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Abstract

We investigate the presence of international business cycles in macroeconomic aggregates (output,

consumption, investment) using a panel of 60 countries over the period 1961 − 2014. The paper

presents a Bayesian stochastic factor selection approach for dynamic factor models with predetermined

factors. The literature has so far ignored model uncertainty in these models as common factors (i.e.,

global, regional or otherwise) are typically imposed but not tested for. We focus in particular on

the existence of a global business cycle as the literature has, in our opinion unjustifiably, taken for

granted its existence. In contrast to the literature, we find no evidence to support its presence.
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1 Introduction

During the past decades important changes have occurred in the international economic and financial

landscape. Global trade in goods and services has steadily increased, supported by a reduction in trade

barriers and transportation costs and by an increase in signed trade agreements. Financial flows have

rapidly expanded across countries, supported by increased financial development, financial liberalization

and financial integration. As such, countries have become more interrelated and affected by international

forces. These evolutions have occurred for industrial countries, for emerging markets - which have become

major players - and, to a lesser extent, for developing countries.

As a result of these developments, a large literature has investigated the extent of interdependence

across countries between macroeconomic aggregates at the business cycle frequency, i.e., the occurrence

and the extent of business cycle synchronization across countries. One branch of the literature has focussed

on the theoretical and empirical effects of increased trade linkages and financial flows on business cycle

synchronization (see e.g., Frankel and Rose, 1998; Kalemli-Ozcan et al., 2001; Kose et al., 2003b; Kose

and Yi, 2006). Another branch of the literature has investigated the regional dimension of business

cycle synchronization. A comprehensive overview of this literature is provided by Hirata et al. (2013)

who provide information on the considered regions, countries and variables, sample period, methodology,

objectives and results for about 100 studies.

A number of recent papers consider multiple regions (or other country groups) simultaneously when

analyzing business cycle synchronization. Most of these studies employ structured or hierarchical dynamic

factor models for analysis that are estimated using Bayesian techniques.1 Kose et al. (2003a) estimate a

factor model with one global and multiple regional common factors using data on output, consumption

and investment for 60 countries over the period 1960 − 1990. They find that the global factor is an

important determinant of countries’ business cycles, while regional factors play a smaller role. Mumtaz

et al. (2011) estimate a factor model with a global factor and regional factors using data on output and

inflation for 36 countries over a period of more than 75 years and argue that regional business cycles have

become more important over time. Using a large dataset on output, consumption and investment for 106

countries over the period 1960−2008, Kose et al. (2012) find that the importance of the global factor has

diminished over time and that country group factors based on the development level of countries - i.e.,

countries are grouped according to whether they are considered industrialized, emerging or developing

- have become more important since the mid 1980s. Francis et al. (2012) estimate a factor model with

1In these factor models a hierarchical block structure is typically imposed on the factor loadings. The factors are then
identified based on the countries they load on and based on their dynamic specification. As a result, the factors can be
interpreted economically as either global, i.e., when they load on all countries, or as belonging to a certain subgroup of
countries, i.e., when they load only on countries in that specific subgroup.
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a global factor plus a number of endogenously determined country group factors using data on output

for 60 countries over the period 1960 − 2007. While they argue that regional proximity matters, their

approach identifies clusters of countries that are determined not only by geographical distance but also by

other characteristics such as institutions and linguistic similarity. Hirata et al. (2013) estimate a dynamic

factor model that contains a global factor and factors for seven geographical regions using a dataset that

consists of data on output, consumption and investment for 106 countries over the period 1960 − 2010.

They find that regional factors have become more important since the mid 1980s.

A limitation of this literature is that model uncertainty is typically ignored. The common factors that

are included in the estimated dynamic factor models (i.e., global, regional or otherwise) are imposed ex

ante but no econometric test is conducted to find out whether these factors are actually relevant. The

standard practice in dynamic factor models is to use a number of identifying restrictions that impose

the common factors a priori, i.e., typically the variance of a common factor innovation is restricted to a

positive number while simultaneously at least one factor loading on this factor is restricted to be positive

as well. As a result, the common factors cannot possibly drop out of the model when the factor model

is estimated. Francis et al. (2012) show that imposing factors in a factor model that are not actually in

the data implies a misspecification and may lead to factor estimates that deviate substantially from the

true model and to severe reductions in fit.

This paper deals with this limitation and contributes to the literature by proposing the estimation

of a hierarchical dynamic factor model combined with a Bayesian stochastic model specification search.

The model specification search amounts to a stochastic selection of the pre-specified common factors,

i.e., it provides a way to investigate the relevance of the common factors included in the model. To the

best of our knowledge, stochastic model selection in structured or hierarchical dynamic factor models

with predetermined common factors has not been considered before.2 The paper deals with the issue

that a test for the existence of a common factor via the innovation variance of this factor or via the

loadings on this factor is problematic. To this end, our method considers a dynamic factor model with

standardized factors instead of scaled factors. These standardized factors have unit variance but enter

the factor model multiplied by the factor innovation standard errors. The latter can be treated in

estimation as regression coefficients, which can potentially be equal to zero in which case factors drop

out of the model automatically. We then apply a Bayesian stochastic model selection procedure to

our dynamic factor model. The approach used is based on the stochastic variable selection procedure

of George and McCulloch (1993) for identifying non-zero regression effects in models with observed

2The method differs from the literature that deals with determining the optimal number of common factors in general
factor models (see e.g., Hallin and Liska, 2007; Amengual and Watson, 2007; Bai and Ng, 2007) as it specifically tests for
the existence of predetermined common factors in hierarchical factor models.
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variables. Frühwirth-Schnatter and Wagner (2010) extend this approach to model selection in models

with unobserved variables, i.e., state space models, allowing us to implement the method in the context of

dynamic factor models. The approach consists of selecting the relevant common factors in the factor model

by assigning binary indicators to each of the common factors in the model. We then sample these binary

indicators together with the parameters of the factor model using Markov Chain Monte Carlo methods

(MCMC), i.e., the Gibbs sampler. From the sampled binary indicators obtained for the common factors

we calculate posterior factor inclusion probabilities - i.e., the probability that a common factor belongs

in the model - by averaging the binary indicators over the iterations of the Gibbs sampler. By combining

the posterior factor inclusion probabilities we then also calculate posterior model probabilities, i.e., the

posterior probability of a particular combination of common factors.

The method presented is applied to an investigation of the presence of international common business

cycles in international macroeconomic aggregates (i.e., output, consumption and investment), where the

paper further contributes to the literature by investigating in particular whether a global worldwide

business cycle can be identified. The reason for this focus is that the literature has been concerned with

the configuration, presence and evolution of subgroups of countries (e.g., regions) but has generally taken

the presence of a global business cycle for granted. For instance, even Francis et al. (2012) who do not

impose factors for subgroups of countries ex ante but rather determine subgroups of countries based on

an endogenous clustering method do nonetheless simply impose the global common factor in their model.

However, the existence of a factor on which countries from all corners of the world load is questionable.

The reason is that the commonalities that are typically considered when grouping countries that might

potentially experience common business cycles (i.e., geography, institutions, development,...) cannot be

invoked when considering a group of countries that potentially consists of all countries in the world. Our

considered dynamic factor model hence includes a global common factor to which, in the baseline case,

six regional common factors (i.e., for Europe, North America, Oceania, Latin America, Africa, Asia) are

added. The factor inclusion probabilities and the factor model are estimated using data on real GDP

growth, real private consumption growth and real private investment growth for a sample of 60 countries

over the period 1961− 2014. Estimations are also conducted for subsamples, i.e., for the preglobalization

period (1961-1985) and the globalization period (1986-2014). We investigate the robustness of the results

found for the global business cycle using a battery of robustness checks among which are the use of a

larger dataset consisting of 106 countries and the inclusion of common factors for country groups based

not on geographical proximity but on other commonalities.

Our model selection results suggest that there is no global business cycle in the data, i.e., the posterior

factor inclusion probabilities for the global common factor are negligible both in the baseline estimations
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and in most of the conducted robustness checks. This implies that we cannot identify a single factor on

which countries of all six regions load. This finding contrasts with the literature discussed above where

typically a global business cycle is identified. By contrast, our model selection procedure supports the

presence of business cycles for subgroups of countries. In particular, we find evidence that supports the

presence of regional cycles in the data. The posterior factor inclusion probabilities for Europe, North

America, Oceania and Latin America are generally equal or close to one. For Asia, we find strong evidence

of a regional business cycle in the globalization period (1986-2014) but no evidence of a regional cycle

in the preglobalization period (1961-1985). The evidence to support the existence of an African cycle is

mostly weak however. In line with the literature discussed above, our results also point towards increased

regionalization in the globalization period, in particular for the regions Europe, North America and -

evidently, given the emergence of an Asian cycle during that period - Asia. Finally, we argue that not

finding a single global factor on which countries of all six regions load does not imply that regions are

independent as we show that the estimated regional cycles are moderately mutually correlated.

The remainder of the paper is organized as follows. Section 2 sets up the factor model, introduces the

testing procedure and provides details on estimation. Section 3 presents details on the data used in the

estimations. Baseline results and robustness checks are reported in Section 4. Section 5 concludes.

2 A dynamic factor model with stochastic factor selection

We start from a standard dynamic factor model, discuss identification and the problems of testing for

common factors within this framework. We then introduce an alternative specification containing stan-

dardized common factors. We discuss identification within this alternative framework and introduce the

model selection approach that allows to determine which common factors belong in the model. The

section then provides details on the Bayesian estimation method and the parameter priors used within

this approach. The section ends with a discussion of the variance decompositions that can be applied to

our factor model.

2.1 Factor model with scaled factors

2.1.1 Specification

Consider a standard dynamic factor model with multiple observed variables per country and multiple

unobserved factors (see e.g., Kose et al., 2003a, 2008, 2012). More specifically, our factor model contains

common factors that are common to all variables in a given country (i.e., national common factors) and

common factors that are common to all countries in a given group of countries (i.e., international common
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factors). We denote by N the number of countries, by K the number of observed variables per country

and by T the number of periods available for each of the N ×K time series. We then denote by M the

number of unobserved international common factors that are common across countries in a given group

(and across all variables of the countries in the group). There also are N unobserved national common

factors that are common across the variables in every country. As such, M + N is the total number of

common factors in our model (i.e., the total of international and national common factors). The dynamic

factor model takes the form,

yit =

M+N∑
j=1

αjiF
j
t + µit, i = 1, . . . ,K ×N, t = 1, . . . , T (1)

where yit is the observable variable (in deviation from its country-specific mean), αji is the factor loading

corresponding to observable i and factor j, F jt denotes the jth common factor - which is assumed to have

innovation variance σ2
εj - and µit is the purely idiosyncratic ”unexplained” component of yit. Note that

some of the loadings αji are restricted to be equal to 0 as observed variables do not load on every factor,

i.e., observed variables for one country do not load on the national common factor of another country

while observed variables for countries that do not belong to a particular country group do not load on

the international common factor of that particular country group.

