELt-GARCH 22 4.8% 98 21.3% 0 0.0% 3 6.5%
at-GARCH 12 2.6% 48 10.4% 0 0.0% 5 10.9%
aELt-GARCH 17 3.7% 77 16.7% 0 0.0% 3 6.5%

t-GAS 144 31.3% 53 11.5% 20 43.5% 5 10.9%
ELt-GAS 125 27.2% 50 10.9% 11 23.9% 6 13.0%
at-GAS 21 4.6% 44 9.6% 4 8.7% 7 15.2%
aELt-GAS 95 20.6% 79 17.2% 11 23.9% 17 37.0%
Total 460 100.0% 460 100.0% 46 100.0% 46 100.0%

Table 3: The number and percentage of series in the S&P 500 index where each model outperforms
the others. The in-sample performance is based on the Akaike information criterion. The out-of-
sample performance is based on a log-score criterion. In the first panel, all 460 stocks in the
S&P500 index are considered. In the second panel, the 46 stocks with the highest in-sample
kurtosis are considered.

We may conclude that, for a significant portion of the S&P500 return series, the inclusion of

the dynamic αt can enhance in-sample and the out-of-sample forecast performances. This conclu-

sion applies to the at-GARCH and aELt-GARCH models as well as the at-GAS and aELt-GAS

models. For all these models, the effect of introducing a time-varying αt appears particularly rel-

evant for heavy-tailed daily return series. These results suggest that different specifications can

be useful to obtain a better approximation of the dynamic features of such financial time series.

The accelerating GAS framework provides a flexible class of models that can be useful in practical

applications.

6.3 An accelerated location and scale model for heavy tailed distributions

We consider a heavy tailed distribution with a time-varying mean (location) and a time-varying

variance (scale) using the score-driven approach and for which the parameter that determines the

magnitude of the update of the mean process is also time-varying. More specifically, we consider

25



a Student’s t conditional distribution for yt where both the mean and the variance are time-varying.

The resulting model has some similarities with the stochastic volatility model of Stock and Watson

(2007). The Student’s t distribution in a GAS framework allows us to handle outliers by attenuating

their impact on the filtered parameters. Applications in the literature of the Student’s tGAS models

for location and scale parameters can be found in Creal et al. (2013), Harvey (2013) and Harvey

and Luati (2014). In particular, Harvey (2013) have considered a Student’s t model with both

time-varying mean and variance. The key novelty of the model in the current study is the inclusion

of a time-varying parameter αt in order to let the time-varying location capture a wider range of

dynamic specifications.

We consider the aGAS model with time-varying conditional location and scale as given by

yt = µt + σtεt, (14)

where µt is the time-varying location for yt, σt is the time-varying scale for yt, and {εt}t∈Z is an

i.i.d. sequence of Student’s t distributed random variables with zero mean, unit variance and ν

degrees of freedom. The time-varying parameters are described by the following equations

µt+1 = µt + αtsµ,t,

αt = exp(ft+1/2), ft+1 = ωf + βfft + αfsf,t,

σt = exp(gt/2), gt+1 = ωσ + βσgt + ασsσ,t,

where ωf , βf , αf , ωσ, βσ and ασ are static unknown parameters which we estimate by maximum

likelihood, and where sµ,t, sf,t and sσ,t are the score-based innovations of the processes. We

graphically present the functional form of these innovations in Figure 5. The innovation sµ,t of

the location process µt is obtained by setting the scaling factor Sµ,t equal to the square root of the

inverse Fisher information, that is sµ,t takes the form

sµ,t =
(ν + 1)(yt − µt)σ−1t

(ν − 2) + (yt − µt)2σ−2t
.

The first graph in Figure 5 presents the effect of εt = (yt−µt)/σt on sµ,t. The relationship between

εt and sµ,t is nonlinear and the impact of extreme values of εt on sµ,t is attenuated. The degree of
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attenuation depends on the degrees of freedom parameter ν: a smaller value for ν delivers a lower

sensitivity of sµ,t on outliers; also see Harvey and Luati (2014) for a more detailed discussion. The

innovation sf,t can be obtained from equation (8); by setting Cf,t = Sµ,tSµ,t−1, we obtain

sf,t = sµ,tsµ,t−1.

The second graph in Figure 5 shows the effect of εt and εt−1 on sf,t. We learn that sf,t is positive

when εt and εt−1 have the same sign and negative when εt and εt−1 have opposite signs. Further-

more, extreme values of εt and εt−1 are detected as outliers and their impact on sf,t is attenuated.

