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Abstract We present a continuous-time generalization of the seminal R&D model
of d’Aspremont and Jacquemin (The American Economic Review 78(5): 1133-1137,
1988) to examine the trade-off between the benefits of allowing firms to cooperate
in R&D and the corresponding increased potential for product market collusion. We
consider all trajectories that are candidates for an optimal solution as well as initial
marginal cost levels that exceed the choke price. Firms that collude develop further
a wider range of initial technologies, pursue innovations more quickly, and are less
likely to abandon a technology. Product market collusion could thus yield higher total
surplus.
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1 Introduction

An important reason for allowing firms to set up R&D cooperatives is that these
“organizations, jointly controlled by at least two participating entities, whose primary
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purpose is to engage in cooperative R&D” (Caloghirou et al. [1]) internalize tech-
nological spillovers - the free flow of knowledge from the knowledge creator to its
competitors.! The exemption for R&D cooperatives in anti-cartel legislation is thus
perceived to diminish the failure of the market for R&D.? However, as Scherer [6]
observes: “the most egregious price fixing schemes in American history were brought
about by R&D cooperatives”, an observation that constitutes the classic counterar-
gument to a permissive antitrust treatment of R&D markets (Pfeffer and Nowak [7],
Grossman and Shapiro [8], Brodley [9]).3 At the same time, it is quite well established
that the prospect of future market power enhances a firm’s incentives to invest in
R&D.* As Alan Greenspan [15] puts it:

No one will ever know what new products, processes, machines, and cost-
saving mergers failed to come into existence, killed by the Sherman Act before
they were born. No one can ever compute the price that all of us have paid for
that Act which, by inducing less effective use of capital, has kept our standard
of living lower than would otherwise have been possible.

In this paper we develop a dynamic model of R&D that considers explicitly the
cost of “new ... processes” that “failed to come into existence ... before they were
born” because of the ban on price-fixing agreements.

The channels through which cooperation in R&D facilitates product market
collusion have been examined in a number of theoretical studies (Martin [16], Greenlee
and Cassiman [17], Cabral [18], Lambertini et al. [19], Miyagiwa [20]). According to
Fisher [21, p. 194]:

[firms] cooperating in R&D will tend to talk about other forms of
cooperation. Furthermore, in learning how other firms react and adjust in living
with each other, each cooperating firm will get better at coordination. Hence,
competition in the product market is likely to be harmed.

In the short run, the reduced intensity of product market competition is likely
to hurt consumers. At the same time, it could enhance the functioning of an R&D
cooperative. For instance, Geroski [22] argues that it is the feedback from product
markets that directs research towards profitable tracks and that, therefore, for an
innovation to be commercially successful, there must be strong ties between marketing

!Bloom et al. [2] estimate that a 10% increase in a competitor’s R&D is associated with up to a
3.8% increase in a firm’s own market value. Internalizing technological spillovers is one of the prime
reasons for firms to join an R&D cooperative (Hernan et al. [3]; see also Roller et al. [4]).

2See Martin [5] for an overview of the policy treatment of R&D cooperatives in the E.U., the
U.S., and Japan.

3Goeree and Helland [10] find that in the U.S. the probability that firms join an R&D cooperative
has gone down due to a revision of antitrust leniency policy in 1993. This revision is perceived as
making collusion less attractive. They conclude that “Our results are consistent with RJVs [research
joint ventures] serving, at least in part, a collusive function.” Related evidence is reported by Duso
et al. [11]. They find that the combined market share declines if partners in an RJV compete on the
same product market (“horizontal RJVs”), while it increases if members of the RJV are not direct
rivals (“vertical RJVs”). The laboratory experiments of Suetens [12] show that members of an RJV
are more likely to collude on price.

4The original observation is due to Schumpeter [13, p. 82]: “As soon as we go into the details
and inquire into the individual items in which progress was most conspicuous, the trail leads not to
the doors of those firms that work under conditions of comparatively free competition but precisely
to the doors of the large concerns ... and a shocking suspicion dawns upon us that big business may
have had more to do with creating that standard of living than with keeping it down.” A formal
treatment can be found in Tirole [14].
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and development of new products. And Jacquemin [23] puts forward that R&D
cooperatives are fragile and unstable. He reasons that when there is no cooperation
in the product market, there exists a continuous fear that one partner in the R&D
cooperative may be strengthened in such a way that it will become too strong a
competitor in the product market. Preventing firms from collaborating in the product
market may therefore destabilize R&D cooperatives, or prevent their formation in
the first place. Our focus is on private incentives to develop cost saving technologies
over time. In particular, we show that if firms collude in the product market, a wider
range of technologies is fully developed. We also show that firms competing in the
product market realize an inferior productive efficiency. We thus identify situations
where product market collusion increases total surplus.

Dynamic models of R&D were first introduced to study patent races whereby
successful innovators capture the entire market.> Meanwhile, a large literature has
developed on the relation between intellectual property rights and antitrust policies.
For instance, Quirmbach [27] finds that there is an optimal level of collusion that is in
between perfect competition and full collusion. And Green and Scotchmer [28] show
that it is optimal to allow for collusion through sequential licensing in case the next
innovation is a truly new application of existing patents. More recently, another strand
of dynamic R&D models has developed: continuous-time generalizations of strategic
R&D models.® Cellini and Lambertini [29] is the first continuous-time generalization
of the seminal analysis of d’Aspremont and Jacquemin [30]. In the duopoly game of
d’Aspremont and Jacquemin [30], firms first invest in cost-reducing R&D and then
play a Cournot game in the product market. In the continuous-time version of Cellini
and Lambertini [29], both firms start from an initial technology (that is, a level of
marginal cost) and invest continuously in R&D. This gradually reduces the initial level
of marginal cost towards the steady-state level. In contrast to the static generalization
of d’Aspremont and Jacquemin [30] by Hinloopen [31], Cellini and Lambertini [29]
find that the aggregate level of R&D is monotonically increasing in the number of
independent competitors.

We also consider a continuous-time generalization of d’Aspremont and Jacquemin
[30]. There are two distinguishing features of our analysis. First, we consider all possible
initial marginal cost levels, including those exceeding the choke price (the lowest price
for which there is no demand). Especially in the early stages of development, it is
quite likely that the cost of a new technology (the cost, say, to develop a prototype)
exceeds the highest willingness to pay in the market. We characterize situations where
such initial technologies are only developed if firms collude in the product market.
Indeed, excluding initial marginal costs that are above the choke price ignores “
new ... processes ... [that] failed to come into existence, [as they are] killed by the
Sherman Act before they were born.” These instances constitute a direct welfare gain
of product market collusion.

Second, in addition to near-equilibrium paths, we consider all trajectories that are
candidates for an optimal solution. This global analysis yields a bifurcation diagram

5This literature starts with Loury [24] and Lee and Wilde [25]; Reinganum [26] surveys the early
contributions. Patent race models examine, in essence, the time it takes for a cost-saving innovation
to be completed. R&D investments reduce this completion period. Because in these models the R&D
process itself cannot fail, the R&D-investment decision is transformed into a static one.

6There is also a small literature that considers (stationary) repeated game models of R&D; see
Cabral [18] and Lambertini et al. [19]. These ‘dynamic’ models do not allow for “smoothing the
investment efforts over a long time” (Cellini and Lambertini [29]), a type of investment behavior that
is observed in practice and that constitutes a key feature of continuous-time models.



that indicates for every possible parameter combination the qualitative features of any
market equilibrium as well as of the transient dynamics towards it.” We thus identify
critical parameter values: points in parameter space at which the optimal investment
function changes qualitatively. In particular, we determine the value of marginal costs
for which R&D investments are terminated, and for which they are not initiated at
all. We prove that these critical cost levels are affected by firm conduct. Therefore,
extending the R&D cooperative to product market collusion can lead to qualitatively
different long-run solutions, in spite of starting from an identical initial technology.

The related literature has not considered initial marginal cost levels that exceed the
choke price, nor has it carried out a global analysis.® The only exception is Hinloopen
et al. [38], who characterize the equilibria of a continuous-time dynamic monopoly
with R&D investments. We expand their analysis in three directions. First, we consider
a duopoly rather than a monopoly. Second, we examine two different scenarios: one in
which firms cooperate in R&D and compete in the product market (labeled ‘partial
collusion’)?, and one in which firms cooperate both in R&D and in setting price
(labeled ‘full collusion’). Indeed, comparing the two scenarios allows us to examine the
effects of extending cooperation in R&D towards collusion in the product market. And
third, rather than relying on numerical simulations, we prove a set of propositions
that characterize the dynamics of the model throughout the entire parameter space.

Our framework yields four possible outcomes for any initial draw of a new technol-
ogy (cf. Hinloopen et al. [38]). First of all, a ‘promising technology’ arrives, whereby
the initial technology is developed through continuous R&D investments. This can
occur for initial cost levels both below and above the choke price. In the latter case,
production starts only after some time, because early R&D efforts have to bring
down marginal cost below the choke price. Second, a ‘strained market’ arises: initial
marginal cost is below the choke price and firms invest in R&D, but the technology is
not likely to be developed to full materialization.!? In case of an ‘uncertain future’,
the third situation, it is not immediately clear whether the long-run steady state will
be reached, or that it is optimal to gradually leave the market. Only time will tell.
Fourth, an ‘obsolete technology’ can emerge: whatever the initial marginal cost, the
technology is either not developed, or developed only to be taken off the market in
due time. The long-run steady state will not be reached in either case.

All four technologies can emerge under both partial collusion and full collusion.
Comparing the two scenarios throughout the entire parameter space, we find that
if firms collude in the product market (i) it is more likely that an initial technology
qualifies as a Promising Technology, and if so, that it is more likely to be developed
further, (ii) it is less likely that an initial technology qualifies as an Obsolete Technology,

"Solution structures may change qualitatively due to variations in parameter values (indifference
points may appear, steady states may lose their stability, and so on). These qualitative changes due
to smooth variations in parameters are called bifurcations. For an introduction, see Grass et al. [32],
or Kiseleva and Wagener [33].

8That literature is still small. It includes Cellini and Lambertini [29,34], Lambertini and Mantovani
[35,36], and Kovac et al. [37]. In all these papers any of the initial (permissible) technologies will be
developed to full materialization; technologies that are only developed under specific regimes (i.e.
product market collusion) remain hidden.

9This scenario is also often called ‘semi-collusion’ in the literature.

10This situation resembles the ‘sailing ship effect’ of Cooper and Schendel [39] (see also Howells [40]),
whereby the arrival of a new, possibly superior technology spurs the development of the old technology.
In our case, there is no rival technology that induces continued investment in a technology that is
bound to leave the market. Rather, it is the technology itself (characterized by the size of the initial
marginal cost) that makes it optimal for firms to gradually take it off the market in due time.
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and if so, it is more likely that firms invest in R&D, albeit temporarily, and (iii) if an
initial technology causes a Strained Market or if it induces an Uncertain Future, it
is less likely that it will be taken off the market in due time. Put differently, due to
product market collusion it is more likely that firms invest in R&D, and that these
investments eventually lead to a steady state with positive production.

