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Abstract

In this paper we introduce two values for cooperative games with communication
graph structure. For cooperative games the shapley value distributes the worth
of the grand coalition amongst the players by taking into account the worths that
can be obtained by any coalition of players, but does not take into account the
role of the players when communication between players is restricted. Existing
values for communication graph games as the Myerson value and the average tree
solution only consider the worths of connected coalitions and respect only in this
way the communication restrictions. They do not take into account the position
of a player in the graph in the sense that, when the graph is connected, in the
unanimity game on the grand coalition all players are treated equally and so play-
ers with a more central position in the graph get the same payoff as players that
are not central. The two new values take into account the position of a player in
the graph. The first one respects centrality, but not the communication abilities
of any player. The second value reflects both centrality and the communication
ability of each player. That implies that in unanimity games players that do not
generate worth but are needed to connect worth generating players are treated as
those latter players, and simultaneously players that are more central in the graph
get bigger shares in the worth than players that are less central. For both values
an axiomatic characterization is given on the class of connected cycle-free graph
games.
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cooperation, centrality.

JEL Classification Number: C71

1 Introduction

In classical cooperative game theory it is assumed that any coalition of players may form.
However, in many practical situations the set of feasible coalitions is restricted by some
social, economical, hierarchical, or technical structure. The study of TU games with
limited cooperation introduced by means of undirected communication graphs, later
on for brevity called graph games, was initiated by Myerson [?]. Assuming that only
connected players can cooperate, the Myerson value for graph games is defined as the
Shapley value [?] of the so-called restricted game in which the worth of each coalition is
equal to the sum of the worths of its components in the graph.

Following Myerson, several other solutions for graph games have been proposed.
Since the Shapley value takes the average of the marginal vectors of the game over all
linear orderings on the set of players, the Myerson value takes the average of all marginal
vectors of the Myerson restricted game. Bilbao (2003) introduced the Shapley value for
games under augmenting systems. Such systems yield restrictions on the cooperation
opportunities generalizing the restrictions imposed by a graph. Applied to graph games
the solution proposed in Bilbao (2003) takes the average of the marginal vectors over
only those linear orderings that induce sequences of connected coalitions. Solutions
using the notion of (rooted) trees (partial orderings) instead of linear orderings tree
were introduced by Herings, van der Laan, Talman and Yang (2010) and Koshevoy
and Talman (2014). For a given connected graph, a spanning tree of the graph is a
connected cycle-free subgraph, whereas a tree is admissible if it is a connected cycle-free
graph and in the tree every node is linked to precisely one node in each component of
the subgraph on the set of his subordinates in the tree. The average tree solution for
graph games introduced in Herings et al. (2010) assigns to each player the average of the
player’s marginal contributions to his subordinates in the Myerson restricted game over
all admissible spanning trees. The gravity center restricted to graph games, introduced
by Koshevoy and Talman (2014) for games with restricted communication represented
by an arbitrary collection of feasible coalitions, assigns to each player the average of the
player’s marginal contributions to his subordinates in the Myerson restricted game over
all admissible trees, not necessarily spanning trees.

The four solutions mentioned above suffer from some drawbacks, which we illustrate
here with an example. Let the graph be given by a star. We call the center of the star
the hub and all other players (nodes) the satellites of the star. Further, let the game be
the unanimity game on the set of all satellites, i.e. only the coalition of all players except
the hub generates worth. Note that the hub is needed to connect the satellites, so the
players of the worth generating coalition can not communicate without the hub. The
Myerson value and the average tree value take into account that the hub is needed for
communication. In this example both values distribute the worth equally amongst all
players. However, these values don’t take into account the central position of the hub.
The Shapley value of Bilbao has the null player property. For this example it assigns the
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same outcome as the Shapley value, leaving the hub with zero payoff. It therefore does
neither reward communication, nor centrality. The gravity center gives equal payoffs to
all satellites, while the hub gets much less, it recognizes to some extent communication,
but not centrality.

In general, a communication graph typically introduces asymmetries between the
players with respect to their communication abilities and so dividing the worth equally
in a unanimity game is not a priori reasonable. On the contrary, it seems more natural
that a player with more connections is rewarded better. Considering the unanimity game
on the grand coalition, for any graph structure the Myerson value assigns equal payoffs
to the players. Also the average tree solution is doing so for every cycle-free graph. So,
these solutions do not reward centrality. When the graph is a star, all four solutions
give the same outcome in case of the unanimity game on the grand coalition as in case
of the unanimity game on all satellites. So, also when the hub is needed not only for
communication but also for generating worth, the gravity center gives less payoff to the
hub than to the satellites and the Bilbao value even gives zero payoff to the center. We
can say that in the latter two values centrality is punished.

