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Abstract

The weighted-average least squares (WALS) approach, introduced by Magnus et al. (2010) in
the context of Gaussian linear models, has been shown to enjoy important advantages over
other strictly Bayesian and strictly frequentist model averaging estimators when accounting for
problems of uncertainty in the choice of the regressors. In this paper we extend the WALS
approach to deal with uncertainty about the specification of the linear predictor in the wider
class of generalized linear models (GLMs). We study the large-sample properties of the WALS
estimator for GLMs under a local misspecification framework that allows the development of
asymptotic model averaging theory. We also investigate the finite sample properties of this
estimator by a Monte Carlo experiment whose design is based on the real empirical analysis
of attrition in the first two waves of the Survey of Health, Ageing and Retirement in Europe
(SHARE).
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1 Introduction

In recent years, a large body of the statistics and econometrics literature has been concerned with
the development of inferential methods to address a variety of model uncertainty problems. The
two most popular approaches are model selection and model averaging. In model selection, the
investigator first chooses a best performing model according to some criterion and then carries out
inference based on the chosen model by ignoring the uncertainty due to the initial model selection
step. This popular approach is subject to many problems, but the most important is that the
model selection step is completely separated from the estimation step. As shown by Magnus (1999,
2002), Leeb and Pötscher (2003, 2006), and Berk et al. (2013), among others, the initial model
selection step matters and is likely to have nonnegligible effects on the statistical properties of the
resulting estimates.

Model averaging, on the other hand, provides a more satisfactory approach to inference because
it does not require the investigator to rely on a single ‘best’ performing model. Based on the idea
that each model contributes information on the parameters of interest, one computes a weighted
average of the conditional estimates across all possible models to combine the available pieces
of information into an unconditional estimate that incorporates the uncertainty due to both the
model selection and the model estimation steps. A distinction can be made between four types of
model averaging methods depending on whether the estimation of each model and the choice of
the associated weighting scheme are developed along frequentist or Bayesian lines. These different
methods have originated a rapidly expanding literature on model averaging, including in particular
a variety of strictly Bayesian (BMA) and strictly frequentist (FMA) model averaging estimators.
Useful overviews of the two approaches can be found in Hoeting et al. (1999), Clyde and George
(2004), Claeskens and Hjort (2008), and Moral-Benito (2015).

Model averaging is not the only way to allow for uncertainty due to both model selection and
estimation, and shrinkage and penalized methods are also receiving increasing attention. Recent
work by Hansen (2014, 2016) shows that Stein-type shrinkage estimators can be interpreted as
model averaging estimators in the case of two nested models. Methods that simultaneously select
variables and shrink coefficients by minimizing some penalized loss function include, among others,
the least absolute shrinkage and selection operator (LASSO) of Tibshirani (1996) and the smoothly
clipped absolute deviation (SCAD) penalty of Fan and Li (2001). Bayesian counterparts of these
frequentist approaches are also available. For example, the Bayesian LASSO of Park and Casella
(2008) is motivated by the fact that the LASSO estimate of linear regression parameters can be
interpreted as a posterior mode when the regression parameters have independent Laplace priors.
Further, as noticed by Kumar and Magnus (2013), the LASSO and SCAD estimators can be
interpreted as discontinuous counterparts of the Laplace, Subbotin and reflected Weibull estimators
available in a Bayesian context. LASSO-type methods have been shown to be particularly effective
in high-dimensional settings where the number of predictors exceeds the sample size (see, e.g., Fan
and Lv 2010, Chernozhukov et al. 2015, and Belloni et al. 2017), but recent work by Ando and Li
(2014, 2017) suggests that model averaging procedures also perform well in these more complex
settings.

In this paper we focus on the weighted-average least squares (WALS) approach introduced by
Magnus et al. (2010) to account for model uncertainty in the choice of the regressors for a Gaus-
sian linear model. The WALS estimator is a Bayesian combination of frequentist estimators: the
parameters of each model are estimated by least squares under a classical frequentist perspective,
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while the weighting scheme is based on a Bayesian perspective using posterior model probabilities
to reflect the confidence in each model based on prior beliefs and the observed data. The result of
this ‘Bayesian-frequentist fusion’ is a model averaging estimator that has some important advan-
tages over standard BMA and FMA estimators. First, in contrast to several BMA estimators that
adopt normal priors leading to unbounded risk, the choice of prior in WALS is based on theoretical
considerations related to admissibility, bounded risk, robustness, near-optimality in terms of mini-
max regret, and proper treatment of ignorance (see, e.g., Magnus 2002, Magnus et al. 2010, Kumar
and Magnus 2013, and Magnus and De Luca 2016). Second, unlike BMA and FMA estimators,
WALS uses a preliminary semiorthogonal transformation of the regressors that allows to obtain
exact model-averaging estimates of the parameters of interest in negligible computing time.

The aim of this paper is to extend the WALS approach to deal with uncertainty about the
specification of the linear predictor in the wider class of generalized linear models (GLMs). This
class includes a variety of nonlinear models for discrete and categorical outcomes, such as logit,
probit, and Poisson regression models. A previous attempt to extend the WALS methodology in
the same direction was undertaken by Heumann and Grenke (2010), but their paper is restricted
to the logit model and lacks a rigorous treatment of the underlying theory. Our paper provides a
more comprehensive treatment of the WALS approach to GLMs and establishes the large-sample
properties of this class of model averaging estimators under the local misspecification framework
proposed by Hjort and Claeskens (2003a).

Specifically, we show that many of the theoretical and computational advantages of the WALS
approach to Gaussian linear models continue to hold in the wider class of GLMs by a simple
linearization of the constrained maximum likelihood (ML) estimators. To establish the asymp-
totic theory for WALS, some improvements had to be made to the semiorthogonal transformation
procedure. These improvements address potential discontinuity problems in the eigenvalue decom-
position used in earlier papers on WALS. In addition to developing the asymptotic theory for the
WALS estimator of GLMs, we also investigate the finite-sample properties of our model averaging
estimator by a Monte Carlo experiment whose design is based on a real empirical example, namely
the analysis of attrition in the first two waves of the Survey of Health, Ageing and Retirement in
Europe (SHARE). Here, we compare the performance of WALS with that of other popular estima-
tion methods such as standard ML, strict BMA with conjugate priors for GLM (Chen and Ibrahim
2003; Chen et al. 2008), and strict FMA with weighting systems based on smooth information
criteria (Buckland et al. 1997; Hjort and Claeskens 2003a).

The remainder of the paper is organized as follows. Section 2 presents the statistical frame-
work. Section 3 discusses some properties of ML estimators that are important for constructing
WALS estimators of GLMs. Section 4 discusses WALS estimation. Section 5 presents an empirical
illustration. Section 6 presents a set of Monte Carlo simulations. Finally, Section 7 concludes.

2 Statistical framework

We consider modeling a data matrix [y : X] consisting of n observations on a scalar outcome and
k regressors. Thus, y is an n-vector with ith element yi and X is an n× k matrix with ith row x′i.
As in a standard GLM setup, we assume that the elements of y are realizations of n independently
distributed random variables with mean µi, finite nonzero variance σ2i , and distribution belonging
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to the one-parameter linear exponential family (LEF) with density (or probability mass function)

f(yi; θi) = exp [ θi yi − b(θi) + c(yi) ] , (1)

where θi is a scalar parameter called the canonical parameter, b(·) is a known, strictly convex and
twice continuously differentiable function, and c(·) is a known function. Different choices of b(·)
and c(·) result in different distributions within the LEF (e.g., normal, binomial or Poisson). In the
original formulation of Nelder and Wedderburn (1972), the density of yi also includes a dispersion
parameter which, without loss of generality, we set equal to one. By the properties of the LEF,
the mean and variance of yi are equal to µi = µ(θi) and σ2i = σ2(θi), with µ(θ) = db(θ)/dθ and
σ2(θ) = d2b(θ)/dθ2 = dµ(θ)/dθ (McCullagh and Nelder 1989). The assumptions on b(·) guarantee
that the function µ(·) is invertible and the function σ2(·) is strictly positive.

As in a standard GLM setup, we model the dependence of yi on xi by assuming that there exist
a linear predictor ηi(β) = x′iβ and an invertible and continuously differentiable function h(·), called
the inverse link, such that

µ(θi) = µi = h(ηi(β)) (2)

for a unique point β in a k-dimensional parameter space. When h(·) = µ(·) (the ‘canonical link
case’), this assumption corresponds to a linear model θi = x′iβ for the canonical parameter. More
generally, assumption (2) implies that the canonical parameter θi is a smooth function of the linear
predictor ηi, written θi = θ(ηi) where θ(·) = µ−1(h(·)).

We assume throughout that the density of yi and the link function h(·) are correctly specified,
but depart from a standard GLM setup by allowing for uncertainty in the specification of the linear
predictor. Specifically, we partition the k regressors in two subsets, X = [X1 : X2], where Xp is
an n × kp matrix with ith row equal to x′ip (p = 1, 2) and k1 + k2 = k. The k1 columns of X1

contain the regressors which we want in the model on theoretical or other grounds (focus regressors
in the terminology of Danilov and Magnus 2004), while the k2 columns of X2 contain the additional
regressors of which we are less certain (auxiliary regressors). Stacking the linear predictors for the n
observations on top of each other gives the n-vector η(β) = Xβ = X1β1+X2β2, with β = (β′1, β

′
2)

′,
where β1 is the vector of focus parameters and β2 is the vector of auxiliary parameters.

