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Abstract

The paper develops a novel realized stochastic volatility model of asset returns and realized volatil-
ity that incorporates general asymmetry and long memory (hereafter the RSV-GALM model). The
contribution of the paper ties in with Robert Basmann’s seminal work in terms of the estimation of
highly non-linear model specifications (“Causality tests and observationally equivalent represen-
tations of econometric models”, Journal of Econometrics, 1988), especially for specifying causal
effects from returns to future volatility. This paper discusses asymptotic results of a Whittle like-
lihood estimator for the RSV-GALM model and a test for general asymmetry, and analyses the
finite sample properties. The paper also develops an approach to obtain volatility estimates and
out-of-sample forecasts. Using high frequency data for three US financial assets, the new model
is estimated and evaluated. The paper compares the forecasting performance of the new model
with a realized conditional volatility model.

Keywords: Stochastic Volatility; Realized Measure; Long Memory; Asymmetry; Whittle likeli-
hood; Asymptotic Distribution.

JEL Classification: C13, C22.



1 Introduction

Over the past two decades, realized measures of volatility have received unprecedented attention

in the academic literature on modeling and forecasting of stock market returns volatility. In

the traditional literature on generalized autoregressive conditional heteroskedasticity (GARCH)

models, Engle and Gallo (2006) and Shephard and Sheppard (2010), among others, incorporated

realized measures for modeling and forecasting volatility. In addition, Hansen, Huang, and Shek

(2012) suggested the realized GARCH framework, which provides a structure for the joint modeling

of returns and realized measures of volatility (see also Hansen and Huang (2016)).

Turning to the literature on stochastic volatility (SV), realized measures of volatility are used

as realized values of unobservable volatilities. However, even though we can obtain a consistent

estimator of true volatility, there are non-negligible differences that are referred to as the ‘realized

volatility error’ (see Barndorff-Nielsen and Shephard (2002)). For removing the estimation bias

caused by the realized volatility error in estimating stochastic volatility (SV) models, Barndorff-

Nielsen and Shephard (2002), Bollerslev and Zhou (2002), Takahashi, Omori and Watanabe (2009),

and Asai, McAleer and Medeiros (2012a,b) showed that it is useful to use an ad hoc approach

that accommodates an error term with constant variance. As in the realized GARCH model,

Takahashi, Omori and Watanabe (2009) suggested a specification based on daily returns and a

realized volatility measure simultaneously, which we will call the ‘realized SV’ (RSV) model.

As in the GARCH literature, it is important to accommodate asymmetric effects, long memory,

and heavy-tails in SV models. For asymmetric effects, it is popular to consider the negative

correlation between returns and future volatility in the specification, which is the leverage effect

(see Hull and White (1987), Wiggins (1987), Chesney and Scott (1989), Harvey and Shephard

(1996), and Yu (2005), among others). As an extension, Asai and McAleer (2011) suggested a

general asymmetric model by adding the size effect based on the specification of the exponential

1



GARCH (EGARCH) model of Nelson (1991). Rather than the negative correlation, So, Li, and

Lam developed a threshold stochastic volatility model, in the light of the threshold GARCH model

of Glosten , Jagannathan, and Runkle (1992). These SV models uses the information given in

returns.

For SV models of realized measures of volatility, there is an extensive literature on asymmetric

effects that have been investigated by Bollerslev and Zhou (2006), Bollerslev, Litovinova, and

Tauchen (2006), Martens, van Dijk, and de Pooter (2009), Chen and Ghysels (2010), Bollerslev,

Sizova, and Tauchen (2012), Asai, McAleer and Medeiros (2012a), and Patton and Sheppard

(2015), among others. For the specification of asymmetric effects, the empirical results of Chen

and Ghysels (2010) led to semi-parametric estimates of the news impact curve (NIC). Their results

imply that: (i) a negative shock to future volatility is larger than a positive shock of the same

magnitude; (ii) a negative shock and a large positive shock increase future volatility; and (iii) a

small positive shock decreases future volatility. Based on the results of Chen and Ghysels (2010),

Asai, McAleer and Medeiros (2012a) developed a flexible parametric specification of asymmetric

effects for SV models of realized measures of volatility.

With respect to long-range dependence in volatility, Breidt, Crato and de Lima (1998) devel-

oped the long memory SV (LMSV) model, in which log-volatility follows the ARFIMA process.

Using the information of realized measure, Andersen et al. (2001, 2003), Pong et al. (2004),

Koopman, Jungbacker, and Hol (2005), and Asai, McAleer and Medeiros (2012a) consider the

autoregressive fractionally integrated model, while other studies have used the heterogeneous au-

toregressive (HAR) model of Corsi (2009) to approximate the hyperbolic decay rates.

Although SV models are known to be more appropriate for describing the tail thickness of

financial returns than ARCH-type models, extreme movements in returns occur more frequently

in the observed data than the model implies. One way to cope with this problem in discrete time
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is to assume a heavy-tailed distribution, such as Student’s t distribution or a generalized error dis-

tribution (GED). Following Harvey, Ruiz, and Shephard (1994), Sandmann and Koopman (1998),

Liesenfeld and Jung (2000), and Asai (2008, 2009) estimated SV models with the (standardized) t

distribution. Liesenfeld and Jung (2000) and Asai (2009) compared both distributions, and found

that the t distribution fits generally better than GED.

In the literature of RSV models, Takahashi, Omori and Watanabe (2009) considered the basic

SV model without asymmetric effects, long memory, or fat-tails. Koopman and Scharth (2013)

accommodated leverage effects and the sum of AR(1) processes to capture longer persistence.

Recently, Shirota, Hizu, and Omori (2014) suggested the RSV model with leverage, long mem-

ory, and heavy-tails. For estimating their RSV model, Shirota, Hizu, and Omori (2014) used the

Bayesian Markov chain Monte Carlo (MCMC) technique. There is room for improving the specifi-

cation of asymmetric effects, and to develop a frequentest approach for estimation and forecasting

volatility.

The purpose of the paper is to extend the work of Shirota, Hizu, and Omori (2014) by accom-

modating a general asymmetric function for volatility. This paper is closely related to Basmann

(1988) for considering causality for future volatility (see also Chang and McAleer (2017)). Ap-

plying discussion of Basmann (1988), we develop a reduced form for the RSV model with respect

to the general asymmetric function. The reduced form enables use of the Whittle likelihood esti-

mator with asymptotic results, and to conduct a test of general asymmetry. With the first step

estimate, we can extract the asymmetric function with an artificial regression. We also extend

the approach of Harvey (1998) for estimation and forecasting latent volatility.

The remainder of the paper is organized as follows. Section 2 develops the new RSV-GALM

model using a general asymmetric function, and derives a reduced form with respect to the asym-

metric effects. Section 3 suggests a two step estimator, consisting of the Whittle likelihood estima-
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tion of the reduced form and the artificial regression for the asymmetric function. We show that

the first step estimator has the asymptotic normal distribution, and consider a test for general

asymmetry which has an asymptotic chi-squared distribution. Section 3 investigates the finite

sample performance of the estimator and test statistic, and develop an approach to estimate and

forecast volatility by extending the method of Harvey (1998). Section 4 provides an empirical ex-

ample for three stocks traded on the New York Stock Exchange. Section 5 gives some concluding

remarks.