Values that take centrality into account are the position value introduced in Borm,
Owen, and Tijs (1992) and the Harsanyi power solutions given in van den Brink, van der
Laan, and Pruzhanski (2011). Drawbacks of these solutions are discussed in Section 6. In
this paper we introduce two new solution concepts. The first one rewards centrality, but
does not take into account the communication ability of players. In particular, it has the
well-known null player property, and so any null player in the game gets zero payoff, even
if this player is needed to connect non-null players. The second new value rewards both
communication and centrality. Similar to the Shapley value of Bilbao (2003) the two
values consider a subset of the collection of all linear orderings of the players. However,
while the value of Bilbao considers the linear orderings that satisfy the condition that for
every player the set of players ranked lower in the ordering is connected in the graph, we
now do the opposite, namely we consider the linear orderings that satisfy the condition
that for every player the set of higher-ordered players is connected in the graph. In the
usual interpretation a linear ordering describes the order in which players form the grand
coalition, starting with a single player. Actually, in this new setting we can interpret a
linear ordering as the order in which players leave subsequently the grand coalition in
such way that after every departure the set of remaining players is still connected in the
graph. The new values are then obtained by taking the average over all these orderings
of the marginal vectors with respect to the game itself and the Myerson restricted game,
respectively. We call the first one the centrality rewarding Shapley value and the second
one centrality rewarding Myerson value. Contrary to the Shapley value of Bilbao, the two
values reward players that have a central position in the graph. In case of the unanimity
game on the grand coalition both solutions yield the same outcome. In this case the
values have the property that the more central the position of a player is, the higher is
the player’s payoff. In particular, when the graph is a star, both values assign half of
the worth of the grand coalition to the hub, while the other half is shared equally by the
satellites. More generally, when applied to the unanimity game on the grand coalition
the new values induce a centrality measure for undirected graphs, see Khmelnitskaya,
van der Laan, and Talman (2016).

In the classical interpretation of a linear ordering the players enter a room one by
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one aiming to create the grand coalition, and every player is rewarded by his marginal
contribution to the players who entered before. In this interpretation in each ordering the
first player gets only his own worth, while the last player gets its marginal contribution
to the grand coalition. However, then the grand coalition up to him is already formed,
and so, his role in creating the grand coalition is minimal. In real life it is typically the
other way around. The person that starts some group activity expects to get as payoff his
marginal contribution in the creation of the grand coalition, not just his own worth. This
leads to our new interpretation. It starts with the grand coalition and the first player
that leaves receives its own payoff. When there are no restrictions on cooperation, all
coalitions of players are feasible and, therefore, all orderings of players are admissible,
so that both interpretations result in the same outcome, the Shapley value. In case of a
communication graph game only connected coalitions are considered and then the two
interpretations lead to different solution concepts. While the Shapley value of Bilbao
inherits the distribution model of the classical interpretation of the Shapley value, our
new values follow the distribution model of the alternative interpretation.

The structure of the paper is as follows. Section 2 contains preliminaries and in
Section 3 we discuss the four existing values for communication graph games mentioned
above. In Section 4 we introduce the two new values and in Section 5 we provide an
axiomatic characterization of the values on the class of connected cycle-free graph games.
Further remarks are made in Section 6.

2 Preliminaries

A cooperative game with transferable utility (TU game) is a pair (N, v), where N =
{1, . . . , n} is a finite set of n ≥ 2 players and v : 2N → IR is a characteristic function
with v(∅) = 0, assigning to any coalition S ⊆ N its worth v(S) that can be freely
distibuted among the members of S. The set of TU games with fixed player set N is
denoted GN . For simplicity of notation and if no ambiguity appears we write v when we
refer to a game (N, v). For a subset G ⊆ GN , a value on G is a function f : G → IRN that
assigns to every v ∈ G a vector f(v) ∈ IRN where fi(v) is the payoff to player i ∈ N
in the TU game v. In the sequel we denote the cardinality of a finite set A by |A|. For
S ⊂ N and i ∈ N \ S we sometimes denote S ∪ {i} by S+i.

For T ⊆ N the unanimity game uT is defined as uT (S) = 1 if T ⊆ S, and uT (S) = 0
otherwise. For a unanimity game uT , T is called the unanimity coalition. It is well known
(Shapley, 1953) that {uT | T ∈ 2N , T 6= ∅} forms a basis in GN , i.e., for every TU game
v ∈ GN its characteristic function v can be uniquely represented in the linear form as

v =
∑

T⊆N,T 6=∅
λT (v)uT , where λT (v) =

∑
S⊆T

(−1)|T |−|S| v(S), for all T ⊆ N , T 6= ∅. By the

Möbius transform we have that v(S) =
∑
T⊆S

λT (v) for all S ⊆ N . Following Harsanyi

(1959) the coefficient λv(T ) is referred to as the dividend of the coalition T in game
v and has the natural interpretation as the extra revenue from cooperation among its
players that they did not already realize by cooperating in all proper subcoalitions of S.

For a linear ordering π : N → N and i ∈ N , π(i) is the position of player i in π.
The set of linear orderings on N is denoted Π(N). For π ∈ Π(N) and i ∈ N we denote
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P π(i) = {j ∈ N | π(j) < π(i)} as the set of players with position in π before i, and
we denote P̄ π(i) = P π(i) ∪ {i}. For TU game v ∈ GN and linear ordering π ∈ Π(N),
the marginal vector mπ(v) ∈ IRN is given by mπ

i (v) = v(P̄ π(i))− v(P π(i)), i ∈ N . The
Shapley value on the class of TU games is the function Sh that assigns to every v ∈ GN
the vector Sh(v) ∈ IRN given by

Sh(v)=
1

n!