The innovation of the process σt takes the form

sσ,t =
(ν + 1)(yt − µt)2σ−2t

(ν − 2) + (yt − µt)2σ−2t
− 1.

For this case, the Fisher information is constant and so it does not affect the functional form of sσ,t.

The impact of εt on sσ,t is shown in the third graph of Figure 5. The update for sσ,t is the same as

in the Beta-t-EGARCH model of Harvey (2013).
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Figure 5: In the first graph, the values taken by sµ,t as a function of εt are presented. The second
graph is a contour plot that shows the values taken by sf,t as a function of εt and εt−1. In the
third graph, the values taken by sσ,t as a function of εt are provided. In all graphs, the degrees of
freedom of the Student-t is set to ν = 10.

When the degrees of freedom of the Student’s t distribution gets closer to infinity, ν →∞, the

Student’s t distribution approaches the standard Gaussian distribution. In this limiting case, the

model (14) reduces to a Gaussian score-driven model where the innovation for µt is simply given

by sµ,t = (yt−µt)σ−1t while the innovation for σ2
t is given by sσ,t = (yt−µt)2σ−2t −1. The impact

functions of the standardized observation (yt − µt)σ−1t on sµ,t and sσ,t are presented in Figure 5.
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6.4 Empirical illustration

In our final empirical illustration we consider the US quarterly consumer price (CP) index, which

is obtained from the FRED dataset. The inflation time series yt is computed as the annualized log-

difference of the price index series pt, we adopt the standard transformation yt = 400 log(pt/pt−1).

The inflation series is computed from the first quarter of 1952 to the first quarter of 2015. The

resulting time series is presented in Figure 6. We consider several specifications for the aGAS

model which are listed in Table 4.

Time

y t

1950 1960 1970 1980 1990 2000 2010

−
10

−
5

0
5

10
15

Figure 6: Quarterly consumer price US inflation series.

Description Reference

Model t.1 Our full model in (14)
Model t.2 βσ = 0 and ασ = 0
Model t.3 βf = 0 and αf = 0 Harvey (2013)
Model t.4 βσ = 0, ασ = 0, βf = 0 and αf = 0 Harvey and Luati (2014)
Model n.i Limiting case of Model t.i with v →∞ i = 1,2,3,4

Table 4: The second column describe the specification of the model. The third column provides
some references for the specific models obtained constraining the parameters of the full model in
(14).

The parameter estimates for all Models t.1-t.4 and Models n.1-n.4 are presented in Table 5,

together with the maximized log-likelihood value and the corresponding p-value of the likelihood

ratio (LR) test and the Akaike information criterion (AIC). The LR test p-value is reported for each

model in relation to the corresponding full model (14). We can conclude from the reported results

that the inclusion of the time-varying scale σt as well as the time-varying αt are highly significant
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δf βf αf δσ βσ ασ ν loglik LR AIC

Model t.1 -1.518 0.967 0.258 1.055 0.861 0.215 5.571 -475.4 - 964.7
(0.799) (0.027) (0.113) (0.236) (0.092) (0.089) (1.572)

Model t.2 -1.493 0.914 0.294 1.182 - - 3.826 -482.7 0.001 975.4
(0.402) (0.028) ( 0.071) (0.178) (0.553)

Model t.3 -0.468 - - 1.080 0.869 0.163 7.583 -481.8 0.002 973.6
(0.280) (0.207) (0.126) (0.099) (2.399)

Model t.4 -0.305 - - 1.111 - - 5.639 -488.8 0.000 983.7
(0.213) (0.134) (1.431)

Model n.1 -1.366 0.969 0.182 1.169 0.937 0.088 - -504.2 - 1020.4
(0.618) (0.022) (0.072) (0.203) (0.030) (0.033)

Model n.2 -0.304 0.971 0.060 1.251 - - - -515.3 0.000 1038.6
(0.416) (0.028) (0.036) (0.089)

Model n.3 -0.231 - - 1.213 0.939 0.054 - -510.2 0.002 1028.4
(0.314) (0.161) (0.026) (0.021)

Model n.4 -0.080 - - 1.264 - - - -516.8 0.000 1037.7
(0.266) (0.089)