In total, there are 2k2 possible models that contain all focus regressors and arbitrary subsets
of auxiliary regressors. We represent the jth model as a GLM of the form (1)–(2) with the added
restriction R′

jβ2 = 0, where Rj denotes a k2× rj matrix of rank 0 ≤ rj ≤ k2 such that R′
j = [Irj : 0]

(or a column-permutation thereof) and Irj denotes the identity matrix of order rj . The matrix Rj

thus specifies which auxiliary regressors are excluded from the jth model and the scalar rj denotes
the number of excluded auxiliary variables. The fully restricted model that excludes all auxiliary
regressors corresponds to the case when Rj = Ik

2
and rj = k2, while the unrestricted model that

includes all auxiliary regressors corresponds to the case when Rj = 0 and rj = 0.
As usual in the model averaging literature, we adopt anM-closed framework where the unknown

data-generation process (DGP) is included in the set of models considered by the investigator.
Following the local misspecification framework (see, e.g., Hjort and Claeskens 2003a), we assume
that the true value of the focus parameters β1 is fixed while the true value of the auxiliary parameters
β2 is in a

√
n-shrinking neighborhood of zero. Although there is a debate about the realism of such

assumption (see, e.g., Raftery and Zheng 2003, Ishwaran and Rao 2003, and Hjort and Claeskens
2003b), this framework has been commonly used to analyze the large sample behavior of a variety
of estimators (see, e.g., Claeskens and Hjort 2003, Claeskens et al. 2006, Hansen 2014 and 2016,
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and Liu 2015). This framework has the great advantage of allowing the application of asymptotic
model averaging theory as it ensures that all ML estimators are

√
n-consistent and have squared

bias and variance both of order Op(n
−1). On the other hand, in a standard asymptotic framework

with a fixed value of β2, we would always prefer the ML estimator of the unrestricted model because
the ML estimator of the jth model may be inconsistent if the underlying constraint is not valid.

3 ML estimation

The classical approach to the estimation of GLMs is maximum likelihood. Given independent
observations {(yi, x′i)′}ni=1, the GLM loglikelihood is of the form

ℓ(β) = c+

n∑

i=1

[θi yi − b(θi)] ,

where c does not depend on β and the canonical parameter θi = θ(ηi) depends on β through the
linear predictor ηi. Since xi = (x′i1, x

′
i2)

′ and β = (β′1, β
′
2)

′, the gradient of the loglikelihood (or
likelihood score) is the k-vector s(β) consisting of the following subvectors

sp(β) =
∂ℓ(β)

∂βp
=

n∑

i=1

vi(β) [yi − µi(β)] xip (p = 1, 2),

where vi = dθ/dηi. We also define a k× k matrix H(β), which is equal to minus the Hessian of the
loglikelihood and consists of the following submatrices

Hpq(β) = − ∂2ℓ(β)

∂βp∂β
′
q

=

n∑

i=1

ψi(β)xipx
′
iq (p, q = 1, 2),

where ψi = v2i σ
2
i − ωi(yi −µi) and ωi = d2θ/dη2i , and a k× k matrix I(β) (the Fisher information)

consisting of the submatrices

Ipq(β) =

n∑

i=1

vi(β)
2 σ2i (β)xipx

′
iq (p, q = 1, 2).

With a canonical link, these expressions simplify considerably as θi = ηi, vi = 1 and ωi = 0 for all
observations, so sp(β) =

∑n
i=1 [yi − µi(β)] xip and Hpq(β) = Ipq(β).

The ML estimator of β for the jth model maximizes the loglikelihood ℓ(β) subject to the
constraint R′

jβ2 = 0 or, equivalently, solves the system of k1 + k2 + rj equations

0 = s1(β),

0 = s2(β)−Rjνj, (3)

0 = R′
jβ2,

where νj denotes the rj-vector of Lagrange multipliers associated with the constraint R′
jβ2 = 0.

One issue in extending the WALS approach to the wider class of GLM is that, except when the
elements of y are normally distributed, the system of likelihood equations (3) is nonlinear and has to
be solved by some iterative scheme such as Newton-Raphson or the method of scoring. To address
this issue we now introduce a class of one-step ML estimators that admit closed-form expressions
and are asymptotically equivalent to the fully-iterated ML estimators.
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3.1 One-step ML estimators

Given a starting value β̄ = (β̄′1, β̄
′
2)

′, with properties to be discussed below, expanding the likelihood
equations (3) around β̄ yields the approximation

0 = s̄1 − H̄11(β1 − β̄1)− H̄12(β2 − β̄2),

0 = s̄2 − H̄21(β1 − β̄1)− H̄22(β2 − β̄2)−Rjνj , (4)

0 = R′
jβ2,

where s̄p = sp(β̄) and H̄pq = Hpq(β̄), p, q = 1, 2. An estimator β̃j that solves the linearized system
of constrained likelihood equations (4) is called a one-step ML estimator of β under the jth model,
as it corresponds to the first step of the Newton-Raphson method.

We first consider the unrestricted model where Rj = 0. Define the data transformations

ȳ = X̄1β̄1 + X̄2β̄2 + ū, X̄1 = Ψ̄1/2X1, X̄2 = Ψ̄1/2X2, (5)

where ū = Ψ̄−1/2V̄ (y − µ̄), Ψ̄ = Ψ(β̄) is an n× n diagonal matrix with ith diagonal element equal
to ψi(β̄), V̄ = V (β̄) is an n × n diagonal matrix with ith diagonal element equal to vi(β̄), and

µ̄ = µ(β̄) is an n-vector with ith element equal to µi(β̄). Then, when Rj = 0, the solutions β̃1u and

β̃2u to the linearized system of likelihood equations (4) can be written in closed form as

β̃1u = (X̄ ′
1X̄1)

−1X̄ ′
1ȳ − (X̄ ′

1X̄1)
−1X̄ ′

1X̄2β̃2u, β̃2u = (X̄ ′
2M̄1X̄2)

−1X̄ ′
2M̄1ȳ,

where M̄1 = In − X̄1(X̄
′
1X̄1)

−1X̄ ′
1 is a symmetric idempotent matrix of rank n− k1. These expres-

sions make it clear that the unrestricted one-step ML estimators β̃1u and β̃2u coincide numerically
with the least squares coefficients in the linear regression of ȳ on X̄1 and X̄2. Notice that, although
the original regressors X1 and X2 are fixed (nonrandom), the transformed regressors X̄1 and X̄2

are in general random because they depend on β̄ and y. In the canonical link case, the dependence
on y disappears, as ωi = 0 for all i, but the dependence on β̄ remains.

More generally, consider the one-step ML estimator for the jth model. After defining the
symmetric and idempotent k2 × k2 matrix

P̄j =

(
X̄ ′

2M̄1X̄2

n

)−1/2

Rj

[
R′

j

(
X̄ ′

2M̄1X̄2

n

)−1

Rj

]−1

R′
j

(
X̄ ′

2M̄1X̄2

n

)−1/2

,

the k1 × k2 matrix

Q̄ =

(
X̄ ′

1X̄1

n

)−1
X̄ ′

1X̄2

n

(
X̄ ′

2M̄1X̄2

n

)−1/2

,

and the nonsingular transformation of the unrestricted one-step ML estimator β̃2u

ϑ̃ =

(
X̄ ′

2M̄1X̄2

n

)1/2

β̃2u, (6)

we obtain the following generalization of Proposition 3.1 in Magnus and De Luca (2016).
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Proposition 1 The one-step ML estimators of β1 and β2 based on the jth model are

β̃1j = β̃1r − Q̄W̄j ϑ̃, β̃2j =

(
X̄ ′

2M̄1X̄2

n

)−1/2

W̄j ϑ̃,

where β̃1r = (X̄ ′
1X̄1)

−1X̄ ′
1ȳ is the fully restricted one-step ML estimator of β1 and W̄j = Ik

2

− P̄j .

3.2 Asymptotic properties of one-step ML estimators

In what follows, to keep track of the sample size, we index all relevant data-dependent objects by
n. Under the local misspecification framework, the auxiliary parameters are set equal to

β2n =
δ√
n
, (7)

where δ is an unknown constant vector that represents the degree of model departure from the fully
restricted model. Thus, the DGP depends on the sample size, with the sequence of true parameters
βn = (β′1, β

′
2n)

′ converging to β∗ = (β′1, 0
′)′ as n→ ∞.

The large-sample properties of the sequence {β̃jn} of one-step ML estimators for the jth model

depend crucially on the large-sample properties of the sequence {β̄n} of starting values in the
approximation (4). If β̄n − βn is Op(1/

√
n), then β̃jn − βn is also Op(1/

√
n) and has the same

asymptotic distribution as the fully-iterated ML estimator of the jth model (see, e.g., Theorem 3.5
in Newey and McFadden 1994). In an M-closed framework, where the DGP is included in the set
of models considered by the investigator, a natural choice of starting value is the fully-iterated ML
estimator based on the unrestricted model, as in this case β̄n−βn = Op(1/

√
n) under mild regularity

conditions, irrespective of whether the local misspecification framework (7) is valid or not. These
regularity conditions, spelled out in detail in Fahrmeir and Kaufmann (1985), essentially require
the Fisher information In(·) to be continuous on an open neighborhood B of β∗ and to diverge as
the sample size grows. Under these conditions, Hn(·)/n and In(·)/n both converge in probability
as n→ ∞, uniformly on B, to a fixed (nonrandom), finite, symmetric and positive definite matrix
I(·).

The following result provides a convenient asymptotic approximation to the sampling distribu-
tion of one-step ML estimators under the local misspecification framework (7).

Proposition 2 In addition to (7), assume that all regularity conditions in Fahrmeir and Kaufmann
(1985) are satisfied. If β̄n − βn = Op(1/

√
n), then, as n→ ∞,

√
n(β̃jn − βn) ⇒ N

([ Q
−Ω

1/2
22

]
PjΩ

−1/2
22 δ,

[
I−1
11 +QWjQ′ −QWjΩ

1/2
22

−Ω
1/2
22 WjQ′ Ω

1/2
22 WjΩ

1/2
22

])
,

where Ipq denotes the pqth submatrix of I(β∗), Ω22 = (I22 − I21I−1
11 I12)−1, Q = I−1

11 I12Ω
1/2
22 ,

Pj = Ω
1/2
22 Rj(R

′
jΩ22Rj)

−1R′
jΩ

1/2
22 , and Wj = Ik2 − Pj .

The asymptotic distributions of the one-step ML estimators for the unrestricted and the fully
restricted models are obtained as special cases by putting Rj = 0 and Rj = Ik

2

, respectively.