2.1.2 Identification

Factor models of the type given by eq. (1) are not identified without further restrictions as neither the

signs nor the scales of the factors and the factor loadings are separately identified, i.e., upon multiplying

αji and F jt in eq. (1) or αji and σεj in eq. (2) by some constant, their product remains unaffected. The

usual approach to obtain scale identification is to normalize the variance of the factor innovations to

some positive constant c (where usually c = 1), i.e., set σεj = c. The usual approach to obtain sign

identification is to restrict at least one of the factor loadings αji on each factor j to be positive as well.

2.1.3 Testing issues

To adequately test for the presence of a common factor F jt , the set-up must be such that a non-existent

factor F jt drops out of the model. This is not feasible in this framework. Testing whether all the loadings

on factor j are zero is not be feasible since at least one loading is restricted to be nonzero for sign

identification. Additionally, as this testing approach involves all the factor loadings αji on F jt , testing

involves a large number of parameters (i.e., K ×N loadings per factor j) making it a cumbersome and

possibly inconclusive method.

Alternatively, testing whether the factor innovation variance σ2
εj is zero is not feasible either. By
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obtaining scale and sign identification through a normalization on the factor loadings (e.g., impose that

the average factor loadings across countries are equal to 1 for every factor), it is possible to estimate

σ2
εj . Testing whether σ2

εj = 0 is problematic however. First, the test is non-regular from a classical

point of view as the null hypothesis lies on the boundary of the parameter space.3 Second, σ2
εj will be

estimated using a prior typically used for a variance parameter, i.e., an inverse Gamma prior which has no

probability mass at 0. Frühwirth-Schnatter and Wagner (2010), however, show that this approach tends

to push the posterior distribution of the factor innovation variance away from zero if the true variance

is close to or equal to 0. As such, the importance of common factors could be overestimated in this

approach.

2.2 Factor model with standardized factors

2.2.1 Specification and testing

To adequately test for the inclusion or exclusion of common factors, we rewrite the factor model in terms

of the standardized factors f jt instead of the scaled factors F jt ,

yit =

M+N∑
j=1

αjiσεjf
j
t + µit, (2)

where f jt ≡ F jt
σεj

with σεj the standard deviation of the innovation εjt to factor F jt . Note that the

standardized factors f jt have innovations with standard deviations equal to one. As in this set-up σεj is

treated as a regression coefficient, it can be positive, negative or zero as we discuss further below. From

eq.(2) we note that a non-existent factor F jt for which σεj = 0 drops out of the model automatically.

Hence, the way we rewrite our factor model provides a natural framework to test for the inclusion or

exclusion of common factors.4

2.2.2 Identification

In the factor model with standardized factors, estimates of σεj are obtained to determine whether a

common factor belongs in the model so that - as we discuss below - cases for which σεj = 0 are a

possibility. Hence, the normalization σ2
εj = c discussed in Section 2.1 is not appropriate. We therefore

impose a normalization on the factor loadings instead. In particular, for every factor j, we set the average

of the corresponding factor loadings across countries and variables equal to 1, i.e., we set αj = 1 (for

j = 1, ...,M +N) where αj is the average of αji across countries and variables (where loadings αji which

3Moreover, even if σ2
εj

= 0 then F jt would not necessarily drop out of the model unless F jt were an iid process which
would be too restrictive.

4This reformulation is comparable to the non-centered parameterizations of random walk processes used instead of
standard random walk processes when testing for time variation in unobserved components or parameters of state space
models (see Frühwirth-Schnatter and Wagner, 2010).
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are equal to 0 are excluded from the average). This has the additional advantage that, unlike when

normalizations are imposed on the factor innovation variances, the signs of the loadings αji and of the

scaled common factors F jt are now determined as well, i.e., we obtain scale and sign identification using

the same restriction.

Importantly, however, the signs of the standardized factors f jt and the corresponding standard devia-

tions σεj are not identified as it is possible to multiply both by −1 without changing their product F jt . As

a result of this non-identification, the likelihood function is symmetric around 0 along the σεj dimension.

When F jt exists (σ2
εj > 0), the likelihood function is bimodal with modes σεj and −σεj . When F jt does

not exist (σ2
εj = 0), the likelihood function is unimodal around zero. As such, the non-identification of

σεj is convenient as it provides useful information on whether a common factor F jt should be included

in the model. In our estimation approach - fully detailed in Section 2.3 below - we fully exploit this

non-identification by applying a random sign switch to f jt and σεj so as to obtain clear-cut bimodal or

unimodal posterior distributions for σεj . The bi-or unimodality of these distributions can be considered

as preliminary evidence on whether a particular common factor should or should not be included in the

model.

2.2.3 Processes for common factors and idiosyncratic components

The dynamic factor model is completed by assuming stochastic laws of motion for f jt and µit. The

common factors f jt are assumed to follow zero-mean AR(q) processes,

f jt =

q∑
l=1

ρj,lf jt−l + εjt , j = 1, . . . ,M +N (3)

where εjt ∼ iidN (0, 1), i.e., the error terms εjt are iid over time and across factors. Their variances equal

1 as the common factors f jt are standardized factors. The idiosyncratic components µit are assumed to

follow zero-mean AR(p) processes,

µit =

p∑
l=1

πliµi,t−l + νit, i = 1, . . . ,K ×N (4)

where νit ∼ iidN
(
0, σ2

νi

)
, i.e., the error terms νit are iid over time and across variables and countries.

The latter assumption implies that comovements in the data across countries or across variables in a

given country are captured by the common factors. Further, we note that the error terms εjt and νit are

assumed to be mutually independent.
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2.2.4 Stochastic model selection

To formally test which common factors belong in the factor model, we follow the model selection approach

suggested by Frühwirth-Schnatter and Wagner (2010) and use binary indicators δj added to each common

factor in eq. (2),

yit =

M+N∑
j=1

αji δ
jσεjf

j
t + µit, (5)

where δj is a binary indicator that is equal to 1 if F jt is to be included in the model (with σεj an

unconstrained unknown parameter that is estimated from the data) and that is equal to zero if F jt is

to be excluded from the model (with σεj set qual to zero). The binary indicators δj are used to obtain

posterior inclusion probabilities for each common factor, i.e., the probability that a common factor belongs

in the model. By combining the posterior factor probabilities we can then also calculate posterior model

probabilities, i.e., the posterior probability of a particular combination of common factors.

2.3 Bayesian estimation

The standard dynamic factor model of eq. (1) could, in principle, be estimated using classical estimation

techniques like maximum likelihood. Classical methods however would be extremely difficult to apply

given the dimension of the problem where there are a large number of factors and unknown parameters

to estimate.5 However, the factor model presented in eq. (2) expressed in terms of standardized factors

and combined with the model selection approach presented in eq. (5) implies a non-regular estimation

problem for which classical methods are infeasible. Hence, our dynamic factor model is estimated using

Bayesian methods. We use a Gibbs sampling approach which is a Markov Chain Monte Carlo method

(MCMC) to simulate draws from the intractable joint and marginal posterior distributions of the unknown

parameters and the unobserved common factors using only tractable conditional distributions. The

general outline of the Gibbs sampler is presented in Section 2.3.2 below while technical details about the

exact implementation of each step of the Gibbs sampler are relegated to Appendix B. First, Section 2.3.1

discusses Bayesian parameter priors however.

5Assume that all binary indicators δj are set equal to 1 so that no common factors drop out of the model. Then there
are M+N common factors to estimate. The number of unknown parameters to estimate equals M+N for σεj , (M+N)×q
for ρj,l, N ×K for σ2

νi
, N ×K × p for πli,

∑M
m=1Nm ×K ×M for the non-zero loadings αmi on the international common

factors (with m = 1, ...,M) and N ×K for the non-zero loadings αni on the national common factors (with n = 1, ..., N).
With respect to the international common factors, the number of non-zero loadings on these factors depends on the number
of countries Nm in every one of the M country groups. With respect to the national common factors, there are only K
non-zero loadings for every one of these factors as the K observed variables in a country only load on their own national
common factor. As an example consider the case with N = 20 and M = 3 where the first international common factor is
common to all countries (N1 = 20) while the other international common factors are common to two subsets of countries
where each country group consists of 10 countries (N2 = 10, N3 = 10). Further assume that p = q = 2 and that K = 3.
Then the total number of estimated parameters equals 669. Of course, if some common factors drop out of the model
because δj = 0 then the number of parameters σεj , ρj,l and αji is reduced.
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2.3.1 Parameter priors

We first discuss the priors employed for our main parameters of interest, i.e., for the standard deviations

of the common factors σεj - which are non-standard priors - and for the binary factor selection indicators

δj . Next, we discuss the priors used for the other parameters in the factor model.

Gaussian priors centered at zero for σεj

As σεj is a regression coefficient in eqs. (2) and (5), an important advantage of our dynamic factor

specification expressed in terms of standardized factors f jt (rather than scaled factors F jt ) is that it allows

us to use a Gaussian prior centered at zero on σεj . Centering the prior distribution at zero makes sense

as, for both σ2
εj = 0 and σ2

εj > 0, σεj is symmetric around zero.6

We therefore impose a prior distribution for σjε given by N (0, V0) where we choose a prior variance of

V0 = 10 which, given the data, is large enough to allow the posterior means of σjε to deviate substantially

from the imposed zero prior means.

Priors for model selection

For the binary indicators δj that determine whether a common factor j should or should not be included

in the model, we choose a Bernoulli prior distribution where each indicator has a prior probability p0 of

being included in the model, i.e., p(δj = 1) = p0. In our baseline scenario we set p0 = 0.5 but for our

main results we also report estimates obtained when assuming p0 = 0.25 and p0 = 0.75.7

Other priors

Our Bayesian estimation approach also requires choosing prior distributions for the other parameters in

the model. For the factor loadings αji and for the AR parameters ρj,l and πli we choose Gaussian prior

distributions while for the variances of the innovations to the idiosyncratic components, i.e., σ2
νi , we use

inverse Gamma (IG) distributions. In particular, we use Gaussian distributions centered at zero for the

factor loadings αji and for the AR parameters ρj,l and πli, i.e., N (0, V0), with the prior variance V0 chosen

such that the prior distribution has support over the range of relevant parameter values. Hence, we set

V0 equal to one for the AR parameters ρj,l and πli and equal to 10 for the factor loadings αji . The IG

distribution for σ2
νi is given by IG(s0T, s0m0T ) with shape s0T and scale s0m0T where m0 is the prior

6Frühwirth-Schnatter and Wagner (2010) show that - in contrast to a posterior density for σ2
εj

obtained when imposing

a standard Inverse Gamma prior on the variance parameter σ2
εj

- the posterior density of σεj is not very sensitive to the

hyperparameters of the Gaussian distribution and is not pushed away from zero when σ2
εj

= 0.
7The reason that we check the robustness of our results to alternative priors for p0 is that, as noted by Scott and Berger

(2010), the prior choice p0 = 0.5 does not provide multiplicity control for the Bayesian variable - in our case, factor -
selection. When the number of possible variables is large and each of the binary indicators has a prior probability p0 = 0.5
of being equal to one, the fraction of selected variables will very likely be around 0.5.
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belief concerning the value of the variance σ2
νi and s0 is the strength given to this belief expressed as a

fraction of the sample size T (see e.g., Bauwens et al., 2000). We set m0 = 10 which is a magnitude that

is in accordance with the actual variance of the data and s0 = 0.01 which corresponds to a very loose

prior.