Our analysis qualifies the per se prohibition of collusion in product markets for
high-tech industries. A higher total surplus obtains if colluding firms develop an initial
technology and arrive at the saddle-point steady state while firms that compete in
the product market would not develop the technology at all. We show that this is
more likely to happen if new technologies arrive in circumstances that offer a high
profit potential (that is, large markets and efficient R&D processes). Under these
circumstances, product market collusion can also yield higher total surplus if competing
firms would develop the new technology as well, be it to take it off the market in
due time, or to arrive at the saddle-point steady state. And in so far higher R&D
investments as such are desirable (as suggested in the endogenous growth literature;
see e.g. Grossman and Helpman [41], Aghion and Howitt [42]) the case for prohibiting
collusion per se is further weakened. On the other hand, colluding firms tend to hold
on longer to technologies that are destined to leave the market. This is not desirable
from a social welfare point of view if that prevents the development of new, superior
technologies.

A particularly difficult situation arises when the initial technology is above the
choke price and if it will be developed only if firms collude in the product market. The
welfare cost of prohibiting firms to collude then remains hidden because no production
is affected by this prohibition. There is no production yet, and because collusion is
prohibited, there will be no production in the future. Put differently, no production
will be taken off the market if firms are prohibited to collude in the product market,
leaving the welfare cost unnoticed. Our analysis thus offers a first glance at “new ...
processes ... [that] failed to come into existence, killed by the Sherman Act before
they were born.”

The remainder of the paper is organized as follows. The basics of the model
are introduced in Sec. 2. In Sec. 3, the necessary conditions for optimal production
and investment schedules are derived under partial collusion and full collusion. The
corresponding bifurcation diagrams are derived in Sec. 4 and the two scenarios
are compared in Sec. 5. Sec. 6 concludes. An appendix contains the proofs of all
propositions.

2 The Model

Our present model is an extension of the global monopoly framework of Hinloopen et al.
[38] to two firms and builds on Cellini and Lambertini [34]'. Time ¢ is continuous: ¢ €
[0, 00). There are two a priori fully symmetric firms that both produce a homogeneous
good at constant marginal costs ¢;(t). At every instant, the market price p(¢) is given
as

p(t) = A-Q(), (1)

1 Smrkolj and Wagener [43] show that the equilibrium considered in [34] is not subgame perfect.



where Q(t) = ¢1(t) + g2(¢), with ¢;(¢) the quantity produced by firm ¢ at time ¢, and
where A is the choke price.!?

Each firm ¢ can reduce its marginal cost ¢;(¢) by investing in R&D. In particular,
when firm ¢ exerts R&D effort k;(t), its marginal cost evolves as

dCZ‘

o O =at) =) (—ki(t) — Bk;(t) +9) (2)

where k;(t) is the R&D effort exerted by its rival and where 3 € [0, 1] measures the
degree of spillover.

Note that efficiency of production is assumed to decrease at a constant rate, as
captured by 6 > 0. This depreciation is due to (exogenous) aging of technology
and organizational forgetting (Besanko et al. [44], Lambertini and Mantovani [35]).
As Benkard [45, p. 590] observes: “... an aircraft producer’s stock of production
experience is constantly being eroded by turnover, lay offs and simple losses of
proficiency at seldom repeated tasks. When producers cut back output, this erosion
can even outpace learning, causing the stock of experience to decrease.” In our model,
R&D investment yields know-how gains but the logic of the argument is the same.
For instance, complementary inputs that are typically purchased also constitute a
fraction of production cost. Incorporating these inputs becomes ever more costly due
to their inherent evolution over time, especially for firms that are relatively sluggish
in R&D, as R&D efforts also determine any firm’s ‘absorptive capacity’ (Cohen and
Levinthal [46]).13

Both firms are endowed with a given identical initial technology ¢;(0) = ¢;(0) = co,
which represents the state of the technology at the moment of the invention of the
product. Per unit of time, the costs of R&D efforts are

where b > 0 is inversely related to the cost-efficiency of the R&D process. The R&D
process is thus assumed to exhibit decreasing returns to scale (Schwartzman [47]; see
also the discussion in [38]. Both firms discount the future with the same constant rate
p > 0. Either firm’s instantaneous profit therefore equals

Ti(qi, Q, kiyci) = (A— Q — ¢;)q; — bk?, (4)

with corresponding total discounted profit
o —
Hi(qi>Q7ki7ci) = / Wi(meukiuci)e_ptdt' (5)
0

The model has five parameters: A, 3, b, §, and p. To simplify the analysis, we
rescale the model such that it has only three parameters. Rescaling is done by choosing
‘natural units’ for the problem; it does not involve making special parameter choices.
Rather, each choice of parameters in the original model corresponds to a choice of

12We thus assume that the market size, A, is fixed and known to both firms. A random market
size would not change any of our results qualitatively. See Hinloopen et al. [38] for an analysis of
unexpected changes in A.

13 A non-positive depreciation rate yields trivial equilibria. Every initial technology will be developed
in case § is negative, as there is an exogenous reduction in marginal cost over time. For § = 0,
consider ¢ to be marginally positive. In that case, the value of initial marginal cost that would make
it optimal not to invest in R&D is far above the choke price because only an infinitesimally small
investment in R&D is then needed to reduce marginal cost over time.
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parameters in the rescaled model. The complexity reduction obtained by the scaling
is a consequence of the fact that in the original parameters, many choices give rise
to mathematically equivalent models.'# In mathematical terms, we embed the given
five-parameter family of models in a six-parameter family. We then show that the
scaling transformations we consider allow us to choose three parameter values to be
equal to 1, effectively reducing the number of parameters to three.

Lemma 2.1 The following equations define new variables

t - -
t=s ¢ =Adq, ¢ =Ag,
A - . A2
ki = ﬁkia mi = A%y, I = TH“
and new parameters
A -
(,25 = = = p=4p.
VA
In the new variables, the model takes the form:
ﬁi(div@a ];iaéi) = / ﬁl(dzaQ7z‘luél)eiﬁ£dt~ (7)
0
¢ = ¢ (1_¢(l~€i+61~€j))7 ¢ (0) = &, (8)

where ¢; > 0, and with the control restrictions

G >0, k>0 (9)

The proof of the lemma is given in Appendix A.

Remark 2.1 Rescaling the model as in Lemma 2.1 introduces a new parameter: ¢. It
is one-to-one related to the profit potential of a technology. Higher potential revenues
come with a higher A, and each unit of R&D effort costs more if b increases, while it
reduces marginal cost by less the higher is 0. In sum, a lower (higher) ¢ corresponds
to a lower (higher) profit potential. For notational convenience we henceforth omit
tildes.

Remark 2.2 In mathematical terms, the original model is a specimen of the six-
parameter model given by

& = ci (6 — ¢(ki + Bk;)), Il = /OOO ((A=Q —ci)qi — bk7) e™*"dt,

with parameters values

(A’b757/87¢7p) = (A’B7S’B7l7ﬁ)'

1470 illustrate the usefulness of Lemma 2.1, consider two models with different original parameter-
izations: i) A=10,b=1,8 =02, 5=0.1, 3=0.5,1)) A=20,b=4,5=0.2, p=0.1, 8 = 0.5. Both
models correspond to the same rescaled model with ¢ = A/S\/E =50, p=p/6 =0.5, 3 =0.5, and
are therefore mathematically equivalent in the sense that they have the same solution in rescaled

variables.




The — equivalent — model in new variables is an instance of the same six-parameter
model, but with parameters values

A p
Avb7635a¢7p = <1alalvﬂa——»—> .
( ) VAR
We can, and will, without loss of generality drop the tildes from the ‘new’ variables,
the bars from the parameters, and take A =1,b=1and 6 = 1.

3 Partial Collusion and Full Collusion

In this section we derive the necessary conditions for optimal production and investment
schedules in case firms cooperate in R&D but compete in the product market (Sec.
3.1), and in case firms cooperate in R&D and collude in the product market (Sec. 3.2).

3.1 Partial Collusion

Both firms operate their own R&D laboratory and production facility. They select
their output levels non-cooperatively and adopt a strictly cooperative behavior in
determining their R&D efforts so as to maximize joint profits. These assumptions
amount to imposing a priori the symmetry condition k;(t) = k;(t) = k(t).'5 ¢;(0) =
¢;(0) = ¢o implies that ¢;(t) = ¢;(t) = c(t). Eq. (8) thus reads as

¢ =c(1— (1 + B)ok). (10)

It may seem reasonable to assume that when firms cooperate in R&D, they also fully
share information, that is, to assume the level of spillover to be at its maximum (8 = 1;
see Kamien et al. [49]). For the sake of generality, we do not a prior:i fix the value of
[ at its maximal value. There are also intuitive arguments for not doing so as there
might still be some ez post duplication and/or substitutability in R&D outputs if
firms operate separate laboratories (see the discussion in Hinloopen [50]).

The instantaneous profit of firm i is

Wi(qiank7C) = (1_Q_C)Qi _k2v (11)
with Q = q1 + ¢2, yielding its total discounted profit over time

(41, Q. k) — / 7i(4s, Q. by )t (12)
0

As firms jointly decide on their R&D efforts, the only independent decisions are those
of production. However, as quantity variables do not appear in the equation for the
state variable (10), production feedback strategies of a dynamic game are simply static
Cournot-Nash strategies of each corresponding instantaneous game.

Maximizing 7; over ¢; > 0 gives us standard Cournot best-response functions for
the product market

ll—c—yq))i j —c
Qi(Qj): { 2(1 q]) f g <1 ) (13)

0 if gg>1-c

15 Throughout the paper we consider symmetric equilibria only. See Salant and Shaffer [48] for a
specific example of a static model of R&D where individual firms face different capacity constraints
in which it is optimal for firms in an R&D cooperative to make unequal investments.
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Note that the constraint ¢; > 0 is binding when ¢; > 1 — ¢. Solving for Cournot-Nash
production levels, we obtain

Lla-¢if c<1,
g7 = {309 (1)
0 if e>1.

Consequently, the instantaneous profit of each firm is'®

Sl =) —k*if c<1,

mle k) = —R2if e>1.

(15)

The dynamic optimization problem of the R&D cooperative boils down to finding
an R&D effort schedule k£* for either firm that maximizes the total discounted joint
profit, taking into account the state equation (10), the initial condition ¢(0) = ¢, and
the control constraint k(t) > 0 which must hold at all times. Note that according to
(10), if cg > 0, then ¢(t) > 0 for all ¢. The state space of this problem is the interval
[0,00) of marginal cost levels.

In order to close the model, we have to specify the set of admissible effort schedules

k(t).

Definition 3.1 An R&D effort schedule is admissible if it is a bounded nonnegative
measurable function.

To solve this problem, we introduce the current-value Pontryagin function (also
called the un-maximized Hamilton or pre-Hamilton function)'?

F1 =02 —k* 4+ Xe(1 = (14 B)ok) if <1,

P(e,k,A) = — K2+ Xe(l— (1+B)ok)if ¢>1,

(16)

where A is the current-value co-state variable of a firm in the R&D cooperative. The
co-state (or shadow value) measures the marginal worth of the increment in the state ¢
for each firm at time ¢ when moving along the optimal path. As we expect an increase
of the marginal costs to entail lower profits for the firm, we expect the shadow value
to be nonpositive — that is A\(¢) < 0 — along optimal trajectories.

