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Abstract

Random subspace methods are a novel approach to obtain accurate fore-

casts in high-dimensional regression settings. Forecasts are constructed from

random subsets of predictors or randomly weighted predictors. We provide

a theoretical justification for these strategies by deriving bounds on their

asymptotic mean squared forecast error, which are highly informative on

the scenarios where the methods work well. Monte Carlo simulations con-

firm the theoretical findings and show improvements in predictive accuracy

relative to widely used benchmarks. The predictive accuracy on monthly

macroeconomic FRED-MD data increases substantially, with random sub-

space methods outperforming all competing methods for at least 66% of the

series.
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1 Introduction

Due to the increase in available macroeconomic data, dimension reduction meth-

ods have become an indispensable tool for accurate forecasting. One well-known

approach to reduce the dimension of the predictor set is to identify a small set

of factors that drive most of the variation in the high-dimensional predictor set,

as in Stock and Watson (2002, 2006) and Bai and Ng (2006, 2008). Whether one

uses the original predictor set or the extracted factors, selection of the relevant

predictors is commonly subject to substantial uncertainty. Consequently, employ-

ing model selection and shrinkage methods that estimate inclusion weights for the

predictors increases the forecast variance (Ng, 2013).

A seemingly naive strategy is to forgo data-based shrinkage or selection, and

assign random weights to the predictors. Although a priori there seems to be little

reason to expect this approach to lead to accurate forecasts, empirical evidence

suggests otherwise. For example, Elliott et al. (2013, 2015) find that averag-

ing over forecasts constructed from many randomly selected subsets of fixed size

substantially lowers the mean squared forecast error compared with data-driven

alternatives. The theoretical justification of such randomized approaches is not

completely understood. We provide both theoretical and extensive empirical evi-

dence for the intriguingly strong performance of random subspace methods.

We distinguish two different approaches to constructing a random subspace.

The first method we consider is random subset regression, where a randomly

chosen subset of predictors is used to estimate a low-dimensional approximation

to the original model and construct a forecast. The forecasts from many such

submodels are then combined in order to lower the mean squared forecast error

(MSFE).

Instead of selecting a subset of available predictors, random projection regres-

sion forms a low-dimensional subspace by averaging over predictors using random

weights drawn from a standard normal distribution. Although not required in the

setup here, the justification for this method is usually derived from the Johnson-

Lindenstrauss lemma (Johnson and Lindenstrauss, 1984), which has very recently

inspired several applications in the econometric literature on discrete choice mod-

els by Chiong and Shum (2016), forecasting product sales by Schneider and Gupta

(2016), and forecasting using large vector autoregressive models by Koop et al.

(2016) based on the framework of Guhaniyogi and Dunson (2015).

There are many random sampling methods which are widely used in the sta-

tistical and machine learning literature but rather new to economics (Ng, 2015).
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Bagging or bootstrap aggregation also selects a subset of available predictors, but

differs from random subset regression in that each submodel is subject to some

form of model selection. Averaging over the submodels serves to smooth selection

errors (Breiman, 1996; Bühlmann and Yu, 2002; Inoue and Kilian, 2008). Similar

to random projections, Frieze et al. (2004) and Mahoney and Drineas (2009) con-

struct a new set of predictors by using predictor weights. However, these weights

are drawn from distributions that depend on the original set of predictors. Ma

et al. (2015) discuss related sampling methods focusing on a large number of ob-

servations instead of a large set of predictors. Furthermore, the random subspace

methods we consider in this paper differ from alternatives by using random weights

that are independent of the data, involve a single tuning parameter, are less time

consuming, and are extremely simple to implement.

We derive expressions for the upper bound on the asymptotic MSFE for ran-

dom subset and random projection regression and use these bounds to determine

in which settings the methods are most effective. A direct comparison between

the two random subspace methods can be made when the predictors are uncorre-

lated. This setting nevertheless brings out the main features we observe in general

settings studied in Monte Carlo experiments. The bounds elicit that random pro-

jection regression shares certain properties with ridge regression. It achieves a

low MSFE when highly variable predictors are the ones that are most strongly

related to the dependent variable. On the other hand, the bound for random

subset regression only depends on the aggregate signal and not on the variance of

the individual predictors. When the relevant predictors have a lower than average

variance, the bound for random subset regression is lower compared to random

projection regression.

For random subset regression, the construction of an upper bound on the

asymptotic MSFE appears new. For random projection regression, bounds are

only available for the in-sample mean squared error under fixed regressors by

Maillard and Munos (2009), Kabán (2014) and Thanei et al. (2017). Our out-of-

sample bound improves upon the existing results for the in-sample mean squared

error.

The bounds are derived for forecasts that take the expected value over the

random subspaces. In practice, we have to settle for a finite number of draws. We

show that this has a negligible effect on the asymptotic MSFE when the number

of draws scales linearly with the number of predictors, up to a logarithmic factor.

This explains why Elliott et al. (2013) find no deterioration in performance when

not all subsets are used, which would require a number of draws exponential in
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the number of predictors.

The theoretical findings are confirmed in a set of Monte Carlo experiments,

which also compare the performance of the randomized methods to several well-

known alternatives: principal component regression, based on Pearson (1901),

partial least squares by Wold (1982), ridge regression by Hoerl and Kennard (1970)

and the lasso by Tibshirani (1996). Both randomized methods offer superior

forecast accuracy over principal component regression, even in some cases when

the data generating process is specifically tailored to suit this method. The random

subspace methods outperform the lasso unless there is a small number of very

large non-zero coefficients. Ridge regression is outperformed for a majority of

the settings where the coefficients are not very weak. When the data exhibits

a factor structure, and factors associated with intermediate eigenvalues drive the

dependent variable, random subset regression is the only method that outperforms

the historical mean of the data.

We empirically test the theoretical and Monte Carlo findings using monthly

macroeconomic series in the FRED-MD dataset, introduced by McCracken and

Ng (2016). Random subset regression provides the lowest MSFE relative to the

benchmark models for at least 66% of the 130 series, followed by random projection

regression. For both random subspace methods, the accuracy is shown to be

substantially less dependent on the dimension of the reduced subspace than it is

in case of principal component regression. Moreover, the dimension of the subspace

should be chosen relatively large (≥ 20). This stands in stark contrast to what is

common for principal component regression, where one often uses a small number

of factors, see for example Stock and Watson (2012). We show how the average

weights of the predictors in the random subspaces provide insight in the main

drivers of the forecasts of the random subspace methods.

The article is structured as follows. Section 2 introduces the random subspace

methods. The theoretical results on the forecast performance of these methods are

derived in Section 3. A Monte Carlo study in Section 4 highlights the performance

of the techniques under different model specifications. Section 5 considers an

extensive empirical application using monthly macroeconomic data. Section 6

concludes.

2 Methods

Consider the model

yt+1 = w′tβw + x′tβx + εt+1, (1)
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where wt is a pw × 1 vector of variables that are always included in the model, xt

is a px × 1 vector of variables which potentially contain information on yt+1, and

the forecast error is denoted by εt+1. The time index t runs from t = 0, . . . , T .

We assume that E[εt+1|wt, xt] = 0 and E[ε2
t+1|wt, xt] = σ2. Further assump-

tions on the sequence {wt, xt, εt+1} will be given in Section 3. Under these as-

sumptions, both wt and xt can contain lags of yt+1 or they can consist of factors

derived from an additional set of observed variables.

We study the properties of point forecasts ŷT+1 for yT+1 when the number of

available predictors p is large and fixed, the predictors in xt are weakly related to

yt+1, and T →∞. The predictors zt = (w′t, x
′
t)
′, with t = 0, . . . , T − 1, are used in

the estimation of the p× 1 parameter vector β = (β′w, β
′
x)
′, and zT = (w′T , x

′
T )′ is

only used for the construction of the forecast for yT+1.

Estimating β by ordinary least squares (OLS) yields the following forecast,

ŷOLS
T+1 = z′T β̂ = z′T (Z ′Z)−1Z ′y, (2)

where y = (y1, . . . , yT )′, Z = (z0, . . . , zT−1)′, and β̂ is the OLS estimator. The

asymptotic mean squared forecast error equals, see for example Elliott et al. (2015),

Eε

[
lim
T→∞

TEzT

[(
yT+1 − z′T β̂

)2
]]

= σ2 + σ2p. (3)

The first term on the right-hand side arises from the noise term εT+1, which is

incurred by any forecasting method. To save on notation, we set εT+1 = 0 in the

remainder of this paper.

2.1 Random subspace methods

Since the MSFE under OLS estimates increases with the number of estimated

coefficients, the forecast in (2) gets inaccurate when xt contains a large number of

predictors. To prevent this, we reduce the dimensionality of the predictor set by

multiplying xt with a px×k matrix R, where k < px, to obtain the approximating

model

yt+1 = w′tβw + x′tRβx,R + ut+1. (4)

The construction of the matrixR is often data-driven. Model selection methods

based on information criteria effectively estimate R as a selection matrix based

on the available data. Principal component regression takes R as the matrix

of principal component loadings corresponding to the k largest eigenvalues from
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the sample covariance matrix of the regressors xt. The key to random subspace

methods is to generate the elements of R from a probability distribution that is

independent of the data. We consider the following two choices for R, which yield

random subset regression and random projection regression.

2.1.1 Random subset regression

In random subset regression (RS), the matrix R is a random selection matrix that

selects a random set of k predictors out of the original px available predictors. For

example, if px = 5 and k = 3, a possible realization of R is
0 1 0

0 0 0

1 0 0

0 0 1

0 0 0

 . (5)

More in general, define an index l = 1, . . . k with k the dimension of the subspace,

and a scalar c(l) such that 1 ≤ c(l) ≤ px. Denote by ec(l) a px-dimensional vector

with all zeros except for the c(l)-th entry that equals one, then random subset

regression is based on random matrices of the form

[
ec(1), . . . , ec(k)

]
, ec(m) 6= ec(n) if m 6= n. (6)

2.1.2 Random projection regression

Instead of selecting a subset of predictors, we can also take weighted averages to

construct a new set of predictors. Random projection regression (RP) chooses the

weights at random from a normal distribution. In this case, each entry of R is

independent and identically distributed as

[R]ij ∼ N (0, 1) , 1 ≤ i ≤ px, 1 ≤ j ≤ k. (7)

2.2 Forecasts from low-dimensional models

We rewrite the approximating model (4) as

yt+1 = z′tSRβR + ut+1, with SR =

(
Ipw O

O R

)
. (8)
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The least squares estimator of βR is denoted by β̂R and given by

β̂R = (S ′RZ
′ZSR)−1S ′RZ

′y. (9)

Using this estimate, we construct a forecast as

ŷT+1,R = z′TSRβ̂R. (10)

If R is a random matrix, then intuitively, relying on a single realization is subopti-

mal and we can improve upon (10). By Jensen’s inequality, we find that averaging

over forecasts based on different realizations of R will lower the expected asymp-

totic MSFE compared to an individual forecast,

Eε

[
lim
T→∞

TEzT

[
(yT+1 − ER [ŷT+1,R])2]] ≤ ER

[
Eε

[
lim
T→∞

TEzT

[
(yT+1 − ŷT+1,R)2]]] ,

where ER denotes the expectation with respect to the random matrix R. There-

fore, we forecast yT+1 as

ŷT+1 = ER [ŷT+1,R] . (11)

In practice, we need to replace the expectation with a finite sum. In Section 3.2,

we show that this does not affect the mean squared forecast error as long as the

number of draws of R is of O
(
px log px

k

)
. This also implies that for a sufficient

number of draws, forecasters that use a different sequence of random matrices will

obtain the same forecast accuracy.

3 Theoretical results

The results in this section are based on the linear regression model defined in

(1) and the following additional assumptions on the regressors zt and error terms

εt+1. Consider the time index t = 0, . . . , T , and the parameter index i = 1, . . . , p.

Denote by ∆ a finite constant independent of the dimensions p and T .

A1 {z′t, εt+1} is a strong mixing sequence of size a = −r/(r − 2), r > 2.

A2 E[εt+1|zti] = 0.

A3 E[ε2
t+1|zti] = σ2.

A4 E|ztiεt+1|r ≤ ∆ <∞.

A5 E[ztz
′
t] = Σz =

(
Σw Σwx

Σxw Σx

)
is positive definite.

7



A6 Vn = Var(T−1/2Z ′ε) is uniformly positive definite.

A7 E|z2
ti|r/2+δ ≤ ∆ <∞.

Under these assumptions we derive theoretical results that apply to weakly de-

pendent time series models. In particular, they allow both wt and xt to contain

lagged values of the dependent variable.

The mixing size a in Assumption 1 is defined as in White (1984), Definition

3.42. In addition to standard results on asymptotic normality, the strong mixing

assumption allows us to establish independence between zT and the estimation

error
√
T (β̂ − β), as we show in Appendix A.1. This independence is essential

to the proof of our main theorem. The necessity for this independence has been

noted in Hansen (2008), and appears to be implied in Equation (2.2) of Hirano

and Wright (2017).

Together, Assumptions A1-A7, guarantee that

1√
T
Z ′ε

(d)→ N(0,Σz), plim
T→∞

1

T
Z ′Z = Σz, (12)

see for example White (1984).

We make one additional assumption with regard to the strength of the predic-

tors, which rules out the possibility to consistently estimate β as T →∞.

A8 The parameter vector β is local-to-zero, i.e.

βx =
1√
T
βx,0, (13)

where βx,0 = O(1).

Under local-to-zero coefficients, the bias induced by using a low-dimensional sub-

space is finite, see Claeskens and Hjort (2008). When coefficients are stronger than

in Assumption A8, the forecast based on OLS estimation in (2) using p variables

is asymptotically the optimal forecast.