2.3.2 Outline of the Gibbs sampler

For notational convenience, define the unknown parameter vector φ = (δ, σε, α, σ
2
ν , ρ, π) where δ, σε, α,

σ2
ν , ρ and π themselves consist respectively of the stacked country-specific, variable-specific, factor-specific

and lag-specific parameters δj , σεj , α
j
i , σ

2
νi , ρ

j,l and πli (where i = 1, ...,K × N , j = 1, ..., N + M and

l = 1, ..., q for ρ or l = 1, ..., p for π). Further, let f denote the stacked common factors f jt across j and

t and let y denote the stacked data across i and t. The posterior density of interest is then given by

Λ(φ, f |y). Given an initial value for f , the Gibbs sampling scheme is as follows:

1. Sample the parameters φ from the conditional distribution Λ(φ|f, y).

(a) Sample the binary indicators δ from Λ(δ|α, σ2
ν , π, f, y) using eq. (5) while marginalizing over the

parameters σε for which the factor selection is carried out. The approach follows the stochastic

model specification procedure suggested by Frühwirth-Schnatter and Wagner (2010).

(b) Sample the standard deviations of the common factors σε from Λ(σε|δ, α, σ2
ν , π, f, y) using eq.

(5) for those factors j for which δj = 1. For the common factors j for which δj = 0, set

σεj = 0.

(c) Sample the non-zero factor loadings α (i.e., the loadings αji for those observed variables i that

load on factors j) and the variances σ2
ν jointly from Λ(α, σ2

ν |δ, σε, π, f, y) using eq. (5). Impose

the normalization condition αj = 1 (where the average is over i and excludes cases for which

αji is equal to 0).

(d) Sample the AR parameters ρ from Λ(ρ|f) using eq. (3). The approach follows the method of

Chib and Greenberg (1994) to deal with AR terms in Bayesian regression models.

(e) Sample the AR parameters π from Λ(π|δ, σε, α, σ2
ν , f, y) using eq. (4) where δ, σε, α, f and y

completely determine the idiosyncratic components µ. Again, the approach follows the method

of Chib and Greenberg (1994).

2. Sample the common factors f from the conditional distribution Λ(f |φ, y).

(a) The common factors that are included in the model (i.e., those for which δj=1) can be sampled

from Λ(f |δ, σε, α, σ2
ν , ρ, π, y) using eqs.(5) and (3). A state space approach with multimove
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sampling is followed to estimate the common factors (see e.g., Carter and Kohn, 1994; Kim

and Nelson, 1999). The common factors that are excluded from the model (i.e., those for

which δj=0) are sampled from their prior distribution. Under the prior assumption of zero

AR coefficients ρ in the common factors, this distribution is standard Gaussian, i.e., for factors

j for which δj = 0 we draw f jt ∼ iidN (0, 1).

(b) Perform a random sign switch on σεj and {f jt }Tt=1 (for j = 1, ...,M + N) to exploit the non-

identification of the signs of σεj and {f jt }Tt=1, i.e., σεj and {f jt }Tt=1 are left unchanged with

probability 0.5 while with the same probability they are replaced by −σεj and {−f jt }Tt=1.

3. Calculate additional quantities such as the scaled common factors F ≡ σεf and variance shares λ

obtained from a variance decomposition applied to the estimated factor model (see Section 2.4).

The initial values used for f are taken from the prior distribution which - under the prior assumption

of zero AR coefficients ρ in the common factors - is given by f jt ∼ iidN (0, 1) (for j = 1, ...,M + N).

Sampling from these steps is iterated D times and, after a sufficiently large number of burn-in draws

B, the sequence of draws (B + 1, ..., D) approximates a sample from the virtual posterior distribution

Λ(φ, f |y). Technical details on the exact implementation of the steps of the Gibbs algorithm can be found

in Appendix B. The results reported below are based on D = 20000 iterations with the first B = 10000

draws discarded as a burn-in sequence, i.e., the reported results are based on posterior distributions

constructed from D −B = 10000 draws.

2.4 Variance decompositions

From a variance decomposition applied to eq. (5) we calculate variance shares, i.e., the fraction of the

variance in yit explained by factor j is given by,

λji =
V (αji δ

jσεjf
j
t )

V (yit)
i = 1, . . . ,K ×N, j = 1, . . . ,M +N (6)

where 0 ≤ λji ≤ 1.

As we conduct a variance analysis separately for every variable k (where k = 1, ...,K), we first rewrite

the variance shares as λk,jn where n = 1, ..., N . If the global factor (i.e., the factor on which all countries

in the sample load) is ordered first in the set of j = 1, ...,M international common factors, then the

variance share of the global factor in the variance of variable k in country n is given by λk,globaln = λk,1n .

The remaining country group factors are then given by the remaining j = 2, ...,M international common

factors. Since the country groups considered in this paper (e.g., regions) are such that every country

belongs only to one country group, the variance share of the country group factor in the variance of
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variable k in country n is given by λk,groupn = λk,jn with j being the group country n belongs to (with

j ∈ [2,M ]). Next, the variance share of the national common factor in the variance of variable k in country

n is given by λk,countryn = λk,M+n
n which follows from the fact that there is one national common factor per

country which for country n is factor j = M+n. Finally, the variance share of the idiosyncratic component

in the variance of variable k in country n can be calculated as λk,idion = 1−λk,globaln −λk,groupn −λk,countryn .

The variance shares λk,globaln , λk,groupn , λk,countryn and λk,idion can then be averaged across different

countries so as to obtain the average variance share of the global factor, of the country group factor, of

the national country factor and of the idiosyncratic component over all countries over which the averaging

takes place. As such, we obtain the average variance shares λ
k,global

g , λ
k,group

g , λ
k,country

g and λ
k,idio

g where

g denotes the group of countries over which we average. In this paper our groups will coincide with the

groups of countries for which we define international common factors, i.e., g = 1, ...,M where g = 1 is

the group containing all countries in the sample (i.e., corresponding to the global international common

factor) and where g = 2, ...,M are the remaining country groups that contain countries in the sample

that belong to that group (e.g., regional country groups).

3 Country groups and data

Our data are taken from the Penn-World table (PWT) version 9.0 (see Feenstra et al., 2015). Our sample

consists of the N = 60 countries considered by Kose et al. (2003a) and more recently also by Francis

et al. (2012). Following Kose et al. (2003a), the paper focusses mainly on geographical regions as country

groups. Hence, we allow for a number of regional factors in addition to the global factor, i.e., Europe,

North America, Oceania, Latin America, Africa, Asia. As such, we have M = 7. The countries considered

and the six geographical regions to which they belong are reported in Appendix A. The dataset consists

of annual data over the period 1960−2014 for three variables (K = 3): real GDP (output), real household

consumption and real private investment. All per country and per variable time series used for yit are log

first-differenced and demeaned (see e.g., Kose et al. (2003a) and many subsequent papers that estimate

business cycles using dynamic factor models).8 The effective sample period is therefore 1961 − 2014

(T = 54). We also conduct our estimations using two separate subsamples, i.e., one for the subperiod

1961− 1985 and one for the subperiod 1986− 2014. This follows other papers such as Kose et al. (2008),

Kose et al. (2012) and Hirata et al. (2013) who assume that there is a demarcation point in the mid 1980s

that effectively separates the preglobalization period from the globalization period.

In the robustness checks discussed in Section 4.5 we make a further distinction between developed

8Instead of calculating growth rates, an alternative approach to detrend the data would be to use an explicitly filtered
measure obtained for instance from a Hodrick-Prescott or bandpass filter. As noted by Canova (1998) however, business
cycle facts are not robust to the use of such filtering methods.
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and developing Asian countries as in Kose et al. (2003a). Appendix A reports to which of these distinct

groups each of our Asian countries belongs. Additionally, in the robustness checks we also use a larger

dataset consisting of the 106 countries considered by Kose et al. (2012). We refer to this paper for the

exact list of countries included in this larger dataset.

In Section 4.6 alternative country groups are briefly considered as well. First, following Kose et al.

(2012), we group countries according to their level of development, i.e., industrial countries, emerging

market economies and developing countries. Second, we group countries according to the results obtained

by the endogenous clustering method of Francis et al. (2012) who find that the 60 countries in our sample

can be placed into three distinct clusters (many industrial countries; former Commonwealth countries;

South America, Mexico and a few other countries). Appendix A reports to which of these groups each

of our 60 countries belongs.

4 Results

In Section 4.1 we present some preliminary evidence as to which international common factors belong in

the model based on the shape of the posterior distributions of the standard deviations of the innovations

to these factors. In Section 4.2 we then present the formal factor and model selection results. Section

4.3 presents and discusses the estimated international common factors. Section 4.4 shows the results of

applying variance decompositions to our factor model. Section 4.5 then presents a number of robustness

checks. While the previous sections discuss the results of a common factor model that includes regional

factors, Section 4.6 then briefly considers alternatives to country groups based on geographical proximity,

i.e., we group countries based on level of development as in Kose et al. (2012) and we group countries

according to the country clusters identified by Francis et al. (2012).

4.1 Preliminary evidence

To obtain some preliminary evidence on which international common factors belong in the model, we

first estimate the factor model consisting of eq. (2) (or eq. (5) with all binary indicators δj - for

j = 1, ...,M + N - set equal to 1) and eqs. (3)-(4). We note that all basic estimations are conducted

using AR(1) processes for all factors f jt and for all idiosyncratic components µit, i.e., we set p = q = 1.

In the robustness checks reported below, we show that our conclusions do not change when assuming

higher-order AR processes. In Figure 1 we present the plots of the posterior distributions of the standard

deviations σεj of the innovations to the M = 7 international common factors that we consider, i.e., we

have international common factors for the world and 6 geographical regions (Europe, North America,
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Oceania, Latin America, Africa, Asia).9 As noted in Section 2.2.2, when the posterior distribution of a

particular common factor is bimodal with low or no probability mass at zero this can be considered as

evidence that this factor belongs in the model, i.e., it suggests that σ2
εj > 0. When, on the other hand,

the posterior distribution of a particular common factor is unimodal with most of its probability mass

around zero this can be considered as evidence that this factor does not belong in the model, i.e., it

suggests that σ2
εj = 0. We present the distributions for the full sample period 1961− 2014 as well as for

the subperiods 1961− 1985 and 1986− 2014.

We note, first and foremost, that for every sample period considered the reported posterior distribution

of the standard deviation of the world factor innovation is unimodal with all probability mass tightly

concentrated around zero. This suggests that there is no global business cycle. As for the regions,

we observe clear bimodality in the posterior distributions of σεj for Europe, North America, Oceania,

and Latin America over all considered sample periods (even though for the sample period 1986 − 2014

Oceania has somewhat more probability mass around zero). This suggests that these regions have distinct

regional business cycles and that these distinct business cycles have been present during but also before

the globalization period. For Asia, the picture is slightly different as the posterior distribution of the

standard deviation of its factor innovation is unimodal during the first subperiod and bimodal during the

second subperiod. This suggests that Asian economies have become more integrated and synchronized

during the globalization era. For Africa, the posterior distributions are unimodal with probability mass

around zero for all sample periods considered suggesting that African economies are not sufficiently

integrated to share a common business cycle.