2 Realized Stochastic Volatility Model with Asymmetry and Long
Memory

2.1 Model and News Impact Function

Let yt and xt be returns and the logarithm of a realized measure of volatility, respectively. Consider

the following structure:

yt = εt exp
(

1
2
ht

)
, εt =

zt√
κt/(ν − 2)

, zt ∼ iidN(0, 1) κt ∼ iidχ2(ν), (1)

xt = ht + et, et ∼ iidN(0, σ2
e ) (2)

ht+1 = μ+ α(L)ξt, α(L) =
∞∑

j=0

αjL
j = (1 − L)−d[φ(L)]−1θ(L), (3)

ξt = τ(εt) + ηt, E[τ(εt)] = 0, ηt ∼ iidN(0, σ2
η), (4)

where ht is the unobservable log-volatility, τ(ε) is an asymmetric function (to be defined later),

L is the lag operator, φ(L) = 1 − φ1L − · · · − φpL
p, θ(L) = 1 + θ1L + · · · + θqL

q, and d is the

parameter of long memory with d ∈ [0, 1
2). Assume that the roots of φ(z) = 0 and θ(z) = 0

are distinct, and they are located outside the unit circle, in order to satisfy the stationary and

invertibility conditions, respectively.

By the specification, the unobservable log-volatility, ht, follows the autoregressive fractionally

integrated moving average (ARFIMA) process of order (p, d, q). For observed series, yt follows
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the stochastic volatility model with a heavy-tailed distribution, as εt follows the standardized t

distribution with the degrees-of-freedom parameter, ν (ν > 2). Furthermore, xt is specified as log-

volatility plus a noise process. The asymmetric function, τ(ε), will be specified to capture a general

effect from a standardized return to one-step-ahead log-volatility. For this paper, the model given

in (1)–(4) will be called the ‘realized stochastic volatility model with general asymmetry and long

memory’ (RSV-GALM).

As given in Hansen, Huang and Shek (2012), the asymmetric function is constructed by the

Hermite polynomials:

τ(ε) =
r∑

j=1

τjaj(ε), E[aj(ε)] = 0 for all j, (5)

where

a1(ε) = ε, a2(ε) = ε2 − 1, a3(ε) = ε3 − 3ε,

a4(ε) = (ε4 − 6ε2 + 3) − E(ε4 − 6ε2 + 3), . . .

The condition 2r < ν is required for the existence of the variance of ξt. The RSV-GALM model

reduces to the RSV model of Shirota, Hizu, and Omori (2013) by setting τj = 0 (j ≥ 2). We will

refer to the latter model as ‘RSV-ALM’ in order to distinguish it from the general model.

The asymmetric function (5) allows a flexible pattern for the relationship between returns and

future volatility. For the case r = 2, we obtain τ(ε) = τ1ε + τ2(ε2 − 1), and equation (4) with

τ1 < 0 and τ2 > 0 enables the RSV-GALM model to accommodate asymmetric effects based on

the empirical findings in Chen and Ghysels (2010). Their findings indicate that a negative shock

in returns tends to produce a larger future volatility than a positive shock in returns, and that

a small positive shock often decreases volatility. Figure 2 illustrates an empirical example of the

asymmetric effect from returns, y, to its one-step-ahead volatility, σ̄2
t+1(y), using the news impact

function (NIF) of log-volatility (see Yu (2005), Asai and McAleer (2009)), where the log of σ̄2
t+1(y)
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is defined by:

log σ̄2
t+1(y) = E[ht+1|yt = y, ht = μ] = μ+ E[ξt|yt = y, ht = μ] = μ+

r∑
j=1

τja(e−μ/2y). (6)

Figure 2 captures the empirical results of Chen and Ghysels (2010).

2.2 Asymmetric Function and Observationally Equivalent Representation

As noted in Scott (1987) and Harvey, Ruiz, and Shephard (1994), it is useful to take a logarithm

of the squared (or absolute) returns. Define vt = (x†t , y
†
t )

′, where x†t = xt −μ, y†t = log y2
t −μlog y2 ,

μlog y2 = E(log y2
t ). By the transformation, we obtain y†t = (ht − μ) + ζt, where ζt = log ε2t −

E(log ε2t ). As in Harvey, Ruiz, and Shephard (1994), it is straightforward to show E(log ε2t ) =

ψ(1/2) − ψ(ν/2) + log(ν − 2) and V (ζt) = ψ′ (1
2

)
+ ψ′ (ν

2

)
, where ψ(z) is the digamma function

defined by ψ(z) = d log Γ(z)
dz (see equation (26.3.46) in Abramovits and Stegun (1970)).

The above transformation affects the representation of the asymmetric function. The RSV-

GALM model (1)-(5) has the representation:

vt =
(
et +

∑∞
j=0 αjξt−j−1

ζt +
∑∞

j=0 αjξt−j−1

)
=

∞∑
j=0

Gjut−j, (7)

where ut = (et, ζt, ξt)′, and

G0 =
(

1 0 0
0 1 0

)
, Gj =

(
0 0 αj−1

0 0 αj−1

)
(j ≥ 1).

Moreover, the mean and covariance matrix of ut are given, respectively, by:

E(ut) = 0, V (ut) = Σu =

⎛
⎝ σ2

e 0 0
0 σ2

ζ σζξ

0 σζξ σ2
ξ

⎞
⎠ ,

where

σ2
ζ = ψ′

(
1
2

)
+ ψ′

(ν
2

)
, σ2

ξ =
r∑

j=1

τ2
j V (aj(εt)) + σ2

η , σζξ =
�r/2�∑
i=1

τ2iE[a2i(εt) log ε2t ],

and �x� is the floor function, which gives the greatest integer less than or equal to x. The values

of σ2
ξ and σζξ are finite if r < ν/2 (see Appendix A.1 for the derivation of E[εrt log ε2t ]).
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As discussed in Harvey and Shephard (1996), the information regarding the sign of εt is lost

by the transformation of yt. Under the assumption that εt has the standardized t distribution, σζξ

excludes the effects of the Hermite polynomials of the odd numbers. Unlike the simple asymmetric

SV model of Harvey and Shephard (1996), the general asymmetric function (5) with r ≥ 2 produces

non-zero σζξ.

In order to consider the causality from yt to exp(ht+1), we return to the important concept of

the ’observationally equivalent representation’ of Basmann (1988) for causality analysis. Basmann

(1988) uses a structural vector autoregression (SVAR) model, which has its reduced form derived

by multiplying a matrix for normalization. Basmann (1988) shows that a causal relationship will

change, depending on the choice of the matrix, which is an example of the problems associated

with observationally equivalent representations. For this problem, estimation of the SVAR model

requires imposing restrictions, as discussed in Waggoner and Zha (2003).