We use Pontryagin’s maximum principle to obtain the solution to our optimization
problem. Maximizing over the control k > 0 yields

kmaX{O,;)\c(l+B)¢}. (17)

16We implicitly assume that firms face no financial constraints; they can invest in R&D prior
to production. Credit rationing would impose an upper limit on the value of an indifference point;
qualitatively it would not change our conclusions. For a sample of Italian manufacturing firms Piga
and Atzeni [51] find that credit constraints are negligible for R&D intensive firms. Bond et al. [52]
find no significant relationship between the level of R&D investments and cash flow for German and
U.K firms, while Harhoff [53] finds a weak but statistically significant relationship for both small
and large German firms. The sensitivity of R&D investments to cash flow fluctuations seems to be
stronger for U.S. firms (e.g., Himmelberg and Petersen [54], Hall et al. [55]), but by and large, the
literature on the importance of financial constraints for R&D investment is inconclusive (see Hall
and Lerner [56] for an overview).

17We omit a factor 2 for joint profits to obtain the solution expressed in per-firm values. Due to
symmetry, maximizing per-firm total profit corresponds to maximizing joint total profit.
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The maximum principle states further that the optimizing trajectory necessarily
corresponds to the trajectory of the state-costate system

oP oP

aa A:pA_Ev (18)

é:

where k is replaced by its maximizing value. For A < 0, relation (17) gives a one-to-one
correspondence between the co-state A and the control k. We use this relation to
transform the state-costate system into a state-control system which an optimizing
trajectory has to satisfy necessarily as well. This system consists of two regimes (fol-
lowing the two part composition of the Pontryagin function). The first one corresponds
to ¢ < 1 and positive production (¢ = (1 —¢)/3). The second one corresponds to ¢ > 1
and zero production.'® The state-control system with positive production consists of
the following two differential equations:

c=c(l—-(01+ k),
- ((1+B)f)¢ ) (19)
k= pk — *=5*c(1 —c).
The state-control system with zero production is given by
c=c(l—(1+ k),
= c(1= (1+A)sk) o)
k = pk.

3.2 Full Collusion

Under full collusion, firms determine jointly their R&D efforts and their output levels.
This amounts to imposing a priori the symmetry conditions k;(t) = k;(t) = k(t) and
¢i(t) = ¢;(t) = ¢(t). Eq. (8) reads again as Eq. (10). The profit of each firm at every
instant is

7T(q7k)7c) = (1 —2q—c)q—k‘2, (21)

with corresponding total discounted profit

H(q,k,c)z/ 7(q, k,c)e Ptdt. (22)
0

The optimal control problem of the two colluding firms is to find controls ¢* and k*

that maximize the profit functional IT subject to the state equation (10), the initial

condition ¢(0) = ¢g, and two control constraints that must hold at all times: ¢ > 0

and k > 0.1 Notice again that according to (10), if co > 0, then ¢(¢) > 0 for all ¢.
The current-value Pontryagin function in case of full collusion reads as:

P(e,q,k,\) = (1 —2q —c) g — k> + e (1 — (1 + B)ok), (23)

where ) is the current-value co-state variable. It now measures the marginal worth
at time t of an increment in the state ¢ for a colluding firm when moving along the
optimal path.

18Recall from Lemma 2.1 that A = 1 in the rescaled model. In the non-rescaled model, the
analogous conditions for positive and zero production are ¢(t) < A and ¢(t) > A, respectively.

19 Again, due to symmetry, maximizing per-firm total profit corresponds to maximizing joint total
profit.
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The necessary conditions for the solution to the dynamic optimization problem
consist again of a state-control system which has two regimes. As in the partial collusion
case, the first regime corresponds to ¢ < 1 and positive production (¢ = (1 — ¢)/4),
while the second regime corresponds to ¢ > 1 and zero production.

The state-control system in the region with positive production reads as

c=c(l-(01+ k),
' ( £+ﬂyf)¢ ) (24)
k= pk — =" c(1 —¢),
whereas the state-control system with zero production is
c=c(l-(1+ k),
= (1= (1+ B)oh) )
k = pk.
4 Analysis
Consider the system
c=c(l—(1+ k),
= c(1= (1+B)ok) o)
k= pk — a¢(1+ B)c(1 — c)x(c),

where x(c) =1if 0 <c < 1and x(c) =0if ¢ > 1 (or ¢ < 0). Systems (19) — (20)
and (24) — (25) are instances of system (26), with a = 1/9 for the partial collusion
scenario and o = 1/8 for the full collusion scenario.?’

The first result gives the properties of the steady states of the state-control system
(see Appendix B for the proof).

Proposition 4.1 Let
1 P
D=-—————.
4 a(l+p)%¢?

Depending on the value of D, there are three different situations.

1. If D > 0, the state-control system with positive production (24) has three steady
states:

i. (¢, k®) = (0,0) is an unstable node,
i, (¢ ke) = (% ++/D, m) is either an unstable node or an unstable focus,
and
iii. (e, ke) = (% — /D, m) is a saddle-point steady state.
2. At D =0, there are two steady states:
i. (¢, k) = (0,0), which is an unstable node, and
it (¢, k°) = %, m , which is a semi-stable steady state.
3. If D < 0, the origin (c¢,k®) = (0,0) is the unique steady state of the state-control
system with positive production, which is unstable.

The system consequently exhibits a saddle-node bifurcation at D = 0.

20The monopoly system in Hinloopen et al. [38] is also a special case of system (26), with o = 1/4.



12

Remark 4.1 The stable manifold of the saddle-point steady state is one of the candi-
dates for an optimal solution. However, as neither the Mangasarian nor the Arrow
concavity conditions are satisfied, the stable manifold is not necessarily optimal.
Proposition 4.1 already implies that there should be other candidates for optimality
as there is a parameter region for which there is no saddle point, and hence no stable
manifold to it.

The following result clarifies (Appendix C contains the proof).

Proposition 4.2 The set of candidates for an optimal solution consists of the stable
paths W2 of the saddle-point steady state and the trajectory E through the point
(¢, k) = (1,0).

q>0 q=20
E=0
: —~—<——
S 3
w#
‘ e
1 A : /// O+ ¢=0
0 .
0 0.5 1 1.5

Fig. 1 Candidate maximizing trajectories W* and E in the state-control space

Proposition 4.2 is illustrated in Fig. 1. The thick black lines W?* and E indicate
optimal solutions. The dotted vertical line ¢ = 1 separates the region with zero
production from the region of positive production. We label the trajectory E the “exit
trajectory”, as following this trajectory implies that firms eventually leave the region
with positive production.

Proposition 4.2 only reduces the set of trajectories by applying necessary conditions
for optimality, but there is no guarantee that an optimal solution exists. The next
proposition summarizes when an optimal solution exists.

Proposition 4.3 For all admissible values of the parameters, and all initial points,
the optimal control problem has at least one solution, which is among the candidates
specified in Proposition 4.2. Moreover, there is at most one initial state ¢ such that
there are two optimizing trajectories starting at ¢.

The proof is in Appendix D.
To assess the dependence of the solution structure on the model parameters,
we carry out a bifurcation analysis. This consists of identifying those parameter
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values for which the qualitative structure of the optimal dynamics changes. These
‘bifurcating’ values bound open parameter regions such that the optimal dynamics are
qualitatively identical for all parameter values in a region (see Wagener [57], Kiseleva
and Wagener [58]). Put differently, for all points in a region, a sufficiently small change
in parameter values will not lead to a qualitative change of the optimal dynamics;
regions characterize stable types of dynamics.

0.3 T T
0.2 [

02 0.15
0.1
0.1

0.05
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X 0.15 } X
I
I
I
0.05 }
I
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e
0.081€. + 0.1F

0.06 0.08

= X 0.06
0.04
0.04 -
0.02

0.02

|
|
|
|
|
|
|
|
|
|
|
|
|
0 L oL L L L
04 05 06 07 08 09 1 1 0
cq c
(¢) Uncertain future (d) Obsolete technology

0 0.2 0.4 0.6 0.8 1

Fig. 2 R&D investment trajectories for the four stable dynamics types of system
(26) with @ = 1/9 (partial collusion). Parameters: (a) (8,p,¢) = (1,0.5,4), (b)
(B,p,0) = (1,1,3.5), (c) (B,p,9) = (1,4,6.1), (d) (B,p,¢) = (1,1,2.5)

System (26) has four distinct stable dynamics types (cf. Hinloopen et al. [38]). These
are illustrated in Fig. 2 in case of partial collusion.?! The first type is a “Promising
Technology”. In this case there exists an initial technology ¢ > 1 that is an indifference
threshold:?? a point in state space where the decision maker is indifferent between
two optimal trajectories that have distinct long-term limit behavior. In particular, for
0 < ¢g < ¢ it is optimal to start developing the initial technology, ending up in the
saddle-point steady state in the region of positive production. If 1 < ¢y < ¢, initially
firms invest only in R&D; production begins whenever ¢(t) < 1. If ¢o > ¢, it is optimal
not to initiate R&D efforts; potential future profits do not suffice to compensate for

21The same types emerge under full collusion. The stable dynamics types are compared across
scenarios in Sec. 5.

22 Also known as Skiba, Dechert-Nishimura-Skiba or DNSS point; see Grass et al. [32].
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losses that would be incurred in the initial periods during which firms would invest in
R&D but would not produce yet.?3

The second type corresponds to a “Strained Market”, where there is an indifference
threshold below the choke price (that is, in the region with positive production):
0 < ¢ < 1. In this case, if 0 < ¢y < ¢, the initial technology will be developed
towards the saddle-point steady state. If ¢ < ¢y < 1, the exit-trajectory applies; R&D
investments only serve to slow down the technological decay.

In a small part of the parameter space the third type arises: an “Uncertain Future”.
Initial technologies (states) are now divided by a repelling steady state (rather than an
indifference point). If the system starts exactly at the repelling point cg, it stays there
indefinitely; when it starts close to it, it stays there for a long period of time, after
which it converges to one of the two attractors: the steady state or the exit trajectory.

The fourth type typifies the dynamics of an “Obsolete Technology”. Whatever the
initial technology, (eventually) the firms leave the market; R&D investments are only
used to slow down the technical decay.

25

I Promising technology

Il Strained market

ngert. fut.
¢(1+0) =
or ISN
A= IV Obsolete technology
51
s
0
0 0.5 1 15 2 25 3 35 4 45 5
P

Fig. 3 Bifurcation diagram (partial collusion)

The four different dynamics types are grouped conveniently in a bifurcation diagram
(see Fig. 3): the graph that indicates for every possible parameter combination the
qualitative features of any market equilibrium as well as the transient dynamics
towards them. In Fig. 3, the uppermost curve represents parameter values for which
the indifference point is exactly at ¢ = 1. At the saddle-node curve (SN), an optimal
repeller and an optimal attractor collide and disappear. The curve SN’ corresponds
to saddle-node bifurcations in the state-control system that do not correspond to
optimal dynamics. At the indifference-attractor bifurcations (IA), an indifference point
collides with an optimal attractor and both disappear. Finally, at an indifference-
repeller bifurcation (IR), an indifference point turns into an optimal repeller. The

23Note that for ¢ = ¢, there are two distinct R&D investment trajectories, which are, nevertheless,
both optimal; see also Proposition 4.3.
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central indifference-saddle-node (ISN) bifurcation point at (p, ¢(1 4+ 3)) ~ (2.14,8.78)
organizes the bifurcation diagram. The curve representing indifference points at ¢ =1
obtains a value of ¢(1 + ) ~ 2.998 for p =1 x 107°.