9As in the paper we focus on international common factors, we do not present graphs for the posterior distributions of
the standard deviations of the innovations to the N = 60 national common factors but these are available from the authors
upon request.
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Figure 1: Posterior distributions of the standard deviations σεj of the international common factor innovations
for the world and 6 regions

1. Sample period 1961-2014
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2. Sample period 1961-1985
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3. Sample period 1986-2014
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Note: The posterior distributions are obtained with binary indicators δj set to 1 (for j = 1, ...,M +N) in eq. (5).

16



4.2 Model selection

To test more formally which common factors belong in the factor model, we next sample the stochastic

binary indicators δj in eq. (5) (for j = 1, ...,M +N) together with the other parameters in the model.10

Table 1 presents the posterior inclusion probabilities of the international common factors for the world

and the 6 regions that we consider. These probabilities are calculated as the average of the sampled

binary indicators δj over all iterations of the Gibbs sampler. The probabilities are reported for the full

sample period (1961-2014) and for both subsamples (1961-1985 and 1986-2014) as well as for different

prior factor inclusion probabilities, i.e., for the baseline case p0 = 0.5 but also for p0 = 0.75 and for

p0 = 0.25.

From the table we note that, in line with the results reported in Section 4.1, the inclusion probability

of the world factor is very low. It varies between 1% and 9% depending on the assumed prior p0 but

shows no difference between the subperiods 1961 − 1985 and 1986 − 2014. As such, our formal testing

procedure also suggests that there is no global business cycle in the data, a result that contrasts with

the literature - as discussed in Section 1 - where a global factor is typically found to be relevant. In

contrast to our approach however, the literature typically imposes a global factor in the model - using

identifying restrictions that prevent it to drop out of the model - without testing for it. Not finding a

common factor on which countries from all six regions load may not be that surprising since - unlike for

subgroups of countries such as regions - for a group consisting of all countries in the world, it is hard

to invoke characteristics shared by all countries (such as geographical proximity, level op development,

institutions) that might give rise to such a global cycle. The regions Europe, North America and Latin

America do clearly command distinct cycles as the posterior inclusion probabilities of their factors equal

one over all priors and periods considered. Oceania commands its own cycle even though the evidence in

favor of this is slightly weaker in the second subperiod 1986−2014. Asia, on the other hand, has posterior

inclusion probabilities equal to one over the full sample period and over the second subperiod 1986−2014

but, again in line with the results reported in Section 4.1, has much lower probabilities of having its

own distinct factor in the first subperiod 1961− 1985. A regional business cycle seems to have emerged

in Asia only during the globalization period. For Africa the evidence is less conclusive. The posterior

inclusion probabilities of an African factor are somewhat larger than the corresponding prior probabilities

p0 over the full sample period and in the second subperiod 1986−2014 but this hardly constitutes strong

evidence to support the existence of a common African business cycle during the globalization period.

10The results do not change if, instead, we only sample the binary indicators for the international common factors, i.e.,
δj for j = 1, ...,M , and fix to 1 the binary indicators of the national common factors, i.e., δj for j = M + 1, ...,M +N .
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Table 1: Posterior inclusion probabilities of international common factors (world and 6 regions) over different
priors and sample periods

Period Prior Posterior factor inclusion probabilities

World Europe No. Am. Oceania Lat. Am. Africa Asia

1961-2014 p0 = 0.50 0.03 1.00 1.00 1.00 1.00 0.59 1.00

p0 = 0.25 0.01 1.00 1.00 1.00 1.00 0.34 1.00

p0 = 0.75 0.09 1.00 1.00 1.00 1.00 0.86 1.00

1961-1985 p0 = 0.50 0.04 1.00 1.00 0.99 1.00 0.43 0.37

p0 = 0.25 0.02 1.00 1.00 0.97 1.00 0.21 0.25

p0 = 0.75 0.09 1.00 1.00 0.98 1.00 0.65 0.66

1986-2014 p0 = 0.50 0.04 1.00 1.00 0.81 1.00 0.61 1.00

p0 = 0.25 0.01 1.00 1.00 0.34 1.00 0.36 1.00

p0 = 0.75 0.09 1.00 1.00 0.88 1.00 0.79 1.00

Note: The reported probabilities are calculated as the average of the binary indicators δj (for j = 1, ...,M) over the 10000

iterations of the Gibbs sampler.

Besides inclusion probabilities of the individual common factors, the model selection search also allows

to compute overall model probabilities, i.e., probabilities for combinations of common factors. As there

are M+N = 7+60 = 67 binary indicators - 1 for each of the common factors (international and national)

- there are 267 possible models. In ranking the models from most to least preferred, we do not take into

account the national common factors however so that only 27 models are effectively ranked. In Table 2

we report the 4 most preferred models out of 27 for the full sample period and both subsamples where

the ranking is based on results obtained under the prior factor inclusion probability p0 = 0.5. The table

also presents the model probabilities of these four models under the alternative priors p0 = 0.25 and

p0 = 0.75.

The results in the table show that a factor model without a global factor but with six regional factors

included is the preferred model over the full sample period in the baseline case when p0 = 0.5. A model

without global factor and without the African factor is ranked second. This ranking holds up also when

p0 = 0.75 but is reversed when p0 = 0.25. When looking at the preglobalization period 1961− 1985, we

notice that the preferred models under p0 = 0.5 and p0 = 0.25 exclude the global factor as well as the

African and Asian factors. The absence of African and Asian factors during this period is in accordance

with the results presented in Figure 1 and with the low posterior inclusion probabilities for these factors

reported in Table 1. For p0 = 0.75, Table 1 reports a posterior probability of 0.65 for the African factor

and 0.66 for the Asian factor and this is reflected in a preferred model that includes both these factors.

For the globalization period 1986−2014, the models ranked first and second are identical to those reported

for the full sample period when p0 = 0.5 and p0 = 0.75. The preferred model is the one with six regional
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factors and no global factor which is followed by the model with neither a world nor an African factor

included. For p0 = 0.25 the preferred model also excludes Oceania. This result corroborates the findings

reported above, i.e., the low posterior inclusion probability of the factor for Oceania reported in Table 1

for period 1986−2014 and prior p0 = 0.25 and a reasonable amount of probability mass concentrated at 0

in the posterior distribution of σεj for Oceania over this period. To summarize, we note that while some

regional factors are always unambiguously included (i.e., Europe, North America, Latin America) and

the inclusion of other regional factors depends on period and/or prior considered (i.e., Oceania, Africa,

Asia) the global factor is in all periods and for all priors convincingly excluded from the model.

Table 2: Posterior model probabilities of the four preferred models over different priors and sample periods

Period Model Posterior model probability

World Europe No. Am. Oceania Lat. Am. Africa Asia p0 = 0.50 p0 = 0.25 p0 = 0.75

1961-2014 0 1 1 1 1 1 1 0.57 0.33 0.78

0 1 1 1 1 0 1 0.40 0.65 0.13

1 1 1 1 1 1 1 0.02 0.00 0.08

1 1 1 1 1 0 1 0.01 0.01 0.01

1961-1985 0 1 1 1 1 0 0 0.34 0.56 0.11

0 1 1 1 1 1 0 0.25 0.15 0.20

0 1 1 1 1 0 1 0.21 0.19 0.20

0 1 1 1 1 1 1 0.15 0.05 0.38

1986-2014 0 1 1 1 1 1 1 0.48 0.12 0.63

0 1 1 1 1 0 1 0.31 0.21 0.17

0 1 1 0 1 1 1 0.11 0.24 0.09

0 1 1 0 1 0 1 0.07 0.41 0.02

Note: The ordering of models from most preferred to least preferred is on the basis of posterior model probabilities obtained under prior

p0 = 0.5.

4.3 Estimated international common factors

We present the scaled common international factors F jt = σεjf
j
t for the world and our six regions in

Figure 2. The top panel shows the global and regional factors obtained from estimation of the factor

model over the full sample period 1961− 2014. The bottom panel shows the global and regional factors

obtained from estimation of the factor model over the the subperiods 1961− 1985 and 1986− 2014 where

a vertical bar separates both subperiods. Reported are the means of the posterior distributions of the

scaled common factors and the 90% highest posterior density (HPD) intervals, i.e., the 5% and 95%

percentiles of these distributions.

Both panels clearly show that, in line with the findings reported in the previous sections, there is no

global common factor. For the world factor the HPD is very wide in both panels of the figure with the
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mean factor itself being almost constant and equal to zero. Further, the evidence to support the existence

of an African regional factor is not very strong. The HPD is also rather wide and fluctuations in the mean

of the factor are limited.11 This result for Africa is in line with the inconclusive results reported earlier,

i.e., a unimodal posterior distribution for the standard deviation of the African factor innovation (see

Section 4.1) and relatively low posterior inclusion probabilities for this factor which, nonetheless, are high

enough for models that include the African factor to be ranked favourable in a number of instances (see

Section 4.2). The results for the other regions are - again in line with the previous sections - much more

convincing. For Asia there is a clear difference between the factor estimates obtained over the full sample

period and the factor estimates obtained from both subperiods. The reason is that the evidence reported

in Sections 4.1 and 4.2 suggests that the Asian factor only belongs in the model in the globalization period

(1986-2014) and not in the preglobalization period (1961-1985). The factor estimates in the top panel

are based on an estimated standard deviation for the factor innovation obtained from the full sample

period and hence overestimate the true common cyclical fluctuations in the first subperiod. Hence, the

bottom panel provides a more reliable representation of the Asian business cycle. The estimated factors

for Europe, North America, Oceania, Latin America, and Asia show a number of distinct business cycle

episodes but also a number of common business cycle episodes.

11Interestingly, whereas the other regional factors show a big drop during the Great Recession - in particular in the year
2009 - the African regional factor seems to be insulated from the Great Recession (see e.g., Sayeh, 2012) and even shows
a modest upward spike in 2009. The latter may be caused by the positive and relatively high average growth rates of -
in particular output and consumption - of 6 out of the 7 African countries in our sample that year. Only South Africa
experienced a negative growth rate in output and consumption that year while the other countries’ growth rates were all -
sometimes a lot - higher than 2%.
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Figure 2: Scaled international common factors σεjf
j
t for the world and 6 regions

1. Full sample period 1961-2014
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2. Subsamples 1961-1985 and 1986-2014 (separated by a vertical bar)
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Note: Reported are the mean, the 5th and the 95th percentile of the posterior distribution of the scaled international

common factors F jt = σεj f
j
t as obtained over the draws of Gibbs sampler. Draws fjt and σεj for which δj = 0 are excluded

from the calculation of the posterior distribution.

With respect to the former, we can observe the Latin American debt crisis of the early 1980s and the

Asian financial crisis of the late 1990s. With respect to the latter, we can observe the 1973-74 oil crisis in

Europe and North America, the early 1990s recession in Europe, North America and Oceania, the burst

of the dot com bubble in 2001 in North America and Europe and the 2007-09 financial crisis and Great

Recession in Europe, North America, Oceania, Latin America, and Asia.