For the RSV-GALM model, the observationally equivalent representation regarding the asym-

metric effect is given by (7). The parameters (σ2
e , σ

2
ξ , σζξ) are determined by ν, σ2

η, and (τ1, . . . , τr).

Among them, σ2
e is uniquely determined by ν, and vice-versa. On the contrary, it is not possible

to identify (τ1, . . . , τr) and σ2
η from the information of σ2

ξ and σζξ with ν. For example, if r = 2,

we obtain:

σ2
ξ = τ2

1 + 2τ2
2 × ν − 1

ν − 4
+ σ2

η

σζξ = τ2

[
ψ
(ν

2

)
− ψ

(
ν − 2

2

)
+

1
2

{
ψ

(
3
2

)
− log

(
1
2

)}
− ψ

(
1
2

)]
.

(8)

Given the structure, ν and τ2 are identified by (σ2
ζ , σζξ), but it is not possible to separate τ2

1 + σ2
η

from the information of (σ2
e , σ

2
ξ , σζξ). In this sense, we may call the representation (7) as the

‘reduced form’ of the asymmetric function. In general, σζξ = 0 implies that the asymmetric

function is specified as τ(ε) = 0 or τ(ε) = τ1ε. In the next section, we will develop the test for

general asymmetry, σζξ �= 0.
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The selection of the order, r, of the asymmetric function (5) requires knowledge of ν, which

is unknown a priori. Hence, an important feature of the reduced form (7) is that we can handle

the model without knowledge of r. Rather than the estimation of a restricted model, the paper

considers extracting the asymmetric function after estimating the reduced form (7), and uses the

estimated asymmetric function for forecasting volatility. These issues will be discussed in the next

section.

3 Estimation and Forecasting

3.1 Whittle Likelihood Estimation

We use the limiting theory of Hosoya (1997) to show the asymptotic property of the Whittle like-

lihood estimator for the reduced form (7) of the RSV-GALM model. As Hosoya (1997) considers

a vector long memory process, which allows differences in the dimensions of the observed series

and disturbances, we can directly check the conditions given in Hosoya (1997).

Let δ = (d, φ1, . . . , φp, θ1, . . . , θq, σ
2
e , σ

2
ζ , σζξ, σ

2
ξ )

′ be the vector of parameters. By the speci-

fication, the process {vt} in (7) is a second-order stationary process and has a spectral density

matrix defined by f(ω) = 1
2πk(ω; δ)Σuk(ω; δ)∗, where k(ω; δ) =

∑∞
j=0Gje

iωj , which yields:

f(ω) =
1
2π

(
K11(ω) K12(ω)
K12(ω)∗ K22(ω)

)
, (9)

with

K11(ω) = σ2
e + σ2

ξ |α(eiω)|2,

K12(ω) = σζξα(eiω)eiω + σ2
ξ |α(eiω)|2,

K22(ω) = σ2
ζ + σζξ

(
α(eiω)eiω + α(e−iω)e−iω

)
+ σ2

ξ |α(e−iω)|2.

The (1,1)-element of f(ω) is the spectral density of xt, which can be interpreted as the conventional

signal plus noise process. The (2,2)-element of f(ω) is the spectral density of log y2
t , and it is the
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same as that derived in Zaffaroni (2009). The off-diagonal elements are the cross-spectral densities

of xt and log y2
t .

Let In(v, ω) is the periodogram matrix defined by:

In(v, ω) = wn(ω)wn(ω)∗, −π < ω ≤ π,

where wn(ω) is the finite Fourier transform defined by:

wn(ω) =
1√
2π

n∑
t=1

vte
itω.

For the purpose of deriving the quasi-likelihood function, we will treat the process v(t) as Gaussian.

Choose the frequencies ωj, j = 1, . . . , n, equi-spaced in the region (−π, π] in such a way that

f(ω) is continuous at ω = ωj Then the finite Fourier transform wn(ωj), j = 1, . . . , n, will have a

complex-valued multivariate normal distribution which, for large n, is approximately independent,

each with probability density function given by:

π−1 {detf(ωj; δ)}−1/2 exp
[
−1

2
tr
{
f−1(ωj; δ)wn(ωj)wn(ωj)∗

}]
, j = 1, . . . , n.

As wn(ωj), j = 1, . . . , n, constitutes a sufficient statistic for δ, an approximate log-likelihood

function of δ based on {v1, . . . ,vn} is, excluding the constant term, given by:

L̄n(δ) = −1
2

n∑
j=1

[
log detf(ωj ; δ) + tr

{
f−1(ωj; δ)In(v, ωj)

}]
. (10)

In integral form, the equation (10) has the expression:

− n

4π

[∫ π

−π
log detf(ω; δ)dω +

∫ π

−π
tr
{
f−1(ω; δ)In(v, ω)

}
dω

]
. (11)

The function L̄n(δ) is called the quasi-log-likelihood function. The approximation was originally

proposed by Whittle (1952) for scalar-valued stationary processes (see also Dunsmuir and Hannan

(1976), Taniguchi and Kakizawa (2000)). Define the QML estimator, δ̂n, which is obtained by

minimizing −L̄n(δ). In practice, we use the discrete quasi-log-likelihood (10) with frequency
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ωj = 2πj/n (j = 1, . . . , �n/2�), for the symmetry of the Fourier transform, as in the usual

empirical analysis.

Following Hosoya (1997), define the quantity:

Rj(δ) = Hj(δ) +
∫ π

−π
tr{hj(ω, δ)f(ω)}dω,

where

Hj(δ) =
∂

∂δj

∫ π

−π
log detf(ω; δ)dω,

hj(ω; δ) =
∂

∂δj
f−1(ω; δ).

Noting that

detf(ω; δ) =
1
2π

⎧⎨
⎩σ2

eσ
2
ζ + 2σ2

eσζξ

∞∑
j=0

αj cos(ω(j + 1)) + (σ2
eσ

2
ξ + σ2

ζσ
2
ξ − σ2

ζξ)
∣∣α(eiω)

∣∣2
⎫⎬
⎭ ,

Rj(δ) is measurable with respect to δ almost everywhere ω. DenoteW as the matrix of derivatives,

Wjl = ∂Rj/∂δl, evaluated at δ = δ0.