The theoretical results also suit forecasting models that assume a factor struc-

ture in xt, such as the diffusion index model (Stock and Watson, 2002). In this

case, if the factors are only weakly related to the dependent variable as in As-

sumption A8, the diffusion index model can be treated along the same lines as

(1) upon replacing xt with pf common factors in ft. It is common to treat pf as

fixed and let px grow with T . The forecast error distribution for this model is

derived by Bai and Ng (2006). Their results show that if px/T → ∞, estimation
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of the factors does not affect the forecast distribution. If px/T = O(1), an additive

term enters due to the estimation error in the factors. This term is not affected

by the methods in this paper, so that the MSFE only incurs an additional term

independent of R.

3.1 MSFE for forecasts from low-dimensional models

Denote the asymptotic mean squared forecast error of (11) as

ρ(k) = Eε

[
lim
T→∞

TEzT

[(
z′Tβ − z′TER

[
SRβ̂R

])2
]]
. (14)

The following theorem provides a bound on the asymptotic mean squared forecast

error for matrices R which can be deterministic or random.

Theorem 1 Let R ∈ Rpx×k be a matrix such that ER[RR′] = k
px
Ipx. The asymp-

totic mean squared forecast error ρ(k) in (14) under (1) satisfying Assumption A1-

A8, is upper bounded by

ρ(k) ≤ σ2(pw + k) + β′x,0Σxβx,0 − βx,0Σx

(px
k

ER [RR′ΣxRR
′]
px
k

)−1

Σxβx,0. (15)

A proof is presented in Appendix A.2. Theorem 1 holds for general matrices R

after suitable scaling.

The first term of (15) represents the variance of the estimates. This can be

compared to the variance that is achieved by forecasting using OLS estimates for

β, which is equal to σ2p = σ2(pw + px). In empirical applications, we expect pw to

be small, as wt usually only contains a constant and a small number of lags. The

number of additional variables px can however be large, and hence, the reduction

in variance to k can be substantial.

The remaining terms in (15) reflect the bias that arises by projecting xt to

a low-dimensional subspace. If any signal is present, this bias is strictly smaller

then the bias of the naive estimator that does not use any of the predictors, which

equals β′x,0Σxβx,0.

Loosely speaking, the product px
k
RR′ΣxRR

′ px
k

first projects Σx to a k-dimen-

sional subspace by multiplying with R from the left and the right, and then re-

inflates by another multiplication with R. If little information is lost in this

procedure, then the expectation will be close to Σx, in which case the bias is

small.
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For both random subset regression and random projection regression, the

bound in (15) can be evaluated explicitly. We start with random subset regression.

3.1.1 MSFE bound for random subset regression

For the random selection matrices in (6) we have the following result.

Lemma 1 Let R ∈ Rpx×k be a random selection matrix and Σx a positive definite

matrix. Then, ER[RR′] = k
px
Ipx, and

ER [RR′ΣxRR
′] =

k

px

(
k − 1

px − 1
Σx +

px − k
px − 1

DΣx

)
, (16)

where [DΣx ]ii = [Σx]ii, and [DΣx ]ij = 0 if i 6= j.

A proof is provided in Appendix A.3.

Using Lemma 1 in the bound from Theorem 1, we obtain the following bound

on the MSFE for random subset regression.

Corollary 1 For random subset regression, the asymptotic mean squared forecast

error ρ(k) in (14) under (1) satisfying Assumption A1-A8, is upper bounded by

ρ(k) ≤ σ2(pw + k) + β′x,0Σxβx,0 −
k

px
β′x,0Σx

(
k − 1

px − 1
Σx +

px − k
px − 1

DΣx

)−1

Σxβx,0.

The bound for random subset regression depends on a convex combination uΣx +

(1 − u)DΣx , for 0 ≤ u ≤ 1. All weight is put on DΣx when k = 1, which implies

that all information on cross-correlations is lost in the low-dimensional subspace.

When k = px, the bound reduces to the exact expression for OLS using p predictors

as in (3).

3.1.2 MSFE bound for random projection regression

When R is constructed as in (7), the columns are not exactly orthogonal. Poten-

tially, the lack of orthogonality of R results in an unnecessary loss of information

compared to the use of a px× k matrix Q with orthogonal columns. However, the

following lemma states that no such loss occurs.

Lemma 2 Suppose R is a px× k matrix of independent standard normal random

variables, Q = R(R′R)−1/2 a px × k matrix with orthogonal columns, and P =

(R′R)1/2 an invertible k × k matrix, then

ρ(k) = Eε

[
lim
T→∞

TEzT

[(
z′Tβ − z′TEQ

[
SQβ̂Q

])2
]]
. (17)
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A proof is provided in Appendix A.4.

By Lemma 2 we can replace R in Theorem 1 by Q, even though we are using

R in the construction of the estimator. To complete the bound from Theorem 1,

we then need the following.

Lemma 3 Let R ∈ Rpx×k be a matrix of independent standard normal entries,

and define Q = R(R′R)−1/2 ∈ Rpx×k. Furthermore, let Σx be a positive definite

matrix. Then, EQ[QQ′] = k
px
Ipx, and

EQ[QQ′ΣxQQ
′] =

k

px

(
px(k + 1)− 2

(px + 2)(px − 1)
Σx +

(px − k)px
(px + 2)(px − 1)

trace(Σx)

px
Ipx

)
.

A proof is provided in Appendix A.5, which relies on somewhat tedious calculations

of the fourth order moments of the elements of the matrix Q.

Using Lemma 3 in the bound from Theorem 1, we obtain a bound on the

asymptotic mean squared forecast error for random projection regression.

Corollary 2 For random projection regression, the asymptotic mean squared fore-

cast error ρ(k) in (14) under (1) satisfying Assumption A1-A8, is upper bounded

by

ρ(k) ≤ σ2(pw + k) + β′x,0Σxβx,0

− k

px
β′x,0Σx

(
px(k + 1)− 2

(px + 2)(px − 1)
Σx +

(px − k)px
(px + 2)(px − 1)

trace(Σx)

px
Ipx

)−1

Σxβx,0.

The bound for random projection regression depends on a convex combination

uΣx + (1 − u) trace(Σx)
px

. When k = 1, nearly all weight is put on trace(Σx), while

when k = px, all weight is put on Σx and the bound reduces to (3).

Maillard and Munos (2009) provide a bound on the in-sample mean squared

error under fixed regressors for random projection regression, which was subse-

quently improved by Kabán (2014). Thanei et al. (2017) arrive at a similar ex-

pression as in (15), and use the expressions in Kabán (2014) to evaluate the expec-

tation. However, their bound is suboptimal. For example, it has the unattractive

feature of not reducing to (3) when k is set equal to px. The bound in Corollary 2

solves this problem, by noting that we can rely on the matrix Q, which has or-

thogonal columns, instead of R in the calculations. Appendix A.6 shows that the

resulting bound is uniformly tighter than the currently available bounds.
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3.1.3 Comparison between the MSFE bounds of RS and RP

Based on the difference between the expressions for the MSFE bounds for random

subset and random projection regression in Corollary 1 and 2, we show that there

exists no covariance matrix Σx for which one of the methods offers a superior

bound uniformly over all possible parameter vectors βx,0.

The difference in the bounds is given by

∆ = βx,0Σx

(
M−1

RP −M
−1
RS

)
Σxβx,0, (18)

where

MRP =
k

px

(
k − 1

px − 1
Σx +

px − k
px − 1

DΣx

)−1

,

MRS =
k

px

(
px(k + 1)− 2

(px + 2)(px − 1)
Σx +

(px − k)px
(px + 2)(px − 1)

trace(Σx)

px
Ipx

)−1

.

If ∆ > 0, then the bound for random projection regression lies above the bound

for random subset regression. Denote A − B � 0 if A − B is a positive definite

matrix. If M−1
RP −M

−1
RS � 0, then ∆ > 0 uniformly over the choice of βx,0. This

occurs if and only if MRP −MRS ≺ 0, where

MRP −MRS =
px − k
px − 1

[
2

px + 2
(Σx −DΣx) +

px
px + 2

(
trace(Σx)

px
Ipx −DΣx

)]
.

Unless Σx is a multiple of the identity matrix, subtracting DΣx yields an indefinite

matrix. This is easily seen as the sum of the eigenvalues of Σx −DΣx equals the

trace, which is identically equal to zero. Similarly, unless DΣx is a multiple of the

identity matrix, the second term yields an indefinite matrix. Hence, there does

not exist a covariance matrix Σx for which MRP −MRS ≺ 0, and hence where one

of the methods outperforms the other uniformly over the choice of βx,0.

However, we can distinguish cases in which the random subspace methods

are expected to perform equally well or outperform each other when we take the

relation between the covariance matrix of the regressors and the coefficients of the

regressors into account. We consider a simplified setting based on (1) with Σx a

diagonal px × px matrix, for which the bounds in Corollary 1 and 2 simplify to

ρ(k)RS ≤ σ2(pw + k) + β′x,0Σxβx,0

(
1− k

px

)
,

ρ(k)RP ≤ σ2(pw + k) + β′x,0Σx

[
Ipx −

k

px
D(Σx)

]
βx,0,

(19)
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respectively, where

[D(Σx)]ii =
λi

uλi + (1− u)λ̄
, u =

px(k + 1)− 2

(px + 2)(px − 1)
, λ̄ =

1

px

px∑
i=1

λi, (20)

where λ1, . . . , λpx are the eigenvalues of Σx in decreasing order.

For a well-conditioned covariance matrix, i.e. λi ≈ λ̄ which means that the

eigenvalues of the covariance matrix are of the same size, we have D(Σx) ≈ I.

From (19) we infer that in this scenario, the methods are expected to perform

equally well.

When the eigenvalues of the covariance matrix of the regressors are not of the

same size, two things can happen. First, consider a typical principal component

regression setting where the nonzero values of βx,0 are associated with eigenvalues

that are larger than the average eigenvalue. For random projection regression,

[D(Σx)]ii > 1 when λi > λ̄. Therefore random projection will offer a superior

bound compared to random subset regression in this case. In this sense, the be-

havior of random projection regression appears similar to that of ridge regression,

in that it performs most shrinkage on small eigenvalues.

In contrast, it is also possible that the factor associated with the largest eigen-

value of the covariance matrix is not associated with the dependent variable. Ran-

dom subset regression does not assume that large eigenvalues in Σx are informative

on the relative importance with respect to y. Since in the bound for random pro-

jection regression it holds that [D(Σx)]ii < 1 if λi < λ̄, random subset regression

now offers a superior bound.

3.1.4 Comparison between the MSFE of RS, RP, and OLS

Here we study the performance of the random subspace methods relative to OLS

for different signal strength, in the same setting as the previous section.

Based on the MSFE bound, we find that for small signal strength, random

subset regression outperforms OLS. Equating the exact MSFE of OLS in (2) to

the bound for the MSFE of random subset regression results in the following

condition,
β′x,0Σxβx,0

σ2px
= 1, (21)

which implies that random subset regression outperforms OLS when the average

signal strength falls below 1.

The relative performance of random projection regression to OLS depends not
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only on the signal strength, but also on which coefficients in βx,0 are non-zero.

Therefore, condition (21) does not apply to random projection regression. If non-

zero coefficients are related to larger than average eigenvalues, the bound is lower

than the MSFE under OLS as long as
β′
x,0Σxβx,0

σ2px
< 1 + u, for some u > 0. When

non-zero coefficients are related to smaller than average eigenvalues, we obtain
β′
x,0Σxβx,0

σ2px
< 1− u, for u > 0.

3.1.5 Quality MSFE bounds

To provide insight in the quality of the bounds obtained in Corollary 1 and 2,

we consider a setting in which we obtain an expression for the exact MSFE. For

random subset regression this is achieved when the regressors are independent. If

in addition we assume the variances of the regressors to be equal, we also obtain

an exact expression under random projection regression.

When Σz = DΣz , we have that ER[SRβ̂R] in (14) boils down to

ER[SRβ̂R] =

(
(W ′W )−1W ′

ER[R(R′X ′XR)−1R′]X ′

)
y, (22)

where W = (w0, . . . , wT−1)′ and X = (x0, . . . , xT−1)′. When 1
T
X ′X converges to

a diagonal matrix, we can explicitly evaluate the expectation for random subset

regression,

ER[R(R′DΣxR)−1R′] =
k

px
D−1

Σx
, (23)

where R is a random permutation matrix. This follows from the fact that each di-

agonal element of Σx is selected with probability k/px in random subset regression,

see Appendix A.3.

We obtain the same result for random projection regression under independent

predictors with equal variance, Σx = cIpx ,

c−1ER[R(R′R)−1R′] = c−1EQ[QQ′] =
k

px
c−1Ipx , (24)

where the expression for the second moment follows from Lemma 3.

Subsequently, the exact MSFE for both random subspace methods is given by

ρ(k) = σ2

(
pw + k

k

px

)
+ β′x,0Σxβx,0

(
1− k

px

)2

. (25)

In case of independent regressors, the bounds in Corollary 1 and 2 simplify to
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(19). Since we assume Σx = c · Ipx for the bound of random projection regression,

[D(Λ)]ii = 1, and the bounds of the random subspace methods are identical.

Comparing the exact MSFE from (25) to the bounds in (19), we see that

the bounds overestimate the variance by a factor px/k, and the bias by a factor

(1 − k/px)−1. The difference is maximized for k
px

= 1
2

in which case the bounds

are conservative by at most a factor 1
2
.

As an alternative to the upper bound on the MSFE in Theorem 1, the MSFE

can be bounded by bounding the eigenvalues of the expectation over the random

matrix R. Using the eigenvalue inequalities in Appendix A.7, we derive both a

conservative upper and lower bound on the MSFE in Appendix A.8. Since these

bounds ignore the eigenvalue structure of the covariance matrix of the predictors,

these bounds are in almost all cases uninformative. Furthermore, the bounds are

identical for random subset regression and random projection regression. They

therefore do not elicit the difference between the two methods.