As such, not finding one global factor on which countries of all six considered regions load does

not imply that regions are independent. The reason is that, while the common factors are modeled as

independent factors, the estimated common factors are not orthogonal. When considering the regional
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common factors that are found to be relevant - i.e., those for Europe, North America, Oceania, Latin

America and Asia - the highest correlation we measure is 0.57 between the European and North American

factors while the lowest correlation is 0.05 between the factors for Oceania and Latin America.

4.4 Variance decompositions

In Table 3 we present the results of applying variance decompositions to our estimated factor model. The

table reports the contribution of the world, region, country and idiosyncratic factors to the variance of

output, consumption and investment growth for the world as a whole and for the regions considered (i.e.,

Europe, North America, Oceania, Latin America, Africa, Asia). Results are reported for the full sample

period 1961− 2014 and for both subperiods 1961− 1985 and 1986− 2014. We refer to Section 2.4 for the

details on the exact calculation of the variance shares. The table presents the medians of the posterior

distributions of the variance shares and are expressed in %.

A number of conclusions can be drawn from the table. First, in line with the low posterior inclusion

probabilities found for the global factor, the variance shares of the world factor are consistently found to

be negligible. Second, with the exception of Africa, the variance shares of the regional factor are always

above 10% - and often well above this number - no matter which country group, variable or period that we

consider. For Africa the variance share of the regional factor lies between 1% and 5% which is in line with

the weak support reported in previous sections for the existence of an African factor in the data. Third,

upon comparing both subperiods, there is evidence of increased regionalization, i.e., an increased variance

share for the regional factor in the globalization period compared to the preglobalization period. This

phenomenon has been documented in the literature (see e.g., Hirata et al., 2013). Regionalization occurs

globally as the increased variance share of the regional factor can be observed for the world as a whole.

We find that the regions affected are Europe, North America and especially in Asia where - as noted in

the previous sections - there is little or no evidence in support of the presence of a regional factor during

the preglobalization period whereas the posterior inclusion probabilities of the Asian factor are equal to

one for the globalization period. Fourth, country-specific components - i.e., the country-specific common

factors and idiosyncratic components - are still responsible for at least 40% (and often a lot more) of the

variance of output, consumption and investment growth in all periods and regions considered.
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Table 3: Variance decompositions

Period Variable Factor Country group

World Europe No. Am. Oceania Lat. Am. Africa Asia

1961-2014 Output World 0.02 0.01 0.00 0.01 0.02 0.02 0.02

Region 28.05 48.30 52.99 44.44 15.48 4.12 20.61

Country 38.61 32.87 30.53 26.57 43.33 39.22 42.37

Idiosyncratic 33.02 18.61 16.14 28.49 40.94 54.96 36.63

Consumption World 0.02 0.02 0.01 0.02 0.02 0.03 0.02

Region 18.75 26.87 37.64 39.64 12.96 4.17 14.34

Country 33.56 26.75 32.11 6.74 38.89 34.23 37.94

Idiosyncratic 47.36 46.08 28.91 51.83 47.89 59.87 47.19

Investment World 0.03 0.02 0.01 0.01 0.03 0.04 0.03

Region 18.31 28.62 43.04 31.11 10.79 2.62 13.98

Country 27.80 35.43 31.41 41.84 25.40 15.48 23.10

Idiosyncratic 53.59 35.51 24.58 26.41 63.42 80.78 62.53

1961-1985 Output World 0.03 0.02 0.01 0.01 0.03 0.04 0.03

Region 21.79 36.16 47.50 42.20 19.20 1.86 3.74

Country 35.23 33.15 36.63 27.62 30.33 25.66 49.37

Idiosyncratic 42.72 30.35 15.89 30.55 50.28 69.85 45.51

Consumption World 0.04 0.03 0.01 0.02 0.04 0.05 0.04

Region 15.88 24.36 29.88 40.20 15.14 1.99 2.68

Country 31.02 26.40 37.60 6.40 27.13 24.34 45.51

Idiosyncratic 52.80 48.80 31.41 50.36 57.33 71.34 50.90

Investment World 0.04 0.03 0.01 0.01 0.05 0.05 0.05

Region 14.23 22.41 36.78 32.81 10.33 2.15 3.92

Country 26.59 34.30 32.53 39.15 20.71 12.92 27.31

Idiosyncratic 58.92 42.93 30.24 28.54 68.69 83.08 68.18

1986-2014 Output World 0.02 0.01 0.01 0.01 0.02 0.02 0.02

Region 30.50 51.52 52.72 34.71 13.27 3.02 33.06

Country 32.73 23.80 27.24 28.41 41.38 39.39 29.31

Idiosyncratic 36.60 24.65 19.59 35.07 45.07 55.30 37.29

Consumption World 0.03 0.02 0.01 0.02 0.03 0.03 0.03

Region 20.43 24.35 39.21 31.50 14.59 3.06 24.96

Country 31.70 28.73 27.72 17.12 37.18 37.99 24.26

Idiosyncratic 47.67 46.65 32.18 48.54 47.83 56.77 50.33

Investment World 0.03 0.02 0.01 0.01 0.03 0.04 0.02

Region 26.24 42.57 48.78 34.83 14.65 3.42 24.44

Country 24.72 21.36 28.70 25.02 29.93 14.22 25.61

Idiosyncratic 48.83 35.87 22.36 39.17 55.07 81.24 49.58

Note: Reported are the medians of the posterior distributions of the variance shares (expressed in %) as discussed in Section 2.4. The

posterior distributions are obtained from estimating eq. (2) or eq. (5) with all binary indicators δj set to 1 (i.e., for j = 1, ...,M +N).
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4.5 Robustness checks

In this section, we check the robustness of the results reported in Section 4.2 regarding the inclusion

or exclusion of the global factor and the six regional factors (Europe, North America, Oceania, Latin

America, Africa, Asia) over the full sample period and over the preglobalization and globalization periods.

We consider four checks which are reported in Table 4. The reported results assume a prior factor

inclusion probability equal to p0 = 0.5 but they are robust to the use of alternative priors (i.e., p0 = 0.25

or p0 = 0.75). First, we distinguish between developed and developing Asian economies as in Kose et al.

(2003a). The results are very similar to those reported in Table 1 for p0 = 0.5. Most importantly,

there is no evidence of a world factor in the data. Interestingly, the distinction between developed

and developing Asian economies is meaningful as - over all periods considered - only the former group

seems to command a distinct regional factor. Second, we assume AR(2) processes for all factors f jt and

idiosyncratic components µit instead of AR(1) factors, i.e., p = q = 2. When comparing these results to

those reported in Table 1, we note that the estimation results obtained with AR(2) processes are almost

identical to those obtained with AR(1) processes.12

Table 4: Posterior inclusion probabilities of international common factors (world and regions): robustness checks

Check Period Posterior factor inclusion probabilities

World Europe No. Am. Oceania Lat. Am. Africa Asia

Asia develop. 1961-2014 0.02 1.00 1.00 1.00 1.00 0.67 1.00a, 0.82b

1961-1985 0.04 1.00 1.00 0.97 0.98 0.41 0.85a, 0.52b

1986-2014 0.03 1.00 1.00 0.84 0.96 0.58 1.00a, 0.16b

AR(2) 1961-2014 0.03 1.00 1.00 1.00 1.00 0.61 1.00

1961-1985 0.04 1.00 1.00 1.00 1.00 0.43 0.40

1986-2014 0.03 1.00 1.00 1.00 1.00 0.62 1.00

106 countries 1961-2014 0.03 1.00 1.00 1.00 1.00 0.18 1.00

1961-1985 0.04 1.00 1.00 0.93 1.00 0.47 0.16

1986-2014 0.09 1.00 1.00 0.64 1.00 0.25 1.00

Output only 1961-2014 1.00 0.03 0.99 0.37 1.00 0.26 1.00

1961-1985 0.03 1.00 0.99 0.46 1.00 0.30 0.20

1986-2014 0.02 1.00 0.98 0.25 1.00 0.24 1.00

Note: All reported results are based on prior p0 = 0.5 but they are robust to the use of alternative priors p0 = 0.25 or p0 = 0.75. ”Asia

development” is a check where a distinction is made between developed Asian economies and developing Asian economies resulting in

M = 8 international common factors instead of 7 with a denoting the results for the group of developed Asian countries and b denoting

the results for group of developing Asian countries. ”AR(2)” is a check where the dynamic factor model is estimated with AR(2) processes

assumed for all common factors fjt and all idiosyncratic components µit, i.e., for p = q = 2. ”106 countries” is a check where the sample

consists of N = 106 countries that can belong to either one of our 6 regions instead of the 60 countries reported in Appendix A. We refer

to Kose et al. (2012) or Hirata et al. (2013) for the list of countries included in this extended sample. ”Output only” is a check whether

the factor model is estimated using only K = 1 variable - i.e., output - instead of 3, i.e., output, consumption, investment.

12When inspecting whether the added second lags are different from 0 - in the sense of not finding the value of 0 in the
5% − 95% interval of their posterior distribution - we find that this is almost never the case.
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Third, we consider a larger dataset consisting of 106 countries instead of the 60 countries considered

until now. We refer to Kose et al. (2012) for the countries included in this extended dataset. Again, the

results reported in Table 1 are largely confirmed. We find no evidence of a global factor. The evidence

in favor of an African factor is even weaker in this extended setting however which can be due to the

Africa group containing a larger amount of countries compared to the 60 country dataset. Fourth, we

estimate the factor model given by eqs. (5), (3) and (4) using only one variable (i.e., output) instead

of three (i.e., output, consumption, investment). This setting implies that the national factors and the

idiosyncratic components coincide and that detected international cyclical fluctuations are purely output-

based. For the full sample period 1961 − 2014, we find a posterior inclusion probability for the global

factor that is equals to one. This result disappears when we look at both subperiods 1961 − 1985 and

1986 − 2014 separately however. Since there have been important shifts between subperiods - i.e., the

Asian group has no distinct factor during the period 1961 − 1985 but commands its own factor during

the period 1986 − 2014 - the full sample period results are not very reliable. As such, again, there is

no strong evidence in favor of the existence of a global factor. The results for the regional factors are

similar to those reported for the three variable case in Table 1 with two exceptions. First, the inclusion

probabilities for Oceania are now lower than 0.5 instead of between 0.8 and 1 suggesting that there is

no regional business cycle for Oceania if only output is considered. Second, the evidence in favor of an

African factor is considerable weaker compared to the three variable case, i.e., there is no more evidence

of an African business cycle in the globalization period if only output is considered.

4.6 Alternative country groups

The estimations so far have been based on a dynamic factor model with geographical regions as country

groups. In the literature, other country groups have been considered. We discuss two alternative country

groups. First, we consider the country groups based on level op development as in Kose et al. (2012)

where each country in our 60 country sample belongs to one of three groups: industrial countries (IND),

emerging economies (EME) or developing countries (DEV). Second, we consider the country groups

endogenously determined by the clustering method of Francis et al. (2012) where each country in our 60

country sample belongs to one of three clusters: many industrialized economies (CL1), the UK and the

former Commonwealth countries (CL2) and South America, Mexico and a few other countries (CL3).