5 Collusion and the Incentives to Innovate
In this section we compare the global optimum of the two scenarios. For a welfare

comparison, we introduce total discounted values of profits (IT), consumer surplus
(CS), and total surplus (TS)

m= [ m(t)e " tdt, (27)

0
CS = /0 %U — p(t)Q(t)e " dt = /0 2g(t)%e " d, (28)
TS =211 + CS, (29)

where at time ¢ = 0 firms start with ¢y and then invest along the optimal trajectory
v(t) = (c(t), k(t)) as t — oo.

We first formally establish that the two scenarios yield different (optimal) trajec-
tories. In Fig. 4 the bifurcation diagrams of both scenarios are superimposed. There
are significant quantitative differences between the two diagrams, as reflected by the
different locations of the curves that divide the parameter space. Let I, I[I;,...,i = 1,2
denote regions I, II,... under scenario 4, with ¢ = 1 (2) corresponding to partial (full)
collusion. The following then holds (see Appendix E for the proof).

25

20 T

é(1+ )

10 ISN

SN

Fig. 4 Superimposed bifurcation diagrams. Partial collusion curves are grey, full
collusion ones are black
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Proposition 5.1 The following inclusions hold:

I CIQ,
Il UIIl C 12 UIIQ7
LUILUIIL C LUILUITL,.

)

The first inclusion of Proposition 5.1 implies that the “Promising Technology’
region is larger if firms collude in the product market; due to collusion, the situation
where firms first invest in R&D, and only after some initial development period
start producing, is more likely to occur. From the third inclusion follows that the
“Obsolete Technology” region is smaller if firms collude; firms that collude are less
likely either not to develop an initial technology, or to invest in R&D only to abandon
the technology in time.

5.1 R&D Investment Incentives

In line with much of the related literature (Tirole [14]), Proposition 5.1 suggests that
colluding firms have in general a stronger incentive to invest in R&D. This turns
out to be the case, as the next proposition formally shows (see Appendix F.1 for the
proof).

Proposition 5.2 Investment in RED in the full collusion scenario is always at least
as high as in the corresponding partial collusion scenario.

Proposition 5.2 implies the following. First of all, whenever both scenarios lead to
the saddle-point steady state, marginal costs in the full collusion scenario are lower
than in case of partial collusion, because fully colluding firms have invested more in
cost-reducing R&D to arrive at the long-run equilibrium. Put differently, product
market collusion yields a higher production efficiency.

Second, if the initial technology leads to production after some initial development
period only, colluding firms will enter this production phase more quickly because at
every instant of the pre-production phase they invest more in R&D in order to bring
the level of marginal costs below the choke price.

Third, firms that collude in the product market abandon obsolete technologies at
a lower pace. This implication has a similar vein as the argument of Arrow [59], that a
monopolist has less incentive to invest in R&D than an otherwise identical but perfectly
competitive market, because by doing so the monopolist replaces current monopoly
profits by future (higher) monopoly profits. Here, the alternative for colluding firms is
to exit the market more quickly (rather than staying in the market as a monopolist,
as in Arrow [59]), an alternative that for them is not optimal (see Fig. 5).

The difference in R&D intensity across the two scenarios is also reflected in the
type of trajectories that firms select. To characterize this difference for all possible
situations, it is convenient to have defined the threshold level of initial marginal cost
¢ between ‘eventual exit’ and ‘eventual positive production’. Formally, set ¢ = 0 in
the “Obsolete Technology” region and let ¢; and ¢ denote the threshold level for the
partial collusion and the full collusion scenarios, respectively. We can then state the
following (see Appendix F.2 for the proof).

Proposition 5.3 For all parameter values, either ¢; < ¢o or ¢ = ¢é3 = 0.
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cs

(©) (d)

Fig. 5 State-control space (a), total discounted profit (b), consumer surplus (c),
and total surplus (d), when the exit trajectory is an optimal solution. Parameters:
(B, p,0) = (1,1,2). Curves of the partial (full) collusion scenario are grey (black)

The implications of Proposition 5.3 are twofold. First, if firms collude in the product
market, the set of initial technologies that are developed towards the saddle-point
steady state is larger (see Fig. 6). In particular, if the initial technology c¢g falls in
the non-empty interval (¢, éz), it will only be brought to full materialization if firms
collude in the product market.

Second, the set of initial technologies that triggers no investment in R&D at all
or that induces firms to select the exit trajectory is smaller if firms collude in the
product market. Fig. 7 illustrates this for a Strained Market. The strained investment
circumstances induce partially colluding firms to exit the market in due time for all
co > ¢1. In contrast, fully colluding firms exit the market only for ¢y > ¢s. Initial
technologies ¢ in the interval (¢, éa) are therefore only brought to full maturation by
firms that collude in the product market.

We can conclude that due to collusion in the product market (i) it is more likely
that an initial technology qualifies as a Promising Technology, and if so, that it is
more likely to be developed further, (ii) it is less likely that an initial technology
qualifies as an Obsolete Technology, and if so, it is more likely that firms invest in
R&D, albeit temporarily, and (iii) if an initial technology causes a Strained Market or
if it induces an Uncertain Future, it is less likely that it will be taken off the market
in due time. Put differently, due to product market collusion it is more likely that
firms invest in R&D, and that these investments eventually lead to a steady state
with positive production.
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(c) (d)

Fig. 6 State-control space (a), total discounted profit (b), consumer surplus (c), and
total surplus (d), when the indifference point is in the region with zero production.
Parameters: (3, p, ¢) = (1,0.1,2.25). Curves of the partial (full) collusion scenario are
grey (black)

5.2 Total Surplus

We next consider the effect of product market collusion on total surplus. Obviously,
collusion in the product market yields higher total surplus if colluding firms develop an
initial technology and arrive at the saddle-point steady state while firms that compete
in the product market would not develop the technology at all. Formally,?*

Proposition 5.4 Whenever both scenarios have an indifference point above the choke
price, the full collusion scenario yields higher consumer surplus and total surplus than
the partial collusion scenario for all initial technologies in between the two indifference
points.

Fig. 6 illustrates Proposition 5.4: for all ¢g € (¢1, &), collusion in the product
market yields a higher total surplus. Fig. 8 illustrates some comparative statics of the
indifference points in this case. Indeed, these points are positively related to market
size and R&D efficiency. Note, however, that also Aé = ¢é; — ¢; increases if the R&D
process becomes more efficient and/or if the market size becomes larger, the more

24The proof of Proposition 5.4 follows trivially from the fact that i) for all values of ¢ above the
indifference point in the region where ¢ > 1, both ¢ = 0 and k = 0 for all ¢ € [0,00), and i) for all
values of ¢ below the indifference point, IT > 0 and for some finite time 7" also ¢ > 0 for all ¢t > T as
t — oo.
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Fig. 7 State-control space (a), total discounted profit (b), consumer surplus (c),
and total surplus (d), when the indifference point is within the region with positive
production. Parameters: (5, p,») = (1,0.1,2). Curves of the partial (full) collusion
scenario are grey (black); curves of the stable path (exit trajectory) are solid (dotted).
Dots indicate the saddle-point steady state

so the lower is the discount rate (in Fig. 8, a lower discount rate corresponds to a
larger slope of the convex curves). Because future mark-ups are positively related to
both market size and R&D efficiency, an increase in either of these two has a larger
(positive) effect on future profits if firms collude in the product market. And these
future benefits feature more prominently in total discounted profits if the discount
rate is lower. Therefore, indifference points correspond to lower marginal costs values
if the discount rate goes up, all else equal (cf. the relative location of C; and Cy in
Fig. 8).

Product market collusion can also yield higher total surplus if colluding firms
arrive at the saddle-point steady state while firms that compete in the product market
would select the exit trajectory. In these cases, firms that compete in the product
market temporarily produce more. This is off-set by the added benefits of sustained
R&D investments under full collusion if the discount rate is sufficiently small (see Fig.
7).

Finally, collusion in the product market can also yield a higher total surplus
if under both scenarios firms would select the trajectory towards the saddle-point
steady state: in Fig. 9, for all ¢y € (¢*,é2), total surplus is higher if firms collude
in the product market. In this example, the discount rate is high: p = 10, which
corresponds, for instance, to the non-rescaled variables § = 0.01 and p = 0.1. Also,
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Fig. 8 Dependence of the indifference point ¢ on model parameters. Curves of the
partial (full) collusion scenario are dotted (solid)

(2) (b)

Fig. 9 Total surplus when the indifference point is in the region with zero production.
Parameters: (3, p, ¢) = (1,10, 50). Grey curves correspond to partial collusion, whereas
the black ones correspond to full collusion. ¢* ~ 3.6, ¢; ~ 4.01, ¢; ~ 4.74. For all
¢co € (¢*, é2), total surplus is higher if firms collude in the product market

the initial marginal costs are sufficiently high. In such an environment, the higher
R&D investments and the reduced importance that is attached to future surplus
work in favor of product market collusion as under this scenario firms will reach the
production stage more quickly, a benefit that more than off-sets the welfare loss of
future increased mark-ups.??

25More precisely, a higher (rescaled) discount rate p = p/§ implies either a higher discount rate p
or a lower 6. With a lower 4, cost reductions take longer, such that the time difference in reaching
the production stage between the two scenarios becomes more pronounced.
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6 Conclusions

Schumpeter’s famous observation continues to challenge the design of optimal compe-
tition policies for high tech sectors. The classic rationale for competition policies is
rooted in their effect on total surplus. Typically, product market collusion transfers
consumer surplus to firm profits, resulting in a net loss of total surplus. To date, the
literature considers this result to be robust to the increased incentive to invest in
R&D that comes with collusion in the product market. Our analysis shows that it
actually fails this robustness check if the phase of development prior to production is
taken into account and/or if all possible R&D investment trajectories are considered.

According to our analysis, extending an R&D cooperative agreement to collusion
in the product market is welfare enhancing if the market size is large and/or the R&D
process is efficient, given a relatively modest discount rate. The profit potential of a
new technology is then relatively large. As a result, firms that collude in the product
market bring more initial technologies to full materialization.

A particularly disturbing situation arises when the initial draw ¢y out of (&1, é)
is above the choke price (¢g > 1). The welfare cost of prohibiting firms to collude in
the product market then remains hidden because no production is affected by this
prohibition. There is no production yet, and because collusion is prohibited, there will
be no production in the future. Put differently, no production will be taken off the
market if firms are prohibited to collude in the product market.

Our analysis thus signals a potential problem for antitrust policy as it shows that
prohibiting collusion in the product market per se is not univocally welfare enhancing.
It also shows that the associated welfare costs might not surface. Further research is
needed to substantiate our qualification of prohibiting collusion per se, including the
development of richer models that allow for learning by doing, stochastic R&D, and
asymmetries between firms.
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Appendix

A Proof of Lemma 2.1

We shall refer to the original variables t, g;, ... as the ‘old’ variables, and to the

variables t, §;, ... as the ‘new’ variabels.