By checking the conditions of Hosoya (1997), we can obtain the asymptotic results of the

QML estimator. Let the QML estimator, δ̂n ∈ Θ, a compact parameter space and the true

parameter vector, δ0, be in the interior of the parameter space, and add a technical assumption

that Kjl(ω) = 0 for ω = 0 in equation (9). Example 3.1 in Hosoya (1996) uses the assumptions,

and the latter assumption has no effect on maximizing the discrete quasi-log-likelihood (10) with

frequency ωj = 2πj/n (j = 1, . . . , [n/2]). Applying the approach to prove Theorem 2 in Chan and

Tsai (2008) and Theorem 1 in Tsai, Rachinger, and Lin (2015), we can verify Assumptions A, C,

and D of Hosoya (1997) to show the consistency and asymptotic normality of the QML estimator,

in order to obtain:

√
n(δ̂n − δ0)

d−→N(0,W−1U(W ∗)−1), (12)
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where U is the matrix with (j, l)th element represented as:

Ujl = 4π
∫ π

−π
tr [hj(ω; δ0)f(ω)hl(ω; δ0)f(ω)] dω

∣∣∣∣
δ=δ0

+
3∑

a,b,c,d=2

Cabcd

[
1
2π

∫ π

−π
k∗(ω1)hj(ω1; δ0)k(ω1)|δ=δ0

dω1

]
ab

(13)

×
[

1
2π

∫ π

−π
k∗(ω2)hl(ω2; δ0)k(ω2)|δ=δ0

dω2

]
cd

,

and

∫ π

−π
k∗(ω)hj(ω; δ0)k(ω)|δ=δ0

dω = 0 for θj ∈ (d, φ1, . . . , φp, θ1, . . . , θq), (14)

with Cabcd is the fourth cumulant of the element of ut obtained by E(uaubucud)−E(uaub)E(ucud)−

E(uauc)E(ubud) − E(uaud)E(ubuc). Those cumulants exist if r < ν/4 (see Appendix A.2). As

the first element of ut, namely, et, follows the independent normal distribution, Cabcd = 0 if at

least one of (a, b, c, d) is one.

Although Ujl defined by Theorem 2.2 in Hosoya (1997) is based on the fourth-order spectral

density, it can be simplified as in (13) under Assumption F of Hosoya (1997) (see also equation

(5.3.22) of Taniguchi and Kakizawa (2000) and Theorem 2 of Zaffaroni (2009)). As Assumption

F states that the joint fourth cumulant of the elements of ua,t1 , ub,t2 , uc,t3, ud,t4 is equal to Cabcd

if t1 = t2 = t3 = t4, and is equal to zero otherwise, it can be verified by the structure of the

RSV-GALM model. Furthermore, Σu in equation (9) is irrelevant to (d, φ1, . . . , φp, θ1, . . . , θq),

and so it satisfies the so-called ‘innovation-free specification’ of Assumption E of Hosoya (1997),

yielding (14) (see also Assumption 5.3.7 of Taniguchi and Kakizawa (2000)).

Before estimation of the general asymmetric function, we consider a test for general asymmetry

of the null hypothesis:

H0 : σζξ = 0, vs. H1 : σζξ �= 0.
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The likelihood ratio (LR) statistic is defined by:

LR = 2
{
L̄n(δ̂n) − L̄n(δ̂

0
n)
}
,

where δ̂
0
n is the constrained QML estimator. Under mild conditions in Theorem 2.4 of Hosoya

(1997), the LR statistic follows the asymptotic χ2
1 distribution (see also Theorem 5.3.8 of Taniguchi

and Kakizawa (2000)).

3.2 Forecasting with the Asymmetric Function

Using the QML estimates above, this paper suggests a method of extracting the asymmetric

function (5) and use it to forecast volatility. For this purpose, we consider the minimum mean

square linear estimator (MMSLE) of ht, by extending the work of Harvey (1998) for a long memory

SV model. Second, we obtain the estimate of ξt to construct an auxiliary regression for (5). Finally,

we suggest an approach for forecasting volatility with the estimated asymmetric function.

Define x† = (x†1, . . . , x
†
n)′, y† = (y†1, . . . , y

†
n)′, h = (h1, . . . , hn)′, e = (e1, . . . , en)′, and ζ =

(ζ1, . . . , ζn)′ on (7). Using h explicitly, the vector form of (7) is given by:

x† = h − μ1n + e, y† = h − μ1n + ζ,

where 1n is an n× 1 vector of ones. Then, we obtain the MMSLE of h as:

h̃ = μ1n + b−1
1

(
In − Σ−1

B

) (
σ−2

e x† + σ−2
ζ y† + b2B

′
2Σ

−1
∗ y†

0

)
, (15)

where y†
0 = (0, y†1, . . . , y

†
n−1)

′, b1 = σ−2
e + σ−2

ζ , b2 = σζξ/σ
2
ζ , ΣB = In + b1B

−1
2 Σ∗(B′

2)
−1, and B2

and Σ∗ are defined in Appendix A.3, as is the derivation of the MMSLE. If σζξ = 0, the MMSLE

is given by:

h̃ = μ1n + b−1
1

(
In − Σ−1

b

) [
σ−2

e x† + σ−2
ζ y†

]
,

where Σb = In +b1Σh and V (h) = Σh. In this case, the MMLSE is simplified as y†
0 is unnecessary.

If σζξ = 0 and σ2
e → ∞, then b1 → σ−2

ζ and the MMSLE reduces to that obtained in Harvey

12



(1998). As μ and μlog y2 are unknown, we need to estimate them using the sample mean. Harvey

(1998) recommends using the volatility estimate:

σ̃2
t = σ̃2

ỹ exp(h̃t),

where σ̃2
ỹ = 1

n

∑n
t=1 ỹ

2
t , and ỹt = yt exp(−h̃t/2) are the heteroskedasticity-corrected observations.

Before extracting the asymmetric function, consider the AR(∞) representation of the latent

log-volatility as:

ht+1 = μ+
∞∑

j=1

βj(ht+1−j − μ) + ξt, (16)

where
∑∞

j=1 βjL
j = 1 − [α(L)]−1. As in Hosking (1981), we can approximate:

ht+1 = μ+
P∑

j=1

βj(ht+1−j − μ) + ξt,

with some large P . Denote the pre-sample data with size J as x†
p = (x†−J+1, . . . , x

†
0)

′ and y†
p =

(y†−J+1, . . . , y
†
0)

′, in order to set corresponding pre-sample values hp = (h−J+1, . . . , h0)′ using

equation (15). Then, we obtain the estimates of ξt as:

ξ̃t = (h̃t+1 − μ) −
J+t∑
j=1

βj(h̃t+1−j − μ) (t = 1, . . . , n− 1),

in order to construct an auxiliary regression:

ξ̃t =
r∑

j=1

τjaj(σ̃t
−1yt) + error. (17)

Note that the maximum value of r must satisfy the condition that rmax ≤ �ν/4� for the fourth

cumulants used in the covariance matrix in equation (12). We can estimate the parameters via

the conventional ordinary least squares method.

After estimating the asymmetric function, we can obtain l-step-ahead forecast of log-volatility

by:

ĥn+l|n = μ+
n+J+l−1∑

j=1

βj(ĥn+l−j|n − μ) + 1{l=1}
r∑

i=1

τiai(σ̃−1
n yn), (18)

13



where ĥn+l|n = h̃n+l for l ≤ 0, and 1{l=1} is the indicator function, which takes one when l = 1

and zero otherwise.

3.3 Monte Carlo Experiments

Simulation experiments were conducted in order to assess the performance of the two step esti-

mator for the RSV-GALM model, and the quasi-likelihood ratio test of the general asymmetry.