Proposition 2 is similar to Lemma 3.2 in Hjort and Claeskens (2003a) but differs because we
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consider the asymptotic distribution of the complete estimator β̃jn, including its rj components
restricted to be zero. Notice that

√
n(β̃jn − β∗) =

√
n(β̃jn − βn) +

(
0
δ

)
,

so the two distributions only differ by a constant shift.
Three implications of Proposition 2 are worth noting. First, under the local misspecification

framework, all estimators are consistent for β∗. If the jth model is correctly specified, that is, the

constraint R′
jδ = 0 is valid, then β̃jn is asymptotically unbiased for βn, since PjΩ

−1/2
22 δ = 0, though

not for β∗. However, if the constraint R′
jδ = 0 is not valid, then β̃jn is no longer asymptotically

unbiased for βn and its asymptotic bias may actually exceed that of estimators based on more
parsimonious models.

Second, the asymptotic distribution of all estimators is normal and a comparison between the
asymptotic variances of the restricted and unrestricted estimators yields

AV(β̃1un)−AV(β̃1jn) = QPjQ′

and
AV(β̃2un)−AV(β̃2jn) = Ω

1/2
22 PjΩ

1/2
22 ,

which are two nonnegative definite matrices. Hence, irrespective of whether the constraint R′
jδ = 0

is valid or not, the restricted estimators β̃1jn and β̃2jn are always asymptotically more precise (have

smaller asymptotic variance) than the unrestricted estimators β̃1un and β̃2un. This implies that the
uncertainty about the choice of the auxiliary regressors gives rise to an asymptotic bias-precision
trade-off in the estimation of βn.

Third, it can be easily shown that
√
n(ϑ̃n − ϑn) ⇒ N (0, Ik

2

), where ϑn = Ω
−1/2
22 β2n. Further,

ϑ̃n and β̃1rn are asymptotically independent because their joint asymptotic distribution is normal
with zero asymptotic covariance.

As we shall see in the next section, the results of Propositions 1 and 2 provide the key ingredients
needed to extend the WALS approach to the wider class of GLMs.

4 WALS estimation

Our WALS approach to GLMs is a Bayesian combination of frequentist estimators that exploits a
preliminary semiorthogonal transformation of the auxiliary regressors to reduce the computational
burden required by exact model averaging estimation from the order 2k2 to the order k2. The
parameters of each model are estimated by one-step ML based on a strictly frequentist approach,
whereas the weighting scheme is based on a Bayesian approach to ensure desirable theoretical
properties such as admissibility and a proper treatment of ignorance.

4.1 Scale and semiorthogonal transformations

To operationalize the WALS approach to GLM, we first transform the focus regressors in X̄1 =
Ψ̄1/2X1 by defining

Z̄1 = X̄1∆̄1, γ̄1 = ∆̄−1
1 β1, (8)
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where ∆̄1 is a diagonal k1 × k1 matrix such that all diagonal elements of Z̄ ′
1Z̄1/n are equal to

one. The only purpose of this transformation is to improve the numerical accuracy of inversion
and eigenvalue routines. For the purposes of inference, this transformation is completely harmless
because Z̄1γ̄1 = X̄1β1, In − Z̄1(Z̄

′
1Z̄1)

−1Z̄ ′
1 = M̄1, and β1 = ∆̄1γ̄1.

Next we transform the auxiliary regressors in X̄2 = Ψ̄1/2X2. Let ∆̄2 be a diagonal k2 × k2
matrix such that all diagonal elements of Ξ̄ = ∆̄2X̄

′
2M̄1X̄2∆̄2/n are equal to one. Notice that,

unlike the matrix ∆̄1, the matrix ∆̄2 has the dual purpose of improving numerical accuracy and
making the WALS estimator equivariant to scale transformations of the auxiliary regressors (De
Luca and Magnus 2011). Since Ξ̄ is a symmetric and positive definite matrix, we can apply the
semiorthogonal transformation

Z̄2 = X̄2∆̄2Ξ̄
−1/2, γ̄2n = Ξ̄1/2∆̄−1

2 β2n, (9)

which implies that Z̄ ′
2M̄1Z̄2/n = Ik

2

, Z̄2γ̄2n = X̄2β2n, and β2n = ∆̄2Ξ̄
−1/2γ̄2n.

The transformations (8) and (9) present two important differences with respect to those em-
ployed in the WALS approach to linear models. The first difference is that, with a view toward
asymptotic analysis, we have normalized all relevant matrices by n to ensure that they remain
stable when the sample size becomes arbitrarily large.

The second difference lies in the semiorthogonal transformation (9) where we now avoid possible
discontinuities in the eigenvectors and eigenprojections of the matrix Ξ̄ by exploiting the continuity
of the eigenvalues and the total eigenprojections. As shown in Appendix B, this ensures that Ξ̄1/2,
Ξ̄−1, and Ξ̄−1/2 are continuous matrix functions, as long as Ξ̄ is continuous and positive definite.
The large-sample probability limits of the random objects in (8) and (9) then follow easily. Since
plim X̄ ′

1X̄1/n = plim H̄11/n = I11, the matrix ∆̄1 converges in probability as n→ ∞ to a diagonal
nonrandom matrix ∆1 with diagonal elements equal to the inverse of the square root of the diagonal
elements of I11, so that

plim
Z̄ ′
1Z̄1

n
= ∆1I11∆1 = J11.

Similarly, because of continuity of the inverse of a nonsingular matrix, the scaling matrix ∆̄2

converges in probability to a diagonal nonrandom matrix ∆2 with diagonal elements equal to the
inverse of the square root of the diagonal elements of Ω−1

22 , so that

plim Ξ̄ = ∆2Ω
−1
22 ∆2 = Ξ.

Moreover, the continuity of Ξ̄−1/2 now implies that

plim
Z̄ ′
1Z̄2

n
= ∆1I12∆2Ξ

−1/2 = J12

and

plim
Z̄ ′
2Z̄2

n
= Ξ−1/2∆2I22∆2Ξ

−1/2 = J22,

so that J22 − J21J −1
11 J12 = Ik

2

.
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4.2 One-step ML estimation of the transformed models

Since Z̄1γ̄1 = X̄1β1 and Z̄2γ̄2n = X̄2β2n, we can rewrite the unrestricted model as a GLM of the
form (1)–(2) with linear predictor η = Z̄1γ̄1 + Z̄2γ̄2n. This equivalent representation is convenient
because it implies that Z̄ ′

2M̄1Z̄2/n = Ik
2

. It then follows from Proposition 1 that the one-step ML
estimators for the jth model are given by

γ̃1jn = γ̃1rn − D̄Wj γ̃2un, γ̃2jn =Wj γ̃2un, (10)

where γ̃1rn = (Z̄ ′
1Z̄1)

−1Z̄ ′
1ȳ, γ̃2un = Z̄ ′

2M̄1ȳ/n, D̄ = (Z̄ ′
1Z̄1)

−1Z̄ ′
1Z̄2, Wj = Ik

2

−Pj , and Pj = RjR
′
j .

Further, letting γn = (γ1
′, γ2n

′)′ with γ1 = ∆−1
1 β1 and γ2n = Ξ1/2∆−1

2 β2n, Proposition 2 also
implies

√
n(γ̃jn − γn) ⇒ N

([ D
−Ik

2

]
Pjd,

[
J−1
11 +DWjD′ −DWj

−WjD′ Wj

])
, (11)

where d = Ξ1/2∆−1
2 δ and D = plim D̄ = J−1

11 J12. Thus, as a direct consequence of (9), the
matrix Wj now reduces to a nonrandom diagonal matrix with k2− rj ones and rj zeros on its main
diagonal. More precisely, the hth diagonal element of Wj is equal to zero if the hth component of
γ2n is constrained to be zero, and is equal to one otherwise. All models that include the hth column
of Z̄2 as a regressor will therefore have the same estimator of the hth component of γ2n, namely
the hth component of γ̃2un. The components of γ̃2un are asymptotically independent as their joint
asymptotic distribution is normal with zero asymptotic covariance.

4.3 Equivalence theorem

We next consider the model averaging estimators of γ1 and γ2n

γ̂1n =

2k2∑

j=1

λj γ̃1jn, γ̂2n =

2k2∑

j=1

λj γ̃2jn,

where the λj are data-dependent model weights satisfying the restrictions

0 ≤ λj ≤ 1,

2k2∑

j=1

λj = 1, λj = λj(
√
nγ̂2un). (12)

From (10) we get
γ̂1n = γ̃1rn − D̄W γ̃2un, γ̂2n =Wγ̃2un, (13)

where W =
∑2k2

j=1 λjWj is a k2 × k2 random diagonal matrix (because the λj are random) and the
random vector Wγ̃2un is asymptotically independent of γ̃1rn.

The following proposition extends the finite-sample results of Magnus and Durbin (1999) and
Danilov and Magnus (2004) and the large-sample results of Zou et al. (2007), which only cover
linear models, and motivates the WALS approach to GLMs.

Proposition 3 (Asymptotic Equivalence Theorem for GLMs) Under the regularity con-
ditions (12), the asymptotic bias (AB) and the asymptotic variance (AV) of the WALS estimator
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γ̂1n of γ1 are respectively related to the asymptotic bias and the asymptotic variance of the WALS
estimator γ̂2n of γ2n by the relationships

AB(γ̂1n) = −DAB(γ̂2n), AV(γ̂1n) = J−1
11 +DAV(γ̂2n)D′.

Hence, the asymptotic mean squared errors (AMSE) of γ̂1n and γ̂2n are linked by the relationship

AMSE(γ̂1n) = J −1
11 +DAMSE(γ̂2n)D′.

The equivalence theorem implies that the AMSE of the WALS estimator γ̂1n depends on the
AMSE of the less complicated estimator γ̂2n. This means that, if we can choose the model weights
λj such that γ̂2n is a ‘good’ estimator of γ2n, then the same λj will also provide a ‘good’ estimator of
γ1. The problem of choosing the model weights optimally is much simplified by the fact thatW is a
diagonal matrix whose diagonal elements wh are linear combinations of the λj. The computational
burden of our model averaging estimator is therefore of order k2, as we only need to determine the
set of k2 WALS weights wh, not the considerably larger set of 2k2 model weights λj .