In the new variables, the left and right hand sides of equation (2) take the form

de; - dc
(3 A(S T
dt

Ci(—ki — Bk] + 8) = Aél (—

Equation (2) then simplifies to

dit

as claimed in the lemma.

Writing the total discounted profit in the new variables yields

II; = / ((A—Q—ci)g — bk7) e~ P'dt

00 B /A 2
/ (A—AQ — Aci)chi—b<> kf) _5”(t/5)6dt
0

B Proof of Proposition 4.1

&G _ (1 - ,i(fci - ﬁffj)) =G (1 — p(ki + B’%)) ;

Second rescaling of the problem. Recall the dynamic optimization problem: to

maximize
I = / a(l—c)?x(c) — k*) e *dt,
subject to the dynamic restriction
¢=(1—-¢(1+p)k)c.

This problem is rewritten by introducing constants

1 2(1 2
K=——— and MZiaqb( +5) ,
P(1+B) 4p
and the variable u through
k= Ku.
It is then seen to be equivalent to the problem to maximize

V= 11(72 = OOO (4pu(1 = ¢)*x(c) —u®) ™

(30)
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subject to the dynamic restriction
c=(1-u)c (32)

and the control restriction
u > 0.

The Pontryagin function of this problem is
P =4pu(1 —c)*x(c) — u? + Ae(1 — u),

which is maximized at

u:maX{O,—g)\}. (33)

This yields the Hamilton function

Qa9® i <o

H =4pp(1 —c)*x(c) + Ac+<¢ 4 34
pu(1 = *x(0) {0 R (34)
If A <0, the associated state-costate equations read as
by 2
é:H,\:%Jrc, (35)
. )\2
A=pA—H, = pA+8pu(l —c)x(c) — e~ A, (36)

whereas if A > 0, they simplify to
c=c, A=(p—DA+8pu(l —)x(c). (37)

For A <0, relation (33) defines a variable transformation that puts the system into
state-control form

¢=Fi(c,u) =c(l —u), (38)
i = Fa(e,u) = p (u— 4pue(l — () (39)

Note that this system is only valid for u > 0, as for A > 0, the relation between u and
A fails to be one-to-one. For later use, we note that in (¢, u) variables, the Hamilton
function takes the form

Hcontrol(ca u) = 4p/’b(1 - C)QX(C) + UQ — 2u. (40)

B.1 Steady States

To determine the steady states of the state-control system (38)—(39), we solve the
equations ¢ = 0, @ = 0. It is immediate that this system has no solutions if ¢ > 1.

If 0 < ¢ <1, the equation ¢ = 0 is satisfied if ¢ = 0 or u = 1. Substitution into
@ = 0 of the former yields the steady state (¢, u) = (0,0). Substitution of the latter
leads to the quadratic equation

c2—c+i—0
ap
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which can be written as

with

Dzi(l—i). (41)

Note that D < i, as all parameters are assumed to have positive values. For D > 0,
the quadratic equation has two real solutions

1 1+/1-1
er=Lxyp=LEVIZUE

both satisfying 0 < ¢+ < 1; for D = 0, there is a single real solution ¢ = 1/2, while for
D < 0, there is no real solution.
Summarizing, in the region 0 < ¢ < 1, there is always the steady state

(c,u) = eg = (0,0).

If D = 0, there is the additional steady state
1
e =a=(5.1). (42)
and if D > 0, there are
1
(c,u) = et = (cx,us) = (2 + VD, 1) . (43)

These are all the steady states of the state-control system (38)—(39).

B.2 Stability

To analyze stability, we have to determine the eigenvalues of

1—u —c
dpp(2c—1) p

at the steady states eg, e4 and e_. As

DFteo) = <—41f>u 2) ’

which has eigenvalues p and 1, the point e is always an unstable node.
Denote the eigenvalues of the matrix

0 —C4+
DF(ex) = <i8pu VB ) (44)

by A, i = 1,2. They satisfy

AL+ A1 =trace DF(ex) = p
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and
A2 = det DF(ex) = +8pucsVD.
We have seen before that c. > 0 whenever it is real. If D > 0, it follows that the
eigenvalues AL, A2 have opposite sign, and e_ is a saddle, whereas )\1+ and /\2+ have
the same sign and positive sum, implying that e, is an unstable node.
Expressing these results in the original variables, we obtain the results announced
in the proposition.

B.3 Bifurcation Analysis

It remains to prove the occurrence of a saddle-node bifurcation. If p = p, = 1, then
D =0 and the point e, = (¢p, up) = (1/2,1) is a steady state with eigenvalues 0 and p
respectively.

We use a result from Sotomayor [60] (quoted as Theorem 3.4.1 in Guckenheimer
and Holmes [61]), which for planar dynamical systems states that if the family

&= F(z;p)
parametrised by p satisfies the following three conditions

1. D, F(zo; po) has a simple eigenvalue 0 with right eigenvector v and left eigenvector
w;

2. wD, F(xo; po) # 0;

3. w [D F(zo; 10) (v, U)] # 0;

then it features a non-degenerate saddle-node bifurcation at x = zy for p = pyg.
As DF(ep; 1) = (8 _;/2>, it follows that v = ((1)

tively left and right eigenvectors associated to the eigenvalue 0. Furthermore

and w = (2,0 1) are respec-

wD, F(ep; pp) = w (_Op> =—p#0

and, as v = <(1)),

0? 0
w [DEF (e ) o)) = 0z F = (g)) =89 20

We conclude that a nondegenerate saddle-node bifurcation occurs in the system at
1 = 1. This completes the proof of Proposition 4.1. O

C Proof of Proposition 4.2

As in the proof of Proposition 4.1, introduce the constants

ag(1+8) _ ad’(1+6)°

and u= =

1
T e(1+B) 4pK 4p

as well as the rescaled control variable v = k/K. The state-control system then takes
the form

c=c(l—u), u:p(uflluc(l fc)x(c)). (45)



26

Recall also the notations

eo =(0,0), e_= (W 1>7 ey = (1—#\/;——1/#71>

2 )
for the three steady states of the system, and introduce
[ (]., 0)

To prove the proposition, the state-control space is partitioned into four subsets, Ry,
R5, R3 and E. Of these, the sets R3 and E are independent of the values of the system
parameters. They are given as

Ry ={(c,u) : 0<ec<l,u=0}, E={(cu):c>1 u=0}

Let U = {(c,u) : u > 0} be the upper half plane. Given the set R;, the set Ry is

equal to
Ry = U\R;.

It remains to specify Ri, which is the first step in the proof. Then it is shown that
no trajectory in either Ry or Rs can be optimal. The next step is to demonstrate
that of the trajectories in R;, only those can be optimal which converge either to
a steady state in R;, necessarily a saddle, or which end up in the “exit trajectory’
E. Then it has to be shown that the trajectories that are not excluded up to this
point, the candidate trajectories, “cover” the state space; that is, for every initial
state cg, there is at least one candidate trajectory passing through the line ¢ = ¢g.
Using parts of the remaining candidate trajectories, we construct a viscosity solution
of the Hamilton-Jacobi equation, which is then necessarily the value function. This
shows the optimality of the remaining trajectories.

)

C.1 Definition of Ry
Set
ug = max{1, pu},

and consider the trajectory v(t) = (c(t), u(t)) of the system (45) that passes at t =0
through the point (1, ug).
If 4 <1, then ug = 1 and R; is specified as

R ={(c,u) : 0<c<1,0<u<1}.

If the other possibility 4 > 1 obtains, then up = g > 1 and ¢(0) < 0. In this
situation, let 7 be the least upper bound of those negative values of ¢ that satisfy
c(t) < 1; that is, let

T=sup{t <0 : c(t) <1}.

We claim that 7 is finite. Arguing by contradiction, assume that 7 = —oo. Then for
all ¢ < 0 we have c(t) > 1, and Eq. (45) implies that for all t < 0

u(t) = uge’.
In particular, there is a t; < 0 such that

u(t) < wupe’ =1 Ky < 1
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for all ¢ < t;. But for those values of t, it follows that
¢=(1-u)e>(1-Ky)e=: Kac,
where Ko > 0. Gronwall’s lemma implies then that
c(t) < ef2t=te(t))

if t < t1. But for ¢ sufficiently small, this is smaller than 1, contradicting the hypothesis
that 7 = —oo. Hence 7 is finite.

Introduce u, by the equation v(7) = (1,u,). The set R; is defined as follows: it is
the open region bounded by the concatenation of the curve v taken between ¢t = 0
and t = 7, connecting (1,up) and (1, u,), the vertical line segment connecting (1, u;)
to e1, the horizontal segment connecting e; to eg, the vertical segment connecting eg
to (0,ug), and the horizontal segment connecting (0, ug) to (1,up). See Fig. 10 for the
possible shapes of R;.

(@) <1 (b) u>1

Fig. 10 Definition of the set R;. Solid curves denote the boundary of the set, dashed
curves the isoclines of the system (38)—(39)

C.2 Trajectories in Ry Cannot Be Optimal

In the second step of the proof, the transversality condition is used to show that any
trajectory that passes through points in Ry cannot be optimal.
Beginning with Ry, we note that the subset

R ={(c,u) : 0<c<1}NRy

of Ry is a forward trapping region: once a trajectory of (45) is inside Rél), it remains
inside for all subsequent times. This fact is established by demonstrating that the
vector field defined by (45) is inward pointing on the boundary of Rél). For, if
u=wug =max{l,u} and 0 < ¢ <1, then

= p(p—4pc(l —c)) =0.
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If c=0, then ¢ = 0, and if finally ¢ =1 and u > ug > 1, then
¢<c(l—1)=0.
Actually, we can make the sharper statement that if u > ug, then
4> 0. (46)

To show that no trajectory that enters Rél) can be maximizing, pick an arbitrary
trajectory « such that y(to) € Rél) at a given time ty. By the Poincaré-Bendixon
theorem, «(t) is either unbounded, or its w-limit set is a steady state, or a limit cycle.
The latter possibility is excluded, as the state-costate system, which is in one-to-one
relation with the state-control system, has constant positive divergence everywhere
(see Wagener [57]). There are no steady states in Rgl). Hence there is a sequence
to,t1,. .. such that ||v(¢;)|| — co. In particular, there is ¢ > ¢y such that u(¥) > 2uq.
But then u(t) is monotonely increasing towards infinity as t > £, as a consequence of
(46).

Consequently, if ¢ > ¢, then

¢ < (1-2up)c< —c.
By Gronwall’s lemma it follows that
o(t) < c(f)e= D, (47)
Likewise, if ¢ > ¢, then u(t) > 2uy and
> plu— p).
Gronwall’s lemma implies then that
u(t) > e+ (2ug — p)e’t 0. (48)

If the trajectory v(t) = (c(t), u(t)) is optimal, then by the Hamilton-Jacobi equation
(see e.g. Wagener [57]), the total profit IT takes the value

1T(¢(0)) = %H«:(o» A(0)) = %Hcommc(oxu(o». (49)

Michel’s transversality condition (Michel [62]) states that along a maximizing trajectory
the relation

lim I7(c(t))e " =0

t—o00

holds. Combining (49) and (40) yields

e Pt

H(e(t)e™" = (1p(1 = e(t)*X(elt)) + ult) u(t) ~2)) ©=.