3.2 Feasibility of the MSFE bounds

The bounds from the previous section are based on forecasts that depend on the

expectation over the random matrix R. In practice, we need to approximate this

expectation by using a finite number of draws of the matrix R. For the feasibility

of the method in practice, it is important that the required number of draws

is not too large. If one would have to draw all possible subsets of size k from px

predictors, the number of required draws is exponential in px, limiting the practical

use of the methods. The following theorem guarantees that in order to get close

to the expectation, we only require a number of draws that is linear in px, up to

logarithmic factors.

Theorem 2 Let ŷT+1,S = 1
N

∑N
i=1 ŷT+1,Ri

, with ŷT+1,Ri
as in (10) where Ri is a

realization of the random matrix R, and ŷT+1 as in (11). Denote by ρS(k) the

asymptotic mean squared forecast error based on ŷT+1,S, and denote by ρ(k) the

asymptotic mean squared forecast error based on ŷT+1 as in (14). Furthermore,

let N = O
(
px log px

k

)
. Then for an arbitrarily small constant ε,

ρS(k) = (1 + ε)ρ(k). (26)

A proof is provided in Appendix A.9.

This result shows the feasibility of random subset regression in practice. It also

provides a theoretical justification of the results obtained in Elliott et al. (2013)
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and Elliott et al. (2015), where it was found that little prediction accuracy is lost by

using a relatively small number of random subsets instead of all available subsets.

Instead of drawing a number of subsets exponential in px, N =
(
px
k

)
= O

([
px
k

]k)
,

which is the case for complete subset regression, we only require a number of draws

linear in px.

4 Monte Carlo experiments

We examine the practical implications of the theoretical results in a Monte Carlo

experiment. In a first set of experiments we show the effect of sparsity and signal

strength on the MSFE, and a second set of experiments shows in which settings

one of the random subspace methods is preferred over the other. The prediction

accuracy of the random subspace methods is evaluated relative to several widely

used alternative regularization techniques.

4.1 Monte Carlo set-up

The set-up we employ parallels Elliott et al. (2015). The data generating process

takes the form

yt+1 = x′tβx + εt+1, (27)

where xt is a px × 1 vector with predictors, βx a px × 1 coefficient vector, εt+1

an error term with εt+1 ∼ N(0, σ2
ε), and t = 0, . . . , T . In each replication of

the Monte Carlo simulations, predictors are generated by drawing xt ∼ N(0,Σx),

after which we standardize the predictor matrix. The covariance matrix of the

predictors equals Σx = 1
px
P ′P , where P is a px × px matrix whose elements are

independently and randomly drawn from a standard normal distribution. As

argued by Elliott et al. (2015), this ensures that the eigenvalues of the covariance

matrix are reasonably spaced.

The strength of the individual predictors is considered local-to-zero by setting

βx =
√
σ2
ε/T ·bιs for a fixed constant b. The vector ιs contains s non-zero elements

that are equal to one. We refer to s as the sparsity of the coefficient vector. We vary

the signal strength b and the sparsity s across different Monte Carlo experiments.

In all experiments, the error term of the forecast period εT+1 is set to zero, as

this only yields an additional noise term σ2 which is incurred by all forecasting

methods.
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We employ two sets of experimental designs, which mimic the high-dimensional

setting in the empirical application by choosing the number of predictors px = 100

and the sample size T = 200. Results are based on M = 10,000 replications of the

data generating process (27).

In the first set of experiments, we vary the signal to noise ratio b and the

sparsity s over the grids b ∈ {0.5, 1.0, 2.0} and s ∈ {10, 50, 100}. This allows us

to study the effect of sparsity and signal strength on the MSFE and the optimal

subspace dimension.

The second set of experiments reflects scenarios where random subset and ran-

dom projection regression are expected to differ based on the discussion in Section

3.1.3. In this case we replace xt in (27) by factors extracted from xt, t = 0, . . . , T ,

using principal component analysis. Denote by fi for i = 1, . . . , px the extracted

factors sorted by the explained variation in the predictors. In the first three ex-

periments, we associate nonzero coefficients with the 10 factors that explain most

of the variation in the predictors. We refer to this setting as the top factor setting.

This setting is expected to suit random projection over random subset regression.

In the remaining experiments, we associate the nonzero coefficients with factors

{f46, . . . , f55}, which are associated with intermediately sized eigenvalues. This

setting is referred to as the intermediate factor setting and expected to suit ran-

dom subset regression particularly well. In both the top and intermediate factor

setting, the coefficient strength b is again varied as b ∈ {0.5, 1.0, 2.0}.
We generate one-step-ahead forecasts by means of random projection and ran-

dom subset regression using equation (4) in which we vary the subspace dimen-

sion over k = {1, . . . , px}. The subspace methods, as well as the benchmark

models discussed below, estimate (27) with the inclusion of an intercept that is

not subject to the dimension reduction or shrinkage procedure. We average over

N = 1,000 predictions of the random subspace methods to arrive at a one-step-

ahead forecast. This is in line with the findings in Section 3.2 which suggest to

use O(px log px) = O(100 · log 100) = O(460) draws.

Benchmark models We compare the performance of the random methods with

principal component (PC) regression and partial least squares (PL) regression in-

troduced by Wold (1982). Both methods approximate the data generating process

(27) as

yt+1 = w′tβw +
k∑
i=1

ftiβf,i + ηt, (28)
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where k ∈ {1, . . . , px} and wt includes an intercept. The methods differ in their

construction of the factors fti. Principal component regression is implemented by

extracting the factors from the standardized predictors xt with t = 0, . . . , T using

principal component analysis. This is a diffusion index model along the lines of

Stock and Watson (2002). Partial least squares uses a two-step procedure to con-

struct the factors, as described for example by Groen and Kapetanios (2016). We

use the static approach as discussed by Fuentes et al. (2015), who find good fore-

cast performance for a similar macroeconomic forecasting exercise as in Section 5,

in which the factors are extracted by applying partial least squares between the

target variable yt+1 and the predictors xt. We then estimate for both methods (28)

and generate a forecast as ŷT+1 = w′T β̂w +
∑k

i=1 fT iβ̂f,i. Note that the principal

component regression model is correctly specified for the top factor setting in the

second set of experiments.

In addition to comparing the random subspace methods to principal component

regression and partial least squares, we include two widely used alternatives: ridge

(RI) regression (Hoerl and Kennard, 1970) and the lasso (LA) (Tibshirani, 1996).

We generate one-step-ahead forecasts using these methods by ŷT+1 = w′T β̂w+x′T β̂x,

with

(β̂w, β̂x) = arg min
βw,βx

(
1

n

T−1∑
t=0

(yt+1 − w′tβw − x′tβx)2 + kP (βx)

)
. (29)

The penalty term P (βx) =
∑px

i=1
1
2
β2
x,i in case of ridge regression and P (βx) =∑px

i=1 |βx,i| for the lasso. The penalty parameter k controls the amount of shrink-

age. In contrast to the previous subspace methods, the values of k are not

bounded to integers nor is there a natural grid. We consider forecasts based

on equally spaced grids for ln k of 100 values; ln k ∈ {−30, . . . , 0} for lasso and

ln k ∈ {−15, . . . , 15} for ridge regression. In general, we expect lasso to do well

when the model contains a small number of large coefficients. Ridge regression,

on the other hand, is expected to do well when we have many weak predictors.

Evaluation criterion We evaluate forecasts by reporting their MSFE relative

to that of the prevailing mean model that takes ȳT+1 = 1
T

∑T−1
t=0 yt+1. The mean

squared forecast error is computed as

MSFE =
1

M

M∑
j=1

(
y

(j)
T+1 − ŷ

(j)
T+1

)2

, (30)
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Table 1: Simulation results: MSFE optimal subspace dimension

b RP RS PC PL RI LA

s = 10

0.5 0.967 (2) 0.966 (2) 1.253 (1) 9.592 (1) 0.966 (-3.3) 1.000 (-29.7)
1.0 0.864 (8) 0.865 (8) 1.056 (1) 3.099 (1) 0.864 (-2.1) 0.959 (-27.9)
2.0 0.638 (21) 0.637 (21) 0.929 (7) 0.961 (1) 0.640 (-0.6) 0.669 (-27.3)

s = 50

0.5 0.815 (10) 0.815 (10) 1.034 (1) 2.377 (1) 0.814 (-1.8) 0.961 (-27.9)
1.0 0.568 (25) 0.569 (25) 0.885 (12) 0.805 (1) 0.570 (-0.6) 0.706 (-27.3)
2.0 0.300 (46) 0.301 (46) 0.453 (43) 0.374 (2) 0.301 (0.6) 0.366 (-26.4)

s = 100

0.5 0.710 (16) 0.709 (16) 0.980 (2) 1.372 (1) 0.710 (-1.2) 0.877 (-27.6)
1.0 0.422 (36) 0.423 (35) 0.663 (29) 0.535 (1) 0.423 (0.0) 0.539 (-26.7)
2.0 0.188 (56) 0.189 (56) 0.268 (59) 0.227 (3) 0.189 (1.2) 0.242 (-26.1)

Note: this table reports the MSFE relative to the benchmark of the prevailing
mean, for the subspace dimension corresponding to the minimum MSFE which is
given in parentheses.

where y
(j)
T+1 is the realized value and ŷ

(j)
T+1 the predicted value in the jth replication

of the Monte Carlo simulation. The number of replications M is set equal to

M = 10,000.

4.2 Simulation results

4.2.1 Sparsity and signal strength

Table 1 shows the Monte Carlo simulation results for the first set of experiments

for the value of k that yields the lowest MSFE. Results for different values of k are

provided in Table 7 in Appendix B. The predictive performance of each forecasting

method is reported relative to the prevailing mean. Values below one indicate that

the benchmark model is outperformed.

We find that in general, a lower degree of sparsity results in a lower relative

MSFE. Since the predictability increases in s, it is not surprising that a less sparse

setting results in better forecast performance relative to the prevailing mean, which

ignores all information in the predictors. Similarly, the prediction accuracy also

clearly increases with increasing signal strength. The results for different values of

k, reported in Table 7 in Appendix B, show that increasing the subspace dimension

in case of a weak signal worsens the performance, due to the increasing effect of the

parameter estimation error when the predictive signal is small. This dependency

19



on k tends to decrease for large values of s and b, where we observe smaller

differences between the predictive performance over the different values of k.

Comparing the random subspace methods, we find that in these experiments,

as expected, the predictive performance of random projection regression and ran-

dom subset regression is almost the same. Table 1 shows that when choosing the

optimal subspace dimension, these methods outperform both the prevailing mean

as principal component regression and partial least squares for each setting. Lasso

is not found to perform well. Only in the extremely sparse settings where s = 10

and b increases, its performance tends towards the random subspace methods.

Ridge regression yields similar prediction accuracy as the random subspace meth-

ods. For strong signals, the random subspace methods perform better, whereas

for very weak signals ridge regression appears to have a slight edge.

Table 1 shows that the optimal subspace dimension increases with both the

sparsity s and the signal strength governed by b. Interestingly, random subset re-

gression and random projection regression select, apart from one setting, exactly

the same subspace dimension. The number of factors selected in principal compo-

nent regression is lower for almost all settings. The results for partial least squares

reflect that in settings with a small number of weak predictors, the factors cannot

be constructed with sufficient accuracy. In these settings, more accurate forecasts

are therefore obtained by ignoring the factors altogether. Note that where the pa-

rameter k has an intuitive appeal in the dimension reduction methods, the values

in the grid of k for lasso and ridge regression methods lack interpretation.

4.2.2 Experiments using a factor design

The small differences between random subset and random projection regression in

the previous experiments stand in stark contrast with the findings on the factor

structured experiments. The relative MSFE for the choice of k that yields the

lowest MSFE compared to the prevailing mean is reported in Table 2. Table 8 in

in Appendix B shows results for different values of k. We observe precisely what

was anticipated based on the discussion in Section 3.1.3. In the top factor setting,

where the nonzero coefficients are associated with the factors corresponding to the

largest 10 eigenvalues, random projection regression outperforms random subset

regression by a wide margin. For a weak signal, when b = 0.5, it even outperforms

principal component regression, which is correctly specified in this set-up. When

b = 2, we are in a setting where we have a small number of large coefficients.

As expected, this favors lasso, although not to the extend that it outperforms
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Table 2: Simulation results: MSFE optimal subspace dimension - factor design

b RP RS PC PL RI LA

Top factor setting

0.5 0.722 (10) 0.955 (9) 0.992 (2) 2.466 (1) 0.721 (-1.8) 0.887 (-27.9)
1.0 0.428 (21) 0.842 (28) 0.300 (10) 0.495 (1) 0.429 (-0.9) 0.485 (-27.6)
2.0 0.205 (33) 0.580 (60) 0.078 (10) 0.139 (1) 0.206 (0.0) 0.150 (-27.3)

Intermediate factor setting

0.5 1.013 (1) 0.998 (1) 1.501 (1) 16.347 (1) 1.000 (-14.7) 1.000 (-29.7)
1.0 1.003 (1) 0.981 (4) 1.176 (1) 7.140 (1) 1.000 (-7.5) 1.000 (-29.1)
2.0 1.001 (1) 0.923 (16) 1.060 (1) 2.969 (1) 1.000 (-14.7) 1.000 (-29.7)

Note: this table reports the MSFE relative to the benchmark of the prevailing
mean, for the subspace dimension corresponding to the minimum MSFE which is
given in parentheses.

principal component regression. The findings are almost completely reversed in

the intermediate factor setting, when the nonzero coefficients are associated with

factors f46, . . . , f55. Here we observe that random subset regression outperforms

random projection. In fact, random subset regression is the only method that

is able to extract an informative signal from the predictors and outperform the

prevailing mean benchmark.