∑
π∈Π(N)

mπ(v).

An (undirected) graph on N consists of N as its set of nodes (players) and a collection
Γ ⊆ {{i, j} ⊆ N |i 6= j} of unordered pairs of distinct elements of N . The elements of
Γ are called links or edges . The collection of undirected graphs on N is denoted by ΓN

and we refer to an element on this class by its set of edges Γ. Given a graph Γ ∈ ΓN
and S ∈ 2N\{∅}, the graph Γ|S with Γ|S = {{i, j} ∈ Γ|i, j ∈ S} is the subgraph of Γ on
S. Note that Γ|N = Γ.

Let Γ ∈ ΓN be a graph on N . A sequence of k distinct nodes (i1, ..., ik) is a path in
Γ|S if {i`, i`+1} ∈ Γ|S for ` = 1, ..., k − 1. Two nodes i, j ∈ N are connected in Γ|S if
there is a path (i1, ..., ik) in Γ|S with i1 = i and ik = j. A subgraph Γ|S is connected,
or shortly coalition S is connected, if every two nodes in S are connected in Γ|S. A
coalition K ⊆ S is a component of Γ|S, or S, if K is a maximal connected subset of S,
i.e., K is connected and for every i ∈ S\K the set K∪{i} is not connected in Γ. The set
of components of Γ|S is denoted by S/Γ. Γ is cycle-free if for every two different nodes
i and j either i and j are not connected or there is precisely one path in Γ connecting i
and j. Note that Γ ∈ ΓN has precisely |N | − 1 links when Γ is connected and cycle-free.
The collection of connected graphs in ΓN is denoted by by Γ c

N , and the collection of
connected cycle-free graphs by Γ cf

N . Node i ∈ N is an extreme node of graph Γ ∈ Γ c
N

when N\{i} is connected. A connected cycle-free graph is a linear graph if each of its
nodes has at most two neighbors, and it is a star if there is one node, called the hub,
and any other node, called a satellite, is only connected to the hub.

A directed graph, or digraph, on N consists of N as its set of nodes and a collection
D ⊆ {(i, j)|i, j ∈ N, i 6= j} of ordered pairs of distinct elements of N . The elements
of D are called arcs . We shortly refer to a digraph by its collection of arcs D. For a
digraph D, a sequence of distinct nodes (i1, . . . , ir), r ≥ 2, is a directed path from i1 to ir
if (ih, ih+1) ∈ D for h = 1, . . . , r− 1. Node j is a successor of node i (and i a predecessor
of j) if (i, j) ∈ D, and j is a subordinate of i (and i a superior of j) if there is a directed
path from i to j in D. For i ∈ N , SD(i) is the set of successors of i, S̄D(i) the set of

subordinates of i, and ŜD(i) = S̄D(i) ∪ {i}. Note that S̄D(i) = ∪j∈SD(i)ŜD(j) for all
i ∈ N .

A digraph D on N is a (rooted) tree if there is a unique node without predecessors,
the root of the tree, denoted r(D), and for every other node in N there is a unique
directed path in D from the root to that node. Following Demange (2004), for a tree

D and i ∈ N , the set ŜD(i) consisting of i and its subordinates is called the team of i.

Note that ŜD(r(D)) = N and ŜD(i) = {i} when i has no successors. A node without
successors is called a leaf.

For given Γ ∈ Γ c
N a tree D is admissible for Γ if for each (i, j) ∈ D it holds that ŜD(j)

is a component in the subgraph Γ|S̄D(i) of (N,Γ), i.e., when (i, j) ∈ D then the team of
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j is a component of the subgraph of Γ on the set of subordinates of i. A tree D is a
spanning tree of Γ if {i, j} ∈ Γ when (i, j) ∈ D. Note that when Γ is cycle-free, then for
each i ∈ N there is precisely one spanning tree with node i as root. Given Γ ∈ Γ c

N , T a(Γ)
denotes the collection of admissible trees and T s(Γ) denotes the collection of admissible
spanning trees.

3 Values for games with graph structure

In this paper the node set N of a graph is a set of players and the graph represents
a communication structure on the set of players. The players of a coalition S can
communicate amongst each other if S is connected in Γ. A TU game with communication
structure, shortly graph game, with player set N is given by the pair (v,Γ) with v ∈ GN
and Γ ∈ ΓN . We denote the collection of graph games on fixed player set N by GΓN . The
subclass of graph games (v,Γ) on N with Γ ∈ Γ c

N is denoted by GΓcN and the subclass

with Γ ∈ Γ cf
N is denoted by GΓcfN . A solution f on a subset G ⊆ GΓN assigns a unique

payoff vector f(v,Γ) ∈ IRN to every (v,Γ) ∈ G.
For a graph game (v,Γ), Myerson (1977) assumes that players in a coalition S ⊆ N

can only cooperate when they are able to communicate with each other, so when S is
connected in (N,Γ). For (v,Γ) ∈ GN the (Myerson) restricted game vΓ ∈ GN , is defined
by

vΓ(S) =
∑
T∈S/Γ

v(T ), for all S ⊆ N.