Using that the first term between brackets is always nonnegative, and taking into
account (48) yields that

et > (2ug — p)e” ™D (1 — 2 + (2up — p)e’t=D)e ™7t
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As 2ug — pp > p > 0, it follows that the right hand side of this inequality tends to
infinity as ¢ — co. But then

lim 17(c(t))e " = oo,

t—o0

and v cannot be a maximizing trajectory.
It remains to show that no trajectory passing through

Ry = Ro\RY,

the complement of Rél) in Ry, can be optimal. Consider therefore a trajectory - such

that (o) € RgQ) for some ty. As in the definition of the region R;, using Gronwall’s
lemma it can be shown that there is some ¢; > to such that u(t;) > 1, and some

to > t1 such that u(tz) > 1 and ¢(t2) = 1. But then v enters the trapping region Rél),
and we have already seen that such trajectories cannot be optimal.

C.3 Trajectories Intersecting R3 Cannot Be Optimal

If a trajectory intersects R3, the state-control representation breaks down, and we
have to switch to the state-costate representation.
Pick an arbitrary state-costate trajectory v(t) = (¢(t), A(t)), with associated control

u(t) = max{0, f%c(t))\(t)}

such that (c(to), u(to)) € R for some tg > 0 and (c(t),u(t)) € Ry for all t < ¢y that
are sufficiently close to to. The costate A then satisfies A(Z9) = 0. Equation (36) then
implies that A(tg) > 0. Note that the region

Rs={(c,\) : A >0}
is a trapping region for the state-costate flow, as A > 0 whenever A = 0.
Using Gronwall’s lemma, we show first that
c(t) > e(tg)elt 1),
for t > tg, since ¢ = ¢ > ¢ in R3 (Eq. (37)). It follows that there is t; > to such

that ¢(t) > 1 for all ¢ > t;. Consequently x(c(t)) = 0 for these values of ¢, and the
state-costate equations reduce to

é=c¢, A=(p—1)\ (50)

Let h(t) = H(c(t),A(t)). For all ¢ > t; we have ¢(t) > 1 and A(t) > 0 and

consequently h(t) = A(t)c(t) > 0. Compute:
h = Ae+ M\ = pAe = ph.
Hence
h(t) = h(ty)e”t=1)
for all £ > t1. But then
tgrgo h(t)e "' = h(t;)e™*" > 0.
If v is optimal, Michel’s transversality condition implies that
1 h(t
tlggo I (c(t))e P = tlggo ;H(c(t),)\(t))efpt = tlggo (p)ept =0.

As this is a contradiction, the trajectory v cannot be optimal.



30

C.4 Trajectories in Ry with Wrong Limit Behavior Cannot Be Optimal

As the set R; is bounded, by the Poincaré-Bendixon theorem trajectories in Ry can
either converge to a steady state, or leave Ry (cf. the argument in Sec. C.2). Those
entering either Ry or R3 have already been shown to be suboptimal. The remaining
possibility is to leave Ry through the point e; and enter the line segment FE; these
trajectories remain candidates for optimality.

Trajectories remaining in R; have to converge to a steady state. From proposition
4.1 we learn that eg and e, are unstable nodes, to which no trajectory can converge
as t — oo. The only remaining candidate is then the saddle e_, if u > 1, or the
bifurcating point e, if p = 1.

This completes the proof of Proposition 4.2. O

D Proof of Proposition 4.3
D.1 Construction of Policy Functions

The first step in the proof is to construct those (parts of) trajectories of the system (45)
that will turn out to optimize the profit functional. In particular, we shall construct a,
possibly multivalued, policy function uy such that the following holds. If (co, uo) is
such that ug = us(cp), then the trajectory (c(t),u(t)) of (45) starting at this point
satisfies, for all ¢t > 0, that é(t) # 0 and u(t) = us(c(t)).

Again we have to distinguish between the situations 4 < 1 and p > 1.

D.1.1 No Steady States in Ry

If 4 < 1, the only steady state of (45) is the origin e, which is an unstable node.
Therefore, the only candidate optimizer is the trajectory ~(t) passing through the
point v(0) = ey; see Figure 12a. Note that a corollary of the analysis performed above
is that the set Ry is a backward trapping region: if a trajectory is in Ry for some time,
it is in Ry for all previous times, and it necessarily converges to the origin as ¢ — —oo.

Write y(t) = (cy(t),u,(t)). The fact that y(t) € Ry for all ¢ < 0 implies that
¢y > 0 for all ¢ < 0 — recall that Ry is open. Moreover, as u(t) = 0 for all t > 0, it
follows that ¢, > 0 for all ¢ as well, and that the map ¢, : R — (0, 00) is invertible,
with inverse ¢ = t,(c). Define uys : (0,00) = R by

ug(€) = uy (ty(c))

Then the image of the curve v : R — R? is equal to the graph of the function
us : (0,00) = R, as

Uy (1) = us(cy(t))
for all ¢.

D.1.2 > 1: Construction of the Region S

If p > 1, though R; is still a backward trapping region, there are at least two steady
states in Ry: apart from the origin ep, which is in the boundary of R;, we have e_
and ey in the interior of Ry. As seen before, if D > 0, the first is a saddle and the
second a repeller; if D = 0, and hence p — 1, these two points coincide in ey,.
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Introduce the curve segments §;, i = 1,...,4, as follows: §; is the part of the
parabola u = 4uc(l — ¢) connecting ey to e_, do the segment of the line u = 1
connecting e_ to ey, d3 that part of the same parabola connecting e to e;, and dy
the segment of the line u = 0 connecting e; to ep. All curves d; are taken without
their endpoints. Let finally S; C Ry be the open subregion of Ry that is bounded by
the curves 0;, i =1,...,4. See Fig. 11.

S
/ \
, \
I S O I
S/e 5> \
/ \
/ \
/ \
/
/61 S
/
/
;
/
[9
€ 04

Fig. 11 Subdivision of region R;. The vertices eg, €1, e— and e, the edges J;,
i=1,...,4, and the faces S;, i = 1,...,4 are defined in the text

Let, as before, v(t) = (c(t),u(t)) be the trajectory of (45) satisfying v(0) = e;. As
the open set S7 is bounded, the trajectory - either converges to a steady state on the
boundary of S7, or it enters S; for the last time by crossing one of the curves §;. We
analyze the possibilities one by one.

D.1.83 Invoking the Poincaré—Bendixon Theorem

We classify the possible limit behaviour of the trajectory «(t) that satisfies y(0) = ey
as t — —oo. The region R; being a bounded backward trapping region, ~(t) € R; for
all t < 0.

The Poincaré-Bendixon theorem (cf. [63], p. 29) asserts that, asymptotically, v(t)
converges either to a steady state, a limit cycle, or a heteroclinic cycle. Since the
state—control system (38)—(39) is diffeomorphic to the state-costate system (35)—(36),
and since the latter has positive divergence everywhere, the existence of limit cycles
or heteroclinic cycles is ruled out (cf. [57]). Therefore v(t) can converge either to e,
or e_, or ey, as t — —oo.

Looking more precisely at the behaviour of v(¢) in S1, we claim that either of the
following possibilities holds:

1. ~(t) € Sy for all t and v(t) — e_ as t — oc;
2. y(t) € Sy for all t and y(t) = ey as t — oo;
3. there is a largest value t; of ¢ such that y(¢) € S; and y(t1) € dy;
4. there is a largest value ¢; of t such that v(¢) € S; and y(t1) € da.

This is equivalent to stating that if v(¢) € Sy for all ¢, it cannot tend to eg as t — —oo.
The claim follows from the fact that @(¢) < 0 in Sy and that ey = (0,0), which im-

plies that lim; , o u(¢) =0, u(0) = 0 and @(t) < 0 for ¢ < 0, which is a contradiction.
We proceed by analysing these situations one by one.
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(¢) p > 1, v enters Sy through 1 (d) pu > 1, v enters S1 through &2

Fig. 12 Illustration of various possibilities for the trajectory = through the point
€1 = (1, O)

D.1.4 The Trajectory v Remains in S1 and Tends to e_
Reasoning as in the situation D < 0, we obtain a policy function
usfl) t(e—,00) = R

with
lim u;l)(c) =u_ =1.

cle_
However, this function is not defined for all ¢ > 0. To construct a policy function
for 0 < ¢ < c_, we take a trajectory v° on the left half of the stable manifold of the
saddle e_.

We claim that this part of the stable manifold is contained in its entirety in the
region Ss that is bounded by ¢;, the segment of u = 1 connecting e_ to (0, 1), and
the segment of the line ¢ = 0 connecting (0, 1) to eg. It is straightforward to show that
Ss is a backward trapping region; consequently, every trajectory in Ss converges to
the unstable node eg as t — —oc.

The stable manifold of e_ is tangent to the stable eigenspace of

DF(e-) = (8p2¢5 _;> |

cf. Eq. (44), at e_. Note that the vector v = (0,1) cannot be an eigenvector of this
matrix, as ¢_ # 0. Therefore any eigenvector v = (vq,vs) satisfies v; # 0; it may
therefore be assumed that vy = 1.



R&D Cooperatives and Market Collusion: A Global Dynamic Approach 33

Let v® = (1,v3) be the stable eigenvector, with eigenvalue A* < 0. The eigenvalue
equation
DF(e_)v® = A\%v*

then yields
vy =—— >0.

Locally around the saddle, the stable manifold coincides with the graph of a function
w?, defined on a neighborhood of ¢_, which is of the form

wi(c) =c_ +vi(c—c_ )+ 0((c—c_)?).
In particular, if ¢y < c_ is sufficiently close to c_, then

dw?
de

for all ¢ € [cp, c—]. The trajectory () of (45) such that v(0) = (co,w*(co)) conse-
quently satisfies ¢ < ¢(t) < c_, as well as ¢(t) > 0 and u(t) > 0 for all ¢ > 0. We infer
that necessarily

(¢)>0

Ape(t)(1 - e(t)) < ult) <1

for all ¢t > 0, and hence (c(t), u(t)) € So for all £ > 0. But as S is a backward trapping
region, the trajectory -y is contained in Sy for all ¢, hence satisfying

v(t) = ey as t— —oo, and v(t) = e- as t— oo
As in Ss, we have ¢ > 0 everywhere, and we construct as above a policy function

u'? (0,c-) = R, with lim u(2)(c) =u_=1.
! prouis

It follows that the function
ugcl)(c) ife>c_,
uf(c) =< u_ ife=c_,

u?)(c) if0<e<e,

is a continuous policy function that is defined for all ¢ > 0.