The difference in predictive performance is reflected in the optimal subspace

dimension reported in parentheses in Table 2. For the top factor setting, when

b = {1, 2}, we observe that the MSFE for random subset regression is minimized at

substantially larger values than for random projection regression. This evidently

increases the forecast error variance, and the added predictive content is appar-

ently too small to outweigh this. Principal component regression, in turn, selects

the correct number of factors when b = {1, 2}. In the intermediate factor setting,

the dimension of random subset is again larger than for random projection, with

an impressive difference when b = 2. Here, random projection is apparently not

capable to pick up any signal and selects k = 1, while random subset regression

uses a subspace dimension of k = 16. Lasso and ridge both choose such a strong

penalization that they reduce to the prevailing mean benchmark for all choices of

b.

4.3 Simulation results versus theoretical bounds

The qualitative correspondence between the simulation results and the theoretical

results show that the bounds are useful to determine settings where the random
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Figure 1: Simulation results: comparison with theoretical bounds
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Note: this figure shows the MSFE for different values of the subspace dimension k, along with
the theoretical upper bounds on the MSFE derived in Section 3.1 after a small sample size
correction. The different lines correspond to the upper bound for random projections (bound
RP, diamond marker), upper bound for random subsets (bound RS, asterisk marker), and the
evaluation criteria for the dimension reduction methods random projections (MC RP, solid) and
random subsets (MC RS, dashed). The four panels correspond to settings in which the sparsity
s alternates between 10 and 100, and the signal to noise ratio parameter b between 0.5 and 1.

subspace methods are expected to do well. In this section, we investigate how close

the bounds are to the exact MSFE obtained in the Monte Carlo experiments.

Figure 1 shows the MSFE over different subspace dimensions of random pro-

jection and random subset regression, along with the theoretical upper bounds on

the MSFE derived in Section 3.1, for the first set of experiments described above.

As we found in Table 7 in Appendix B, the values of the MSFE of the random

subspace methods are almost identical to each other over the whole range of k.

This also holds for the bounds. The bounds differ most from the exact MSFE

from the Monte Carlo experiments for intermediate values of k when there is a

strong signal and no sparsity.

In Figure 2 we show the bounds for the factor settings. Here we see that the

bounds correctly indicate which method is expected to yield better results in the

settings under consideration. The upper panels, corresponding to the top factor

structure, show the bound for random projection to be lower. The lower panels
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Figure 2: Simulation results: comparison with theoretical bounds - factor design
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Note: this figure shows the MSFE for different values of the subspace dimension k, along with
the theoretical upper bounds on the MSFE derived in Section 3.1 for the top and intermediate
factor settings. For additional information, see the note following Figure 1.

display the MSFE in the intermediate factor setting. We observe that both the

bounds and the exact simulation results indicate that random subset regression is

best suited in this case.

5 Empirical application

This section evaluates the forecast performance of the random subspace methods

in a macroeconomic application.

5.1 Data

We use the FRED-MD database consisting of 130 monthly macroeconomic and

financial series running from January 1960 through December 2014. The data

can be grouped in eight different categories: output and income (1), labor market

(2), consumption and orders (3), orders and inventories (4), money and credit (5),

interest rate and exchange rates (6), prices (7), and stock market (8). The data is

available from the website of the Federal Reserve Bank of St. Louis, together with
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code for transforming the series to render them stationary and to remove severe

outliers. The data and transformations are described in detail by McCracken and

Ng (2016). After transformation, we find a small number of missing values, which

are recursively replaced by the value in the previous time period of that variable.

The FRED-MD can be seen as an updated version of the Stock and Watson (2005)

dataset. For completeness, Section 5.5 also applies the methods to the original

Stock and Watson (2005) data.

5.2 Forecasting framework

We generate forecasts for each of the 130 macroeconomic time series using the

following equation

yt+1 = w′tβw + x′tβx + εt+1,

where wt is a pw×1 vector with predictors which are always included in the model

and not subject to the dimension reduction methods, and xt a px × 1 vector with

possible predictors.

We follow Bai and Ng (2008) in considering up to six lags of the dependent

variable and evaluating the forecast performance relative to an AR(4) model. The

dependent variable yt+1 is one of the macroeconomic time series, wt includes an

intercept and the first four lags of the dependent variable yt+1, and xt consists of

the fifth and sixth lag of yt+1, and all 129 remaining variables in the database. In

Section 5.4, xt also includes the second up to the sixth lag of the 129 remaining

variables in the database.

We apply dimension reduction to the predictors in xt using four different meth-

ods: random projection regression (RP), random subset regression (RS), principal

component regression (PC), and partial least squares (PL). In addition, we com-

pare the performance to lasso (LA) and ridge regression (RI) as described in

Section 4.1. Predictive accuracy is measured by the MSFE defined in (30).

We standardize the predictors in each estimation window. In case of RP and RS

we average over N = 1,000 forecasts to obtain one prediction. In some cases, ran-

dom subset regression encounters substantial multicollinearity between the orig-

inal predictors. Insofar this leads to estimation issues due to imprecise matrix

inversion, these are discarded from the average. The models generate forecasts

with subspace dimension k running from 0 to 100 and, as in Elliott et al. (2013),

we recursively select the optimal k based on past predictive performance, using a

burn-in period of 60 observations. Note that when k = 0, no additional predictors
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Table 3: FRED-MD: percentage best forecast performance

percentage loss
RP RS PC PL RI LA AR All

p
er

ce
n
ta

ge
w

in
s RP 40.77 86.15 80.77 57.69 65.38 85.38 17.69

RS 56.92 89.23 81.54 66.92 70.77 83.85 40.00
PC 11.54 8.46 47.69 12.31 29.23 69.23 3.85
PL 17.69 16.92 50.77 21.54 30.00 63.85 7.69
RI 42.31 33.08 87.69 78.46 60.77 84.62 4.62
LA 34.62 29.23 70.77 70.00 39.23 80.77 18.46
AR 14.62 16.15 30.77 32.31 15.38 19.23 7.69

Note: this table shows the percentage wins in terms of lowest MSFE of the
method listed in the rows over the method listed in the columns, and with
respect to all other methods (last column). The percentages are calculated over
forecasts for all 130 series in FRED-MD. Ties occur if only k = 0 is selected by
both methods throughout the evaluation period, which is why losses and wins
do not necessarily add up to 100.

are included and we estimate an AR(4) model.

We use an expanding window to produce 420 forecasts, from January 1980 to

December 2014. Due to the burn-in period, the initial estimation sample runs

from January 1960 to December 1975 and contains 180 observations, from which

we discard the first six observations to estimate the lags. This is larger than the

initial estimation sample in, for instance, Bai and Ng (2008), since the theory

requires the number of variables pw + px = 136 to be smaller than the sample size

T .

We report aggregate statistics over all 130 series, as well as detailed results

for 4 major macroeconomic indicators out of the 130 series; industrial production

index (INDP), unemployment rate (UNR), inflation (CPI), and the three-month

Treasury Bill rate (3mTB). These series correspond to the FRED mnemonics

INDPRO, UNRATE, CPIAUCSL, and TB3MS, respectively.

5.3 Empirical results

5.3.1 Aggregate statistics

We obtain series of forecasts for 130 macroeconomic variables generated by seven

different methods. Table 3 shows the percentage wins of a method in terms of

lowest MSFE compared to each of the other methods. The last column reports

the percentage of the series for which a method outperforms all other methods.

We find that random subset regression is more accurate than the other methods
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Figure 3: FRED-MD: forecast accuracy relative to principal component regression
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Note: this figure shows the MSFE of the forecasts for all series in the FRED-MD dataset
produced by random projection regression (upper panel) and random subset regression (lower
panel), scaled by the MSFE of principal component regression. Series are grouped in different
macroeconomic indicators as described in McCracken and Ng (2016). Values below one prefer
the method over principal components. Colors of the bars different from white indicate that
the difference from one is significant at the 10% level (grey), 5% level (dark-grey), or 1% level
(black), based on a two-sided Diebold-Mariano test.

for 40% of the series. This is a substantial difference with random projections and

lasso that win in approximately 18% of the cases. Principal component regression,

partial least squares, ridge regression, and the AR(4) model score at most 8%.

If a model is the second most accurate on all series, this cannot be observed

in the overall comparison. For this reason, we analyze the relative performance of

the methods in a bivariate comparison. Table 3 shows again that random subset

regression achieves the best results, outperforming the benchmark models for at

least 66% of the series. Interestingly, a close competitor is random projection,

which itself is also more accurate than all five benchmarks for a majority of the

series. Out of the benchmark models, ridge regression appears closest to random

subset regression, which is nevertheless outperformed for more than 66% of the

series.
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In addition to the ranking of the methods, we are also interested in the relative

MSFE of the methods. To get an overview of the forecast performance of the

random subspace methods sorted by category, Figure 3 shows relative forecast

performance compared with principal component regression, for all series available

in the FRED-MD dataset. The MSFE is calculated for the subspace dimension as

determined by past predictive performance. The upper panel shows the relative

MSFE of random projection regression to principal component regression and the

lower panel compares random subset to principal component regression. Values

below one, indicate that the random method is preferred over the benchmark.

As found in Table 3, the random subspace methods outperform the principal

components in most of the cases. For random subset regression this happens

in 89% of the cases, which is slightly lower for random projections with 86%.

Figure 3 also shows the significance of the differences between the methods. The

color of the bar indicates significance as determined by a Diebold and Mariano

(1995) test. We see that for series where principal component regression is more

accurate, the difference with the random methods is never significant, even at

a 10% level. Random projection regression shows the largest improvements in

forecast performance in category 7, including price indicators, and random subset

regression in category 1 and 2, which contain output, income, and labor market.

Principal component regression is known for its good forecast performance in

the presence of instabilities in the data (Rossi, 2013). However, the principal com-

ponents are outperformed for almost all macroeconomic variables, indicating that

random subspace methods are not disproportionately affected by these instabili-

ties.

5.3.2 A case study of four key macroeconomic indicators

We look more closely into the forecast accuracy of the different methods for four

key macroeconomic indicators: industrial production index (INDP), unemploy-

ment rate (UNR), inflation (CPI), and the three-month Treasury Bill rate (3TB).

In Table 4 we show the MSFE relative to the AR(4) model for different values of

the subspace dimension or penalty parameter k. The first row of each panel shows

the relative MSFE corresponding to the recursively selected optimal value of k,

denoted by kR. The last column of each panel shows the average relative MSFE

over all series.

Consistent with our previous findings, random subset regression performs best

over all series when the optimal subspace dimension is selected. However, some
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Table 4: FRED-MD: forecast accuracy relative to the AR(4)-model

INDP UNR CPI 3TB Avg. INDP UNR CPI 3TB Avg.

k Random projection regression k Random subset regression

kR 0.843 0.842 0.870 0.892 0.929 kR 0.820 0.823 0.888 0.906 0.923

1 0.982 0.975 0.992 0.979 0.987 1 0.978 0.968 0.991 0.977 0.984
5 0.930 0.910 0.968 0.930 0.955 5 0.916 0.894 0.968 0.931 0.948

10 0.891 0.871 0.945 0.900 0.937 10 0.870 0.852 0.947 0.910 0.931
15 0.868 0.849 0.928 0.887 0.930 15 0.846 0.832 0.931 0.898 0.925
30 0.841 0.827 0.886 0.892 0.937 30 0.818 0.811 0.898 0.893 0.929
50 0.859 0.846 0.875 0.951 0.983 50 0.822 0.828 0.890 0.918 0.966

100 1.195 1.145 1.080 1.242 1.309 100 1.110 1.097 1.030 1.087 1.245

k Principal component regression k Partial least squares

kR 0.890 0.875 0.962 1.006 0.959 kR 0.898 0.891 0.872 0.945 0.965

1 0.926 0.886 1.002 0.956 0.972 1 0.907 0.856 0.987 0.938 0.973
5 0.880 0.872 0.963 1.008 0.957 5 1.009 0.925 0.928 1.152 1.108

10 0.898 0.858 0.938 0.954 0.968 10 1.173 1.111 0.993 1.253 1.273
15 0.902 0.832 0.933 1.015 0.977 15 1.272 1.209 1.074 1.354 1.378
30 0.943 0.847 0.956 1.127 1.030 30 1.429 1.344 1.168 1.432 1.511
50 0.977 0.898 0.928 1.121 1.107 50 1.465 1.357 1.180 1.423 1.546

100 1.390 1.258 1.191 1.387 1.469 100 1.521 1.369 1.185 1.414 1.560

ln k Ridge regression ln k Lasso

kR 0.844 0.842 0.901 0.900 0.930 kR 0.826 0.848 0.897 0.894 0.935

-6 0.993 0.990 0.997 0.991 0.995 -28 0.864 0.846 0.920 0.894 0.947
-4 0.966 0.952 0.984 0.959 0.975 -27 0.831 0.830 0.880 0.927 0.949
-2 0.880 0.859 0.935 0.896 0.933 -26 0.887 0.898 0.902 1.022 1.022
0 0.847 0.832 0.869 0.930 0.961 -25 1.005 1.014 0.975 1.156 1.148
4 0.946 0.946 0.931 1.080 1.099 -22 1.273 1.229 1.113 1.254 1.358
8 1.216 1.173 1.102 1.261 1.340 -15 1.666 1.520 1.277 1.389 1.644

12 1.463 1.361 1.226 1.334 1.532 -5 1.841 1.651 1.370 1.484 1.788

Note: this table shows the relative MSFE, which equals values below one when the
particular method outperforms the benchmark AR(4) model, for different values of
subspace dimension k and the recursively selected optimal value of k denoted by
kR. For ridge regression and lasso, the penalty parameter runs over a grid of values
k. The relative MSFE is reported for the dependent variables industrial production
(INDP), unemployment rate (UNR), inflation (CPI), three month treasury bill rate
(3TB), and the average over all series.

differences are observed when analyzing the four individual series. For predict-

ing inflation and the treasury bill rate, random projection yields a lower MSFE

compared to random subset regression. Principal component regression is worse

than the random methods in predicting all four series and substantially worse on

average over all series. The same holds for partial least squares, with the excep-

28



tion of inflation, where it outperforms random subset, but not random projection

regression.