The Myerson value, denoted by µ, on the class of graph games is defined as the Shapley
value of its restricted game,

µ(v,Γ) = Sh(vΓ), for every (v,Γ) ∈ GΓN . (1)

The Myerson value of a graph game is the average over all linear orderings of the marginal
vectors of a TU game that is obtained from the original game by taking into account
the communication restrictions induced by the graph.

In case communication restrictions are induced by augmenting systems, Bilbao (2003)
proposes a different approach. Restrictions induced by connected graphs are a special
case of restrictions induced by augmenting systems. Instead of using these restrictions to
modify the game, in the approach of Bilbao (2003) the communication restrictions limit
the collection of linear orderings. When applied to a connected graph Γ, a linear ordering
π ∈ Π(N) is consistent with Γ when for every i ∈ N the set P̄ π(i) is connected in Γ, i.e.,
the linear ordering generates a sequence of coalitions that are connected and thus can
cooperate. Let ΠΓ(N) ⊆ Π(N) be the collection of all linear orderings consistent with
Γ. Then the Shapley value for graph games as introduced in Bilbao, denoted by ShB,
is defined as

ShB(v,Γ) =
1

|ΠΓ(N)|
∑

π∈ΠΓ(N)

mπ(v), for every (v,Γ) ∈ GΓcN . (2)

This value averages over a subset of marginal vectors of the original game v, whereas
the Myerson values averages over all marginal vectors of a modified game. Since for
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every π ∈ ΠΓ(N) and every i ∈ N the set P̄ π(i) is connected and therefore v(P̄ π(i)) =
vΓ(P̄ π(i)), it holds that ShB(v,Γ) = ShB(vΓ,Γ).

On the class of connected cycle-free graph games, Herings, van der Laan, and Talman
(2008) introduces the average tree solution, generalized by Herings et al. (2010) to
the class of connected graph games. This solution, denoted by AT, assigns to each
(v,Γ) ∈ GΓcN the average of a collection of payoff vectors. Each vector in this collection is
associated with precisely one of the admissible spanning trees, the so-called hierarchical
outcome on that tree, as introduced by Demange (2004). Given (v,Γ), the hierarchical
outcome on an admissible tree D ∈ T a(Γ) is the vector hD(v,Γ) ∈ IRN , defined by

hDj (v,Γ) = v(ŜD(j))−
∑

h∈SD(j)

v(ŜD(h)), j ∈ N, (3)

i.e., in the hierarchical outcome hD(v,Γ) the payoff of player j is equal to the worth of
his team in tree D minus the sum of the worths of the teams of his successors in the tree.
Consequently, a leaf i in D gets its own worth v({i}) and root r(D) receives the worth
of the grand coalition v(N) minus the sum of the worths of the teams of his successors
in D. The average tree solution, denoted by AT, assigns to each (v,Γ) ∈ GΓcN the vector
AT (v,Γ) ∈ IRN given by

AT (v,Γ) =
1

|T s(Γ)|
∑

D∈T s(Γ)

hD(v,Γ), (4)

i.e., it assigns the average of the hierarchical outcomes on all admissible spanning trees.
Note that this is the average over n = |N | hierarchical outcomes when Γ is cycle-free.

The gravity center, introduced by Koshevoy and Talman (2014), is a solution on
the class of games with restricted cooperation represented by an arbitrary collection of
feasible coalitions. On the class of connected graph games the gravity center, denoted
by GC, assigns to each (v,Γ) ∈ GΓcN the vector GC(v,Γ) ∈ IRN given by

GC(v,Γ) =
1

|T a(Γ)|
∑

D∈Ta(Γ)

hD(v,Γ), (5)

i.e., it assigns the average of the hierarchical outcomes on all admissible trees.
Note that the Myerson value and the Bilbao value both take the average of marginal

vectors over a collection of linear orderings, whereas the average tree solution and the
gravity center take the average over a collection of trees (partial orderings).

We now illustrate the four solutions by some examples. The examples show that
none of the four solutions reward centrality of players in the graph.

Example 3.1 Take the linear graph with node set N = {1, 2, 3, 4}, as depicted in Figure
3.1.

1 2 3 4

Figure 3.1
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There are eight consistent linear orderings, one with π(1) = 1, given by π =
(1, 2, 3, 4), and three with π(2) = 1, given by (2, 1, 3, 4), (2, 3, 1, 4), and (2, 3, 4, 1). Sim-
ilarly, there are three consistent linear orderings with π(3) = 1 and one with π(4) = 1.
Note that players 1 and 4 both have the last position in four of the eight consistent
linear orderings.