We refer to Appendix A for the exact composition of the groups IND, EME, DEV, CL1, CL2 and

CL3. We investigate whether the international common factors that are considered in these settings

- i.e., in particular the global factor - should be included in the model based on our stochastic factor

selection approach. The posterior inclusion probabilities of the international common factors in these
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alternative settings are reported in Table 5. For the factor model containing country groups based on

level op development we report, in line with the literature, results for a model containing the three

variables considered above (i.e., output, consumption, investment) while for the factor model containing

endogenously determined clusters we report both results obtained with one variable (i.e., output only) -

which is the framework used by Francis et al. (2012) to determine the clusters - and results obtained with

three variables. The results reported in the table, again, suggest that there is no world factor and hence

no global business cycle. While there seems to be evidence in favour of a world factor when considering a

factor model with development groups based on the full sample period 1961− 2014, this result vanishes

when looking at both subperiods 1961−1985 and 1986−2014 separately. Since there have been important

shifts between subperiods - i.e., the EME group has no distinct factor during the period 1961− 1985 but

does command its own factor during the period 1986−2014 - the full sample period results are unreliable.

With respect to the endogenous clusters, we find that, when considering a factor model for only output

over the full sample period, the three clusters identified by Francis et al. (2012) are also included by our

approach. This is not surprising as this setting is exactly the setting used by Francis et al. (2012) to

determine the clusters. The difference is however that the world factor should not be included in the

factor model according to our results whereas it is simply imposed - i.e., not determined endogenously

as a distinct cluster - in the set-up of Francis et al. (2012). For both subperiods, again, we find no world

factor and, additionally, the posterior inclusion probability for CL2 is now very low suggesting that CL2

does not belong in the model. When looking at the results obtained with all three variables included in

the factor model we find - in both subperiods - no evidence in favor of a global factor and we confirm

that there is little support for the existence of CL2. The different results that we obtain compared to

Francis et al. (2012) when considering different sample periods or more variables than just output suggest

that applying the endogenous clustering method in these alternative settings might lead to a different

composition of clusters.
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Table 5: Posterior inclusion probabilities of international common factors: development levels and clusters

Period Posterior factor inclusion probabilities

Development Endogenous clusters

All variables Output only All variables

World IND EME DEV World CL1 CL2 CL3 World CL1 CL2 CL3

1961-2014 1.00 0.02 0.23 1.00 0.02 1.00 0.84 1.00 0.78 0.31 0.46 1.00

1961-1985 0.04 1.00 0.15 0.99 0.04 1.00 0.22 1.00 0.04 1.00 0.18 1.00

1986-2014 0.04 1.00 1.00 0.71 0.02 1.00 0.23 1.00 0.04 1.00 0.37 1.00

Note: All reported results are based on prior p0 = 0.5 but they are robust to the use of alternative priors p0 = 0.25 or p0 = 0.75. The

columns ”All variables” contain results obtained with output, consumption and investment. IND denotes the group of industrial

economies, EME denotes the group of emerging economies and DEV denotes the group of developing economies. CL1 denotes cluster

1 which contains many industrialized economies, CL2 denotes cluster 2 which contains the UK and the former Commonwealth

countries and CL3 denotes cluster 3 which contains South America, Mexico and a few other countries. We refer to Appendix A for

the exact composition of these groups.

5 Conclusions

This paper deals with the identification of international business cycles using international macroeconomic

aggregates. To this end, a Bayesian stochastic factor selection approach is developed for hierarchical

dynamic factor models with predetermined factors, which are the factor models typically used in the

literature on international business cycles. This literature has so far however ignored model uncertainty

in these models as common factors are typically imposed but not tested for. This can lead to misleading

results. To the best of our knowledge, no comparable factor selection approach for dynamic factor models

is available in the literature.

The method is applied to investigate the existence of international business cycles using data for

output growth, private consumption growth and private investment growth for 60 countries over the

period 1961-2014. The focus lies in particular on whether a global worldwide cycle is present in the data.

Our baseline model allows for a global factor and factors based on subgroups of countries, i.e., regions.

While our model selection procedure supports the (increased) presence of regional cycles, our results also

suggest that there is no global business cycle in the data, i.e., the posterior factor inclusion probabilities

for the global common factor are negligible both in the baseline estimations and in most of the conducted

robustness checks. We argue that not finding a common factor on which countries from all six regions

load may not be that surprising since - unlike for subgroups of countries such as regions - for a group

consisting of all countries in the world, it is hard to invoke characteristics shared by all these countries

(such as geographical proximity, level op development, institutions) that might give rise to such a global

cycle.
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Appendix A List of countries

The sample consists of 60 countries which, below, are grouped according to geographical region. Each

country belongs to one of 6 regions: Europe, North America, Oceania, Latin America, Africa and Asia.

This classification follows Kose et al. (2003a) except for the fact that in the main results of the paper no

subdivision is made between developed and developing Asian countries. Between squared brackets the

ISO classification of the country is added. Between normal brackets two additional pieces of information

are reported that are used in the robustness checks of the paper (see Section 4). First, the development

level group to which the country belongs where this classification of countries follows Kose et al. (2012).

A country belongs either to the group of industrial economies (IND), to the group of emerging mar-

ket economies (EME) or to the group of other developing countries (DEV). Second, the endogenously

determined cluster to which the country belongs where this classification of countries is based on the
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results obtained by the endogenous clustering method of Francis et al. (2012). A country belongs either

to cluster 1 which contains many industrialized countries (CL1), to cluster 2 which contains the UK and

the former Commonwealth countries (CL2) or to cluster 3 which contains South America, Mexico and a

few other countries (CL3). In the robustness checks of Section 4 a distinction is further made between

developed Asian economies and developing Asian economies where we base this classification on Kose

et al. (2003a). Below, the developed Asian economies are denoted with an asterisk next to their names.

Europe (18 countries):

Austria [AUT](IND,CL1), Belgium [BEL](IND,CL1), Denmark [DNK](IND,CL2), Finland [FIN](IND,

CL1), France [FRA](IND, CL1), Germany [DEU](IND, CL1), Greece [GRC](IND,CL1), Iceland [ISL](IND,CL1),

Ireland [IRL](IND,CL1) Italy [ITA](IND,CL1), Luxembourg [LUX](IND,CL1), Netherlands [NLD](IND,CL1),

Norway [NOR](IND,CL1), Portugal [PRT](IND,CL1), Spain [ESP](IND,CL1), Sweden [SWE](IND,CL1),

Switzerland [CHE](IND,CL1), United Kingdom [GBR](IND,CL2)

North America (3 countries):

Canada [CAN](IND,CL2), Mexico [MEX](EME,CL3), U.S. [USA](IND,CL2)

Oceania (2 countries):

Australia [AUS](IND,CL2), New Zealand [NZL](IND,CL2)

Latin America (18 countries):

Costa Rica [CRC](DEV,CL3), Dominican Republic [DOM](DEV,CL3), El Salvador [SLV](DEV,CL3),

Guatemala [GTM](DEV,CL3), Honduras [HND](DEV,CL3), Jamaica [JAM](DEV,CL3), Panama [PAN](DEV,CL3),

Trinidad [TTO](DEV,CL3), Argentina [ARG](EME,CL3), Bolivia [BOL](DEV,CL3), Brazil [BRA](EME,CL1),

Chile [CHL](EME,CL3), Columbia [COL](EME,CL3), Ecuador [ECU](DEV,CL3), Paraguay [PRY](DEV,CL3),

Peru [PER](EME,CL3), Uruguay [URY](DEV,CL3), Venezuela [VEN](EME,CL3),

Africa (7 countries):

Cameroon [CMR](DEV,CL2), Ivory Coast [CIV](DEV,CL2), Kenya [KEN](DEV,CL2), Morocco [MAR](EME,CL3),

Senegal [SEN](DEV,CL3), South Africa [ZAF](EME,CL2), Zimbabwe [ZWE](DEV,CL2),

Asia (12 countries):

Bangladesh [BGD](DEV,CL2), India [IND](EME,CL2), Indonesia [IDN](EME,CL2), Pakistan [PAK](EME,CL1),

Philippines [PHL](EME,CL3), Sri Lanka [LKA](DEV,CL2), Hong Kong* [HKG](EME,CL1), Japan*

[JAP](IND,CL1), Malaysia* [MYS](EME,CL2), Singapore* [SGP](EME,CL2), South Korea* [KOR](EME,CL1),

Thailand* [THA](EME,CL1)
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Appendix B Technical details of the the Gibbs sampler

B.1 Sample the parameters φ from the conditional distribution Λ(φ|f, y)

Subsets of parameters contained in φ can be sampled from a standard regression model,

x = zrβr + ω (B-1)

where x is a n × 1 vector containing n stacked observations on the dependent variable, zr is a n × k

matrix containing n stacked observations of k predictor variables, βr is the k× 1 parameter vector and ω

is the n× 1 vector of error terms for which ω ∼ iidN
(
0, σ2

ωIn
)
. If there are no binary indicators ι in the

regression or if all binary indicators in the regression ι are equal to 1, then zr = z and βr = β where z and

β are the unrestricted predictor matrix and the corresponding unrestricted coefficient vector. Otherwise,

the restricted parameter vector βr and the corresponding restricted predictor matrix zr contain only those

elements of z and β for which the corresponding binary indicators ι are equal to 1. The prior distribution

of βr is given by βr ∼ N
(
br0, B

r
0σ

2
ω

)
with br0 a k× 1 vector and Br0 a k× k matrix. The prior distribution

of σ2
ω is given by σ2

ω ∼ IG (c0, C0) with scalars c0 (shape) and C0 (scale). The posterior distributions

(conditional on x, zr, and ι) of βr and σ2
ω are then given by βr ∼ N

(
br, Brσ2

ω

)
and σ2

ω ∼ IG (c, Cr)

with,

Br =
[
(zr)′zr + (Br0)−1

]−1
br = Br

[
(zr)′x+ (Br0)−1br0

]
(B-2)

c = c0 + n/2

Cr = C0 +
1

2

[
x′x+ (br0)′(Br0)−1br0 − (br)′(Br)−1br

]
To sample the binary indicators ι, a naive implementation of the Gibbs sampler would be to first sam-

ple the binary indicators ι from p(ι|x, z, β, σ2
ω) and next βr from p(βr|x, z, σ2

ω, ι). However, this approach

does not result in an irreducible Markov chain as whenever an indicator ι equals 0, the corresponding

coefficient in β is also 0 which implies that the chain has absorbing states. Therefore, as in Frühwirth-

Schnatter and Wagner (2010), we marginalize over the parameters β when sampling ι and next draw βr

conditional on ι. The posterior distribution of the binary indicators ι is obtained from Bayes’ theorem

as,

p(ι|x, z, σ2
ω) ∝ p(x|z, σ2

ω, ι)p(ι) (B-3)

where p(ι) is the prior distribution of ι and p(x|z, σ2
ω, ι) is the marginal likelihood of regression eq. (B-1)
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where the effect of the parameters β has been integrated out. We refer to Frühwirth-Schnatter and

Wagner (2010) (their eq.(25)) for the closed form expression of the marginal likelihood for the general

regression model of eq. (B-1). For our purposes, a simpler marginal likelihood expression suffices as we

calculate the marginal likelihood under the restriction σ2
ω = 1 as will be detailed in Section B.1.1 below.