We consider the RSV-GALM (1, d, 0) with r = 2, that is, the second-order specification for

the asymmetric function (5). For the two step estimator, the parameter values are specified as:

(μ, σe, ν, d, φ, τ1, τ2, ση) =
{

(−0.123,0.25,11, 0.4, 0.63,−0.05, 0.05, 0.120) for DGP1
(−0.250,0.70,16, 0.2, 0.86,−0.02, 0.02, 0.216) for DGP2

in the following way. First, the long memory parameter and autoregressive parameter (d, φ) were

selected such that the first-order autocorrelation function of ht is 0.95. Second, the parameters

(ν, τ1, τ2, ση) were chosen so that
√
V (ht) = 0.5 for DGP1, and 0.7 for DGP2. Third, μ was

selected for the variance of yt to take one, that is, exp(μ+ 0.5V (ht)) = 1. Finally, σe was chosen

so that σe/
√
V (ht) = 0.5 for DGP1, and 1 for DGP2. For each parameter vector, we generated

a sample of size T = 2048, and estimated the RSV-GALM model with r = 2 using the two step

estimator. The number of replications is 2000.

Table 1 shows the sample means, standard deviations, and root mean squared errors of the

two step estimator. Table 1(a) presets the results of the QML estimators in the first step. Table

1(a) gives the corresponding true values of (ρζξ, σξ), where ρζξ = σζξ

/√
σ2

ζσ
2
ξ , via equation

(8). Compared with the bias of (d, φ, σe), those of (ν, ρζξ) are relatively large, due to the fourth

cumulants in (13) caused by the non-normal disturbance. Those bias are expected to disappear,

as the sample size increases.

Table 1(b) shows the results of the estimates of the remaining parameters. While μ was

14



estimated by the sample mean of xt, (τ1, τ2, ση) were estimated by the OLS method for the

auxiliary regression (17). The bias in μ is negligible. There is bias in the estimates of τ1 and τ2

toward zero, while the bias in ση is affected by those of |τ1| and |τ2|. These biases are expected

to disappear as the values of |τ1| and |τ2| increase, and/or as n→ ∞.

Next, we examine the finite sample performance of the quasi-likelihood ratio test for general

asymmetry with null hypothesis σζξ = 0. For this purpose, we modify the parameter settings

of (τ2, ση) in DGP1 and DGP2, in order to specify ρζξ = 0, 0.1, 0.3, keeping the remaining

conditions the same. Table 2 gives the new parameters, and corresponding rejection frequencies

at the 5 percent significance level. Table 2 indicates that the rejection frequency increases as the

value of ρζξ increases. The rejection frequencies under the alternative hypothesis are higher as

σe/
√
V (ht) is smaller. On the other hand, the rejection frequency under the null hypothesis is

closer to 0.05 when σe/
√
V (ht) is larger.

4 Empirical Analysis

4.1 Data and Preliminary Analysis

We estimate the RMESV-ALM model using daily returns and realized volatilities for three major

stocks traded on the New York Stock Exchange, namely: Alcoa Inc. (AA), Bank of America

(BAC), and International Business Machines (IBM). For each return computed for 1-min intervals

of the trading day at t between 9:30a.m. and 4:00 p.m., we calculated the daily volatility using

the preaveraged and truncated realized volatility (PTRV) estimator of Koike (2016) (see also Asai

and McAleer (2017)). The estimator gives a consistent estimator of the integrated covariance

matrix, and is robust to microstructure noise and jumps.

We also calculate the corresponding returns for the three assets. Following the methodology

of Aı̈t-Sahalia and Jacod (2012), we obtained the ‘robust’ returns by removing the jump and noise

components. Although the realized kernel estimator of Barndorff-Nielsen et al. (2008) is consistent
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and robust to microstructure noise and jumps, we use the PTRV estimator for disentangling these

components on volatility and returns simultaneously. We denote robust returns and log of PTRV

as yt and xt, respectively. The sample period is from July 2, 1998 to October 26, 2012, giving

3548 observations. Figure 1 shows the time series plot of the PTRV estimator. We divide the

sample into three parts, with sizes 1000, 2048, and 500. We use the second n = 2048 observations

for estimating the parameters in the first step, while the first J = 1000 observations are used as

a pre-sample for estimating {ht} and the parameters in the second step. We preserve the last

F = 500 observations for forecasting. The second period is from July 1, 2002 to October 13, 2010,

covering the period of the global financial crisis, as shown in Figure 1.

Table 3 presents the descriptive statistics of the returns and log-volatilities. The empirical

distribution of the returns is highly leptokurtic, and is skewed to the left. Compared with the

returns series, the distribution of log-volatility is closer to the normal distribution, but it is skewed

to the right, and the kurtosis exceeds three. It should be noted that it is straightforward to verify

that ξt in the RSV-GALM model with r ≥ 2 can describe the heavy-tails and skewness to the

right.

For a benchmark model, we consider the realized EGARCH model of Hansen and Huang

(2016). By accommodating heavy-tails, the model is given by equation (1) and:

xt = ϕ1 + ϕ2ht + λ1εt + λ2(ε2t − 1) + et, et ∼ iidN(0, σ2
e ),

ht+1 = μ+ φ(ht − μ) + τ1εt + τ2(ε2t − 1) + τ0et

Although the disturbance in ht+1 equation is predetermined, unlike the RSV models, the distur-

bance of xt is expected to cover the difference. The structure of the realized EGARCH model

implies that there is an instantaneous asymmetric relationship between yt and xt, which is not

considered in the RSV models. On the other hand, the realized EGARCH model misses the long

memory in this specification. As examined in Hansen and Huang (2016), the specification gives
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a better fit than the realized GARCH model of Hansen, Huang, and Shek (2012). The density

function of the standardized t distribution is given by:

f(ε) = [π(ν − 2)]−1/2 Γ
(

ν+1
2

)
Γ
(

ν
2

) (
1 +

ε2

ν − 2

)−(ν+1)/2

.

As in the conventional ARCH family, we can estimate the model via maximum likelihood (ML)

estimation.

It should be noted that the realized EGARCH model uses the level and squares of the stan-

dardized shock, εt, whereas the standard EGARCH model of Nelson (1991) uses the levels and

absolute values of the standardized shocks.

Table 4 shows the ML estimates of the realized EGARCH model. All the estimated parameters

are significant at the five percent level. The estimates of ν indicate that the standardized t

distribution is better than the normal distribution. For the specification of ht+1, we observe that

φ is close to 0.98 as in the conventional EGARCH specification. While the estimates of τ1 are

negative, those of τ2 are positive. As in the results of Hansen and Huang (2016), τ0 is positive.

For the model of xt, ϕ2 is close to one and ϕ1 is close to minus one. Although (ϕ1, ϕ2) = (0, 1)

is expected by theory, there are significant differences. The estimates of σe lie in the range

(0.37,0.43). For the simultaneous asymmetric effects between yt and xt, the estimates of λ1 are

negative, and those of λ2 are positive. These results support the empirical analysis of Hansen and

Huang (2016).

4.2 Empirical Results

We estimate the RSV-GALM model, and compare its one-step-ahead forecasts with those of the

realized EGARCH model.