4.4 Bayesian weighting scheme and choice of priors

Since the WALS weights wh lie between zero and one, the components of γ̂2n are shrinkage esti-
mators of the components of γ2n. We also know that the components of γ̃2un are asymptotically
independent, each with an asymptotically normal distribution. Thus, if we strengthen the third
regularity condition in (12) and assume that each wh depends only on the hth component of√
nγ̂2un, then the shrinkage estimators in γ̂2n will also be asymptotically independent. This addi-

tional assumption is convenient because our k2-dimensional problem then reduces to k2 (identical)
one-dimensional problems of the following type: given a shrinkage estimator m(x) = w(x)x of a
scalar parameter γ, we want to determine the scalar weight w(x) such that the estimator m(x) has
minimum MSE by only using the information that x ∼ N (γ, 1). This is the normal location prob-
lem studied and refined in a finite-sample context by Magnus (2002), Kumar and Magnus (2013),
and Magnus and De Luca (2016), and now extended to the asymptotic distribution of γ̂2n.

Our search for an optimal weighting scheme can be developed along frequentist or Bayesian
lines. In WALS we prefer a Bayesian weighting scheme because it leads to an admissible shrinkage
estimator of γ. The issue of how to choose the prior for this Bayesian step has recently been
addressed by Magnus and De Luca (2016) who focused on the family of reflected generalized gamma
distributions that satisfy a number of conditions for robustness and proper treatment of ignorance.
These priors have densities of the form

π(γ) =
qc

2
|γ|−(1−q)e−c|γ|q , (14)

with c = 0.9377 and q = 0.7995 corresponding to the optimal Subbotin prior, and c = log 2 and
q = 0.8876 corresponding to the optimal reflected Weibull prior. The Subbotin prior is preferred
in terms of robustness, while the reflected Weibull prior is preferred in terms of minimax regret
(Magnus and De Luca 2016). In both cases, the moments of the resulting posterior distribution need
to be approximated by numeric integration techniques. Closed-form expressions for the posterior
mean and the posterior variance are available only under the Laplace prior, corresponding to
c = log 2 and q = 1 (see Theorem 1 in Magnus et al. 2010), but this choice is neither robust nor
optimal in terms of minimax regret.
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4.5 One-step and iterative WALS estimates

Letting m be the k2-vector of posterior means and Σ the k2×k2 diagonal matrix with the posterior
variances as diagonal elements, we can now define the one-step WALS estimators of γ1 and γ2n as

γ̂1n = γ̃1rn − D̄m, γ̂2n = m.

Consistent estimators of their asymptotic variances are

ÂV(γ̂1n) =

(
Z̄ ′
1Z̄1

n

)−1

+ D̄ΣD̄′, ÂV(γ̂2n) = Σ.

The one-step WALS estimator of the original parameters β1 and β2n are then given by

β̂1n = ∆̄1γ̂1n, β̂2n = ∆̄2Ξ̄
−1/2γ̂2n, (15)

and their asymptotic variances can be estimated consistently by

ÂV(β̂1n) = ∆̄1ÂV(γ̂1n)∆̄
′
1, ÂV(β̂2n) = ∆̄2Ξ̄

−1/2ÂV(γ̂2n)Ξ̄
−1/2∆̄′

2. (16)

One possible drawback of the one-step WALS procedure could be its dependence on the starting
value β̄. To address this issue we also consider an iterative procedure that repeatedly updates
the starting value β̄ using the one-step WALS estimates from the previous iteration until some
convergence criterion is satisfied. The rationale behind this iterative procedure is that, as the
number of iterations increases, the sequence of recursive applications of the one-step estimator of the
jth model converges to the corresponding fully-iterated ML estimator (Robinson 1988, Theorem 2).
Thus, when β̄ is a

√
n-consistent estimator of β∗, there are reasons to believe that the iterative

WALS estimator provides a good approximation to a weighted average over all possible models of
the fully-iterated ML estimators. In what follows we shall assess the dependence of the one-step
and iterative WALS estimates on alternative choices of the starting value β̄, both by an empirical
study and by a Monte Carlo experiment.

4.6 Estimating smooth functions of the model parameters

In the context of GLMs, inference is usually sought for a smooth, but possibly nonlinear, real-valued
function g(β;x) of the model parameters β at some value x of the regressors. Examples include
the probability of success in a binary logit model or the marginal effect of a given regressor. In this
section, we thus focus on the problem of estimating g(β;x) when there is uncertainty about the
choice of the auxiliary regressors.

From a frequentist perspective, ML estimation of each possible model yields a set of 2k2 condi-
tional ML estimates β̂j , from which we obtain the conditional ML estimates ĝj = g(β̂j ;x) of g(β;x).
The key issue is how to best combine them to construct an unconditional estimate of g(β;x) that
incorporates the uncertainty due to both the model selection and the model estimation steps. The
standard FMA solution is an estimator of the form

ĝma =

2k2∑

j=1

λ∗j ĝj , (17)
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where the λ∗j are model weights chosen on the basis of some optimality criterion (see, e.g., Hjort
and Claeskens 2003a). BMA estimators have a similar form, that is, they are a weighted average
of the means of the conditional posterior distributions of g(β;x) under each possible model with
weights equal to the posterior model probabilities (see, e.g., Hoeting et al. 1999).

Unfortunately, in WALS we cannot construct the model averaging estimator in (17) due to lack
of information on the ĝj and the λ∗j . This is a consequence of the semiorthogonal transformation (9)
which leads to important simplifications when estimating β, but also implies some loss of flexibility
compared to standard FMA and BMA approaches. Here loss of flexibility means that we can only
compute a model averaging estimator β̂ of β, that is

β̂ =

2k2∑

j=1

λjβ̂j , (18)

on the basis of which we then obtain a plug-in estimator ĝpi = g(β̂;x) of g(β;x). Thus, instead
of averaging over nonlinear transformations of the ML estimators, we can only apply a nonlinear
transformation of the model averaging estimator of β.

These two classes of estimators are likely to differ as a consequence of both Jensen’s inequality
and possible differences in model weights. Apart from Koenker (2005, Section 5.5), little is known
about the statistical properties of one class relative to the other. Koenker discusses not precisely our
question, but the related issue of comparing weighted averages of argmins and argmins of weighted
averages in the context of quantile regressions. A key result from his analysis is that these two
classes of estimators reach the same efficiency bound, but that the associated sets of optimal weights
are in general different. This result suggests that when the model weights are determined on the
basis of a well-defined criterion neither of the two estimators is expected to dominate the other.
To shed some light on this topic, our empirical illustration in Section 5 focuses on estimating the
probability of success in a binary logit model, which allows us to compare the performance of the
plug-in estimator obtained in the WALS approach with the model averaging estimators obtained
in standard BMA and FMA approaches.

5 Empirical illustration

We illustrate the WALS approach to GLMs by studying attrition in the Survey of Health, Ageing
and Retirement in Europe (SHARE), a multidisciplinary and cross-national household panel survey
which covers about 85,000 individuals aged 50+, and their possibly younger partners, in nineteen
countries of Continental Europe and Israel.

5.1 Data and model specification

Our data are from release 5.0 of SHARE. For detailed information on sampling design, eligibility
rules, sample composition, country coverage, and fieldwork procedures, we refer to Malter and
Börsch-Supan (2015). Here we only discuss a few issues that are important for the selection of
the sample used in our empirical illustration. First, although five waves of SHARE are currently
available, we focus on attrition between the first two waves (2004–05 and 2006–07) to avoid mod-
eling differences in participation probabilities between the baseline sample drawn in the first wave
and the refreshment samples drawn in subsequent waves. Second, since participation decisions of
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individuals belonging to the same household are likely to be correlated, we confine attention to
one person per household, the so-called ‘household respondent’. Third, to reduce issues of sam-
ple representativeness for certain population groups, we further restrict our sample to household
respondents between 50 and 85 years old in 2004 and living in private households.

After dropping another 6% of the sample because of item nonresponse on the regressors of
interest, our working sample contains 17,051 individuals, with national samples ranging from a
minimum of 620 individuals for Switzerland to a maximum of 2,323 individuals for Belgium. The
participation rate between the first two waves of SHARE ranges from a minimum of 55% in Germany
to a maximum of 86% in Greece, and is 71% on average. For the purpose of this empirical illustration
we focus on France (1,822 individuals with a participation rate of 68%), where the problem of
uncertainty concerning the choice of regressors appears to be particularly relevant. Corresponding
analyses for the other countries are available from the authors upon request.

Our outcome of interest is a binary indicator yi, which equals 1 if a household participating in the
baseline survey also agrees to participate in the second wave of SHARE, and equals 0 otherwise.
We model the observed data y1, . . . , yn as independent binary random variables, each having a
Bernoulli distribution with probability of success πi = Pr(yi = 1) = [1 + exp(−ηi)]−1, where
ηi = x′iβ. The set of focus regressors in xi includes a constant term, a second-order polynomial
in age, a binary indicator for being a female fully interacted with the polynomial in age, and four
binary indicators for other socio-economic characteristics of the household respondent (living with
a spouse/partner, living in a big city, having at least a high school degree, and being employed),
while the set of auxiliary regressors includes measures of physical and mental health, cognitive
functioning, and social activities of the respondent, plus demographic characteristics of the partner
and of the interviewer. In total we select eight auxiliary regressors, which results in 28 = 256
possible models. Table 1 shows definitions and summary statistics for all the variables considered.

5.2 Estimation methods

Our empirical illustration has three purposes. First, we want to compare our approach with other
popular strictly Bayesian (BMA) and strictly frequentist (FMA) model averaging procedures. Sec-
ond, we want to investigate the robustness of the various model averaging approaches to key features
of the underlying weighting scheme, including the choice of prior distributions for the weights used
in WALS and BMA, and the choice of optimality criteria for the weights used in FMA. Third, we
want to assess the sensitivity of one-step and iterative WALS estimates to the choice of the starting
value. In the remaining of this section, we briefly describe the three model averaging approaches
implemented in our empirical study. Stata routines for WALS, BMA and FMA estimation are
available from the authors upon request.