There are four admissible spanning trees, one with each player as root. There are
fourteen admissible trees, five with player 1 as root, two with player 2 as root, two with
player 3 as root, and five with player 4 as root, as depicted in Figure 3.2.
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1 3

D13
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1

2

D14

4

3

2

1

Figure 3.2

We consider unanimity games uN , u124 (short for u{1,2,4}), u123, and u13. Their
Myerson restricted games are given by uΓ

N = uΓ
124 = uN and uΓ

123 = uΓ
13 = u123. The

payoff vectors for the four solutions are obtained by applying the formulas (??), (??),
(??), and (??), respectively. The results are given in Table 3.1.

v µ ShB AT GC
uN (1/4, 1/4, 1/4, 1/4 (1/2, 0, 0, 1/2) (1/4, 1/4, 1/4, 1/4) (5/14, 2/14, 2/14, 5/14)
u124 (1/4, 1/4, 1/4, 1/4) (1/2, 0, 0, 1/2) (1/4, 1/4, 1/4, 1/4) (5/14, 2/14, 2/14, 5/14)
u123 (1/3, 1/3, 1/3, 0) (3/4, 0, 1/4, 0) (1/4, 1/4, 1/2, 0) (7/14, 3/14, 4/14, 0)
u13 (1/3, 1/3, 1/3, 0) (3/4, 0, 1/4, 0) (1/4, 1/4, 1/2, 0) (7/14, 3/14, 4/14, 0)

Table 3.1

Table 3.1 shows that all four solutions give the same outcome for the two character-
istic functions uN and u124 and for the two characteristic functions u123 and u13. For
the Myerson, AT and GC solutions this follows from the fact that uΓ

124 = uΓ
N = uN and

uΓ
13 = uΓ

123 = u123. For ShB it holds that for uN only the two extreme players 1 and 4
in (N,Γ) get a positive payoff, and for u123 only the two extreme players 1 and 3 in the
subgraph Γ|{1,2,3}. Therefore the payoffs do not change when a non-extreme player is
not needed to generate worth.

For the characteristic functions uN and u123, the Myerson value treats all players in
the unanimity set equally, and also all players in N and {1, 2, 3} are treated equally for
u124 and u13. This means that players that are not in a unanimity set are rewarded when
they are needed for the communication between the players in the unanimity set. On
the other hand, the equal treatment implies that players are not rewarded for centrality.
In the case T = N the two extreme players 1 and 4 in (N,Γ) get the same payoff as the
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two non-extreme players 2 and 3. Also in case T = {1, 2, 3} the two extreme players 1
and 3 in the subgraph Γ|T get the same payoff as the central player 2 in this subgraph.

Also the average tree solution rewards players that are needed for communication,
but again players are not rewarded for centrality. In case of the unanimity coalitions
T = {1, 2, 3} and T = {1, 3}, players 1 and 2 get the same payoff. However, here we
see that an extreme player is rewarded for being needed to reach players outside the
unanimity coalition. In fact, in both cases player 3 gets twice as much as the players
1 and 2. In this interpretation player 3 also represents player 4 and gets a share for
the player that he represents, for more details see Herings et al. (2008) and Mishra and
Talman (2010).

The solution of Bilbao does not reward for communication, because every player not
in the unanimity coalition gets zero payoff. However, not only a player is not rewarded
for communication, but a player is even punished for centrality. As noted above, only the
extreme players of the unanimity coalition get non-zero payoff. Also in unanimity game
u123, player 1 gets three times as much as player 3. So, not only player 2 is punished for
its central position, but compared to player 1 also player 3 is punished for being needed
to be connected with the outside player 4. This seems to make the solution of Bilbao
unreasonable.

The gravity center rewards for communication, but suffers from the same drawbacks
as the Bilbao solution from the viewpoint of centrality. For the unanimity games uN
and u124 the players 2 and 3 are treated equally, but they get less payoff than extreme
players 1 and 4. For the unanimity games u123 (and also u13) player 2 gets a positive
payoff, but less than the players 1 and 3. Moreover, player 3 gets less payoff than player
1. So, not only player 2 is punished for centrality, but also player 3 for being needed to
reach player 4.

Example 3.2 Take the star graph on four players with player 1 being the hub, as
depicted in Figure 3.3.

1

2

3 4

Figure 3.3

For this graph there are twelve consistent linear orderings, six with π(1) = 1 and
two with π(j) = 1 for every j 6= 1. Any player j, j 6= 1, has the last position in four of
the twelve linear orderings. Each player is the root of precisely one admissible spanning
tree. There are sixteen admissible trees, one with player 1 as root and five with player
j, j 6= 1, as root, see Figure 3.4.
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Figure 3.4

We consider again four different unanimity games, given by uN , u123, u23, and u12.
The Myerson restricted games are given by uΓ

N = uN , uΓ
23 = uΓ

123 = u123, and uΓ
12 = u12.

The payoff vectors of the four solutions are given in Table 3.2.

v µ ShB AT GC
uN (1/4, 1/4, 1/4, 1/4 (0, 1/3, 1/3, 1/3) (1/4, 1/4, 1/4, 1/4) (1/16, 5/16, 5/16, 5/16)
u123 (1/3, 1/3, 1/3, 0) (0, 1/2, 1/2, 0) (1/2, 1/4, 1/4, 0) (1/8, 7/16, 7/16, 0)
u23 (1/3, 1/3, 1/3, 0) (0, 1/2, 1/2, 0) (1/2, 1/4, 1/4, 0) (1/8, 7/16, 7/16, 0)
u12 (1/2, 1/2, 0, 0) (1/6, 5/6, 0, 0) (3/4, 1/4, 0, 0) (5/16, 7/16, 0, 0)

Table 3.2

The Myerson value and the average tree solution reward for communication, but not for
centrality. In particular both solutions give the same outcome for the two characteristic
functions u123 and u23. Although the average tree solution gives in both case a higher
payoff to player 1 than to players 2 and 3, this is not because player 1 is the hub
but because player 1 also represents player 4. Again the solution of Bilbao does not
reward for communication and punishes central player 1. The gravity center rewards for
communication, but punishes for centrality.