Table 5: Parameter estimates for the models in Table 4, together with their standard errors in
brackets. The last three columns contain respectively the maximized log-likelihood value, the p-
value of the likelihood ratio (LR) test with respect to the full models and the Akaike information
criterion (AIC). The parameters δf and δσ are given by δf = ωf/(1− βf ) and δσ = ωσ/(1− βσ).

for our US inflation series. In particular, we obtain that the null hypothesis of the LR test is rejected

at a 1% confidence level, for all other model specifications. Also, the model with the lowest AIC

is Model t.1. The reported AIC statistics also indicate that the Student’s t specifications, Models

t.1-t.4, have a better fit than their limiting counterparts, Models n.1-n.4. This is confirmed by the

estimates for the degrees of freedom ν which are all small for the four Student’s t models.

Figure 7 presents the filtered estimates of the parameters µt, σt and αt for our preferred Model

t.1. The graph of the filtered µt shows the robustness of the model in its handling of outliers.

For example, in the fourth quarter of 2008, the extreme peak in US inflation time series does not

affect the filtered path of µt very much. The graph of the filtered estimate of αt shows that during

the enduring period of exceptional high inflation, approximately between 1972 and 1983, also

the filtered αt takes high values. Clearly, during periods of persistent and sudden changes in the

location for yt, the parameter µt required fast updating to capture the changes. The time-varying

αt plays a key role in accommodating the fast updating for location. The third graph in Figure

7 indicates or suggests that the variability σt appears to increase in periods of lasting economic

recessions in the US; see the NBER recession datings in the first graph.

To investigate in detail the effect of the inclusion of the time-varying parameter αt on the
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Figure 7: The filtered estimates of the time-varying parameters in Model t.1: upper plot is µt,
middle plot is αt, and lower plot is σt.

filtered estimate of µt, we present in Figure 8 the filtered estimates µt from Model t.1 and Model

t.3. Both models include the time-varying scale σt, the only difference between the two models is

that αt is not time-varying in Model t.3. We consider two periods where the inflation series exhibit

different behaviors: the first graph in Figure 8 is for the period from 1973 to 1982, while the

second graph is for the period from 1999 to 2008. In the first period 1973 – 1982, the time series

appears to be subject to a fast changing location. It may imply a low persistence in US inflation for

this period. We observe that the filtered estimate of αt contains some large values; see the second

graph in Figure 7. This allows the µt of Model t.1 to react more promptly to the changes in the

level of the series. The filtered estimate of µt from Model t.1 exceeds its counterpart from Model

t.3 when the inflation level is increasing and vice versa when the inflation level is decreasing. For

the period between 1999 and 2008, the second graph in Figure 8 shows that the inflation series

seems to change location more slowly: it appears as a slow and lightly trending filtered µt subject

to much noise. In this case, we have small values for the time-varying filtered estimate of αt,; see

the second graph in Figure 7, allow the µt of Model t.1 to change slowly, capturing the increasing

trend but not being too much affected by the noise. The benefit of the time-varying αt can be noted
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from the plot as the filtered µt of Model t.3 is more noisy than the filtered µt of Model t.1. These

two graphs in Figure 8 show how the inclusion of the time-varying αt allows the dynamic model

to be more flexible and better in adapting to changing behaviors of the series. The improvements

in terms of in-sample fit are also confirmed by the likelihood ratio test and the AIC.
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Figure 8: The filtered estimates of µt from Model t.1 and Model t.3 for two different time periods.
The gray line is US inflation, the dashed line is the filtered µt estimate from Model t.3 and the solid
line is the filtered µt estimated from our preferred Model t.1.

Finally, we have carried out a limited pseudo out-of-sample forecasting study to compare the

performances of the models in Table 4. For this part of the study we have also included three

other models to facilitate forecast comparisons: the local level model as discussed in Durbin

and Koopman (2012, Chapter 2) and the well-known autoregressive integrated moving average

ARIMA(P,D,Q) model with orders P = 4, D = 1, Q = 0 and P = 1, D = 1, Q = 1. The

forecast mean square error (FMSE) and the forecast mean absolute error (FMAE) are computed

using the last 100 observations and parameter estimation for the different model specifications is

performed using a fixed rolling window. We consider h-steps ahead forecasts, for h = 1, 2, 3, 4.