Table 5(a) presents the QML estimates for the first step. For estimating the asymptotic

covariance matrix of the QML estimator, we use the simulated fourth cumulants given in Table 6,
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which will be explained below. The estimates of d lie in the range (0.47,0.49), and are significant at

the five percent level, showing that long memory in volatility improves the in-sample performance.

For the general asymmetry, we test the null hypothesis, ρζξ = 0. Both the t test and QLR test

reject the null hypothesis for AA and IBM, while the null hypothesis is not rejected for BAC.

Compared with the estimates of the realized EGARCH model, the estimates of σe are smaller,

implying that the systematic variation of xt explained by the RSV-GALM model is larger than

for the realized EGARCH model.

Table 5(b) shows the results of the second step estimator. In the second step, we use the

maximum number of r as rmax = min(5, �0.25ν�), and select the optimal order of the general

asymmetric function by choosing the maximum number of j, of which τj is significant at the five

percent level. While rmax is 3 for AA, and 5 for BAC and IBM, the optimal r is 2 for AA and

IBM, and 1 for BAC. The result for BAC corresponds to the above QLR test. Figure 2 shows the

news impact function for these three datasets.

Using the estimates in Table 5(b), we generated a random sample of (εt, ηt) with size of

1000000, in order to obtain the fourth cumulants of (ζt, ξt), and estimated W−1U(W ∗)−1 in

equation (12) via numerical derivation and integration. The standard errors are given in the

parentheses in Table 5(a).

For the RSV-GALM (r ≥ 2) and RSV-ALM (r = 1) models, we examine the performance of the

out-of-sample forecasts using the root mean squared forecast error (RMSFE) and the Diebold and

Mariano (1995) test for equal forecast accuracy. The benchmark model is the realized EGARCH

model. We use xn+l (l = 1, . . . , F )as the proxy of the true log-volatility. Fixing the sample size

at 2048 as the rolling window, we re-estimated the model and computed one step ahead forecasts

of log-volatility for the last 500 days. RMSFE is defined as:√√√√ 1
F

F∑
l=1

(
x̂n+l|n+l−1 − xn+l

)2
,
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where x̂n+l|n+l−1 = ĥn+l|n+l−1 for the RSV model, and x̂n+l|n+l−1 = ϕ̂1 + ϕ2ĥn+l|n+l−1 for the

realized EGARCH model As above, we select the optimal r for each time to obtain the one step

ahead forecast.

Table 7 shows that the RSV-GALM model produces the smallest RMSFE for all three datasets.

The results of the Diebold and Mariano (1995) test indicate that the forecasts of the RSV-GALM

model are significantly different from those of the remaining two models.

For each time predicting xn+l, we select optimal r. Table 8 presents the frequencies of the

selected r in forecasting the RSV-GALM model. The frequencies for selecting r = 2 is highest

for all three datasets, while the frequencies where a higher r is selected are not negligible. For all

three assets, r = 0 is not selected. Figure 3 shows the changes in the optimal r. The first half of

the trajectory for AA is relatively calm and r = 2 is sufficient, while the latter period fluctuates

from one to four. For BAC, there is a tendency that r = 1 or 2 are selected at the beginning,

but with fluctuations for most of the forecasting period. There is a calm period in the middle for

IBM.

Table 8 also gives the correlation coefficients between exp(0.5xt) and r, showing a weak negative

correlation. The result implies that there is a weak tendency to select small r when volatility is

large. A more extensive analysis for choosing an optimal value of r requires further research.

5 Conclusion

In the framework of realized stochastic volatility, this paper developed general asymmetry, long

memory, and fat-tails, in order to construct the RSV-GALM model. The general symmetric func-

tion allows the model to describe flexible asymmetric patterns, corresponding to recent empirical

findings. This paper derives the reduced form of the RSV-GALM model, and suggested Whittle

likelihood estimation of the model, and developed a test for general asymmetry.
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This paper also gives the asymptotic results of the estimator. As the second step, this paper

developed an artificial regression for estimating the the general asymmetric function. The paper

gives an approach to obtain estimates and forecasts of the RSV-GALM model. The empirical

results based on the three financial assets from the US market indicate that the new RSV-GALM

model outperforms existing models in forecasting volatility.

The new RSV-GALM model opens the possibility for many interesting research directions.

First, we may include a simultaneous asymmetric effect between returns and a realized measure

of volatility, as in Hansen and Huang (2016). Second, we may consider multiple realized measures

of volatility for improving forecasts, as in Engle and Gallo (2006). Third, we may develop a time-

varying structure of the asymmetric function, based on the empirical results. These issues require

considerable further research.
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Appendix

A.1 Derivation of E(ε� log ε2)

In the Appendix, we omit the subscript t for random variables, when it is redundant. Noting that

ε = z
√

(ν − 2)/κ, we obtain

E(log ε2) = E[log z2] −E[log(κ/ν)] + log[(ν − 2)/ν] = ψ(1/2) − ψ(ν/2) + log(ν − 2)

by equation (26.4.36) in Abramovits and Stegun (1970).

If r is an odd number, it is straightforward to show that E(εr log ε2) = 0. For an even number

r = 2R, we obtain:

E(εr log ε2) = (ν − 2)RE[κ−R]E[z2R log z2] − (ν − 2)RE(z2R)E[κ−R log κ]

+
(
ν − 2
ν

)R

log(ν − 2) × E[T 2R],

where T = z/
√
κ/ν follows the Student t distribution with degrees-of-freedom parameter, ν. It is

straightforward to show that:

E(z2R) =
R∏

j=1

(2j − 1), E(T 2R) = νR
R∏

j=1

2j − 1
ν − 2j

, E(κ−R) =
R∏

j=1

1
ν − 2j

.

By using equation (26.4.36) in Abramovits and Stegun (1970), we obtain:

E[κ−R log κ] =
1

2ν/2Γ(ν/2)

∫ ∞

0
log(κ)κ(ν−2R)/2−1e−κ/2dκ

=
Γ((ν − 2R)/2)

2RΓ(ν/2)
E[logχ2

ν−2R] =
Γ((ν − r)/2)
2r/2Γ(ν/2)

{
ψ

(
ν − r

2

)
− log

(
1
2

)}

E[z2R log z2] =
2(2R−1)/2Γ((2R+ 1)/2)

Γ(1/2)
E[logχ2

2R+1]

=
2(r−1)/2Γ((r + 1)/2)√

π

{
ψ

(
r + 1

2

)
− log

(
1
2

)}
.

24



As a result, if r is even, it follows that:

E(εr log ε2) =

⎛
⎝r/2∏

j=1

ν − 2
ν − 2j

⎞
⎠× 2(r−1)/2Γ((r + 1)/2)√

π

{
ψ

(
r + 1

2

)
− log

(
1
2

)}

−
⎡
⎣r/2∏

j=1

(2j − 1)

⎤
⎦×

(
ν − 2

2

)r/2 Γ((ν − r)/2)
Γ(ν/2)

{
ψ

(
ν − r

2

)
− log

(
1
2

)}

+

⎛
⎝r/2∏

j=1

ν(2j − 1)
ν − 2j

⎞
⎠×

(
ν − 2
ν

)r/2

log(ν − 2).