As starting value for WALS we consider the restricted and the unrestricted ML estimates. After
implementing the preliminary data transformations in (5), with µi = πi, σ

2
i = πi(1 − πi), vi = 1,

and ωi = 0, the one-step estimates are computed through the standard WALS procedure for linear
models by setting the error variance equal to one. As priors on the transformed parameter γ, we
consider the Subbotin, Weibull and Laplace priors discussed in Section 4.4. For the Subbotin and
Weibull priors, we approximate the indefinite integrals needed for the first two moments of the
posterior distribution using Gauss-Laguerre quadrature methods with 1, 000 points. To compute
the iterative WALS estimates, we repeatedly update the starting value using the estimates from
the previous iteration until the relative differences in the vectors of coefficients and their standard
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errors are both lower than the tolerance value of 10−6.
For the BMA approach we compute a weighted average of the conditional estimates for each

possible model with weights equal to the posterior model probabilities. Contrary to WALS, which
uses priors only on the transformed parameters γ, BMA requires two types of priors: one on the
model space and one on the parameters of each model (see, e.g., Hoeting et al. 1999). Our BMA
implementation uses a uniform prior on the model space and conjugate priors for the parameters
of each model. The first choice implies that all models are equally likely a priori, so their posterior
model probabilities depend only on the marginal likelihood for the various models, not on the prior
weight assigned to each of them. Following Chen and Ibrahim (2003), our conjugate prior for the

free parameters βj of the jth model is proportional to exp
[
ā(ȳ′θ(βj)− ι′nb(θ(βj)))

]
, where ȳ is

an n-vector of prior parameters that specifies the prior predictions for the marginal means of the
outcome, the positive scalar ā is a prior parameter that quantifies the strength of our prior belief
in ȳ, θ(βj) = (θ1(βj), . . . , θn(βj)) is the n-vector of canonical parameters in the jth model, and ιn
is an n-vector of ones. As shown by Chen et al. (2008), this family of priors is attractive because
the posterior model probabilities can be estimated by a computationally convenient Markov Chain
Monte Carlo (MCMC) method that requires drawing only two MCMC samples: one from the
posterior distribution and one from the prior distribution of the parameters under the unrestricted
model. In our application, we employ two MCMC samples of 10, 000 draws, after a ‘burn-in
sample’ of 5, 000 draws. To ensure that all parameters have a zero prior mode we set all elements
of ȳ equal to 0.5. We also asses how BMA estimates change as the prior becomes less informative
by considering three different values of ā, namely 0.10, 0.05, and 0.01.

For the FMA approach we compute weighted averages of the conditional ML estimates for
each possible model with weights equal to, respectively, the smoothed Akaike information criterion
(AIC), the Bayesian information criterion (BIC), and the focused information criterion (FIC). The
use of FMA estimators with smoothed AIC and BIC weights was originally proposed by Buckland
et al. (1997) and is common in the context of BMA estimation (see, e.g., Raftery 1996 and Clyde
2000). Although debate over the choice of an optimal information criterion is still open, AIC
and BIC are known to be two extreme strategies favoring, respectively, more and less complicated
model structures. The smoothed FIC weights proposed by Hjort and Claeskens (2003a) are a little
different, as they also depend on the specific parameter g(β;x) to be estimated. Since the FIC score
for the jth model is an unbiased estimator of the AMSE of the underlying ML estimator of g(β;x),
the smoothed FIC weighting scheme assigns relatively higher weights to models with relatively
lower FIC scores. In our empirical illustration, we compute FMA estimates with smoothed FIC
weights related to the participation probabilities of representative males and females aged between
50 and 85 years.

5.3 Estimation results

Table 2 presents the estimates of our logit models for the probability of survey participation in
the second wave of the French SHARE, conditional on participation in the first wave. The table
compares estimates and standard errors of the focus parameters for ten estimators: the restricted
and unrestricted ML estimators, two FMA estimators, three BMA estimators, two one-step WALS
estimators, and the iterative WALS estimator. For brevity, we only report the FMA estimates
based on the smoothed AIC and BIC weights, and the WALS estimates based on the Weibull prior.

Except for the coefficient on the dummy variable for living with a partner (Couple), our results
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show no differences in the signs of the estimated associations across estimation methods. However,
the size of the coefficients and the standard errors reveal nonnegligible differences. The importance
of model uncertainty in the present application is confirmed by the fact that model weights from the
FMA and the BMA approaches are clearly spread out across several models. The best-performing
model changes depending on the weighting scheme, but the largest model weight is always lower
than 0.18 for FMA and 0.14 for BMA. In WALS, this type of information is not available because
we estimate only k2 = 8 linear combinations of the 2k2 = 256 model weights.

The FMA, BMA and WALS estimates are often in-between the restricted and the unrestricted
ML estimates, but generally closer to the latter. As for WALS, we find that the one-step estimates
are rather insensitive to the choice of the starting value. The one-step WALS with starting value
β̄ = β̂r always has smaller standard errors than the one-step WALS with starting value β̄ = β̂u,
but they do not differ much from the FMA and BMA standard errors and are always lower than
unrestricted ML standard errors. In the iterative version of WALS, different starting values affect
only the number of iterations needed for convergence (4 with β̄ = β̂u and 5 with β̄ = β̂r), but not
the estimated coefficients and standard errors.

Figures 1–3 plot the gender-specific age-profiles of participation probabilities estimated from the
ML, FMA and BMA approaches, along with the estimates and the one-standard error bands from
the iterative WALS approach. For the FMA approach in Figure 2, we also illustrate the estimates
obtained with the smoothed FIC weights. Each point of the estimated age-profiles corresponds to
the participation probabilities of a representative male and a representative female aged a years.
For ML and WALS we compute plug-in estimates, whereas the BMA and FMA estimates are
computed according to (17). The WALS standard errors are computed by the delta method. The
restricted and unrestricted ML estimates differ considerably, whereas the WALS, BMA and FMA
estimates are remarkably similar and close to the unrestricted ML estimates. Particularly striking
is the similarity of the estimates from iterative WALS, FMA with smoothed FIC weights and BMA
with prior parameter ā = 0.05, suggesting that the results from WALS are comparable to those
from other popular model averaging methods. Our approach is also robust to different choices of
the starting value and to different choices of prior on the transformed parameters. An important
advantage of WALS compared to other approaches is that it can be obtained in negligible computing
time.

6 Monte Carlo simulations

This section present the results of a Monte Carlo experiment which compares the finite-sample
performance of the various ML and model averaging estimators within a realistic simulation setup
based on the empirical study of survey participation described in the previous section.

More precisely, we set the parameters of the DGP equal to the unrestricted ML estimates β̂u
presented in Table 2 and consider four simulation designs corresponding to alternative sample sizes
(n = 100, 400, 900 and 1,600). In the tth design (t = 1, . . . , 4), we use simple random sampling
with replacement to draw subsamples Xt = [X1t : X2t] of size nt from the original design matrix
X with 1,822 observations. We then simulate the outcome yit for the ith observation of the tth
subsample by a pseudo-random draw from a Bernoulli distribution with probability of success
πit = [1 + exp(−x′itβt)]−1, where βt = (β̂′1u,

√
n/nt β̂

′
2u)

′.
We focus on estimating the survey participation probabilities πm and πf of a representative

male and a representative female with 70 years of age. Under our Monte Carlo design, πm = 0.7301
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and πf = 0.7522. Summaries of the sampling distribution of each estimator are approximated using
1,000 Monte Carlo replications.

Table 3 presents the bias, standard error (SE) and root mean squared error (RMSE) of the
various ML and model averaging estimators. For WALS we only report the estimates based on the
Weibull prior because Subbotin and Laplace priors yield very similar results.

Our results show a clear bias-precision trade-off in the choice between the two ML estimators.
Since the unrestricted model is always correctly specified, the bias of its ML estimator is close to
zero for any n. In small samples (n = 100), the restricted ML estimator is considerably biased.
However, as n increases, its bias converges to zero because the auxiliary parameters of the DGP
satisfy the local misspecification framework. A comparison of the SE suggests that the restricted
ML estimator is always more precise than the unrestricted, but the reduction in the variance does
not always compensate for the associated bias. Thus, in most simulation designs, the unrestricted
ML estimator has lower RMSE than the restricted ML estimator.

BMA, FMA and WALS estimators always dominate the restricted and the unrestricted ML
estimators in terms of RMSE. In all simulation designs, the FMA-FIC estimator has considerably
lower RMSE than the FMA-AIC and FMA-BIC estimators mainly because of its higher precision.
In contrast, the RMSE of BMA and WALS estimators depends on the sample size. For BMA, the
preferred prior parameter is ā = 0.10 when n ≤ 400 and ā = 0.05 when n > 400. For WALS, the
iterative estimator performs slightly better than the one-step estimators when n > 100. In small
samples, the one-step estimator with starting value β̄ = β̂r is the most precise. The three types
of model averaging estimator always have similar finite-sample performance. RMSE comparisons
favor BMA over WALS and WALS over FMA-FIC when n = 100, and FMA-FIC over WALS and
WALS over BMA when n > 100, but the differences are always small.

7 Conclusions

This paper extends the WALS approach for dealing with uncertainty about the specification of
the linear predictor from the linear Gaussian regression model to the wider class of GLMs. Our
one-step WALS estimator for GLMs consists of three logical stages. Based on a strictly frequentist
approach, we first estimate the parameters of each GLM by one-step ML which is numerically
equivalent to least squares in a regression on transformed data for the outcome and the regressors.
Second, we use a semiorthogonal transformation which reduces the computational burden required
by model averaging estimation from the order 2k2 to the order k2. Third, we estimate the required
k2 linear combinations of the 2k2 model weights by a Bayesian approach which allows a proper
treatment of ignorance in the choice of the prior, satisfies other theoretical properties such as
admissibility and robustness, and is optimal in terms of minimax regret. Since the one-step ML
estimator depends on an arbitrarily chosen starting value, we also consider an iterative WALS
estimator which repeatedly updates the starting value with the one-step WALS estimates from the
previous iteration until convergence.

Results from both an empirical illustration and a related Model Carlo experiment on attrition
in the first two waves of the French SHARE show that the one-step and iterative WALS estimators
outperform standard ML estimators of the restricted and unrestricted models. The finite-sample
performance of our estimators are remarkably similar to those of the FMA estimator with smoothed
FIC weights (Hjort and Claeskens 2003a) and the BMA estimator with conjugate priors for GLMs
(Chen and Ibrahim 2003; and Chen et al. 2008). The key advantage with respect to these alternative
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model averaging procedures is that WALS estimates can be computed in negligible computing time.
This computational advantage is likely to be important in empirical applications where estimation
of all possible models is not feasible. In addition, WALS is robust to different choices of the starting
values and different choices of the priors for the Bayesian weighting scheme.