Differences in forecast accuracy are verified by means of the Diebold and Mariano (DM) test, see

Diebold and Mariano (1995). The DM test is used to test the null hypothesis that Model t.1 has

the same FMSE as the other models against the alternative of different FMSE. We notice that the

DM test is performed for both nested and non-nested models; the asymptotic normal distribution

of the DM test statistic for nested models is ensured by the scheme of a fixed rolling window; see

Giacomini and White (2006). The results are presented in Table 6. We find that Model n.1 has

the smallest FMSE and FMAE and Model t.1 has the best forecasting performance among the fat-
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tailed models. It suggests that the inclusion of the time-varying αt tends to enhance the forecasting

performance of the GAS models. For the forecasting horizon of 1 year (h = 4 quarters), Model t.1

significantly outperforms most of the models at a 5% or 10% significance level. With regards to the

other forecasting horizons, we conclude that we cannot reject the hypothesis that the differences in

terms of forecast accuracy observed in the subsamples are not significant.

FMSE FMAE

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Model t.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model t.2 1.02 1.02 1.02 1.05∗ 1.01 1.02 1.01 1.03∗

Model t.3 1.11 1.12 1.09 1.13∗∗ 1.04 1.04 1.03 1.07∗∗

Model t.4 1.13∗ 1.14∗ 1.09 1.16∗∗ 1.05 1.06∗ 1.01 1.07∗∗

Model n.1 0.96 0.99 0.98 1.00 1.00 0.98 0.99 0.99
Model n.2 1.02 1.20 1.18 1.15∗ 1.02 1.09 1.07 1.05
Model n.3 1.03 1.09 1.06 1.09 1.04 1.03 1.03 1.04
Model n.4 1.02 1.20 1.18 1.15∗ 1.02 1.09 1.07 1.05

Local level model 1.02 1.20 1.18 1.15∗ 1.02 1.09 1.07 1.05
ARIMA(4,1,0) 1.06 1.25 1.32 1.25∗∗ 1.02 1.06 1.10 1.10∗

ARIMA(1,1,1) 0.98 1.16 1.13 1.12 1.00 1.06 1.04 1.03

Table 6: Empirical out-of-sample FMSE and FMAE ratio statistics, based on the last 100 obser-
vations of quarterly US consumer price inflation time series. The benchmark is Model t.1. The
FMSE and FMAE of Model t.1 is the denominator of the ratio.

7 Conclusion

We have introduced a novel class of observation-driven models that allows for locally changing

the weights for updating the time-varying parameters. We provide both theoretical and simulation-

based evidence that these so-called accelerated GAS model can outperform corresponding GAS

models that have a time-invariant structure for GAS updating. Two empirical illustrations have

been provided: one for the S&P 500 index series and one for US inflation series. For these highly

relevant illustrations we find that the proposed accelerating framework is capable to improve the

in-sample and out-of-sample fit for GAS and related models.
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Appendix

Proof of Lemma 1. The first statement follows by noting that λt(ft) = λ∗t if {ft}t∈N is a random

sequence such that ft = g−1
(
(λ∗t+1 − ωλ − βλλt)/sλ,t

)
for any t ∈ N. As concerns the second

statement, the if part is immediately proved when we notice that sλ,t = (λ∗t+1 − ωλ − βλλt)/g(c)

implies ft = c. Finally, to prove the only if part of the statement, suppose that, for some t ∈ N,

there exists no c ∈ R such that sλ,t = (λ∗t+1 − ωλ − βλλt)/g(c), then, setting ft = c ∀ t implies

that λt(ft) 6= λ∗t for some t ∈ N, for any possible c ∈ R.

Proof of Proposition 1. The proof follows the same argument as in Blasques et al. (2015). By an

application of the mean value theorem, the local realized KL divergence can be expressed as

∆t+1
f,t =

∫
B(yt,εy)

pot (y) log
p(y|λt(ft))
p(y|λt(ft+1))

dy =

=

∫
B(yt,εy)

pot (y)
∂ log p(y|λt(ḟt))

∂ḟt
(ft − ft+1)dy =

= −
∫
B(yt,εy)

pot (y)αfCf,tSλ,t−1uλ
(
yt−1, λt−1

)2
uλ
(
y, λt(ḟt)

)
uλ
(
yt, λt(ft)

)
dy =

= −
∫
B(yt,εy)

pot (y)C̃tuλ
(
y, λt(ḟt)

)
uλ
(
yt, λt(ft)