Example 3.3 Take N = {1, 2, 3, 4} and Γ = {{1, 2}, {1, 3}, {1, 4}, {2, 3}}, as depicted
in Figure 3.3.

1

2 3 4

Figure 3.5

10



For this graph there are fourteen consistent linear orderings, given by π1 =(1, 2, 3, 4),
π2 = (1, 2, 4, 3), π3 = (1, 3, 2, 4), π4 = (1, 3, 4, 2), π5 = (1, 4, 2, 3), π6 = (1, 4, 3, 2), π7 =
(2, 1, 3, 4), π8 = (2, 1, 4, 3), π9 = (2, 3, 1, 4), π10 = (3, 1, 2, 4), π11 = (3, 1, 4, 2), π12 =
(3, 2, 1, 4), π13 =(4, 1, 2, 3), and π14 =(4, 1, 3, 2).

There are eighteen admissible trees, with player 1 being the root of two trees, players
2 and 3 the root of five trees, and player 4 the root of six trees, as depicted in Figure
3.6. There are eight admissible spanning trees, in Figure 3.6 given by D1, D2, D3, D4,
D8, D9, D13, and D14.
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Figure 3.6

We consider the unanimity games uN , u123, u124, and u24. Their Myerson restricted
games are given by uΓ

N = uN , uΓ
123 = u123, and uΓ

124 = uΓ
24 = u124. The payoff vectors of

the four solutions are given in Table 3.3.

v µ ShB AT GC
uN (1/4, 1/4, 1/4, 1/4 (0, 2/7, 2/7, 3/7) (1/4, 1/4, 1/4, 1/4) (2/18, 5/18, 5/18, 6/18)
u123 (1/3, 1/3, 1/3, 0) (1/7, 3/7, 3/7, 0) (1/2, 1/4, 1/4, 0) (4/18, 7/18, 7/18, 0)
u124 (1/3, 1/3, 0, 1/3) (0, 3/7, 0, 4/7) (3/8, 3/8, 0, 1/4) (3/18, 7/18, 0, 8/18)
u24 (1/3, 1/3, 0, 1/3) (0, 3/7, 0, 4/7) (3/8, 3/8, 0, 1/4) (3/18, 7/18, 0, 8/18)

Table 3.3

The Myerson value and the average tree solution reward for communication, but not for
centrality. In this case the average tree solution gives for the characteristic functions u124

and u24 a higher payoff to players 1 and 2 than to player 4, because these two players both
represent player 3. Again the solution of Bilbao does not reward for communication and
punishes for centrality and the gravity center rewards for communication, but punishes
for centrality. In this case we could even say that the latter two solutions reward player
4 for not being connected with the players 2 and 3.

To conclude this section we want to stress that the value of Bilbao takes the average
over a subset of the marginal vectors of the original game. Since in every marginal vector
a null player gets zero payoff, this value has the standard null player property. Since a
null player in game v might become a non-null player in the Myerson restricted game vΓ,
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the Myerson value does not satisfy the null player property: A null player might get a
non-zero payoff when he is needed to connect non-null players. Finally, in a hierarchical
outcome the successor set of a player may not be connected. Taking this into account,
formula (??) can be rewritten as

hDj (v,Γ) = v(ŜD(j))− vL(∪h∈SD(j)ŜD(h)), j ∈ N. (6)

This shows that also when applying the average tree solution or the gravity center a
null player might get a non-zero payoff when he is needed to connect non-null players.
We conclude that the value of Bilbao differs from the Shapley value by restricting the
collection of orderings, but that it still satisfies the null-player property, whereas the
other three values do not satisfy the null player property.

4 Rewarding centrality

In this section we propose two solutions on the class of connected graph games. The first
one does still have the null player property and so it does not reward communication
necessity of a player, but it rewards centrality in the graph. The second value rewards
both communication necessity and centrality. The values are defined in Subsection 4.1,
which also contains some results for specific cases. Explicit expressions of the values are
given in Subsection 4.2.

4.1 Definitions and results

Given a connected graph Γ ∈ GΓcN on the set of players N , a linear ordering π ∈ Π(N) is
said to preserve connectivity when for every i ∈ N it holds that the subgraph on the set
N\P π(i) is connected, i.e., every i ∈ N is an extreme node of the subgraph Γ|N\Pπ(i).
Whereas in the standard Shapley interpretation a linear ordering is typically interpreted
as the order in which the players form the grand coalition, we now consider a linear
ordering as an order in which the players leave the grand coalition. The order preserves
connectivity when subsequently extreme players leave and thus after a player leaves the
remaining players are still connected. We call a linear ordering preserving connectivity a
connectivity ordering and denote by ΠΓ

c (N) the collection of these orderings with respect
to Γ. Note that π ∈ ΠΓ

c (N) if and only if π is the reverse of a consistent linear ordering.
On the class of connected graph games we now define the following solution.