We then have,

p(x|z, σ2
ω, ι) ∝

|Br|0.5
|Br0 |0.5

exp

[
−x
′x+ (br0)′(Br0)−1br0 − (br)′(Br)−1br

2

]
(B-4)

where br0, Br0 , br and Br are as reported above.13

B.1.1 Sample the binary indicators δ from Λ(δ|α, σ2
ν , π, f, y)

We draw the binary indicators ι = δ one-by-one per factor j (with j = 1, ...,M + N). To this end, we

first rewrite eq. (5) as,

yjit = δjσεjf
∗j
it + µit (B-5)

where yjit ≡ yit −
∑
m 6=j α

m
i δ

mσεmf
m
t and f∗jit ≡ αjif

j
t . This equation cannot immediately be cast into

the standard regression eq.(B-1) above as µit is not iid but follows an AR(p) process (see eq. (4)). Using

the parameters πi =
[
π1
i , ..., π

p
i

]′
we can define the lag polynomial Πi(L) = 1− π1

iL− π2
iL

2 − ...− πpi Lp

and premultiply both sides of eq. (B-5) with it to obtain,

ỹjit = δjσεj f̃
∗j
it + νit (B-6)

where ỹjit = Πi(L)yjit, f̃
∗j
it = Πi(L)f∗jit and where we use the result, from eq. (4), that νit = Πi(L)µit.

As such, we have observations for ỹjit and f̃∗jit for t = p+ 1, ..., T . The first p observations for ỹjit and

f̃∗jit are calculated from the first p observations of yjit and f∗jit using πi and following the approach of Chib

and Greenberg (1994). In particular, stack the first p observations for yjit and f∗jit into the p× 1 vectors

yji0 =
[
yji1, ..., y

j
ip

]′
and f∗ji0 =

[
f∗ji1 , ..., f

∗j
ip

]′
. Then calculate the p × 1 vectors ỹji0 =

[
ỹji1, ..., ỹ

j
ip

]′
and

f̃∗ji0 =
[
f̃∗ji1 , ..., f̃

∗j
ip

]′
from ỹji0 = Q−1yji0 and f̃∗ji0 = Q−1f∗ji0 with the p× p transformation matrix Q. The

matrix Q satisfies QQ′ = Σp where the p×p matrix Σp is defined from vec(Σp) = (Ip2−Φ⊗Φ)−1vec(ee′)

with e = (1, 0, ..., 0)
′

the p× 1 unit vector and with the p× p matrix Φ =

 π
′

i

Ip−1 0(p−1)×1

.

To sample δj from eq. (B-6) we need to stack observations over both t and i so that the error term νit

is still not iid, i.e., it is heteroskedastic across i since its variance σ2
νi is different for every i. We therefore

13Eq. (B-4) can be obtained from Frühwirth-Schnatter and Wagner’s eq. (45) by replacing their variance matrix Σ by 1
(after adjusting differences in notation).
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follow a GLS approach and divide both sides of eq. (B-6) by σνi to obtain,

ỹjit
σνi

= δjσεj
f̃∗jit
σνi

+
νit
σνi

(B-7)

Eq. (B-7) fits in the framework of eq. (B-1) both when δj = 1 and when δj = 0. If δj = 1 then x = ỹj

σν

is a KNT × 1 vector (i.e., n = KNT ) of stacked values of
ỹjit
σνi

, zr = z = f̃∗j

σν
is the KNT × 1 predictor

matrix (i.e., k = 1) containing the stacked values of
f̃∗jit
σνi

with corresponding parameter βr = β = σεj and

ω = ν
σν

is a KNT × 1 vector containing stacked values of νit
σνi

. We note that σ2
ω = 1. When δj = 0 we

have the same values for x, ω and σ2
ω but z is a KNT × 1 vector of zeros and β = 0.

As σ2
ω = 1 both when δj = 1 and δj = 0, we calculate the marginal likelihoods p(x|δj = 1, z, σ2

ω, δ
−j)

and p(x|δj = 0, z, σ2
ω, δ
−j) using eq. (B-4) above with the priors for β = σεj discussed in Section

2.3.1, i.e., br0 = 0 and Br0 = 10. Upon combining the marginal likelihoods with the Bernoulli prior

distributions of the binary indicators p(δj = 1) = p0 and p(δj = 0) = 1− p0, the posterior distributions

p(δj = 1|x, z, σ2
ω, δ
−j) and p(δj = 0|x, z, σ2

ω, δ
−j) are obtained from which the probability prob(δj =

1|x, z, σ2
ω, δ
−j) =

p(δj=1|x,z,σ2
ω,δ
−j)

p(δj=0|x,z,σ2
ω,δ
−j)+p(δj=1|x,z,σ2

ω,δ
−j) is calculated which is used to sample δj .

B.1.2 Sample the standard deviations of the common factors σε from Λ(σε|δ, α, σ2
ν , π, f, y)

Given δ, α, σ2
ν , π, f and y we can sample σε simultaneously for all factors j (with j = 1, ...,M +N). We

rewrite eq. (5) as,

yit =

M+N∑
j=1

σεjf
∗j
it + µit (B-8)

where f∗jit ≡ δjαjif
j
t . This equation cannot immediately be cast into the standard regression eq. (B-1)

above as µit is not iid but follows an AR(p) process (see eq. (4)). Using the parameters πi =
[
π1
i , ..., π

p
i

]′
we can define the lag polynomial Πi(L) = 1− π1

iL− π2
iL

2 − ...− πpi Lp and premultiply both sides of eq.

(B-8) with it to obtain,

ỹit =

M+N∑
j=1

σεj f̃
∗j
it + νit (B-9)

where ỹit = Πi(L)yit, f̃
∗j
it = Πi(L)f∗jit and where we use the result, from eq. (4), that νit = Πi(L)µit.

As such, we have observations for ỹit and f̃∗jit for t = p+ 1, ..., T . The first p observations for ỹit and

f̃∗jit are calculated from the first p observations of yit and f∗jit using πi following the approach of Chib

and Greenberg (1994) as discussed in Section B.1.1.

To sample σεj from eq. (B-9) we need to stack observations over both t and i so that the error term

νit is still not iid, i.e., it is heteroskedastic across i since its variance σ2
νi is different for every i. We
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therefore follow a GLS approach and divide both sides of eq. (B-9) by σνi to obtain,

ỹit
σνi

=

M+N∑
j=1

σεj
f̃∗jit
σνi

+
νit
σνi

(B-10)

Eq. (B-10) fits in the framework of eq. (B-1) with x = ỹ
σν

the KNT × 1 vector of stacked (across t

and i) values of ỹit
σνi

(i.e., n = KNT ). The n× k predictor matrix zr is given by zr =
[
..., f̃

∗j

σν
, ...
]

where

f̃∗j

σν
contains the stacked (across t and i) values

f̃∗jit
σνi

and where a regressor f̃∗j

σν
is included in zr if it has

δj = 1, i.e., for the number of columns k of zr we have k ≤M +N . The corresponding k × 1 parameter

vector is given by βr = [..., σεj , ...]
′
. The vector ω = ν

σν
is the KNT × 1 vector of error terms νit

σνi
for

which σ2
ω = 1. The priors used when sampling σεj are discussed in Section 2.3.1, i.e., we use prior means

and variances for σεj of respectively 0 and 10. As such, we have βr ∼ N
(
br0, B

r
0σ

2
ω

)
with k × 1 vector

br0 = [0, ..., 0]
′

and k × k matrix Br0 = 10Ik.

Given these priors, we sample βr = [..., σεj , ...]
′

from N
(
br, Brσ2

ω

)
where, from eq. (B-2), we have

br = Br [(zr)′x] and Br =
[
(zr)′zr + (Br0)−1

]−1
. The standard deviations σεj corresponding to factors j

for which δj = 0 are set to 0.

B.1.3 Sample the factor loadings α and the variances σ2
ν jointly from Λ(α, σ2

ν |δ, σε, π, f, y)

Given δ, σε, π, f and y we can sample the non-zero factor loadings α and error variances σ2
ν per

variable/country i (with i = 1, ...,K ×N). We rewrite eq. (5) as,

yit =

M+N∑
j=1

αjif
∗j
t + µit (B-11)

where f∗jt ≡ δjσεjf
j
t . This equation cannot immediately be cast into the standard regression eq. (B-1)

above as µit is not iid but follows an AR(p) process (see eq. (4)). Using the parameters πi =
[
π1
i , ..., π

p
i

]′
we can define the lag polynomial Πi(L) = 1 − π1

iL − π2
iL

2 − ... − πpi Lp and premultiply both sides of

eq.(B-11) with it to obtain,

ỹit =

M+N∑
j=1

αji f̃
∗j
t + νit (B-12)

where ỹit = Πi(L)yit, f̃
∗j
t = Πi(L)f∗jt and where we use the result, from eq. (4), that νit = Πi(L)µit.

As such, we have observations for ỹit and f̃∗jt for t = p+ 1, ..., T . The first p observations for ỹit and

f̃∗jt are calculated from the first p observations of yit and f∗jt using πi following the approach of Chib

and Greenberg (1994) as discussed in Section B.1.1.

Eq. (B-12) fits in the framework of eq. (B-1) with x = ỹi the T × 1 vector of stacked values of ỹit

(i.e., n = T ). The n× k predictor matrix zr is given by zr =
[
..., f̃∗j , ...

]
where f̃∗j contains the stacked
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values f̃∗jt and where a regressor f̃∗j is included in zr if it has δj = 1, i.e., for the number of columns k

of zr we have k ≤M +N . The corresponding k × 1 parameter vector is given by βr =
[
..., αji , ...

]′
. The

vector ω = νi is the T × 1 vector of error terms νit where from eq. (4) we note that σ2
ω = σ2

νi . The priors

used when sampling αi and σ2
νi are discussed in Section 2.3.1, i.e., we use prior means and variances for

αji of respectively 0 and 10 and prior beliefs and strengths for σ2
νi of respectively 10 and 0.01. As such,

we have βr ∼ N
(
br0, B

r
0σ

2
ω

)
with k × 1 vector br0 = [0, ..., 0]

′
a k × 1 and k × k matrix Br0 = (10/σ2

ω)× Ik

and we have σ2
ω ∼ IG (c0, C0) with c0 = 0.01× T and C0 = 0.01× 10× T .

Given these priors, we sample σ2
ω = σ2

νi from IG (c, Cr) and, conditional on σ2
ω, we sample βr =[

..., αji , ...
]′

fromN
(
br, Brσ2

ω

)
where, from eq. (B-2), we have c = c0+T/2, Cr = C0+ 1

2

[
x′x− (br)′(Br)−1br

]
,

br = Br [(zr)′x] and Br =
[
(zr)′zr + (Br0)−1

]−1
. Then, we impose the normalization condition αj = 1

(where the average is over i and excludes cases for which αji is equal to 0). The loadings αji corresponding

to factors j for which δj = 0 are set to 0.