In this paper we focused on WALS estimation of GLMs for a scalar outcome of interest, but
our model averaging procedure could be further extended in several important directions. First, an
extension of the WALS approach to GMLs for multivariate outcomes would open the way to a larger
variety of models, such as seemingly unrelated regression equations, and ordered, multinomial, and
conditional logit and probit models. Second, under regularity conditions analogous to those required
for ML estimation, the asymptotic WALS theory developed here could also be extended to general
M-estimators of linear index models. Third, in addition to standard regularity conditions for GLMs,
our asymptotic WALS theory is based on an M-closed local misspecification framework, where the
unknown DGP is included in the set of models considered by the investigator and the biases of
the underlying ML estimators gradually shrink to zero with sample size at the rate n−1/2. These
assumptions ensure that all ML estimators are

√
n-consistent and that there exists a well-defined

bias-precision trade-off in their asymptotic distributions. Despite the significant progresses made in
the recent years, we believe that considerable theoretical work is still required to extend the existing
model-averaging techniques to more general frameworks. This is a challenging and important line
for future research.
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Table 1: Definitions and summary statistics for the variables in France

Variable Description Mean SD Min Max

Part Dummy participation in w2 0.68 0.47 0 1

Age Age of HR in 2004 64.37 9.99 50 85
Age2/10 Squared age of HR divided by 10 4243.07 1320.22 2500 7225
Female Dummy female HR 0.53 0.50 0 1
Female × Age INT Female - Age 34.76 33.44 0 85
Female × Age2/10 INT Female - Age2/10 2325.39 2397.71 0 7225
Couple Dummy living with a partner 0.59 0.49 0 1
Big City Dummy living in a big city 0.43 0.50 0 1
High Education Dummy high education 0.57 0.50 0 1
Employed Dummy being employed 0.28 0.45 0 1

Good SRH Dummy for good SRH 0.68 0.47 0 1
Doctor Number of visits to medical doctor 6.85 7.19 0 98
Euro-D Euro-D depression index 2.80 2.31 0 12
Recall Score of recall tests 7.47 3.29 0 18
Social Activities Number of social activities 0.80 1.00 0 6
Couple × Age Partner INT Couple - Age of HR’s partner 36.23 31.30 0 90
IV Female Dummy female interviewer 0.76 0.43 0 1
IV Age Age of interviewer in 2004 51.03 7.54 19 80

Notes: Sample size is 1,822 individuals. ‘Part’ is our binary outcome variable. Focus and auxiliary
regressors are listed, respectively, in the second and the third panels. HR means ‘household respondent’,
INT means ‘interaction term’, SRH means ‘self-reported health’, and IV means ‘interviewer’. In estimation
we center ‘Age’, ‘Age of Partner’, and ‘IV Age’ at 50, ‘Doctor’ at 5, ‘Euro-D’ at 3, ‘Recall’ at 9, and ‘Social
Activities’ at 1.
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Table 2: Estimates and standard errors of the focus parameters in the logit model for the probability of participation in the
second wave of the French SHARE panel conditional on participation in the first wave

ML FMA BMA WALS

Regressors β̂r β̂u BIC AIC ā = 0.01 ā = 0.05 ā = 0.10 β̄ = β̂r β̄ = β̂u Iter.

Intercept .6983 ** .4260 * .7009 * .5110 * .5916 * 5456 * .4729 * .5050 * .5124 * .5136 *
(.2608) (.3140) (.4029) (.3266) (.3162) (.3167) (.2973) (.3060) (.3066) (.3059)

Age .0165 .0374 * .0232 .0354 * .0302 0303 .0305 * 0312 * .0320 * .0320 *
(.0302) (.0314) (.0345) (.0318) (.0318) (.0310) (.0298) (.0310) (.0314) (.0313)

Age2/10 -.0055 -.0045 -.0050 -.0047 -.0049 -.0045 -.0042 -.0046 -.0047 -.0047
(.0090) (.0092) (.0091) (.0092) (.0091) (.0088) (.0086) (.0090) (.0092) (.0091)

Female -.1372 -.0697 -.1011 -.0691 -.0716 -.0724 -.0611 -.0834 -.0830 -.0833
(.2454) (.2532) (.2551) (.2549) (.2538) (.2479) (.2399) (.2505) (.2529) (.2518)

Female × Age .0443 * .0418 * .0413 * .0419 * 0413 * .0388 * 0369 * .0418 * .0420 * .0421 *
(.0378) (.0384) (.0382) (.0384) (.0381) (.0371) (.0360) (.0379) (.0384) (.0382)

Female × Age2/10 -.0145 * -.0163 * -.0144 * -.0160 * -.0153 * -.0145 * -.0140 * -.0156 * -.0157 * -.0157 *
(.0115) (.0118) (.0119) (.0118) (.0118) (.0115) (.0111) (.0116) (.0118) (.0117)

Couple -.2141 * .0756 -.1569 0341 -.0435 -.0205 0180 -.0067 -.0030 -.0034
(.1162) (.1733) (.2916) (.1914) (.2099) (.2025) (.1834) (.1711) (.1732) (.1724)

High Education .4074 ** 2710 ** 3271 ** .2815 ** .2985 ** .2701 ** 2527 ** 2979 ** .3003 ** .3007 **
(.1095) (.1160) (.1312) (.1178) (.1183) (.1141) (.1105) (.1153) (.1161) (.1157)

Big City -.2261 ** -.2063 * -.2124 ** -.2123 * -.2099 * -.1983 * -.1873 * -.2070 * -.2105 * -.2109 *
(.1041) (.1073) (.1058) (.1067) (.1052) (.1028) (.0998) (.1055) (.1067) (.1062)

Employed -.0893 -.1311 -.0893 -.1156 -.0989 -.0999 -.0981 -.1142 -.1153 -.1155
(.1562) (.1600) (.1641) (.1611) (.1587) (.1550) (.1502) (.1584) (.1598) (.1591)

Notes: Sample size is 1,822 individuals and there are 256 possible models. β̂r and β̂u denote, respectively, the ML estimates based on the restricted
and unrestricted models. FMA estimates are based on the smoothed AIC and BIC weighting systems. BMA estimates with conjugate priors for
GLMs are based on the prior parameters ȳ = 0.5ιn and ā = {0.01, 0.05, 0.10}. One-step WALS estimates with starting values β̄ = β̂r and β̄ = β̂u

and iterative WALS estimates are based on the reflected Weibull prior. ∗ denotes a t-ratio between 1 and 2, ∗∗ denotes a t-ratio greater than 2.
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Table 3: Results of the Monte Carlo simulations

ML FMA BMA WALS

Parameter Criterion n π̂r π̂u BIC AIC FIC ā = 0.01 ā = 0.05 ā = 0.10 β̄ = β̂r β̄ = β̂u Iter.

πm bias 100 0.1736 0.0112 0.0416 0.0249 0.0607 0.0583 0.0493 0.0619 0.1011 0.0473 0.0481
400 0.0864 0.0019 0.0098 0.0007 0.0156 0.0112 0.0153 0.0268 0.0366 0.0165 0.0156
900 0.0557 0.0018 0.0055 0.0024 0.0091 0.0044 0.0111 0.0220 0.0192 0.0091 0.0086

1600 0.0407 0.0021 0.0036 0.0025 0.0060 0.0022 0.0100 0.0206 0.0114 0.0055 0.0053
SE 100 0.1820 0.2446 0.2210 0.2282 0.2091 0.2203 0.2085 0.1948 0.1841 0.2190 0.2191

400 0.0778 0.0934 0.0932 0.0925 0.0860 0.0926 0.0887 0.0844 0.0833 0.0872 0.0875
900 0.0490 0.0596 0.0595 0.0590 0.0544 0.0591 0.0567 0.0541 0.0548 0.0558 0.0559

1600 0.0370 0.0452 0.0451 0.0447 0.0411 0.0447 0.0429 0.0410 0.0420 0.0425 0.0425
RMSE 100 0.2516 0.2448 0.2249 0.2295 0.2178 0.2279 0.2142 0.2044 0.2101 0.2241 0.2243

400 0.1163 0.0934 0.0937 0.0925 0.0874 0.0933 0.0900 0.0886 0.0910 0.0888 0.0888
900 0.0742 0.0597 0.0597 0.0590 0.0551 0.0593 0.0577 0.0584 0.0581 0.0566 0.0565

1600 0.0550 0.0452 0.0452 0.0447 0.0416 0.0448 0.0440 0.0459 0.0435 0.0428 0.0428

πf bias 100 0.1302 0.0013 0.0140 0.0040 0.0336 0.0255 0.0278 0.0446 0.0811 0.0287 0.0275
400 0.0615 0.0028 0.0006 0.0052 0.0085 0.0012 0.0098 0.0232 0.0297 0.0104 0.0093
900 0.0383 0.0009 0.0015 0.0041 0.0054 0.0008 0.0090 0.0213 0.0155 0.0059 0.0054

1600 0.0278 0.0005 0.0013 0.0028 0.0041 0.0005 0.0096 0.0215 0.0095 0.0040 0.0037
SE 100 0.1323 0.2150 0.1786 0.1919 0.1634 0.1742 0.1710 0.1603 0.1497 0.1833 0.1818

400 0.0589 0.0811 0.0776 0.0783 0.0696 0.0771 0.0750 0.0721 0.0704 0.0732 0.0732
900 0.0368 0.0531 0.0505 0.0514 0.0455 0.0506 0.0493 0.0474 0.0471 0.0479 0.0479

1600 0.0276 0.0403 0.0374 0.0389 0.0344 0.0380 0.0372 0.0358 0.0360 0.0363 0.0363
RMSE 100 0.1857 0.2150 0.1792 0.1920 0.1668 0.1760 0.1732 0.1664 0.1702 0.1855 0.1838

400 0.0852 0.0811 0.0776 0.0785 0.0701 0.0771 0.0757 0.0757 0.0765 0.0739 0.0738
900 0.0531 0.0531 0.0505 0.0515 0.0458 0.0506 0.0501 0.0520 0.0496 0.0483 0.0483