Definition 4.1 On the class GΓcN of connected graph games the centrality rewarding
Shapley value Shc is the solution given by

Shc(v,Γ) =
1

|ΠΓ
c (N)|

∑
π∈ΠΓ

c (N)

mπ(v), (v,Γ) ∈ GΓcN . (7)

Shc(v,Γ) is the average of the marginal vectors of game v over all connectivity
orderings with respect to Γ. It thus modifies the Shapley value in the sense that the
average is not taken over all linear orderings, but only over those linear orderings that
preserve connectivity of the graph.
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The second solution on the class of connected graph games is obtained by taking
the average of the marginal vectors of the Myerson restricted game over all connectivity
orderings.

Definition 4.2 On the class GΓcN of connected graph games the centrality rewarding
Myerson value µc is the solution given by

µc(v,Γ) =
1

|ΠΓ
c (N)|

∑
π∈ΠΓ

c (N)

mπ(vΓ), (v,Γ) ∈ GΓcN . (8)

Example 4.1 We apply both centrality rewarding values to the graph games considered
in the Examples ??-??. For each of these graph games the outcome Shc(v,Γ) is given
in Table 4.1 and the outcome µc(v,Γ) in Table 4.2.

?? Shc ?? Shc ?? Shc

uN (1/8, 3/8, 3/8, 1/8) uN (1/2, 1/6, 1/6, 1/6) uN (6/14, 3/14, 3/14, 2/14)
u124 (1/8, 5/8, 0, 2/8) u123 (2/3, 1/6, 1/6, 0) u123 (8/14, 3/14, 3/14, 0)
u123 (1/8, 3/8, 5/8, 0) u23 (0, 1/2, 1/2, 0) u124 (8/14, 4/14, 0, 2/14)
u13 (2/8, 0, 6/8, 0) u12 (5/6, 1/6, 0, 0) u24 (0, 8/14, 0, 6/14)

Table 4.1

?? µc ?? µc ?? µc

uN (1/8, 3/8, 3/8, 1/8) uN (1/2, 1/6, 1/6, 1/6) uN (6/14, 3/14, 3/14, 2/14)
u124 (1/8, 3/8, 3/8, 1/8) u123 (2/3, 1/6, 1/6, 0) u123 (8/14, 3/14, 3/14, 0)
u123 (1/8, 3/8, 1/2, 0) u23 (2/3, 1/6, 1/6, 0) u124 (8/14, 4/14, 0, 2/14)
u13 (1/8, 3/4, 1/2, 0) u12 (5/6, 1/6, 0, 0) u24 (8/14, 4/14, 0, 2/14)

Table 4.2

The tables show that for unanimity graph games both values yield the same payoffs
when the unanimity coalition is connected in the graph. For both values we also have
that they satisfy the null player property when the unanimity coalition is connected.
Since the centrality rewarding Myerson value takes marginal vectors with respect to the
Myerson restricted game, it holds that µc(N, v,Γ) = µc(N, vΓ,Γ). So for the graph of
Example ?? we have that µc(u124,Γ) = µc(uΓ

124,Γ) = µc(uN ,Γ) and for the graph of
Example ?? we have that µc(u24,Γ) = µc(uΓ

24,Γ) = µc(u124,Γ). This also implies that µc

respects communication, for instance in the graph of Example ?? the payoff to player 1
when v = u24 is the same as the payoff to player 1 when v = u124. Although in the former
game player 1 is a null player in the game, this player is needed for the communication
between players 2 and 4.

Table 4.2 shows that µc not only respects communication, but also rewards for cen-
trality. In particular this can be seen when considering the payoff vectors in the three
examples when v = uN . For the graph of Example ?? the payoffs of the players 2 and
3 is higher than the payoffs of the extreme players 1 and 4, for the graph of Example
?? the payoffs of the central player 1 is higher than the payoff of the other players, and
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for the graph of Example ?? the payoff of the central player 1 is higher than the payoff
of the players 2 and 3, which in turn are higher than the payoff of player 4. Similar
observations can be made for the other characteristic functions. Table 4.1 shows that
Shc also rewards centrality, but it does not reward for communication necessity. For
instance, for the case that v = u24 of Example ?? player 1 is a null player and gets zero
payoff, although he connects players 2 and 4.

Taking the unanimity game on the grand coalition, the next two propositions show
the centrality flavor of the centrality rewarding Shapley value for the special cases of a
star graph and a linear graph. Since for a graph game (uN ,Γ) the two centrality reward-
ing values yield the same outcome, the same results hold for the centrality rewarding
Myerson value.

Proposition 4.1 For a star graph Γ on N with i0 ∈ N being the hub it holds that

Shci(uN ,Γ) =


1

2
, i = i0,

1

2(n− 1)
, i 6= i0.