With regard to the lasso and ridge regression benchmarks, the results show

that on average, these methods are outperformed by both random subset and

random projection regression. Random projection regression has a slight edge on

ridge regression, which is in line with our findings in Section 4. For the individual

series reported here, the evidence is mixed. Random projection regression out-

performs both ridge and lasso on these series, except for industrial production.

Random subset regression is only outperformed by ridge or lasso when predicting

the treasury bill rate.

Table 4 also shows the dependence of the MSFE on the value of k if we were

to pick the same k throughout the forecasting period. Apart from the treasury

bill rate, the random subspace methods outperform the AR(4) benchmark model

for almost all subspace dimensions, even for very large values of k. Compared to

principal component regression and partial least squares, we again see that the

random methods select much larger values of k.

To visualize the dependence on k for the different dimension reduction meth-

ods, Figure 4 shows the results for all subspace dimensions ranging from 0 to 100.

The first thing to notice is the distinct development of the MSFE of forecasts

generated by principal components compared to the random subspace methods.

The MSFE evolves smoothly over subspace dimensions for random projections

and random subsets, where the MSFE of the principal components changes rather

erratically.

Figure 4 shows that the random subspace methods reach their minimum for

relatively large values of k. The selected value is substantially larger than the

selected dimension when using principal component regression. The difference is

especially clear for industrial production in the upper left panel, where principal

components suggests to use six factors, while the random methods reach their

minimum when using a subspace of dimension larger than 30. Apparently, the

information in the additional random factors outweigh the increase in parame-

ter uncertainty and contain more predictive content than higher order principal

components. In general, the MSFE of the random subspace methods seems to be

lower for most values of k.

In practice, we do not know the optimal subspace dimension. Therefore, real-

time forecasts are based on recursively selected values for k based on past per-

formance. Figure 5 shows the selection of the subspace dimension over time. In

line with the ex-post optimal subspace dimension, the selected value of k based on
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Figure 4: FRED-MD: forecast accuracy for different subspace dimensions
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Note: this figure shows the relative MSFE for different values of the subspace dimension k.
The different lines correspond to the evaluation criterium for the dimension reduction methods
random projection (RP, solid), random subset (RS, dashed), and principal component regression
(PC, dotted). The models at k = 0 corresponds to an autoregressive model of order four. The
four panels correspond to four dependent variables, industrial production (INDP), unemployment
rate (UNR), inflation (CPI), and three month treasury bill rate (3TB).

past predictive performance is smallest for principal component regression. The

selected subspace dimension for random subset regression and random projection

regression is very similar, but we do find quite some variation over time.

The left upper panel shows that for industrial production, the subspace dimen-

sion increases from approximately 30 to 40, where it is quite constant since the mid

eighties. The dimension of random projection regression gradually declines back

to 33 since the early 2000s. For the unemployment rate in the right upper panel,

we observe that more factors seem to be selected since 2008 for both randomized

methods, although this has not risen above historically observed values. This is

in contrast with the inflation series in the lower left panel. Since the early 2000s

both random methods choose gradually larger subspaces, while principal compo-

nents shows a single sharp increase in 2009. The right lower panel shows that

for the treasury bill rate, as one might expect, the subspace dimension decreases

over time, reaching its minimum after the onset of the global financial crisis. The
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Figure 5: FRED-MD: recursive selection of subspace dimensions
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Note: this figure shows the selection of subset dimension k. The different lines correspond to the
dimension reduction methods random projection (RP, solid), random subset (RS, dashed), and
principal component regression (PC, dotted). At each point in time the subspace dimension is
selected based on its past predictive performance up to that point in time. The four panels cor-
respond to four dependent variables, industrial production (INDP), unemployment rate (UNR),
inflation (CPI), and the three month treasury bill rate (3TB).

historical low can be explained by the lack of predictive content in the data since

the zero lower bound of the interest rate impedes most variation in the dependent

variable.

Figure 6 provides insights in the relation between the predictors and the

macroeconomic indicator of interest. We find that random projections and ran-

dom subset regression estimate different values for the average coefficients. For

instance, random projections assigns most weight to lagged values of the three

month treasury bill rate to predict this variable, where random subsets mostly

explains the one-step-ahead forecast by indicators for money and credit (5) and

interest rate and exchange rates (6). The average coefficients also differ over the

different series. Where industrial production and unemployment rate are related

to variables from all indicator groups, inflation rate seems best explained by indi-

cators for money and credit (5) and prices (7), especially for random projection

regression.
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Figure 6: FRED-MD: relative weight predictors in random subspace methods
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Note: this figure shows the average coefficients of the predictors in xt in random projection
regression (RP) in the left column and random subset regression (RS) in the right column, esti-

mated by ER

[
Rβ̂x,R

]
for the optimal subspace dimension in the last estimation sample. Series

are grouped in different macroeconomic indicators as described in McCracken and Ng (2016) and
the ‘zero’ group represents the lagged values of the dependent variable. The rows correspond
to four dependent variables, industrial production (INDP), unemployment rate (UNR), inflation
(CPI), and the three month treasury bill rate (3TB). Dark coloured bins indicate coefficients
which differ two standard deviations from the average over all coefficients.

5.4 Lagged predictors

Although the theoretical results in Section 3 assume T > p, we empirically find

that the random subspace methods also outperform benchmark methods for p > T .

Following Bai and Ng (2008) among others, we include lags of the predictors

in the forecasting model. We extend xt with five lags of the variables in the

database, such that we have six time periods for each macroeconomic indicator in

the database in xt. The first estimation sample contains 174 observations, while we

have 781 regressors. We average over N = 6,000 forecasts to obtain one prediction

in the random subspace methods.

The random subspace methods without including the extra lags of predictors

show the best performance. Comparing the numbers in Table 5 to the relative

MSFE for the optimal subspace dimension in Table 4, we find that random subset

regression shows the overall best performance for industrial production and un-
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Table 5: FRED-MD: forecast accuracy with lagged predictors

RP RS PC PL RI LA

INDP 0.894 0.878 0.849 0.914 0.890 0.884
UNR 0.872 0.848 0.872 0.871 0.873 0.868
CPI 0.905 0.895 0.943 0.973 0.904 0.957
3TB 0.958 0.978 1.158 1.047 0.976 0.971

Note: this table shows the relative MSFE generated by the
optimal subspace dimension k of different methods using six
lags of the predictors in xt, for the dependent variables, in-
dustrial production (INDP), unemployment rate (UNR), in-
flation (CPI), and the three month treasury bill rate (3TB).

employment rate, and random projection regression for inflation and the treasury

bill rate. Only principal component regression and partial least squares improve

in some cases in forecast accuracy by including lagged predictors.

Table 5 shows no conclusive outcome for the relative forecast accuracy of the

methods for the different macroeconomic indicators. Principal component re-

gression is most accurate for industrial production, random subset regression for

unemployment rate and inflation, and random projection for the treasury bill

rate. Using random subspace methods in this high-dimensional setting increases

the forecast performance for three out of the four macroeconomic indicators we

consider.

5.5 Benchmark dataset

We perform the same analysis as discussed in 5.2 to the Stock and Watson (2005)

data, which is used by many researchers to examine macroeconomic forecast accu-

racy of their methods (Stock and Watson, 2006; Bai and Ng, 2008; Fuentes et al.,

2015). The 132 monthly time series run from January 1960 to December 2003.

Because we consider six lags of yt+1, the first estimation sample of ten years starts

in June 1960. After the burn-in period, we generate forecasts from November 1973

to December 2003. Apart from the starting date, the design mimicks the empiri-

cal application in Bai and Ng (2008), where the first estimation sample starts in

March 1960. Note that for the first 38 forecasts, the parameters are estimated in

a setting where p > T .

Just as we found for the FRED-MD data, random subset regression performs

best in terms of MSFE. Table 6 shows that random subset regression outperforms

the other methods for industrial production and unemployment rate, and ranks
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Table 6: Stock and Watson (2005) data: forecast accuracy

RP RS PC PL RI LA

INDP 0.837 0.804 0.852 0.892 0.837 0.813
UNR 0.824 0.809 0.816 0.810 0.824 0.815
CPI 0.986 0.988 0.992 1.027 0.988 1.018
3TB 0.903 0.900 0.936 0.893 0.906 0.935

Note: this table shows the relative MSFE generated by the
optimal subspace dimension k of different methods for the
dependent variables, industrial production (INDP), unem-
ployment rate (UNR), inflation (CPI), and the three month
treasury bill rate (3TB).

second in terms of lowest MSFE for inflation and treasury bill rate. Random

projection regression is more accurate in predicting inflation, and partial least

squares in predicting the three month treasury bill rate.

6 Conclusion

In this paper we study two random subspace methods that offer a promising

way of dimension reduction to construct accurate forecasts. The first method

randomly selects many different subsets of the original variables to construct a

forecast. The second method constructs predictors by randomly weighting the

original predictors. Although counterintuitive at first, we provide a theoretical

justification for these strategies by deriving bounds on their asymptotic mean

squared forecast error. These bounds are highly informative on the scenarios where

one can expect the two methods to work well and where one is to be preferred

over the other.

The theoretical findings are confirmed in a Monte Carlo simulation, where in

addition we show that the predictive accuracy increases for nearly all settings un-

der consideration relative to several widely used benchmarks: principal component

regression, partial least squares, lasso regularization and ridge regression. In the

empirical application, random subset regression generates more accurate forecasts

than the benchmarks for no less than 66% of the 130 macroeconomic indicators,

and random projection regression outperforms the benchmarks in at least 57% of

the series.

34



References

Ahlswede, R. and Winter, A. (2002). Strong converse for identification via quan-

tum channels. IEEE Transactions on Information Theory, 48(3):569–579.

Bai, J. and Ng, S. (2006). Confidence intervals for diffusion index forecasts and

inference for factor-augmented regressions. Econometrica, 74(4):1133–1150.

Bai, J. and Ng, S. (2008). Forecasting economic time series using targeted predic-

tors. Journal of Econometrics, 146(2):304–317.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.
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A Proofs

A.1 Independence between predictor and estimation error

We need the following independence result to derive properties on the forecast

accuracy of the random subspace methods.

Lemma 4 For the regression model in (1) under Assumption A1-A7, zT is inde-

pendent of
√
T (β̂ − β) as T →∞.

Proof: We have T observations available for estimation of the parameter vector

β. For some α > 0, take T1 = (1− T−α)T , such that T1/T = O(1), (T − T1)/T =

o(1). We require T − T1 →∞, such that α < 1. The estimation error is given by

√
T (β̂ − β) =

(
1

T

T−1∑
t=0

ztz
′
t

)−1

1√
T

T−1∑
t=0

ztεt+1. (31)

We split 1√
T

∑
t ztεt+1 into a part that is independent of zT and one that is depen-

dent of zT , but negligible as T →∞.

1√
T

T−1∑
t=0

ztεt+1 =

√
T1

T

1√
T1

T1∑
t=0

ztεt+1 +

√
T − T1

T

1√
T − T1

T−1∑
t=T1+1

ztεt+1. (32)

By Assumption A4, var(ztiεt+1) = E[(ztiεt+1)2] < ∆ < ∞. By Chebyshev’s

inequality P (|zitεt+1| ≥ T
1
4 ) ≤ T−

1
2 ∆. Using Bonferroni’s inequality, we then

have P (maxt=T1+1,...,T−1 |zitεt+1| ≥ T
1
4 ) ≤ T

1
2
−α∆. For this to hold almost surely

when T →∞, we require α > 1
2
. Then,

√
T − T1

T

1√
T − T1

T−1∑
t=T1+1

zitεt+1 ≤
√
T − T1

T

1√
T − T1

T−1∑
t=T1+1

|zitεt+1|

≤ T−
1
2

+ 1
4

+1−α.

(33)
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Choosing α > 3
4
, we have that

1√
T

T−1∑
t=0

zitεt+1 =

√
T1

T

1√
T1

T1∑
t=0

zitεt+1 + op(1). (34)

Since under Assumptions A1-A7 a central limit theorem yields 1√
T

∑T
T=1 zitεt+1 ∼

N(0,Σz), the left-hand size is Op(1). This implies that the first term on the right-

hand side is Op(1). Since {(z′t, εt+1)} is strong mixing by Assumption A1, and

T − T1 → ∞ for α < 1, we have that zT is independent of the first term of the

right-hand side in the limit where T → ∞. Then zT is also independent of the

left-hand side when T →∞.

The same argument can be used to show that zT is asymptotically independent

of 1
T

∑T−1
t=0 ztz

′
t. This shows that as T →∞, zT is independent of

√
T (β̂ − β). �

A.2 Proof of Theorem 1

By Jensen’s inequality, the asymptotic MSFE can be bounded as

ρ(k) = Eε

[
lim
T→∞

TEzT

[(
z′Tβ − z′TER

[
SRβ̂R

])2
]]

≤ ER

[
Eε

[
lim
T→∞

TEzT

[(
z′Tβ − z′TSRβ̂R

)2
]]]

.

(35)

We define the expectation operator ER,ε = ER[Eε[.]] and rewrite the bound as

ρ(k) ≤ ER,ε

[
lim
T→∞

TEzT

[
trace

{
zT z

′
T (β − SRβ̂R)(β − SRβ̂R)′

}]]
= ER,ε

[
lim
T→∞

T trace
{

EzT

[
zT z

′
T (β − ARβ̂)(β − ARβ̂)′

]}]
,

(36)

where we use the linearity of the trace and define AR ≡ SR(S ′RZ
′ZSR)−1S ′RZ

′Z.