It is straightforward to show that E(εr log ε2) → E(zr log z2) as ν → ∞.

For the existence of σ2
ξ and σζξ in equation (7), it is sufficient to guarantee E(ε2r) < ∞ and

|E(εr log ε2)| <∞ by r < ν/2.

A.2 Fourth Moments of u�

Appendix A.2 examines the conditions for the existence of fourth moments of ut. As discussed

in the main text, the normal random variables, et and ηt, have all finite moments, and so it is

sufficient to check the conditions for E(ζ4), E(ζ3ξ), E(ζ2ξ2), E(ζξ3), and E(ξ4).

For the fourth moment of ζ, we decompose ζ as ζ = z∗ − κ∗, where z∗ = log z2 − E(log z2)

and κ∗ = log κ − E(log κ). By definition, it is straightforward to verify E(ζ4) = E(z∗4) +

6E(z∗2)E(κ∗2) +E(κ∗4). From equation (26.4.36) in Abramovits and Stegun (1970), which gives

the kurtosis of z∗ and κ∗, we obtain:

E(ζ4) = ψ(3)

(
1
2

)
+ ψ(3)

(ν
2

)
+ 3

[
ψ′
(

1
2

)
+ ψ′

(ν
2

)]2

,

where ψ(3)(z) = d3ψ(z)/dz3 is the penta gamma function. As ν > 2 by equation (1), E(ζ4) is

finite.

If ν > 4r, we can show that E(ε4r) <∞, by the property of thet distribution, which guarantees

E[{τ(ε)}4] <∞ and E(ξ4).

Noting that E(ζξ3) = E(ξ3 log ε2) − E(ξ3)E(log ε2), we can show E(ξ3 log ε2), E(log ε2) and

25



E(ξ3) are finite using the results in Appendix A.1 and the property of the t distribution, if 3r < ν.

Similarly, we can show that E(ζ2ξ2) and E(ξζ3) are finite, if 4r < ν.

Overall, the conditions for the existence of cumulants of ut is 4r < ν. Given the parameter

values, we can estimate them by the sample fourth moments, using a simulated random variables

of ut.

A.3 Derivation of MMSLE of h

As in Harvey (1998), we assume the Gaussian distribution for ut to derive the MMSLE of h

intuitively. Under the Gaussian assumption, the conditional distribution of ξt|{ζt = y†t − h†t} is

given by N(b2(y
†
t − h†t), b3), where b2 is defined by (15) and b3 = σ2

ξ − σ2
ζξ/σ

2
ζ .

Consider the decomposition of the autoregressive terms in (16) as:

h†t =
t−1∑
j=1

βjh
†
t−j + ξt−1 + st,

where

st =
∞∑
j=t

βjh
†
t−j =

∞∑
j=0

βt+jh
†
−j =

∞∑
j=0

(
j∑

i=0

βt+iαj−i

)
ξ−2−j .

By definition, the autocovariance function of st is given by:

E(stst′) = σ2
ξ

∞∑
j=0

(
j∑

i=0

βt+iαj−i

)(
j∑

i=0

βt′+iαj−i

)
,

which depends on (t, t′). In vector form, given y†
0, we obtain:

h† = Lβh†
0 + b2(y

†
0 − h†

0) + ξ∗, ξ∗ ∼ N(0,Σ∗), Σ∗ = b3In +B3 + Σs,

where Σs is the covariance matrix of s = (s1, . . . , sn)′, h† = h − μ1n, h†
0 = Sh†, and

S =

⎛
⎜⎜⎜⎝

0 · · · 0 0
0

In−1
...
0

⎞
⎟⎟⎟⎠ , Lβ =

⎛
⎜⎜⎜⎜⎝

β1 0 · · · 0

β2 β1
. . .

...
...

. . . . . . 0
βn · · · β2 β1

⎞
⎟⎟⎟⎟⎠ , B3 =

⎛
⎜⎜⎜⎜⎝

σ2
ξ − b3 0 · · · 0

0 0
. . .

...
...

. . . . . . 0
0 · · · 0 0

⎞
⎟⎟⎟⎟⎠ .
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We can use the above equations to obtain the conditional distribution of h|y†
0.

The density function of h† conditional on (x†,y†) is proportional to:

f(h†|x†,y†) ∝ f(x†|h†)f(y†,h†)

∝ f(x†|h†)f(y†1|h†1)f(h†1)
n∏

t=2

f(y†t |h†t)f(h†t |y†t−1, h
†
t−1, . . . , h

†
1)

∝ f(x†|h†)f(y†|h†)f(h†|y†
0),

where

f(x†|h†) ∝ exp
(
− 1

2σ2
e

(x† − h†)′(x† − h†)
)

f(y†|h†) ∝ exp

(
− 1

2σ2
ζ

(y† − h†)′(y† − h†)

)

f(h†|y†
0) ∝ exp

(
−1

2

(
B2h

† − b2y
†
0

)′
Σ−1
∗
(
B2h

† − b2y
†
0

))
,

with B1 = Lβ − b2Im, B2 = In −B1S. The mean of h†, conditional on (x†,y†), is given by:

μh|· =
(
b1In +B′

2Σ
−1
∗ B2

)−1
(
σ−2

e x† + σ−2
ζ y† + b2B

′
2Σ

−1
∗ y†

0

)
= b−1

1

(
In − Σ−1

B

) (
σ−2

e x† + σ−2
ζ y† + b2B

′
2Σ

−1
∗ y†

0

)
,

where ΣB = In + b1B
−1
2 Σ∗(B′

2)
−1. Then the MMLSE of h is given by h̃ = μ1n + μh|·.

If σζξ = 0, we obtain:

f(h†) ∝ exp
(
−1

2
(h†)′Σ−1

h h†
)
,

and the MMSLE of h is given by:

h̃ = μ1n + b−1
1 (In − Σ−1

b )
(
σ−2

e x† + σ−2
ζ y†

)
,

where Σb = In + b1Σh.
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Figure 1: Daily Realized Measure of Volatility
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Note: We use the preaveraged and truncated realized volatility estimator of Koike (2016).
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Figure 2: News Impact Functions of the RSV-GALM Model
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Note: The figure shows the news impact function, σ̄t+1(y), defined by equation (6) for the

optimal general asymmetric function.
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Figure 3: Changes in Optimal r for the General Asymmetric Function
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Table 1: Finite Sample Performance of Estimators in Each Step

(a) First Step QML Estimator
DGP 1 DGP 2

Param. True Mean Std.Dev. RMSE True Mean Std.Dev. RMSE
d 0.400 0.3629 0.1399 0.1447 0.200 0.3134 0.1557 0.1926
φ 0.630 0.6523 0.1243 0.1263 0.860 0.7873 0.0929 0.1180
σe 0.250 0.2498 0.0075 0.0075 0.700 0.7002 0.0174 0.0174
1/ν 0.091 0.0581 0.0702 0.0775 0.063 0.0460 0.0652 0.0672
ρζξ 0.264 0.3135 0.0388 0.0626 0.072 0.0867 0.0681 0.0697
σξ 0.155 0.1568 0.0136 0.0137 0.219 0.2150 0.0366 0.0369

(b) Second Step Estimator
DGP 1 DGP 2

Param. True Mean Std.Dev. RMSE True Mean Std.Dev. RMSE
μ −0.123 −0.1293 0.2143 0.2144 −0.250 −0.2503 0.1332 0.1332
τ1 −0.050 −0.0164 0.0029 0.0337 −0.020 −0.0034 0.0022 0.0168
τ2 0.050 0.0286 0.0035 0.0217 0.020 0.0060 0.0053 0.0149
ση 0.120 0.0820 0.0101 0.0393 0.216 0.0907 0.0235 0.1275

Note: While μ is estimated by the sample mean of xt, the remaining parameters are estimated by OLS
in equation (17).