1600 0.0392 0.0403 0.0374 0.0390 0.0347 0.0380 0.0384 0.0418 0.0372 0.0365 0.0365

Notes: πm and πf denote, respectively, the participation probabilities of a representative male and a representative female aged 70 years. For
all simulation designs, the true values of these parameters are equal to πm = 0.7301 and πf = 0.7522. π̂r and π̂u denote, respectively, the
plug-in ML estimators of πm and πf in the restricted and unrestricted models. FMA estimators are based on the smoothed AIC, BIC and FIC
weighting systems. BMA estimators with conjugate priors for GLMs are based on the prior parameters ȳ = 0.5ιn and ā = {0.01, 0.05, 0.10}.
One-step WALS estimators with starting values β̄ = β̂r and β̄ = β̂u and the iterative WALS estimator are based on the reflected Weibull prior.
Monte Carlo results are computed by 1, 000 replications for each simulation design.
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Figure 1: Iterative WALS and ML estimates of the participation probability age-profiles for repre-
sentative male and female

.55

.65

.75

.85

 

50 55 60 65 70 75 80 85
Age

WALS RML
UML

Male

.55

.65

.75

.85

 

50 55 60 65 70 75 80 85
Age

WALS RML
UML

Female

Notes: RML and UML denote, respectively, the plug-in ML estimates of πma and πfa based on
the restricted and unrestricted models, while WALS denotes the plug-in iterative WALS estimates
(same as Figures 2 and 3). The shadow area is the one-std bands of the WALS estimates with
standard errors computed by the delta method.
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Figure 2: Iterative WALS and FMA estimates of the participation probability age-profiles for
representative male and female
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Notes: FMA(xIC) denotes the FMA estimates of πma and πfa based on the smooth xIC (BIC,
AIC, FIC) weighting system, while WALS denotes the plug-in iterative WALS estimates (same as
Figures 1 and 3). The shadow area is the one-std bands of the WALS estimates with standard
errors computed by the delta method.
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Figure 3: Iterative WALS and BMA estimates of the participation probability age-profiles for
representative male and female
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Notes: BMA(x) denotes the BMA estimates of πma and πfa based on the conjugate prior for GLMs
with prior parameters ȳ = 0.5ιn and ā = x, while WALS denotes the plug-in iterative WALS
estimates (same as Figures 1 and 2). The shadow area is the one-std bands of the WALS estimates
with standard errors computed by the delta method.
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Appendix A: Proofs

Proof of Proposition 1. By the data transformations in (5), we can write the linearized system
of constrained likelihood equations (4) for the jth model as

0 = X̄ ′
1(ȳ − X̄1β1 − X̄2β2),

0 = X̄ ′
2(ȳ − X̄1β1 − X̄2β2)−Rjνj,

0 = R′
jβ2. (A1)

Given νj and ignoring the remainders in these approximations, the restricted one-step ML estimator

β̃j = (β̃′1j , β̃
′
2j)

′ solves the equation system

[
X̄ ′

1X̄1 X̄ ′
1X̄2

X̄ ′
2X̄1 X̄ ′

2X̄2

](
β̃1j
β̃2j

)
=

(
X̄ ′

1ȳ
X̄ ′

2ȳ

)
−
[

0
Rj

]
νj,

while the unrestricted one-step ML estimator β̃u = (β̃′1u, β̃
′
2u)

′ solves

[
X̄ ′

1X̄1 X̄ ′
1X̄2

X̄ ′
2X̄1 X̄ ′

2X̄2

](
β̃1u
β̃2u

)
=

(
X̄ ′

1ȳ
X̄ ′

2ȳ

)
.

Rearranging these two expressions we obtain
(
β̃1j
β̃2j

)
=

(
β̃1u
β̃2u

)
−
[
Ā11 Ā12

Ā21 Ā22

] [
0
Rj

]
νj, (A2)

where [
Ā11 Ā12

Ā21 Ā22

]
=

[
X̄ ′

1X̄1 X̄ ′
1X̄2

X̄ ′
2X̄1 X̄ ′

2X̄2

]−1

.

Premultiplying both sides of (A2) by the rj × k matrix [0 : R′
j] gives

[0 : R′
j]

(
β̃1j
β̃2j

)
= [0 : R′

j ]

(
β̃1u
β̃2u

)
− [0 : R′

j]

[
Ā11 Ā12

Ā21 Ā22

] [
0
Rj

]
νj .

Since β̃2j satisfies the restriction R′
jβ̃2j = 0 (by construction) and the matrix R′

jĀ22Rj is nonsin-
gular, solving this system of equations for the Lagrange multiplier gives

ν̃j = (R′
jĀ22Rj)

−1R′
jβ̃2u.

Thus, the restricted one-step ML estimators of β1 and β2 for the jth model can be written as

β̃1j = β̃1u − Ā12Rj(R
′
jĀ22Rj)

−1R′
j β̃2u, β̃2j = β̃2u − Ā22Rj(R

′
jĀ22Rj)

−1R′
j β̃2u,

where Ā12 = −(X̄ ′
1X̄1)

−1X̄ ′
1X̄2(X̄

′
2M̄1X̄2)

−1 and Ā22 = (X̄ ′
2M̄1X̄2)

−1, or equivalently

β̃1j = β̃1u + Q̄P̄j ϑ̃, β̃2j = β̃2u −
(
X̄ ′

2M̄1X̄2

n

)−1/2

P̄j ϑ̃.

The result then follows by noting that in the fully restricted model, where Rj = Ik
2

and P̄j = Ik
2

,

we obtain β̃1r = β̃1u + Q̄ϑ̃ = (X̄ ′
1X̄1)

−1X̄ ′
1ȳ. �
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Proof of Proposition 2. Under the regularity conditions stated in the proposition, the one-step
ML estimator for the unrestricted model has the same asymptotic distribution as the fully-iterated
ML estimator and so

√
n(β̃un − βn) ⇒ N (0,Ω), where

Ω =

[
Ω11 Ω12

Ω21 Ω22

]
=

[
I11 I12
I21 I22

]−1

= I−1,

with Ω11 = I−1
11 + I−1

11 I12Ω22I21I−1
11 , Ω12 = −I−1

11 I12Ω22, and Ω22 =
(
I22 − I21I−1

11 I12
)−1

. Equa-
tion (6) also implies that

√
n(ϑ̃n − ϑn) =

(
X̄ ′

2M̄1X̄2

n

)1/2 √
n(β̃2un − β2n) +

[(
X̄ ′

2M̄1X̄2

n

)1/2

− Ω
−1/2
22

]
δ,

with ϑn = Ω
−1/2
22 β2n. As n→ ∞, we have

plim

(
X̄ ′

2M̄1X̄2

n

)1/2

= plim

(
H̄22 − H̄21H̄

−1
11 H̄12

n

)1/2

= Ω
−1/2
22

and therefore √
n(ϑ̃n − ϑn) ⇒ N (0, Ik

2

). (A3)

From Proposition 1 we have β̃1rn = β̃1un + Q̄ϑ̃n, or equivalently,

√
n(β̃1rn − β1) = Q̄Ω

−1/2
22 δ +

√
n(β̃1un − β1) + Q̄

√
n(ϑ̃n − θn).

Since plim Q̄ = I−1
11 I12Ω

1/2
22 = Q, we obtain

√
n(β̃1rn − β1) ⇒ N (I−1

11 I12 δ,I−1
11 ). (A4)

Moreover, β̃1rn and ϑ̃n are asymptotically independent because their joint asymptotic distribution

is normal with asymptotic covariance Ω12Ω
−1/2
22 +Q = 0. For the one-step ML estimator of the jth

model, Proposition 1 implies that

√
n(β̃1jn − β1) = Q̄P̄jΩ

−1/2
22 δ +

[√
n(β̃1rn − β1)− Q̄Ω

−1/2
22 δ

]
− Q̄W̄j

√
n(ϑ̃n − θn)

and

√
n(β̃2jn − β2n) =

[(
X̄ ′

2M̄1X̄2

n

)−1/2

W̄jΩ
−1/2
22 − Ik

2

]
δ +

(
X̄ ′

2M̄1X̄2

n

)−1/2

W̄j

√
n(ϑ̃n − θn).

The asymptotic distribution of β̃jn then follows from (A3) and (A4), the asymptotic independence

of β̃1rn and ϑ̃n, and the probability limits

plim P̄j = Ω
1/2
22 Rj(R

′
jΩ22Rj)

−1R′
jΩ

1/2
22 = Pj , plim W̄j = Ik

2

−Pj = Wj .�
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Proof of Proposition 3. It follows from (11) and (13) that

√
n(γ̂n − γn) =

( √
n(γ̂1n − γ1)√
n(γ̂2n − γ2n)

)
=

( √
n(γ̃1rn − γ1)− D̄W

√
nγ̃2un

W
√
nγ̃2un − d

)
,

where √
n(γ̃1rn − γ1) ⇒ N1r ∼ N (D d,J −1

11 ),
√
nγ̃2un ⇒ N2u ∼ N (d, Ik

2

),

with d =
√
nγ2n and W =W (N2u) because of (12). This implies that

√
n(γ̂n − γn) ⇒ N =

(
N1

N2

)
=

(
N1r −DWN2u

WN2u − d

)
.

Moreover, since N1r and N2u are stochastically independent, we obtain

E(N1|N2u) = E(N1r)−DWN2u = −D(WN2u − d)

and
var(N1|N2u) = var(N1r) = J−1

11 .

The asymptotic bias and the asymptotic variance of γ̂1n are equal, respectively, to the unconditional
mean and the unconditional variance of the random vector N1. The unconditional mean is given
by

AB(γ̂1n) = E[E(N1|N2u)] = −DE[
√
n(Wγ̃2un − γ2n)] = −DE[

√
n(γ̂2n − γ2n)] = −DAB(γ̂2n)

and the unconditional variance by

AV(γ̂1n) = E[var(N1|N2u)]+var[E(N1|N2u)] = J −1
11 +D var(

√
n(γ̂2n−γ2n))D′ = J−1

11 +DAV(γ̂2n)D′.