We now invoke the asymptotic independence of zT and β̂ established in Lemma 4

in Appendix A.1 to evaluate the expectation with respect to zT . Using that

E[zT z
′
T ] = Σz, we then continue as

ρ(k) ≤ ER,ε

[
lim
T→∞

T (β − ARβ̂)′Σz(β − ARβ̂)
]

= ER,ε

[
lim
T→∞

(β − ARβ̂)′Z ′Z(β − ARβ̂)R
]
,

(37)
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where the second line follows from plimT→∞
1
T
Z ′Z = Σz in (12), and Slutsky’s

theorem. Since ARβ̂ = SRβ̂R, the bound can be rewritten to

ρ(k) ≤ ER,ε

[
lim
T→∞

(β − SRβ̂R)′Z ′Z(β − SRβ̂R)
]

= ER,ε

[
lim
T→∞

(y − ε− ZSRβ̂R)′(y − ε− ZSRβ̂R)
]

=

ER,ε

[
lim
T→∞

(
ε′ε+ (y − ZSRβ̂R)′(y − ZSRβ̂R)− 2ε′(y − ZSRβ̂R)

)]
.

(38)

To proceed, note that β̂R = arg minu(y − ZSRu)′(y − ZSRu). Therefore, it holds

for an arbitrary p× 1 vector v that

ρ(k) ≤ ER,ε

[
lim
T→∞

(
ε′ε+ (y − ZSRv)′(y − ZSRv)− 2ε′(y − ZSRβ̂R)

)]
= ER,ε

[
lim
T→∞

(
(β − SRv)′Z ′Z(β − SRv) + 2ε′(ZSRβ̂R − ZSRv)

)]
.

(39)

Since we are free to choose v, we choose

v =

(
βw

1√
T
R′u

)
+ (S ′RZ

′ZSR)−1S ′RZ
′ε, (40)

with u a fixed px×1 vector. Using (12), 1
σ2 ε
′ZSR(S ′RZ

′ZSR)−1S ′RZ
′ε

(d)→ χ2(pw+k).

Substituting (40) into (39) and taking the expectation with respect to ε conditional

on R gives

ρ(k) ≤ σ2(pw + k) + ER [(βx,0 −RR′u)′Σx(βx,0 −RR′u)] . (41)

The bound in (41) is valid for any choice of u. After taking the expectation with

respect to R, we can therefore minimize the bound with respect to u. Together

with the fact that ER[RR′] = k
px
Ipx , this yields

ρ(k) ≤ σ2(pw + k) + β′x,0Σxβx,0 − β′x,0Σx

(px
k

ER [RR′ΣxRR
′]
px
k

)−1

Σxβx,0. (42)

�
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A.3 Proof of Lemma 1

Note that RR′ is a px × px diagonal matrix with k diagonal elements equal to 1,

and the remaining elements equal to zero. This implies that

[RR′ΣxRR
′]ij =

{
[Σx]ij if [RR′]ii[RR

′]jj = 1,

0 if [RR′]ii[RR
′]jj = 0.

(43)

Because the non-zero entries are selected uniformly at random, P ([RR′]ii = 1) =
k
px

and P ([RR′]ii[RR
′]jj = 1) = k

px
k−1
px−1

for i 6= j. This yields ER[RR′] = k
px
Ipx and

E [[RR′ΣxRR
′]ii] =

k

px
[Σx]ii, E [[RR′ΣxRR

′]ij] =
k

px

k − 1

px − 1
[Σx]ij. (44)

We summarize this as

E [RR′ΣxRR
′] =

k

px

k − 1

px − 1
Σx +

k

px

(
1− k − 1

px − 1

)
DΣx

=
k

px

(
k − 1

px − 1
Σx +

px − k
px − 1

DΣx

)
,

(45)

where [DΣx ]ii = [Σx]ii, and [DΣx ]ij = 0 if i 6= j. �

A.4 Proof of Lemma 2

Define Q = R(R′R)−1/2 and P = (R′R)1/2. Furthermore, define the matrices

W = (w0, . . . , wT−1)′ and X = (x0, . . . , xT−1)′. We have

SRβ̂R =

(
Ipw O

O R

)(
W ′W W ′XR

R′X ′W R′X ′XR

)−1(
W ′

R′X ′

)
y

=

(
(W ′W )−1W ′ − (W ′W )−1W ′XVRX

′MW

VRX
′MW

)
y,

(46)

where MW = I − W (W ′W )−1W ′ and VR = R(R′X ′MWXR)−1R′. Using now

that R = QP with P an k × k invertible matrix, we immediately see that VR =

Q(Q′X ′MWXQ)−1Q′. Hence, SRβ̂R = SQβ̂Q, which completes the proof. �

A.5 Proof of Lemma 3

Consider a matrix R with independent standard normal entries, and a matrix

Q = R(R′R)−1/2 with the following property.

41



Lemma 5 Let R be a px × k matrix with independent standard normal entries.

Consider the decomposition R = QP , where Q(R) = R(R′R)−1/2 and P (R) =

(R′R)1/2. When we write U ∈ O(p) if U is a p× p orthogonal matrix, we have

1. Q(R)
(d)
= HpxQ(R) for Hpx ∈ O(px).

2. Q(R)
(d)
= Q(R)Hk for Hk ∈ O(k).

Proof: (Part 1) We have

Q(HpxR) = HpxR(R′H ′pxHpxR)−1/2 = HpxQ(R). (47)

Also, HpxR
(d)
= R. This can be seen from the fact that the matrix variate normal

distribution only depends on R through the trace of R′R. Then Q(HpxR)
(d)
= Q(R).

Combining this with (47), we see that HpxQ(R)
(d)
= Q(R). (Part 2) Decompose

R′R = UΛU ′, where U ∈ O(k). Note that (H ′kUΛU ′Hk)
1/2 = H ′kUΛ1/2U ′Hk, and

(H ′kUΛU ′Hk)
−1/2 = H ′kUΛ−1/2U ′Hk. Now we have

Q(RHk) = RHk(H
′
kR
′RHk)

−1/2 = RHkH
′
k(R

′R)−1/2Hk = Q(R)Hk. (48)

Also RHk
(d)
= R, by the same arguments as before. Then Q(RHk)

(d)
= Q(R)

(d)
=

Q(R)Hk. �

We use Lemma 5 and the eigenvalue decomposition of Σx = HΛH ′, where

H ∈ O(px), to rewrite

EQ[QQ′ΣxQQ
′] = EQ[QQ′HΛH ′QQ′]

= EQ[HH ′QQ′HΛH ′QQ′HH ′] = HEQ[QQ′ΛQQ′]H ′.
(49)

The elements of the matrix M = QQ′ΛQQ′, mii′ , are a function of the eigenvalues

of Σx, λi, and the elements of Q, qij, for i, i′ = 1, . . . , px and j = 1, . . . , k:

mii = λi

(
k∑
j=1

q4
ij +

∑
j 6=j′

q2
ijq

2
ij′

)
+
∑
l 6=i

λl

(
k∑
j=1

q2
ijq

2
lj +

∑
j 6=j′

qijqljqij′qlj′

)
,

mii′ = λi

(
k∑
j=1

q3
ijqi′j +

∑
j 6=j′

q2
ijqij′qi′j′

)
+ λi′

(
k∑
j=1

q3
i′jqij +

∑
j 6=j′

q2
i′jqi′j′qij′

)

+
∑

l 6={i,i′}

λl

(
k∑
j=1

qijqi′jq
2
lj +

∑
j 6=j′

qijqi′j′qljqlj′

)
.

(50)

From (50) it follows that we need the (mixed) moments of qij up to fourth order
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to evaluate EQ[QQ′ΛQQ′]. These are provided in the following lemma.

Lemma 6 Suppose we have a px× k matrix Q for which Q′Q = Ik and the i, j-th

entry of Q is denoted by qij, where i = 1, . . . , px, j = 1, . . . , k, and i 6= i′, j 6= j′.

For any fixed px × px orthogonal matrix Hpx and k × k orthogonal matrix Hk

the matrix Q satisfies the invariance property HpxQHk
(d)
= Q. Then the non-zero

(mixed) moments up to fourth-order are

E
[
q2
ij

]
=

1

px
,

E
[
q4
ij

]
=

3

px(px + 2)
,

E
[
q2
ijq

2
ij′

]
= E

[
q2
ijq

2
i′j

]
=

1

px(px + 2)
,

E
[
q2
ijq

2
i′j′

]
=

px + 1

px(px − 1)(px + 2)
,

E [qijqij′qi′jqi′j′ ] = − 1

px(px − 1)(px + 2)
.

(51)

Note that none of the non-zero (mixed) moments appear in the expression for mii′ ,

such that E[mii′ ] = 0.

Proof: We consider the orthogonal matrix H with fixed indices r and r′ 6= r,

and define the elements of H as

hij =



1 if i = j, i 6= r, i 6= r′,

sin(θ) if i = j = r, or i = j = r′,

cos(θ) if i = r, j = r′,

− cos θ if i = r′, j = r,

0 otherwise,

(52)

where for Hpx , i, j = 1, . . . , px and for Hk, i, j = 1, . . . , k. Hpx sets θ = θ1 and Hk

sets θ = θ2. Throughout this proof, we use the notation that for any index i′ 6= i.

From the invariance property HpxQHk
(d)
= Q follows that the elements of Q satisfy

qij
(d)
= sin(θ1) sin(θ2)qij + cos(θ1) sin(θ2)qi′j

− sin(θ1) cos(θ2)qij′ − cos(θ1) cos(θ2)qi′j′ .
(53)

First moment Choosing θ1 = θ2 = π, we get qij
(d)
= qi′j′ . Similary, choosing

θ1 = 0 and θ2 = π
2
, we get qij

(d)
= qi′j. Proceeding in this manner, we conclude that

the elements qij are identically distributed. Furthermore, choosing θ1 = θ2 = 0,
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we see that qij
(d)
= −qi′j′ . Since E[qij] = E[qi′j′ ] = −E[qij], we have E[qij] = 0.

Second moment We have Q′Q = Ik, which implies that
∑px

i=1 q
2
ij = 1 for

every j. Taking the expectations on both sides and noting that the elements

of Q are identically distributed, we have E[q2
ij] = 1

px
. We now proceed to the

mixed moments. Take θ2 = π/2 and θ1 = θ in (53), such that qij
(d)
= sin(θ)qij +

cos(θ)qi′j. Then q2
ij

(d)
= sin2(θ)q2

ij + cos2(θ)q2
i′j + 2 sin(θ) cos(θ)qijqi′j. Since E[q2

ij] =

E[q2
i′j], E[qijqi′j] = 0. Similary, taking θ1 = π/2 and θ2 = θ yields E[qijqij′ ] = 0.

Considering then the case for general θ1 and θ2 and using the previously derived

results, we find E[qijqi′j′ ] = 0. Summarizing,

E[q2
ij] =

1

px
, E[qijqi′j] = 0, E[qijqij′ ] = 0, E[qijqi′j′ ] = 0. (54)

Fourth moment Setting θ2 = π/2 and θ1 = θ in (53) yields

q4
ij

(d)
= sin4(θ)q4

ij + cos4(θ)q4
i′j + 6 sin2(θ) cos2(θ)q2

ijq
2
i′j

+ 4 sin3(θ) cos(θ)q3
ijqi′j + 4 sin(θ) cos3(θ)qijq

3
i′j.

(55)

Since all the elements of Q are identically distributed, E[q4
ij] = E[q4

i′j], and we have

E[q4
ij] = [sin4(θ) + cos4(θ)]E[q4

ij] + 6 sin2(θ) cos2(θ)E[q2
ijq

2
i′j]

+ 4 sin3 θ cos(θ)E[q3
ijqi′j] + 4 sin(θ) cos3 θE[qijq

3
i′j]

= E[q4
ij] + 2 sin2(θ) cos2(θ)

(
3E[q2

ijq
2
i′j]− E[q4

ij]
)

+ 4 sin3(θ) cos(θ)E[q3
ijqi′j] + 4 sin(θ) cos3(θ)E[qijq

3
i′j] =

E[q4
ij] + 2 sin2(θ) cos2(θ)

(
3E[q2

ijq
2
i′j]− E[q4

ij]
)

+ 4 sin(θ) cos(θ)E[q3
ijqi′j],

(56)

where we use that E[q3
ijqi′j] = E[qijq

3
i′j]. For the equality in (56) to hold, we require

E[q4
ij] = 3E[q2

ijq
2
i′j], E[q3

ijqi′j] = 0. (57)

We use that Q′Q = Ik. For any j,

1 =

px∑
i=1

q2
ij =

(
px∑
i=1

q2
ij

)2

=

px∑
i=1

q4
ij +

∑
i 6=i′

q2
ijq

2
i′j. (58)

Taking the expectation and using (57), we have that 1 = pxE[q4
ij] + px(px−1)

3
E[q4

ij],

which yields E[q4
ij] = 3

px(px+2)
, and E[q2

ijq
2
i′j] = 1

px(px+2)
. For θ1 = π/2 and θ2 = θ,
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analogous calculations yield

E[q2
ijq

2
ij′ ] =

1

px(px + 2)
, E[q3

ijqij′ ] = 0. (59)

To obtain the remaining fourth order moments, we consider general θ1 and θ2 in

(53). Using previously derived expressions, we arrive after tedious calculations at

E[q4
ij] = E[q4

ij]− a(θ1, θ2)E[q3
ijqi′j′ ] + b(θ1, θ2)E[3q2

ijq
2
i′j′ + 6qijqij′qi′jqi′j′ − q4

ij]

+ c(θ1, θ2)
{

E[q2
ijqij′qi′j] + 2E[q2

ijqi′j′qi′j]d(θ1)− 2E[q2
ijqij′qi′j′ ]d(θ2)

}
,

(60)

where

a(θ1, θ2) = 4 cos(θ1) cos(θ2) sin(θ1) sin(θ2)(2 cos(θ1)2 cos(θ2)2 − 1),

b(θ1, θ2) = 4 cos(θ1)2 cos(θ2)2 sin(θ1)2 sin(θ2)2,

c(θ1, θ2) = −12 cos(θ1) cos(θ2) sin(θ1) sin(θ2),

d(θ) = sin(θ) cos(θ).