D.1.5 The Trajectory v Remains in S1 and Tends to e

As before, we can construct a policy function

ugcl) t(cy,00) = R, with  lim u;l)(c) =uy = 1.

cley
The remaining part of the policy function has to be furnished by the stable manifold
of e_. As above, the left half of this stable manifold furnishes a policy function

u? :(0,c-) + R, with lim WP ) =u =1.
We turn to the right half of the stable manifold. For values of ¢y larger than but
close to c_, the point (cg,up) = (co, w*(cg)) on the stable manifold is contained in
the bounded open region S5 that is bounded by the line v = 1 and the parabola
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u = 4puc(1 —¢). In this region ¢ < 0 and k < 0. Fix (co,ug) and consider the trajectory
v of (45) such that v(0) = (co, up). This trajectory enters S3 through the part of the
parabola connecting its vertex (1/2, 1) with the point e, . It enters from the region Sy
that is bounded by that same part of the parabola, the line v = u4 and the boundary
of Ry. In that region, ¢ < 0, but k > 0. It follows that the trajectory has to enter Sy
through the line segment of ¢ = ¢4 connecting e and (¢4, ), or through one of the
endpoints.
If v(t) — ey as t — —oo, then its graph defines a policy function

ugp3) i (c—yeqy) >R with  lim ugc?’)(c) =u_=1, lim u(fg) (¢) =ugy =1.

cle— cTeq

A continuous policy function is then given by

u&l)(c) ifc>cy,

Uy ifc=cy,
us(c) = u?)(c) if0<ec<e,
U_ ifec=c_,

ugc3)(c) if e <ec<ey.

Otherwise, there is a time #; < 0, such that ¢(t1) = ¢4+ and u(t1) > uy. As in this
case y(t) does not tend to a steady state in the boundary of Sy, it has to enter Sy for
some ty < t1; the only possibility for this is through the line u = 1. We therefore have

v(t2) = (em, 1),

where c)s is defined by this equation. In this situation, the graph 7([t2,00)) defines a
policy function

ugc3) :(c_,epr) = R with  lim u}s)(c) =u_=1, lim u(g)(c) =1
cle_ ctenmr

On the interval (c4,cpr), there are now two policy functions defined. Introduce the
associated profits

a® (C) = p_chontrol(Ca u;z) (C)), 1=1,3.

For fixed values of ¢, the function Heontro1(c,u) is minimal at w = 1. Hence the
policy ugcg) is superior to u}l) at ¢ = ¢, in the sense that IT®)(c,) > IT(M(c, ), since
ugcl)(c+) = 1. In the same manner it follows that IT®)(cy) < IT™M(cpr). As both

functions are continuous, there is a value ¢ = ¢ such that I71(3)(¢) = T (¢). This is
an indifference point, as the manager is indifferent between two policies at this state.
A policy function, which is at one point two-valued, is then given by

ugcl)(c) if ¢ > ¢,
uscl)(é) or ugcs)(é) ifc=¢,
ur(c) = ugpz)(c) if0<e<e,
U_ ifc=rc_,
u;?’) (¢) ifc. <c<e.
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The induced total profit IT(c) = Heontro1(c, ug(c))/p is locally Lipschitz continuous for
all ¢ # 0. This follows from the coercivity of the Hamilton function H if ¢ is bounded
away from 0 as in Bardi & Capuzzo-Dolcetta [64], Proposition I1.4.1.

As the instantaneous profit m = a(1 — ¢)? — k? is bounded, it is not hard to show
that if the initial condition is larger than some value ¢, the optimal action is to set
k = 0, which results in IT(c) = 0 for ¢ > ¢. We conclude then that P(c) is Lipschitz
continuous everywhere.

D.1.6 The Trajectory v Enters Sy for the Last Time Through &,

The next situation to be investigated is that the trajectory v satisfying v(0) = ey
enters S7 through 0; at some time ¢; < 0, and remains in Sy for all ¢; < ¢t < 0: see
Figure 12c.

Since (t1) € 41, it follows that v(t) € Sy for all ¢ in close to, but smaller than
t1. As Sy is a backward trapping region, y(t) € Sy for all ¢ < ¢, and necessarily ()
converges to eg as t — —oo. Moreover ¢ > 0 in both S; and S5, and we can construct
a policy function that is differentiable for all ¢ > 0 exactly as in the situation that the
trajectory remains in S for ¢ < 0 and converges to eq.

D.1.7 The Trajectory v Enters Sy for the Last Time Through do

Finally consider the situation that the trajectory ~ that passes through e; at t =0
enters S through dy for some ¢; < 0, and remains in S; for all ¢t; < ¢t < 0: see Figure
12d.

Introduce ¢,,, by setting y(t1) = (¢m,1). Since v(t1) € d2, we have c_ < ¢, < €.
As é(t) > 0 for t; <t < 0 as well as for ¢ > 0, we can construct a continuous policy
function

1 1
ugc) :[em,00) = R, ugc )(cm) =1

in the usual manner. The left branch of the stable manifold of the saddle e_ furnishes
a continuous policy function

u;z) :(0,c-) = R, with lim ugcz)(c) =u_ =1,

cle—
and the right branch of that manifold furnishes a continuous policy function

u}g) i(c—yepm) —» R, with  lim ugf)(c) =u_ =1, u§c3)(cM) =1,

cle_

where ¢4 < ¢jps. Invoking the same arguments as above, we show that u;g)

to ug‘-l) at ¢ = ¢, and inferior to it at ¢ = ¢j;. By the intermediate value theorem,

there is an indifference point ¢ such that ¢, < é < c¢ps, and such that the manager is
indifferent between the two policies at ¢ = ¢é. A policy function defined on all points
of state space is then

is superior

ugcl)(c) if ¢ > ¢,
uscl)(é) or ugcs)(é) ifc=¢,

us(c) = ugpz)(c) if0<c<ec_,
U_ ifc=rc_,

u;?’) (¢) ifc. <c<e.
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D.1.8 At Bifurcation: p =1

Finally, we have to discuss the case p = 1, where there are only two steady states in
the boundary of Rj: the repeller ¢g and the steady state e, = (1/2,1). As

ep has an unstable eigenspace, which is the span of the vector v* = (1, —2p), and a
neutral eigenspace spanned by v¢ = (1,0). That is, e, is a stable node.

The trajectory () for which v(0) = e; can either cross the parabola u = 4¢(1 —¢)
for a value 0 < ¢ < %, or it can remain in Ry for all ¢ < 0 and tend to ep. In the first
situation, a policy function can be constructed exactly as in the situation that g > 1
and -~y intersects d1; see Section D.1.6.

In the second situation, v coincides with the unstable manifold of e;. There is a
unique trajectory 4 connecting ey with ey, which is the limit of similar trajectories
that connect ey with the stable manifold of e_ for p > 1. As # lies entirely in Sy, we
have ¢(t) > 0 there. Proceeding as usual, we can find a continuous policy function
ug(c) such that its graph coincides for 0 < ¢ < % with the curve 4, while for ¢ > %, it
coincides with ~. Note that uy(c) is continuously differentiable everywhere except at

c:Oandc:%.

D.1.9 Summary
For all parameters, we have constructed a policy function
us @ (0,00) = R,

which is single-valued, except at most at one point ¢, the indifference point. Moreover,
the values of the two trajectories originating at an indifference point are the same,
and us(c) = 0 if ¢ is sufficiently large.

D.2 Policy Functions Generate Viscosity Solutions of the Hamilton-Jacobi Equation
Using relation (49), we have that

Vie) = %Hconm(c, ug(c))

is well-defined at ¢ = ¢, continuous and continuously differentiable at all points ¢ > 0
except ¢. Moreover, the value of the total profit (31) along a trajectory v of the
state-control system (38) such that v(0) = (¢, ur(c)) is equal to V (c).

We shall argue that V(c) is a viscosity solution — a term which we shall define
shortly — of the Hamilton—Jacobi equation of our optimization problem, that the
value function is another viscosity solution, and that viscosity solutions of our problem
are unique. From this argument it follows that V'(c¢) is the value function of our
problem, and that u(t) = us(c(t)) is the optimizing control.
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D.2.1 Viscosity Solutions
We quote the definition of viscosity sub- and supersolutions from Bardi and Capuzzo-
Dolcetta [64, Sec. IL.1, p. 26].

Definition D.1 Let {2 be an open domain of R™, and let the function H = H(z,p)
be a continuous real valued function on {2 x R™, defining the Hamilton—Jacobi equation

oW (&) — H(z, DW(x)) = 0, (51)
where DW () is the gradient of W in z.

1° A function W is a wviscosity subsolution of (51) at z, if for every continuously
differentiable function w such that the difference W — w takes a local maximum
at x, we have

pW (z) — H(z, Dw(z)) < 0. (52)

2° A function W is a wiscosity supersolution of (51) at z, if for every continuously
differentiable function w such that the difference W — w takes a local minimum at
x, we have

pW (z) — H(z, Dw(z)) > 0. (53)

3° A function W is a wiscosity solution of (51) at z, if it is both a viscosity subsolution
and a viscosity supersolution at x.

D.2.2V(c) is a Viscosity Solution

Return to the state-costate representation (35)—(36), and introduce the feedback

costate function
2
—2uy(c) c >0,
Ae(e) = ¢
1) {0 c<0.

Note that then .
Vie) = ;H (c; Ap(e)). (54)

By construction, if y(¢) = (c(t), A(t)) is a solution of the state-costate system such
that A(0) = Af(c(0)), then

At) = Af(c(t)) forall t¢.
If ¢ > 0, then ¢(t) # ¢ and Ay is differentiable at c(t); by the chain rule
A= N;(e)e. (55)

We claim that As(c) = V'(c) for all ¢ # ¢. For, differentiating (54) with respect to ¢
yields

V'(e) = % (H.+ HA)\’f(c)) )

Evaluating this equation at ¢ = ¢(t), using first (55) and then (35) and (36) gives

(1)
L

\— H,
+HA” )

V' (c(t)) =

>/b\»~ =

(t) =
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this proves the claim.
It follows that the function V defined by (54) is a regular solution of the Hamilton-
Jacobi equation

pV(c) = H(c,V'(c)) (56)

for all ¢ # é.

As V is continuously differentiable in the neighborhood of every point ¢ # é, V
is a viscosity solution of the Hamilton-Jacobi equation (56) at ¢ if and only if it is a
regular solution there.

It remains to show that V' is a viscosity solution at an indifference point ¢. Note
that the left and right limits of V/(c¢) exist at ¢é; we write

AT = li%r} V'e), A= liff} V'(e).

From the analysis done above, we infer that
AT < AT

Let v be a continuously differentiable function such that V' — v takes a local minimum
at ¢ = ¢. Then necessarily

li%rg V'(c) —v'(c) <0, liir} V'(c) —v'(c) >0,

implying that

AT < (@) < AT (57)
As ¢ is an indifference point, we have that

H(e, A7) = H(&, A1) = pV(é).
Moreover, the Hamilton function H(c,A) is convex in A. Together with (57) this
implies that
V(&) — H(#,v/()) = 0.

Hence V is a viscosity supersolution.

Consider now the situation that v is a continuously differentiable function such
that V — v takes a local maximum at ¢. Then

limV'(c) —v'(c) >0, limV'(c) —v'(c) <0,
cté clé
which implies that
V() < AL < Ay <0/(0),
which is a contradiction. There is no differentiable function such that V' — v takes a

local minimum; but then for all such functions, the inequality (52) holds at ¢, and V/
is a viscosity subsolution, and therefore a viscosity solution.
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D.2.3 Uniqueness of Viscosity Solutions

We shall state a theorem that is a direct corollary of Theorem II1.2.12 from Bardi and
Capuzzo-Dolcetta to show that the value function V' is the unique viscosity solution
of the Hamilton—-Jacobi equation (56).