The result for the AMSE follows. �

Appendix B: Continuity of eigenprojections and symmetric matrix

functions

In matrix theory, when employing arguments that require limits such as continuity or consistency,
some care is required when dealing with eigenvectors and associated concepts. Since there appears
to be a certain amount of confusion on these issues among statisticians and econometricians, we
present below some of the main results. Most of the results in this appendix are not new, see e.g.
Kato (1976) and Horn and Johnson (1991, Chapter 6), but they are put together here in a simple
and accessible manner in order to avoid further confusion.

Preliminaries

We shall confine ourselves to a real n×n symmetric matrix, say A. If Ax = λx for some x 6= 0 then
λ is an eigenvalue of A and x is an eigenvector of A associated with λ. Because of the symmetry
of A, all its eigenvalues are real and they are uniquely determined. However, eigenvectors are
not uniquely determined, not even when the eigenvalue is simple. Also, while the eigenvalues
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are typically continuous functions of the elements of the matrix, this is not necessarily so for the
eigenvectors. The current appendix attempts to make these vague notions precise.

Some definitions are required. The set of all eigenvalues of A is called its spectrum and is
denoted as σ(A). The eigenspace of A associated with λ is

V (λ) = {x ∈ R
n|Ax = λx}.

The dimension of V (λ) is equal to the multiplicity of λ, say m(λ). Eigenspaces associated with
distinct eigenvalues are orthogonal to each other. Because of the symmetry of A we have the
decomposition ∑

λ∈σ(A)

V (λ) = R
n.

The eigenprojection of A associated with λ of multiplicity m(λ), denoted P (λ), is given by the
symmetric idempotent matrix

P (λ) =

m(λ)∑

j=1

xjx
′
j ,

where the {xj} form any set of m orthonormal vectors in V (λ), that is, x′jxj = 1 and x′ixj = 0
for i 6= j. While eigenvectors are not unique, the eigenprojection is unique because an idempotent
matrix is uniquely determined by its range and null space. The spectral decomposition of A is then

∑

λ∈σ(A)

λP (λ) = A.

If σ0 is any subset of σ(A), then the total eigenprojection associated with the eigenvalues in σ0 is
defined as

P (σ0) =
∑

λ∈σ0

P (λ).

It is clear that P (σ(A)) = In. Also, if σ0 contains only one eigenvalue, say λ, then P ({λ}) = P (λ).
Total eigenprojections are a key concept when dealing with limits, as we shall see below.

Symmetric matrix functions

Now consider a matrix function A(t), where A(t) is a real n× n symmetric matrix for every real t.
The matrix A(t) has n eigenvalues, say λ1(t), . . . , λn(t), some of which may be equal. Suppose that
A(t) is continuous at t = 0. Then the eigenvalues are also continuous at t = 0. This was proved by
Rellich (1953) making essential use of the symmetry of A(t).

Now, let λ be an eigenvalue of A = A(0) of multiplicitym. Because of the continuity of the eigen-
values we can separate the eigenvalues in two groups, say λ1(t), . . . , λm(t) and λm+1(t), . . . , λn(t),
where the m eigenvalues in the first group converge to λ, while the n−m eigenvalues in the second
group also converge, but not to λ. Kato (1976, Theorem 5.1), based on earlier results by Rellich
(1937, 1953), proved that the total eigenprojection P ({λ1(t), . . . , λm(t)}) is continuous at t = 0,
that is, it converges to the spectral projection P (λ) of A(0).

Kato’s result does not imply that eigenvectors or eigenprojections are continuous. If all eigen-
values of A(t) are distinct at t = 0 then each eigenprojection Pj(t) is continuous at t = 0 because
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it coincides with the total eigenprojection for the eigenvalue λj(t). But if there are multiple eigen-
values at t = 0, then it may occur that the eigenprojections do not converge as t → 0, unless
we assume that the matrix A(t) is (real) analytic. (A function is real analytic if it is infinitely
differentiable and can be expanded in a power series.) In fact, Kato (1976, Theorem 1.10) showed
that if A(t) is real analytic at t = 0, then the eigenvalues and the eigenprojections are also analytic
at t = 0 (and therefore certainly continuous).

Discontinuity of eigenprojections

Hence, in general, eigenvalues are continuous, but eigenvectors and eigenprojections may not be.
This is well illustrated by the following example of Kato (1976, Example 5.3), which is adapted
from Rellich (1937).

Consider the matrix

A(t) = e−1/t2
(
cos(2/t) sin(2/t)
sin(2/t) − cos(2/t)

)
, A(0) = 0.

There is a multiple eigenvalue 0 at t = 0 and simple eigenvalues λ1 = e−1/t2 and λ2 = −e−1/t2 at
t 6= 0. The associated eigenvectors are

x1 =

(
cos(1/t)
sin(1/t)

)
, x2 =

(
sin(1/t)

− cos(1/t)

)
.

Hence the associated eigenprojections are

P1(t) = x1x
′
1 =

(
cos2(1/t) sin(1/t) cos(1/t)

sin(1/t) cos(1/t) sin2(1/t)

)

and

P2(t) = x2x
′
2 =

(
sin2(1/t) − sin(1/t) cos(1/t)

− sin(1/t) cos(1/t) cos2(1/t)

)
.

The matrix function A(t) is continuous (even infinitely differentiable) for all real t. This is also
true for the eigenvalues. But there is no eigenvector which is continuous in the neighborhood of
t = 0 and does not vanish at t = 0. Also, the eigenprojections P1(t) and P2(t), while continuous
(even infinitely differentiable) in any interval not containing t = 0, cannot be extended to t = 0 as
continuous functions.

The total eigenprojection is given by P1(t)+P2(t) = I2, which is obviously continuous at t = 0,
but the underlying eigenprojections P1(t) and P2(t) are not. The reason lies in the fact that the
matrix A(t), while infinitely differentiable at t = 0, is not analytic.

This can be seen as follows. Let

f(t) =

{
exp(−1/t2) for t 6= 0

0 for t = 0,
g(t) =

{
cos(2/t) for t 6= 0

0 for t = 0,

and define h(t) = f(t)g(t). It is well-known (and a standard example in textbooks) that the function
f(t) is infinitely differentiable for all (real) t, but not analytic. The function g(t) is not continuous
at t = 0, although it is infinitely differentiable in any interval not containing t = 0. Their product
h(t) is infinitely differentiable for all (real) t (because g is bounded), but it is not analytic.
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We summarize the previous discussion as follows.

Lemma B.1: Let A(t) be a family of real-valued symmetric matrices, and suppose ǫ > 0 exists such
that A(t) is continuous for all |t| < ǫ. Then the eigenvalues λj(t) and the total eigenprojections
Pj(t) are continuous at t = 0. If, in addition, A(t) is analytic at t = 0, then the individual
eigenprojections are continuous at t = 0.

Relation to Tyler’s lemma

Tyler (1981, Lemma 2.1) stated the following result, which is often quoted, but is essentially the
same as Kato’s result. Let A(t) be a symmetric n× n matrix function with eigenvalues

λ1(t) ≥ λ2(t) ≥ · · · ≥ λi(t) ≥ · · · ≥ λj(t) ≥ · · · ≥ λn(t),

and assume that, at t = 0,

λi−1(0) > λi(0), λj(0) > λj+1(0).

If A(t) is continuous at t = 0, then the total eigenprojection Pi,j(t) associated with λi(t), . . . , λj(t)
is continuous at t = 0.

Continuity of symmetric matrix functions

We are now in a position to state the following result, which is essentially the same as Horn and
Johnson (1991, Theorem 6.2.37) but with a somewhat simpler proof.

Lemma B.2: Let A(t) be a family of real-valued symmetric matrices, and suppose ǫ > 0 exists
such that A(t) is continuous for all |t| < ǫ. Let f be a real-valued function, defined and continuous
on the spectrum σ(A(0)). Then f(A(t)) converges to f(A(0)) as t→ 0.

Proof: Since A(t) is symmetric and continuous in t, we can write

A(t) =
∑

λ(t)∈σ(A(t))

λ(t)P (λ(t)).

Let λ0 be an eigenvalue of A(0), and let

λi(t) ≥ · · · ≥ λj(t) (0 < |t| < ǫ)

be the λ-group associated with λ0. Then,

lim
t→0

λk(t) = λ0 (i ≤ k ≤ j),

and hence, since f is continuous at λ0,

lim
t→0

f(λk(t)) = f(λ0) (i ≤ k ≤ j).
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We also know, because of the continuity of the total eigenprojections, that

lim
t→0

j∑

k=i

P (λk(t)) = P (λ0).

Together this implies that

lim
t→0

j∑

k=i

f(λk(t))P (λk(t)) = f(λ0)P (λ0),

which we see by writing

j∑

k=i

f(λk(t))P (λk(t))− f(λ0)P (λ0)

=

j∑

k=i

[
f(λk(t))− f(λ0)

]
P (λk(t))− f(λ0)

[
(P (λ0)−

j∑

k=i

P (λk(t))
]
.

This proves convergence for each λ-group, and hence concludes the proof.

Orthogonal transformations

Let B be an m×n matrix of full column-rank n. Then A = B′B is positive definite and symmetric,
and we can decompose

A = TΛT ′,

where Λ is diagonal with strictly positive elements and T is orthogonal.
Suppose that our calculations would be much simplified if A were equal to the identity matrix.

We can achieve this by transforming B to a matrix C, as follows:

C = BTΛ−1/2S′,

where S is an arbitrary orthogonal matrix. Then,

C ′C = SΛ−1/2T ′B′BTΛ−1/2S′ = SΛ−1/2ΛΛ−1/2S′ = SS′ = In.

The matrix S is completely arbitrary, as long as it is orthogonal. It is tempting to choose S = In.
This, however, implies that if B = B(t) is a continuous function of some variable t, then C = C(t)
is not necessarily continuous, as is shown by the previous discussion. There is only one choice of S
that leads to continuity of C, namely S = T , in which case

C = BTΛ−1/2T ′ = B(B′B)−1/2.
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Magnus, J. R., Powell, O., and Prüfer, P. (2010). A comparison of two averaging techniques with
an application to growth empirics. Journal of Econometrics 154: 139–153.
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