(61)

Again, since the expectations should be independent of θ1 and θ2, this implies that

E[q3
ijqi′j′ ] = E[q2

ijqij′qi′j] = E[q2
ijqi′jqi′j′ ] = E[q2

ijqij′qi′j′ ] = 0, and that

E[3q2
ijq

2
i′j′ + 6qijqij′qi′jqi′j′ − q4

ij] = 0. (62)

Since the off-diagonal elements of Q′Q are equal to zero, we have for any j′ 6= j,

0 =

px∑
i=1

qijqij′ =

(
px∑
i=1

qijqij′

)2

=

px∑
i=1

q2
ijq

2
ij′ +

∑
i 6=i′

qijqij′qi′jqi′j′ . (63)

Taking the expectation and using (59), we get 1
px+2

= −
∑

i 6=i′ E[qijqij′qi′jqi′j′ ].

Since the expectation should not depend on our choice of i, j, i′, j′ as long as i 6= i′

and j 6= j′, we have that E[qijqij′qi′jqi′j′ ] = − 1
px(px−1)(px+2)

. Then from (62) we

obtain E[q2
ijq

2
i′j′ ] = px+1

px(px−1)(px+2)
. There is one final identity that we need. We

found that E
[
q2
ij

]
= 1

px
from which follows that EQ[QQ′] = k

px
Ipx . Then also

EQ[QQ′QQ′] = k
px
Ipx . For the off-diagonal elements

[QQ′QQ′]mm′ =
k∑
i=1

q3
miqm′i +

∑
i 6=i′

q2
miqmi′qm′i′ +

k∑
i=1

q3
m′iqmi

+
∑
i 6=i′

q2
m′iqm′i′qmi′ +

px∑
l 6={m,m′}

(
k∑
i=1

qmiqm′iq
2
li +

∑
i 6=i′

qmiqliqm′i′qli′

)
.

(64)
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We know that EQ[QQ′QQ′]mm′ = 0, and the only term on the right-hand side for

which we have no expression is the final one. This implies that E[qmiqm′i′qliqli′ ] = 0,

which completes the calculation of the moments of qij up to fourth order. �

Since Q′Q = Ik for Q = R(R′R)−1/2, and Lemma 5 shows that this choice for

Q satisfies the invariance property, we can apply Lemma 6 to Q. Lemma 6 states

that E
[
q2
ij

]
= 1

px
from which follows that EQ[QQ′] = k

px
Ipx .

Substituting the moments in Lemma 6 in the expectation of (50), we have

mii =
k

px

(
2 + k

px + 2
λi +

px − k
(px + 2)(px − 1)

∑
l 6=i

λl

)

=
k

px

(
px(k + 1)− 2

(px + 2)(px − 1)
λi +

px − k
(px + 2)(px − 1)

px∑
l=1

λl

)
.

(65)

Substituting this expression in (49), we arrive at

EQ[QQ′ΣxQQ
′] =

k

px

(
px(k + 1)− 2

(px + 2)(px − 1)
Σx +

(px − k)px
(px + 2)(px − 1)

tr(Σx)

px
Ipx

)
. (66)

�

A.6 Uniform improvement MSFE bound RP

Define R to be a px × k matrix with independent normal entries. We set the

variance equal to 1/px to ensure that E[RR′] = k
px
Ip. Take Q = R(R′R)−1/2 a

random orthogonal matrix. To show that the use of Q in Theorem 1 yields a

uniform improvement over using R, we need to show that ∆ = E[RR′ΣxRR
′] −

E[QQ′ΣxQQ
′] � 0. From Kabán (2014), Lemma 2, we have that

E[RR′ΣxRR
′] =

k

px

[
k + 1

px
Σx +

tr(Σx)

px
Ipx

]
. (67)

Then

∆ =
k

px

[(
k + 1

px
− px(k + 1)− 2

(px + 2)(px − 1)

)
Σx +

(
1− (px − k)px

(px + 2)(px − 1)

)
tr(Σx)

px
Ipx

]
=

k

px

[
px(k + 1)− 2 + 2(px − k)

px(px + 2)(px − 1)
Σx +

px(k + 1)− 2

(px + 2)(px − 1)

tr(Σ)

px
Ipx

]
.

For the first term, px(k + 1) ≥ 2, with equality only when px = k = 1. Also,

px − k ≥ 0. For the second term, again px(k + 1) ≥ 2. We see that when px > 1,

∆ = aΣx + bIpx with a, b > 0. Since Σx is positive definite, this implies ∆ is
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positive definite. �

A.7 Eigenvalue bounds

Lemma 7 Let R be a px × k random selection or random projection matrix, Σ a

px × px positive definite matrix and VR = Σ1/2R(R′ΣR)−1R′Σ1/2. Then

λmin(Σ)

λmax(Σ)

k

px

1

η
≤ λmin(ER[VR]) ≤ λmax(ER[VR]) ≤ λmax(Σ)

λmin(Σ)

k

px
η, (68)

where λmin(A) and λmax(A) denote respectively the minimum and maximum eigen-

value of A, η = 1 for R a random projection matrix, and η = 2 for R a random

selection matrix.

We provide separate proofs for random projections and random subsets.

Random projections Since both Σ and ER[R(R′ΣR)−1R′] are positive definite,

λmin(Σ)λmin(ER[R(R′ΣR)−1R′]) ≤λmin(ER[VR])

≤λmax(Σ)λmax(ER[R(R′ΣR)−1R′]).
(69)

As discussed in Section 3.1.2, we can replace R by Q = R(R′R)−1/2 and ER[VR] =

EQ[VQ]. Furthermore, we use the singular value decomposition of Σ = UΛU ′, with

U ∈ O(px), and apply Lemma 5 in Appendix A.5 which says that UQ
(d)
= Q. Then

λmax(EQ

[
Q(Q′ΣQ)−1Q′

]
) = λmax(UEQ

[
Q(Q′ΛQ)−1Q′

]
U ′)

= λmax(EQ

[
Q(Q′ΛQ)−1Q′

]
).

(70)

Now we apply the following lemma to EQ [Q(Q′ΛQ)−1Q′]:

Lemma 8 Suppose we have a p×p matrix A. If ΩAΩ = A for any p×p diagonal

matrix Ω with elements randomly drawn from {−1, 1}, the matrix A is diagonal.

Proof: Since ΩAΩ = A, the elements of A satisfy aij = ωiiωjjaij. Since this holds

for any Ω, there always is an Ω such that ωii = −ωjj, in which case aij = 0. �

Pick Ω as in Lemma 8, then,

ΩEQ

[
Q(Q′ΛQ)−1Q′

]
Ω = EQ

[
ΩQ(Q′ΩΩΛΩΩQ)−1Q′Ω

]
= EQ

[
ΩQ(Q′ΩΛΩQ)−1Q′Ω

]
= EQ

[
Q(Q′ΛQ)−1Q′

]
,

(71)
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where we use that Ω is an orthogonal matrix, and hence ΩQ
(d)
= Q. This proves the

diagonality of EQ[Q(Q′ΛQ)−1Q′]. We upper bound the eigenvalues of this matrix

as

EQ[q′i(Q
′ΛQ)−1qi] = EQ[q′i(Q

′Q)−1/2((Q′Q)−1/2Q′ΛQ(Q′Q)−1/2)−1(Q′Q)−1/2qi]

≤ EQ[λmax([(Q′Q)−1/2Q′ΛQ(Q′Q)−1/2]−1)q′i(Q
′Q)−1qi]

= EQ[(λmin[(Q′Q)−1/2Q′ΛQ(Q′Q)−1/2])−1q′i(Q
′Q)−1qi]

≤ 1

λmin(Λ)
EQ[q′i(Q

′Q)−1qi] =
1

λmin(Σ)

k

px
,

where the introduction of (Q′Q)−1/2 = Ipx emphasizes that we can use the Poincaré

separation lemma to obtain the fourth line. Using (69), this gives the bound

λmax(EQ[Σ1/2Q(Q′ΣQ)−1Q′Σ1/2]) ≤ λmax(Σ)

λmin(Σ)

k

px
. (72)

The proof for the lower bound on the minimum eigenvalue follows analogously.�

Random subsets We first establish a lower bound on λmin(ER [R(R′ΣR)−1R′]).

Define a px× px random permutation matrix P1 = [R1, R2, . . . , Rm], with m = px
k

.

Take the px × (px + r) matrix P = [P1, P2], where P2 is a px × r random selection

matrix such that m̃ = (px + r)/k is an integer and r < px. Furthermore, define a

px×px random matrix S = Dm̃⊗(ιkι
′
k), where Dm̃ is a random m̃×m̃ matrix where

each diagonal element is equal to 1 with probability 1/m̃ and a draw of D has

only one nonzero element on its diagonal. The ⊗ denotes the Kronecker product

and ιk is a k × 1 vector of ones. Note that E[S] = 1
m̃
B, where B = Im̃ ⊗ (ιkι

′
k) is

a px × px matrix. Then,

R(R′ΣR)−1R′
(d)
= P [S ◦ (B ◦ P ′ΣP )−1]P ′, (73)

where ◦ denotes the Hadamard product, and hence

ER[R(R′ΣR)−1R′] =EP,S[P [S ◦ (B ◦ P ′ΣP )−1]P ′]

=EP [PES[S ◦ (B ◦ P ′ΣP )−1|P ]P ′].
(74)
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For the minimum eigenvalue of ER [R(R′ΣR)−1R′] now follows

λmin(ER[R(R′ΣR)−1R′]) ≥ EP [λmin(PES[S ◦ (B ◦ P ′ΣP )−1|P ]P ′)]

≥ EP [λmin(ES[S ◦ (B ◦ P ′ΣP )−1|P ])]

≥ 1

2

k

px
E[λmin((B ◦ P ′ΣP )−1)]

≥ 1

2

k

px
λmin(Σ−1) =

1

2

k

px

1

λmax(Σ)
,

(75)

where in the first line we use that the minimal eigenvalue is a concave function. For

the second inequality we use that for any matrix PAP ′, we have λmin(PAP ′) =

minv
v′PAP ′v
v′v

, with v′PAP ′v
v′v

= ṽA′ṽ
ṽ′ṽ−v′P2P ′

2v
≥ ṽA′ṽ

ṽ′ṽ
. Then λmin(PAP ′) ≥ λmin(A).

Next, we use that E[S] = k
px+r

B ≥ 1
2
k
px
B. Finally, on the fourth line, we use that

B ◦P ′ΣP is block diagonal, so that its eigenvalues are bounded by the eigenvalues

of the blocks. The blocks itself are inverses of k × k principal submatrices of Σ,

with their eigenvalues bounded by the eigenvalues of Σ−1.

We derive an upper bound on λmax(ER [R(R′ΣR)−1R′]) in a similar way. Define

a px×px random permutation matrix P1 = [P, P2]. We take P to be a px×(px−r)
random selection matrix such that (px−r)/k is an integer. Note that r < 1

2
px. We

now repeat the argument above. For any matrix PAP ′ we have λmax(PAP ′) =

maxv
v′PAP ′v
v′v

, with v′PAP ′v
v′v

= ṽA′ṽ
ṽ′ṽ+v′P2P ′

2v
≤ ṽA′ṽ

ṽ′ṽ
. Then λmax(PAP ′) ≤ λmax(A).

Moreover, E[S] = k
px−rB ≤

2k
px
B. This results in

λmax(E[R(R′ΣR)−1R′] ≤ 2
1

λmax(Σ)

k

px
. (76)

Combining the bounds on the eigenvalues of ER [R(R′ΣR)−1R′] with (69) com-

pletes the proof. �

A.8 Lower bound on MSFE

We rewrite ρ(k) in(14) using a bias-variance decomposition and Lemma 4 in Ap-

pendix A.1,

ρ(k) = Eε[Y ]′ΣzEε[Y ] + Eε[(Y − Eε[Y ])′Σz(Y − Eε[Y ])], (77)

where we introduce
√
T (β − ER[SRβ̂R])

(d)→ Y to shorten notation. We separately

bound the bias and variance term in (77).
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Using (46) from Appendix A.4, we rewrite the bias term to

Eε[Y ]′ΣzEε[Y ] = lim
T→∞

T−1β′0Z
′V ′Z ′ZV Zβ0 = β′w,0Σwβw,0 + β′x,0Σxwβw,0

+β′w,0Σwxβx,0 + β′x,0ΣxwΣ−1
w Σwxβx,0 + β′x,0ΣVRΣVRΣβx,0,

(78)

where Σ = plimT→∞
1
T
X ′MwX, and

V =

(
(W ′W )−1W ′ − (W ′W )−1W ′XVRX

′Mw

VRX
′Mw

)
VR = ER[R(R′ΣR)−1R′], Mw = IT − Pw, Pw = W (W ′W )−1W ′.

(79)

The last term in (78) can be lower bounded by βx,0Σ′βx,0λmin(Σ1/2VRΣ1/2)2, and

upper bounded by the same expression with the minimum eigenvalues replaced by

maximum eigenvalues.