Table 2: Finite Sample Performance of the Quasi-Likelihood Ratio Test for General Asymmetry

DGP (τ2, ση) ρζξ RF
DGP1m1 (0, 0.148) 0 0.0300
DGP1m2 (0.019, 0.143) 0.1 0.6250
DGP1m3 (0.058, 0.111) 0.3 0.9995
DGP2m1 (0, 0.218) 0 0.0445
DGP2m2 (0.028, 0.215) 0.1 0.4055
DGP2m3 (0.083, 0.174) 0.3 0.9970
Note: ‘RF’ denote the rejection frequency.
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Table 3: Descriptive Statistics of Returns and Log-Volatilities

Data Average Std. Dev. Skewness Kurtosis
Returns

AA −0.1395 2.9083 −8.0238 193.85
BAC −0.0927 2.7907 −0.3602 16.700
IBM −0.0312 1.7676 −0.0499 8.9003

Log-Volatility
AA 0.3300 0.7974 0.9027 4.4002
BAC −0.0571 1.2431 0.4414 3.2899
IBM −0.2538 0.9994 0.4812 3.3037

Table 4: ML Estimates for Realized EGARCH Models

Param AA BAC IBM
ϕ1 −1.1535 −1.0474 −0.9089

(0.0652) (0.0465) (0.0365)
ϕ2 1.0843 0.9646 1.0622

(0.0395) (0.0259) (0.0252)
λ1 −0.0361 −0.0465 −0.0233

(0.0087) (0.0086) (0.0084)
λ2 0.0759 0.0315 0.0849

(0.0063) (0.0020) (0.0062)
σe 0.3821 0.4228 0.3775

(0.0052) (0.0053) (0.0045)
ν 14.9692 7.8367 14.1215

(5.3168) (1.3587) (3.6341)
μ 1.2558 0.7668 0.5701

(0.0744) (0.0575) (0.0362)
φ 0.9742 0.9807 0.9779

(0.0045) (0.0036) (0.0036)
τ1 −0.0511 −0.0783 −0.0616

(0.0077) (0.0101) (0.0074)
τ2 0.0476 0.0209 0.0683

(0.0057) (0.0018) (0.0049)
τ0 0.3408 0.5482 0.3315

(0.0193) (0.0235) (0.0171)
Note: Standard errors are in parentheses.
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Table 5: Estimates for RSV-GALM Models

(a) First Step QML Estimates
Param AA BAC IBM
σe 0.0053 0.2208 0.0072

(0.0001) (0.0084) (0.0001)
ν 12.0033 18.5878 26.5050

(0.0047) (0.0020) (0.0012)
ρζξ 0.0891 0.0762 0.1313

(0.0036) (0.0264) (0.0031)
σξ 0.4055 0.3437 0.4121

(0.0117) (0.0083) (0.0146)
d 0.4894 0.4864 0.4730

(0.0115) (0.0044) (0.0107)
φ −0.0156 0.3576 0.0420

(0.0020) (0.0069) (0.0026)
QLR 10.0083 1.2650 18.0633

[0.0016] [0.2607] [0.0000]
Note: Standard errors are in parentheses.
QLR denotes the quasi-likelihood ratio test
statistic for general asymmetry. P -values are
given in brackets.

(b) Second Step Estimates
Param AA BAC IBM
μ 0.3186 −0.3767 −0.4611

(0.0199) (0.0316) (0.0245)
τ1 −0.0522 −0.0127 −0.0643

(0.0090) (0.0020) (0.0091)
τ2 0.0323 −0.0019 0.0610

(0.0066) (0.0015) (0.0070)
τ3 −0.0066 0.0009 −0.0027

(0.0039) (0.0007) (0.0046)
τ4 0.2428×10−5 0.0004

(0.0003) (0.0024)
τ5 −0.6277×10−6 0.0009

(0.0001) (0.0012)
ση 0.4010 0.0899 0.3988

(0.0063) (0.0014) (0.0063)
rmax 3 5 5
ropt 2 1 2

Note: Standard errors are in parentheses. Results
under the optimal r are omitted as the differences
are negligible.
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Table 6: Simulated Moments and Cumulants

(a) Second and Fourth Moments
Data E(ζ2

t ) E(ζtξt) E(ξ2t ) E(ζ4
t ) E(ζ3

t ξt) E(ζ2
t ξ

2
t ) E(ζ2

t ξ
2
t ) E(ξ4t )

AA 5.1045 0.0715 0.1712 174.16 1.1579 0.9148 0.0509 0.0934
BAC 5.0366 0.0567 0.1223 174.30 0.8663 0.6245 0.0222 0.0450
IBM 5.0070 0.1260 0.1827 173.01 1.8845 0.9687 0.0837 0.1046
Note: Moments are estimated via simulated data with sample size of 1000000, based on the estimated
parameters in the first and second steps.

(b) Fourth Cumulants
Data C2222 C2223 C2233 C2333 C3333

AA 95.988 0.0629 −1.7075 0.0142 0.0054
BAC 98.200 0.0102 −1.2230 0.0014 0.0002
IBM 97.795 −0.0083 −1.7753 0.0147 0.0045
Note: Cabcd denotes the fourth cumulants of (ua,t, ub,t, uc,t, ud,t)
with �t = (et, ζt, ξt)

′.

Table 7: RMSFE for Out-of-Sample Forecasts

Data RSV-GALM RSV-ALM RealEGARCH
AA 0.2359 0.2475∗ 0.3537∗
BAC 0.3433 0.3548∗ 0.4228∗
IBM 0.3506 0.3624∗ 0.3876∗
Note: ‘*’ denotes the test statistic for equal forecast accuracy
to RSV-GALM is rejected at the five percent level.

Table 8: Frequency of Selecting r for Forecasting via RSV-GALM Models

Data 0 1 2 3 4 5 Corr.
AA 0.000 0.060 0.796 0.090 0.054 0.000 −0.1797
BAC 0.000 0.122 0.644 0.030 0.078 0.126 −0.0074
IBM 0.000 0.050 0.834 0.000 0.074 0.042 −0.2090
Note: ‘Corr’ indicates the correlation coefficient between xt and the
selected r for the forecasting period.
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