B.1.4 Sample the AR parameters ρ from Λ(ρ|f)

Given the common factors f j (with j = 1, ...,M + N), the AR parameters ρj,l (with l = 1, ..., q) can

be sampled per factor j from eq. (B-1) where x = f j is the (T − q) × 1 vector of stacked values of f jt

(i.e., n = T − q), zr = z =
[
f j−1, ..., f

j
−q
]

is the (T − q) × q matrix of stacked lagged values of f jt (i.e.,

k = q), βr = β = ρj =
[
ρj,1, ..., ρj,q

]′
is the q × 1 vector of parameters ρj,l (for l = 1, ..., q), ω = εj is

the (T − q) × 1 vector of error terms εjt where from eq. (3) we note that σ2
ω = 1 (for all j). The priors

used when sampling ρj,l are discussed in Section 2.3.1, i.e., we use prior means and variances for ρj,l of

respectively 0 and 1. As such, we have β ∼ N (b0, B0) with b0 = [0, ..., 0]
′

a q × 1 vector and B0 = Iq.

Given these priors, we follow Chib and Greenberg (1994) and first simulate a candidate draw β∗ from

β ∼ N (b, B) where, from eq. (B-2), B =
[
z′z + (Iq)

−1]−1 and b = B(z′x). If the candidate draw β∗

does not satisfy the stationarity condition, it is discarded and the previous draw β′ is withheld.14 If the

candidate draw β∗ satisfies the stationarity condition, we conduct a Metropolis-Hastings step and accept it

as the next sample value with probability min [(Ψ(β∗)/Ψ(β′)), 1] where Ψ(β) = |Σq|−1/2exp
(
− 1

2x
′
0Σ−1q x0

)
with x0 = [x1, ..., xq]

′
=
[
f j1 , ..., f

j
q

]′
the first q data points assumed to be drawn from the stationary

distribution x0|β ∼ N (0,Σq). The q × q matrix Σq is defined from vec(Σq) = (Iq2 − Φ ⊗ Φ)−1vec(ee′)

with e = (1, 0, ..., 0)
′

the q × 1 unit vector and with the q × q matrix Φ =

 ρj
′

Iq−1 0(q−1)×1

. If the

candidate draw β∗ is rejected, the previous draw β′ is withheld.

14The stationarity condition is fulfilled if, if for some variable m, the moduli of the roots of the polynomial ρj(m) =
1 − ρj,1m− ρj,2m2 − ...− ρj,qmq lie outside of the unit circle.
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B.1.5 Sample the AR parameters π from Λ(π|δ, σε, α, σ2
ν , f, y)

Given δ, σε, α, f and y we can calculate the idiosyncratic components µ from eq. (5). Given the

idiosyncratic components µi (with i = 1, ...,K × N), the AR parameters πli (with l = 1, ..., p) can be

sampled per country/variable i from eq. (B-1) where x = µi is the (T − p) × 1 vector of stacked values

of µit (i.e., n = T − p), zr = z = [µi,−1, ..., µi,−p] is the (T − p)× p matrix of stacked lagged values of µit

(i.e., k = p), βr = β = πi =
[
π1
i , ..., π

p
i

]′
is the p × 1 vector of parameters πli (for l = 1, ..., p), ω = νi is

the (T − p) × 1 vector of error terms νit where from eq. (4) we note that σ2
ω = σ2

νi (for all i). We note

that when sampling πi we do not sample σ2
νi but take it as given as σ2

νi is already sampled in Section

B.1.3 above. The priors used when sampling πli are discussed in Section 2.3.1, i.e., we use prior means

and variances for πli of respectively 0 and 1. As such, we have β ∼ N
(
b0, B0σ

2
ω

)
with b0 = [0, ..., 0]

′
a

p× 1 vector and B0 = Ip.

Given these priors, we follow Chib and Greenberg (1994) and first simulate a candidate draw β∗

from β ∼ N
(
b, Bσ2

ω

)
where, from eq. (B-2), B =

[
z′z + (Ip)

−1]−1 and b = B(z′x). If the can-

didate draw β∗ does not satisfy the stationarity condition, it is discarded and the previous draw β′

is withheld. If the candidate draw β∗ satisfies the stationarity condition, we conduct a Metropolis-

Hastings step and accept it as the next sample value with probability min [(Ψ(β∗)/Ψ(β′)), 1] where

Ψ(β) = |Σp|−1/2exp
(
− 1

2σ2
ω
x′0Σ−1p x0

)
with x0 = [x1, ..., xp]

′
= [µi1, ..., µip]

′
the first p data points as-

sumed to be drawn from the stationary distribution x0|β ∼ N
(
0,Σpσ

2
ω

)
. The p× p matrix Σp is defined

from vec(Σp) = (Ip2 − Φ ⊗ Φ)−1vec(ee′) with e = (1, 0, ..., 0)
′

the p × 1 unit vector and with the p × p

matrix Φ =

 π
′

i

Ip−1 0(p−1)×1

. If the candidate draw β∗ is rejected, the previous draw β′ is withheld.

B.2 Sample the common factors f from the conditional distribution Λ(f |φ, y)

The common factors that are included in the model - i.e., those for which δj = 1 - are sampled conditional

on the parameters φ and data y using a state space approach where the unobserved states are the common

factors f . In particular, we use the forward-filtering backward-sampling approach discussed in detail in

Kim and Nelson (1999) to sample the unobserved states. The general form of the state space model is

given by,

Yt = ZtSt + Vt, Vt ∼ iidN (0, Ht) , (B-13)

St = TtSt−1 +KtEt, Et ∼ iidN (0, Qt) , t = 1, . . . , T (B-14)

S1 ∼ iidN (s1, P1) , (B-15)
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where Yt is a n × 1 vector of observations and St an unobserved ns × 1 state vector. The matrices

Zt, Tt, Kt, Ht, Qt and the mean s1 and variance P1 of the initial state vector S1 are assumed to be

known (conditioned upon) and the error terms Vt and Et are assumed to be serially uncorrelated and

independent of each other at all points in time. Note that Et is a nss × 1 matrix (where nss ≤ ns). As

eqs. (B-13)-(B-15) constitute a linear Gaussian state space model, the unknown state variables in St can

be filtered using the standard Kalman filter. Sampling S = [S1, . . . , ST ] from its conditional distribution

can then be done using the multimove Gibbs sampler of Carter and Kohn (1994).

The state space approach and forward-filtering backward-sampling algorithm is only used for common

factors that are effectively included in the model, i.e., factors for which δj = 1. Assuming there are

nf ≤ M + N of such factors (where nf can be different in every Gibbs iteration), we rewrite eq. (5) in

the main text as,

yit =

nf∑
j=1

αjiσεjf
j
t + µit (B-16)

Eq. (B-16) is not an observation equation of the form of eq. (B-13) as the component µit is not iid

but follows an AR(p) process (see eq. (4)). Using the parameters πi =
[
π1
i , ..., π

p
i

]′
we can define the

lag polynomial Πi(L) = 1− π1
iL− π2

iL
2 − ...− πpi Lp and premultiply both sides of eq. (B-16) with it to

obtain,

ỹit =

nf∑
j=1

αjiσεjΠi(L)f jt + νit (B-17)

where ỹit = Πi(L)yit and where we use the result, from eq. (4), that νit = Πi(L)µit. As such, we have

observations for ỹit for t = p + 1, ..., T . The first p observations for ỹit are calculated from the first p

observations of yit using πi following the approach of Chib and Greenberg (1994) as discussed in Section

B.1.1.

Eq. (B-17) and the nf equations containing the law of motion for the factors f jt as given by eq.

(3) in the text (now for j = 1, ..., nf ) can be put in the state space form of eqs.(B-13)-(B-15). The

dimensions are n = K × N , ns = max
[
(p+ 1)× nf , q × nf

]
and nss = nf . The system matrices are

Yt =
[
ỹ1t ... ỹnt

]′
, Vt =

[
ν1t ... νnt

]′
, Ht =


σ2
ν1 0. . .

0 σ2
νn

. The matrix Zt takes the form

Zt =
[
Z1t ... Znt

]′
with Zit =

[
Z1
it ... Zn

f

it

]
(for i = 1, ...,K ×N). When q ≤ (p+ 1) we have

Zjit =
[
αjiσεj −αjiσεjπ1

i ... −αjiσεjπpi
]

(for j = 1, ..., nf ) where Zjit is a 1× (p + 1) matrix. When

q > (p+ 1) we have Zjit =
[
αjiσεj −αjiσεjπ1

i ... −αjiσεjπpi 0 ... 0
]

(for j = 1, ..., nf ) where Zjit

is a 1× q matrix. The state vector St then takes the form St =
[
S1
t ... Sn

f

t

]′
where for q ≤ (p+ 1)

we have Sjt =
[
f jt f jt−1 ... f jt−p

]′
a (p+ 1)× 1 matrix (for j = 1, ..., nf ) and where for q > (p+ 1)
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we have Sjt =
[
f jt f jt−1 ... f jt−p f jt−p−1 ... f jt−q+1

]′
a q × 1 matrix (for j = 1, ..., nf ). The

matrix Tt is given by Tt =


T 1
t 0. . .

0 Tn
f

t

. When q ≤ (p + 1) we have T jt =

 ρj
′

01×(p+1−q)

Ip 0p×1


a (p + 1) × (p + 1) matrix (for j = 1, ..., nf ) with ρj the q × 1 vector containing the AR parameters ρjl

(for l = 1, ..., q). When q > (p+ 1) we have T jt =

 ρj
′

Iq−1 0(q−1)×1

 a q × q matrix (for j = 1, ..., nf ).

For the matrix Qt we have Qt = Inf . The matrix Kt is given by Kt =
[
K1
t ... Knf

t

]′
. Each matrix

Kj
t (for j = 1, ..., nf ) is a (p + 1) × nf matrix when q ≤ (p + 1) or a q × nf matrix when q > (p + 1)

and consists entirely of zeros except for row 1 and column j where a ”1” is placed. For the the mean s1

of the initial state vector we have s1 = 0(p+1)nf×1 when q ≤ (p + 1) or s1 = 0qnf×1 when q > (p + 1).

The variance P1 of the initial state vector is given by P1 =


P 1
1 0. . .

0 Pn
f

1

 where the element P j1

is calculated for j = 1, ..., nf . When q ≤ (p + 1) then P j1 is a (p + 1) × (p + 1) matrix calculated

from vec(P j1 ) = (I(p+1)2 − T jt ⊗ T jt )−1vec(ee′) with T jt the (p + 1) × (p + 1) matrix defined above and

e = (1, 0, ..., 0)′ the (p+ 1)× 1 unit vector. When q > (p+ 1) then P j1 is a q × q matrix calculated from

vec(P j1 ) = (Iq2 −T jt ⊗T jt )−1vec(ee′) with T jt the q× q matrix defined above and e = (1, 0, ..., 0)′ the q×1

unit vector.
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