For the variance, we have

Eε[(Y − Eε[Y ])′Σz(Y − Eε[Y ])] =E[ lim
T→∞

ε′V ′Z ′ZV ε]

=E[ lim
T→∞

ε′(Pw + T−1MwXVRΣVRX
′Mw)ε]

=σ2pw + E[ lim
T→∞

T−1ε′MwXVRΣVRX
′Mwε],

(80)

where we use that ε′Pwε
(d)→ σ2χ2(pw). Since T−1ε′MwXΣ−1X ′Mwε

(d)→ σ2χ2(px),

the last term in (80) can be lower bounded by σ2pxλmin(Σ1/2VRΣ1/2)2.

Using the bounds on λmin(Σ1/2VRΣ1/2) in Lemma 7 in Appendix A.7 together

with the expressions for the bias and variance terms in (78) and (80), we have the

following lower bound on the MSFE

ρ(k) ≥β′w,0Σwβw,0 + β′x,0Σxwβw,0 + β′w,0Σwxβx,0 + β′x,0ΣxwΣ−1
w Σwxβx,0+

(β′x,0Σβx,0)
λmin(Σ)2

λmax(Σ)2

k2

p2
x

1

η2
+ σ2

(
pw +

λmin(Σ)2

λmax(Σ)2

1

η2

k2

px

)
,

(81)

which completes the proof. �

Although in many settings weaker than the bound in Theorem 1, we also

directly obtain an upper bound on the MSFE:

ρ(k) ≤β′w,0Σwβw,0 + β′x,0Σxwβw,0 + β′w,0Σwxβx,0 + β′x,0ΣxwΣ−1
w Σwxβx,0+

(β′x,0Σβx,0)
λmax(Σ)2

λmin(Σ)2

k2

p2
x

η2 + σ2

(
pw +

λmax(Σ)2

λmin(Σ)2

k2

px
η2

)
.

(82)
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A.9 Proof of Theorem 2

First, we use Lemma 4 in Appendix A.1 to write ρS(k) as

ρS(k) = Eε

 lim
T→∞

TEzT

(z′Tβ − z′T 1

N

N∑
i=1

SRi
β̂Ri

)2


= Eε

[
lim
T→∞

T

(
β − 1

N

N∑
i=1

SRi
β̂Ri

)′
Σz

(
β − 1

N

N∑
i=1

SRi
β̂Ri

)]
.

(83)

Define the p× 1 vector d such that,

1

N

N∑
i=1

SRi
β̂Ri

= E[SRβ̂R] +
1√
T

Σ−1/2
z ε̃d. (84)

Substituting (84) into (83) yields

ρS(k) = ρ(k) + ε̃2Eε[ lim
T→∞

d′d]− 2ε̃Eε[ lim
T→∞

√
Td′Σ1/2

z (β − ER[SRβ̂R])], (85)

where ρ(k) = Eε

[
limT→∞ T (β − ER[SRβ̂R])′Σz(β − ER[SRβ̂R]

]
follows again from

Lemma 4 in Appendix A.1. We upper bound the last term in (85) as

|2Eε[ lim
T→∞

√
Td′Σ1/2

z (β − ER[SRβ̂R])]|

≤ 2Eε

[
lim
T→∞

√
Td′d(β − ER[SRβ̂R])′Σz(β − ER[SRβ̂R])

]
≤ Eε

[
lim
T→∞

d′d
]

+ ρ(k),

(86)

where we use the Cauchy-Schwarz inequality in the first line, and a2 + b2 > 2ab in

the second line. Combining (85) and (86) results in a bound on ρS(k);

ρS(k) ≤ (1 + ε̃)ρ(k) + (ε̃+ ε̃2)Eε[ lim
T→∞

d′d] = (1 + ε̃)

(
1 +

ε̃Eε[limT→∞ d
′d]

ρ(k)

)
ρ(k).

For ρS(k) = (1 + ε)ρ(k) to hold, we need ε̃Eε[limT→∞ d
′d] to be smaller than the

lower bound on ρ(k) which we derive in Appendix A.8.

It suffices to show that

E[ lim
T→∞

d′d] ≤ σ2

(
λmin(Σ)

λmax(Σ)

)2
k2

px
. (87)

We construct an upper bound on E[limT→∞ d
′d] and show that this bound satisfies
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the bound in (87). By definition

d =
√
TΣ1/2

z

(
1

N

N∑
i=1

SRi
β̂Ri
− ER[SRβ̂R]

)

=
√
TΣ1/2

z

[
−(W ′W )−1W ′X∆X ′MW

∆X ′MW

]
y =
√
TΣ1/2

z V∆y,

(88)

where ∆ = 1
N

∑N
i=1Ri(R

′
iΣRi)

−1R′i−ER[R(R′ΣR)−1R′] with Σ = X ′MWX. Then

Eε[ lim
T→∞

d′d] = Eε[ lim
T→∞

y′V ′∆Z
′ZV∆y] = Eε[ lim

T→∞
y′MwX∆Σ∆X ′Mwy]

≤ λmax(Σ1/2∆Σ1/2)2Eε[ lim
T→∞

(Zβ + ε)′MwXΣ−1X ′Mw(Zβ + ε)]

= λmax(Σ1/2∆Σ1/2)2(β′0Σzβ0 + Eε[ lim
T→∞

ε′MwXΣ−1X ′Mwε])

≤ λmax(Σ1/2∆Σ1/2)2(β′0β0λmax(Σz) + σ2px)

≤ cλmax(Σ1/2∆Σ1/2)2σ2px,

since ε′MWX(Σ)−1X ′MW ε
(d)→ σ2χ2(px), and c > 0 is a constant independent of

px. To satisfy (87), we require λmax(Σ1/2∆Σ1/2) ≤ c k
px

. We apply the following

lemma:

Lemma 9 (Ahlswede and Winter (2002), Theorem 19) Let Xi be a px×px
independent symmetric positive definite matrix with λmax(Xi) ≤ 1 almost surely

and i = 1, . . . , N . Let SN =
∑N

i=1Xi and Ω =
∑N

i=1 λmax(E[Xi]), then for all

ε ∈ (0, 1)

P (λmax(SN − E[SN ]) ≥ εΩ) ≤ 2p exp(−ε2Ω/4). (89)

This lemma is a non-trivial generalization of a Chernoff bound for sums of inde-

pendent random variables. For an expository proof, see Section 2 of Wigderson

and Xiao (2008). The main technical obstacle is that the proof for scalar random

variables relies on the fact that scalars are commutative. To circumvent this, the

Golden-Thompson inequality (Golden, 1965; Thompson, 1965) is used.

We define Xi = Σ1/2Ri(R
′
iΣRi)

−1R′iΣ
1/2. Since Xi is a projection matrix we

have λmax(Xi) = 1. We apply Lemma 9 and set

Ω = Nλmax(ER

[
Σ1/2R(R′ΣR)−1R′Σ1/2

]
), (90)

e = ελmax(ER

[
Σ1/2R(R′ΣR)−1R′Σ1/2

]
). (91)
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Then plugging in (90) and (91) into Lemma 9, we obtain

P
(
λmax(Σ1/2∆Σ1/2) ≥ ελmax(ER

[
Σ1/2R(R′ΣR)−1R′Σ1/2

]
)
)

≤ 2px exp

(
−ε

2

4
Nλmax(ER

[
Σ1/2R(R′ΣR)−1R′Σ1/2

]
)

)
.

(92)

For λmax(Σ1/2∆Σ1/2) ≤ c k
px

to hold, we need ελmax(ER

[
Σ1/2R(R′ΣR)−1R′Σ1/2

]
) ≤

k
px

which is guaranteed by Lemma 7 in Appendix A.7. Moreover, the right-hand

side of (92) needs to be close to zero, which requires for some δ ∈ (0, 1) that

2px exp

(
−ε

2

4
Nλmax(ER

[
Σ1/2R(R′ΣR)−1R′Σ1/2

]
)

)
≤ δ. (93)

This implies that we need to choose the number of samples

N ≥ 4

ε2λmax(ER [Σ1/2R(R′ΣR)−1R′Σ1/2])
log

(
2px
δ

)
. (94)

We lower bound λmax(ER

[
Σ1/2R(R′ΣR)−1R′Σ1/2

]
) by using the lower bound on

the minimum eigenvalue in Lemma 7 in Appendix A.7, for both random projection

and random permutation matrices . We substitute the bound into (94). The result

is that for both random permutation matrices and random projection matrices,

we need

N = O

(
px log px

k

)
, (95)

draws. �

B Monte Carlo experiments
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Table 7: Monte Carlo simulation: relative MSFE

Random projections - k Random subsets - k

s b 1 10 25 50 1 10 25 50

10 0.5 0.978 1.278 3.504 11.684 0.976 1.286 3.543 11.740
0.1 0.967 0.872 1.389 3.909 0.967 0.874 1.399 3.927
2.0 0.964 0.732 0.646 1.127 0.963 0.729 0.646 1.130

50 0.5 0.965 0.815 1.133 3.045 0.964 0.815 1.140 3.065
0.1 0.962 0.712 0.568 0.885 0.962 0.710 0.569 0.890
2 0.962 0.684 0.415 0.304 0.961 0.681 0.413 0.306

100 0.5 0.963 0.750 0.781 1.694 0.962 0.748 0.783 1.705
0.1 0.962 0.693 0.463 0.493 0.962 0.690 0.462 0.496
2.0 0.961 0.675 0.379 0.194 0.961 0.670 0.376 0.194

Principal components - k Partial least squares - k

s b 1 10 25 50 1 10 25 50

10 0.5 1.253 3.736 8.780 19.402 9.592 40.512 48.769 51.515
0.1 1.056 1.665 3.073 6.297 3.099 13.265 15.882 16.731
2.0 0.972 0.950 1.152 1.828 0.961 3.472 4.186 4.425

50 0.5 1.034 1.424 2.422 4.979 2.377 10.253 12.409 13.107
0.1 0.972 0.900 0.962 1.428 0.805 2.693 3.248 3.415
2.0 0.966 0.739 0.537 0.457 0.432 0.685 0.856 0.907

100 0.5 0.983 1.095 1.529 2.742 1.372 5.506 6.647 7.002
0.1 0.968 0.778 0.677 0.775 0.535 1.364 1.683 1.765
2.0 0.958 0.685 0.440 0.276 0.356 0.329 0.409 0.431

Ridge regression - ln k Lasso - ln k

s b -6 -4 -2 0 -28 -27 -26 -25

10 0.5 0.995 0.971 1.108 4.821 1.073 3.684 11.159 25.064
0.1 0.993 0.953 0.864 1.787 0.959 1.553 3.793 8.342
2.0 0.992 0.943 0.768 0.705 0.796 0.708 1.187 2.280

50 0.5 0.993 0.949 0.826 1.428 0.961 1.378 3.073 6.522
0.1 0.992 0.940 0.750 0.594 0.844 0.713 1.004 1.789
2.0 0.990 0.925 0.686 0.326 0.617 0.393 0.377 0.519

100 0.5 0.993 0.944 0.781 0.915 0.921 1.011 1.827 3.600
0.1 0.991 0.934 0.721 0.423 0.767 0.547 0.610 0.950
2.0 0.988 0.907 0.633 0.241 0.506 0.299 0.242 0.280

Note: this table shows the MSFE relative to the prevailing mean, for random
projection regression, random subset regression, principal component regression,
partial least squares, ridge regression, and lasso under the data generating process
(27) based on 10,000 replications, for increasing values of the subspace dimension
k. The coefficient size varies over b = {0.5, 1.0, 2.0}, and s = {10, 50, 100} out of
p = 100 coefficients are non-zero.
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Table 8: Monte Carlo simulation: relative MSFE under a factor design

Random projections - k Random subsets - k

s b 1 10 25 50 1 10 25 50

Top 0.5 0.944 0.722 1.243 3.931 0.991 0.955 1.136 2.591
0.1 0.937 0.558 0.444 1.029 0.990 0.915 0.844 1.013
2.0 0.935 0.513 0.233 0.291 0.990 0.902 0.764 0.598

Int. 0.5 1.013 1.841 5.724 19.064 0.998 1.199 2.735 10.897
0.1 1.003 1.305 2.739 7.565 0.992 1.013 1.507 4.481
2.0 1.001 1.075 1.390 2.418 0.991 0.934 0.961 1.604

Principal components - k Partial least squares - k

s b 1 10 25 50 1 10 25 50

Top 0.5 0.996 1.097 2.905 6.486 2.466 13.526 16.322 17.152
0.1 0.917 0.300 0.749 1.685 0.495 3.461 4.260 4.470
2.0 0.886 0.078 0.202 0.448 0.139 0.947 1.156 1.206

Int. 0.5 1.501 6.065 14.467 31.146 16.347 65.901 77.865 82.446
0.1 1.176 2.948 6.438 12.808 7.140 24.905 29.846 31.725
2.0 1.060 1.639 2.770 4.172 2.969 7.333 8.545 9.048

Ridge regression - ln k Lasso - ln k

s b -6 -4 -2 0 -28 -27 -26 -25

Top 0.5 0.989 0.918 0.734 1.675 0.887 1.729 4.143 9.125
0.1 0.987 0.903 0.614 0.527 0.539 0.577 1.142 2.399
2.0 0.984 0.880 0.531 0.206 0.194 0.166 0.312 0.661

Int. 0.5 1.001 1.023 1.486 7.887 1.796 7.268 19.791 43.692
0.1 1.000 1.007 1.178 3.556 1.335 3.400 7.835 16.719
2.0 1.000 1.003 1.049 1.577 1.114 1.512 2.543 4.954

Note: this table shows the MSFE relative to the prevailing mean, for random pro-
jection regression, random subset regression, principal component regression, partial
least squares, ridge regression, and lasso in the Monte Carlo simulations when the
underlying model has a factor structure. In the experiments referred to with ‘High’,
we associate nonzero coefficients with the 10 factors that explain most of the variation
in the predictors. In the remaining experiments referred to with ‘Int.’ we associate
the nonzero coefficients with intermediate factors {f46, . . . , f55}. For additional in-
formation, see the note following Table 7.
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