)
dy,

where C̃t = αfCf,tSλ,t−1uλ(yt−1, λt−1)
2 and ḟt is a point between ft and ft+1. By again applying

the mean value theorem, we obtain

∆t+1
f,t = −

∫
B(yt,εy)

pot (y)C̃tuλ
(
y, λt(ḟt)

)
uλ
(
yt, λt(ft)

)
dy =

= −
∫
B(yt,εy)

pot (y)C̃tuλ
(
yt, λt(ft)

)2
dy+ (15)

−
∫
B(yt,εy)

pot (y)C̃tuλ
(
yt, λt(ft)

)∂uλ(ẏt, λt(f̈t))
∂ẏt

(y − yt)dy+ (16)

−
∫
B(yt,εy)

pot (y)C̃tuλ
(
yt, λt(ft)

)∂uλ(ẏt, λt(f̈t))
∂f̈t

(ḟt − ft)dy, (17)

where f̈t is a point between ḟt and ft, and ẏt is a point between y and yt. The desired result follows

since the term (15) is a.s. negative and the terms (16) and (17) can be made arbitrary small in

absolute value compared to the first term by selecting the ball radius εy and εf small enough.
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Proof of Proposition 2. The if part of the proposition follows immediately from a similar argument

as in the proof of Proposition 1. As concerns the only if part, if sign(ft+1 − ft) = sign(sf,t)

does not hold with probability 1 for any ft ∈ F , it means that there exists an ft ∈ F such that

sign(ft+1 − ft) 6= sign(sf,t) holds with positive probability. Following a similar argument as in

the proof of Proposition 1, this implies that there is a positive probability to have an yt such that

∆t+1
f,t = −

∫
B(yt,εy)

pot (y)C̃tuλ
(
yt, λt(ḟt)

)
(ft+1 − ft)dy > 0,

for small enough εy > 0 and εf > 0. This concludes the proof.

Proof of Proposition 3. The line of argument is similar as in the proof of Proposition 1, the result

follows by repeated applications of the mean value theorem. The difference in local KL variation

can be expressed as

∆t+1
λ,t+1 −∆t

λ,t+1 =

∫
B(yt,εy)

pot (y) log
p(y|λt+1(ft))

p(y|λt+1(ft+1))
dy =

=

∫
B(yt,εy)

pot (y)
∂ log p(y|λt+1(ḟt))

∂ḟt
(ft − ft+1)dy =

= −
∫
B(yt,εy)

pot (y)αfCf,tSλ,t−1uλ
(
yt, λt(ft)

)2
uλ
(
yt−1, λt−1

)
uλ
(
y, λt+1(ḟt)

)
dy =

= −
∫
B(yt,εy)

pot (y)C̃tuλ
(
yt−1, λt−1

)
uλ
(
y, λt(ḟt)

)
dy,

where C̃t = αfCf,tSλ,t−1uλ
(
yt, λt(ft)

)2 and ḟt is a point between ft and ft+1. Applying again the

mean value theorem it results

∆t+1
λ,t+1 −∆t

λ,t+1 = −
∫
B(yt,εy)

pot (y)C̃tuλ
(
y, λt(ḟt)

)
uλ
(
yt−1, λt−1

)
dy =

= −
∫
B(yt,εy)

pot (y)C̃tU1,tU2,tdy,

where U1,t and U2,t are respectively given by

U1,t = uλ
(
yt, λt(ft)

)
+
∂uλ(ẏt, λ̇t)

∂λ̇t
(λt+1(ḟt)− λt(ft)) +

∂uλ(ẏt, λ̇t)

∂ẏt
(y − yt)
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and

U2,t = uλ
(
yt, λt(ft)

)
+
∂uλ(ÿt, λ̈t)

∂λ̈t
(λt−1 − λt(ft)) +

∂uλ(ÿt, λ̈t)

∂ÿt
(yt−1 − yt),

with ẏt a point between yt and y, λ̇t a point between λt(ft) and λt+1(ḟt), ÿt a point between yt−1

and yt and λ̈t a point between λt−1 and λt(ft). From Assumption 1, the score uλ
(
yt, λt(ft)

)
is

nonzero with probability 1, and the second and third terms in the expressions of U1,t and U2,t can

be made arbitrary small in absolute value with respect to the first term by selecting the ball radius

εy and ελ small enough. Hence the product U1,tU2,t can be made positive for any ẏt, y ∈ B(yt, εy).

This, together with the positivity of pot (y) and C̃t, implies that ∆t+1
λ,t+1 −∆t

λ,t+1 is negative.
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