Recall the notation Br(0) = {x € R™ : ||z|| < R}, and that a function w :
[0,00) — [0, 00) is a modulus if it is continuous, nondecreasing and w(0) = 0.

The theorem depends on four assumptions. The first three concern the controlled
dynamics ¢ = f(y,a).

Assumption D.1 A is a topological space, and f : R” x A — R¥ is continous.
Assumption D.2 f is bounded on Br(0) x A for all R > 0.

Assumption D.8 There is a constant L > 0 such that |f(x,a) — f(y,a)| < Lz —y| for
all z,y € Br(0), a € A.

The final assumption concerns the objective functional

J(z.a) = / T yat). alt))e e,

which is to be maximised; here the control function «(t) is a member of A, which
is the set of measurable functions « : [0,00) — A, and y,(t) is the solution of

y(t) = f(y(t), a(t)) with y(0) = .

Assumption D.4 p > 0; £ is continuous; there are a constant B > 0 and a modulus w
such that |{(z,a)] < B and |¢(z,a) — {(y,a)| < w(|z—y|) for all z € R™ and all a € A.

The value function of this problem is

v(x) = sup J(x, a).
acA

Theorem D.1 Assume D.1-D./. Let the Hamilton function H be given as

H(xz,\) = ilelg{é(z,a) + Af(z,a)}.

Then the value function v is the unique viscosity solution of the Hamilton—Jacobi
equation

pv = H(z, Dv).

Proof The assumptions imply assumptions Ag—A,4 in Chapter I1I of Bardi and Capuzzo-
Dolcetta [64]. When formulating the problem as a minimisation problem, ¢ is replaced
by —¢, v by —v and A by —\; this shows that the definition of Hamiltonian in statement
of the theorem is equivalent to that in equation (2.9) in Chapter III of Bardi and
Capuzzo-Dolcetta. The result follows then from their Theorem I11.2.12.

O
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D.2.J Finishing the Proof

To apply the theorem, introduce the set U = [0, M], where M > 0 is a positive
constant, and the functions f : R x U — Rand £: R x U — R by

Fleu) = {c(lu), c>0,

0, c <0,

and

4ppu(1 —c)? — u? >0

O u) = pu( 20) x(e) —u? 20,

dpp — u*, c<0.
It is easy to see that assumptions D.1-D.4 are satisfied. The theorem then implies for
every M > 0 that the value function of the optimization problem is the unique viscosity
solution of the Hamilton-Jacobi equation (56). Choose M such that us(c) < M for all
¢: this is possible since u(c) = 0 if ¢ is sufficiently large. We extend the policy function
to R by setting us(c) = 0 if ¢ < 0. If ¢(t) is a trajectory of the system dynamics

¢= f(c uf<c))a C(O) = Co,

then, by construction, u(t) = us(c(t)) is a control such that

V(eo) = /OOO U(c(t), u(t))e P dt.

As ug(c) < M, this control is admissible. We have already shown that the function
V(c) is a viscosity solution of the Hamilton—Jacobi equation; it therefore coincides
with the value function, which by the theorem is the unique viscosity solution. But
that implies that the controls generated by the policy function are optimal. a

E Proof of Proposition 5.1

This can be read off the optimization problem (31)—(32) obtained after the second
scaling (30).

Let oy = 1/9 and ay = 1/8 be the respective partial and full collusion values of
«. Assume that there is a bifurcation in the partial collusion system at p = p* and
K1 = ¢(1+ B) = ¢1(1 + BF) = (K;)~!. The equivalent scaled system (31)—(32),
which only depends on the parameters p and p, will then exhibit a bifurcation at

* ay
W= g (58)
4p*(K7)?
Consequently, if K5 takes a value such that
* Q2
W= ey 59
4p*(K3)? (59)

then the full collusion system will exhibit a bifurcation as well.
This implies
a1 a9
K* 2 — < — K* 2’
(i) = s < o = (K)

and consequently

P1(1+ B7) > ¢3(1+ 53). (60)
As a consequence, all full collusion bifurcation curves are lower than their partial
collusion counterparts. This implies all inclusions stated in the theorem. This proves
the proposition. a
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F Proof of Propositions 5.2 and 5.3

We want to compare, for a given parameter combination, the full collusion situation
a = %, and the partial collusion situation o = %. Performing the scaling to (¢, u)
variables and (u, p) parameters, this reduces to comparing the partial collusion situation
(11, p) with the full collusion situation (usg, p), where the u; are related as

9

M2 = gﬂl-

Denote by u} (¢), t = 1,2 the corresponding policy functions, and recall that their
graphs are locally equal to a portion of a trajectory of (38)—(39), with u replaced by
u1 or ug, depending on whether = pq or u = uo. Invoking the chain rule as in (55),
we can derive a differential equation for u; = u; as follows:
du; i p(ui —4pc(l —c)x)
de ¢ e(1 — uy) ’
here, we have written x = x(c) for brevity. This is a first order non-autonomous
differential equation, with singularities at ¢ = 0 and u; = 1.
Writing Ap = pg — p1 and Au = ug — ug, the difference Aw satisfies the following
differential relation:

dAu _ p(uz —4pec(I —c)x)  p(ur —4pic(l —c)x)

de c(l — uo9) c(l —uy)
_ P —wr) (ug —4poc(l — c)x)  p(1 —uz) (ug — 4pac(l — ¢)x)
(1 —up)(1 — ug) (1l —up)(1 —us)

p (uz — uyug — 4e(l — c)x(p2 — ui2))
(1 —up)(1 —ug)
p(u1 — urug — de(l — o)x (a1 — uapin))

(1l —up)(1 —ug)
~ p(Au—de(1 — o)x(Ap + ugpg — uipg — uzpig + uzpi1))
B (1l —up)(l —us)
_ p(Au—4e(l = o)x(Ap + poAu — ug Ap))
B (1 —up)(1 — ug)
_p(A—dume(d—0ox) ,  4p(1— c)xAM

(I —up)(1l —ug) 1—wu
Replace now u; by ulf for ¢ = 1,2 and introduce

(o) = PO el —OX(@) o ap(—ox(e)

el —up(e) (1 —ui(0)’

The differential equation for Au(c) is of the form

dA
dcu = a(c)Au +b(c),
where a and b are known functions. For
AU(CO) = AO

the variations of constants formula for the solution reads as

Au(c) = Aoefcco ale)dr | oo a(x)dr/ b(x)e Jeo e gy (61)

Co
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F.1 Proof of Proposition 5.2

Consider first the situation that there is a value 0 < & < 1 such that for all ¢ € (¢, 1]
the optimal trajectories for both the partial and the full collusion case leave the
production region through e;. We know that trajectories through e; can be optimal
only if they have not crossed the line u = 1 yet: this is a consequence of the argument
given in Section D.1.7. The term b of (61) therefore satisfies

o) =~ L= O

Ap <0

for ¢ < ¢ < 1. If ¢g = 1, then Au(cy) = Ag = 0, and the first term in (61) vanishes.
Then b(c) < 0 implies that Au(c) is decreasing. This implies for values of ¢ smaller
than 1 that Au(c) is positive, in particular

Au(c) > 0,

for all ¢ < ¢ < 1. Hence, R&D effort under full collusion is always larger than R&D
effort under partial collusion if both lead to eventually leaving the market.

Next, we consider the situation that there is some ¢ > 0, such that for all ¢ € (0, ¢),
the optimal trajectories for both the partial and the full collusion case converge to
their respective steady states el = (c!,1) and €% = (c2,1). As s > 1, it follows
that 0 < ¢ < ¢! < 1/2. The stable manifold tending to €2 can only leave the region
bounded by the parabola u = psc(l — ¢) and the lines u = 1 and ¢ = 1/2 through the
line segment connecting the points (1/2,1) with (1/2, us). It follows that necessarily

us(ch) > uy(ct), or equivalently, A(ct) > 0.

1 2

We have already established that trajectories tending to either eZ or e~ can only be

optimal if they do not cross the line u = 1. Therefore

_ 4p(1 —¢)

X
b Ap >0
(c) w1 >0,

if 0 < ¢ < ¢, and the variations of constants formula implies
A(c)>0 foral ¢! <c<ec

Moreover ui(c) < 1if 0 < ¢ < ¢!, implying that b(c) < 0 there. Again using the
variations of constants formula, we obtain

A(c)>0 forall 0<c<ch

as well.

Finally, if the optimal trajectory of the full collusion case converges to e? , whereas
the optimal trajectory of the partial collusion case exits the production region through
e1, we have that the former satisfies © > 1 and the latter u < 1.

This proves Proposition 5.2. g
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F.2 Proof of Proposition 5.3

To prove Proposition 5.3, we again use the fact that the value of the integral I over
a trajectory starting at a point (c,u) equals

() =~ Heomror(ev) = 5 (4p(1 = )X =1+ (1= 1))
=h(c) +C(u—1)2 (62)

If ¢ = ¢ is an indifference point, there are values 4(1) < @(?) such that the trajectories
starting at (¢, a@‘)), for i = 1,2, are both optimal and have both the same value. Note
that the trajectory through (¢,4(!)) goes to the right, and that through (& @(?)) goes

to the left. As
1 (é,ﬁ(l)) -1 (c a@)) :

it follows that
M —1| = |a® —1].

Consider a fixed value of p and two values p1, pe of u such that pue = (9/8)u1; that
is, (u1, p) describes a partial collusion situation, and (u2, p) is the corresponding full
collusion situation.

Assume first that there is an indifference point in the partial collusion problem;

denote this point as ¢1, and the corresponding values of u as ﬁgi), 1 =1,2. Then

V< al® and |al? — 1] =a? —1). (63)

We have seen in the proof of Proposition 5.2 that if a full collusion and a partial
collusion trajectory either go both to e_ or to ey, the full collusion trajectory intersects
a line ¢ = constant at a larger u-value than the partial collusion one. Denote the

intersection of the full collusion trajectory going to €2 with the line ¢ = é; by (¢4, ﬂéz)).

We have that ug) > u?), and therefore also
357 = 1] > Ja? 1. (64)

We argue by contradiction. Assume that the threshold ¢; in the full collusion case

exists and is below the threshold in the partial collusion case, then the full collusion

trajectory going right, that is, to eq, has to intersect the line ¢ = ¢; in a point (¢4, ﬁél)).

Moreover, this trajectory has to be optimal at é;. Using (62), this implies that
iy = 1] > |a5” ~ 1. (65)

Finally, the full collusion trajectory has to be above the partial collusion trajectory
going to e, implying
iy — 1] <o ~ 1. (66)

Combining inequalities (63)—(66) implies
(2 (2 (1 (1 (2
a5 = 1> [ay” = 1] = Jag” — 1 > Jag” — 1] > ag” — 1.

But this is a contradiction. The proof in situation that the threshold is a repeller is
similar and will be omitted. g
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