Proof. For every connectivity ordering it holds that the first n− 2 positions are occu-
pied by satellites, and the hub is either on position n− 1 or on position n. This implies
that the hub is in the last position in half of the linear orderings in the set ΠΓ

c (N). This
gives payoff 1

2
to the hub. Since all other players are symmetric, each one of them gets

payoff 1
2(n−1)

.

In the graph game (uN ,Γ) with Γ being a star, all players get the same payoff 1
n

when
applying the Shapley value, the Myerson value, and the average tree solution, whereas
the hub gets payoff 0 according to the solution of Bilbao. When we consider the gravity
center, note that the number of admissible trees is increasing in the number of players,
but there is only one admissible tree having the hub as its root. Since the payoffs are
obtained by taking the average of the hierarchical outcomes over all admissible trees,
the payoff to the hub tends to zero when the number of players goes to infinity.

Proposition 4.2 For the linear graph Γ on N given by Γ = {{i, i+ 1}|i = 1, . . . , n− 1}
it holds that

Shck(uN ,Γ) =
1

2n−1

(n− 1

k − 1

)
, k ∈ N.

Proof. For any π ∈ Π(N), we have that mπ
k(uN) = 1 if π(k) = n, and mπ

k(uN) = 0
otherwise. A linear ordering with π(k) = n is preserving connectivity if and only if
π(j) < π(j + 1) for j < k and π(j) > π(j + 1) for j > k. Hence, for each k ∈ N the

number of linear orderings π ∈ ΠΓ
c (N) for which π(k) = n is equal to

(n− 1

k − 1

)
. Since∑n

k=1

(n− 1

k − 1

)
= 2n−1, the result follows from equation (??).

The next corollary follows immediately and again shows that the centrality rewarding
Shapley value rewards centrality.
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Corollary 4.1 For the linear graph on N with Γ = {{i, i+ 1}|i = 1, . . . , n− 1} it holds
that

Shci(uN ,Γ) = Shcn−i(uN ,Γ) for all i ∈ N
and

Shci(uN ,Γ) < Shci+1(uN ,Γ) for all i <
n

2
.

Other values that reward centrality are the position value and the Harsanyi power solu-
tions, we comment on these values in Section 6.

4.2 Explicit representations

In this section we provide explicit expressions for the centrality rewarding values intro-
duced in the previous section. Without loss of generality we restrict ourselves to the
class of connected graphs. We first introduce some additional notation.

Let be given a connected graph Γ ∈ Γ c
N . For i ∈ N , Πi(Γ) ⊂ ΠΓ

c (N) denotes
the set of connectivity orderings such that π(i) = n, i.e., player i is the last player in
the ordering. Then the connectivity degree of player i as introduced in Khmelnitskaya,
van der Laan, and Talman (2016) is defined by ci(Γ) = |Πi(Γ)|, being the number of
connectivity orderings with respect to Γ in which player i is the last index.

For i ∈ N , we denote NΓ
i = {j ∈ N | {i, j} ∈ Γ} as the set of neighbors of i in

Γ. Further, for a coalition S ⊆ N , NΓ
i (S) = NΓ

i ∩ S denotes the set of neighbors of
i inside S and NΓ

S = ∪i∈SNΓ
i (N\S) the set of nodes not in S that are a neighbor of

at least one node in S. For a proper coalition S ⊂ N , node i ∈ S is a border node of
S if NΓ

i (N\S) 6= ∅, i.e., i has at least one neighbor outside S. We denote the set of
border nodes of S by ∂ΓS and define IntΓ(S) = S\∂ΓS as the set of interior nodes of S
in Γ. For a border node i ∈ ∂ΓS, a connected coalition Q ⊆ N\S is an i-neighboring
coalition for S if Q ∩ NΓ

i 6= ∅, i.e., Q contains at least one neighbor of i. For i ∈ ∂ΓS,
we denote by ((N\S)/Γ)i the collection of i-neighboring components of the complement
N\S and for an i-neighboring component C ∈ ((N\S)/Γ)i we denote by RΓ

i (C) the set
of i-neighboring connected coalitions that are a subset of C. For C ∈ (N\S)/Γ, the
extended subgraph of Γ on C with respect to S is the graph ΓSC on C given by

ΓSC = Γ|C ∪ {{i, j} | i, j ∈ C ∩NΓ
S , i 6= j}.

The extended subgraph ΓSC is the union of the subgraph Γ|C and the set of links between
any two neighbors of S that belong to C. The idea of this definition of extended subgraph
is based on the fact that all neighbors of S in C are connected to each other outside C
via nodes of S, and so, when we consider the subgraph on C, these neighbors appear as
directly connected in C. Remark that ΓSC = Γ|C when C contains only one neighbor of
S.

We first consider the centrality rewarding Shapley value. Since it is the average over
a collection of marginal vectors, it follows immediately that it is a linear value. Hence,
for any (v,Γ) ∈ GΓcN we have that

Shc(v,Γ) =
∑

S⊆N,S 6=∅

λS(v)Shc(uS,Γ).
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Theorem 4.1 For any (uS,Γ) ∈ GΓcN , ∅ 6= S ⊆ N , and every i ∈ S

Shci(uS,Γ) =
1∑

j∈N
cj(Γ)

[
ci(Γ)+

(9)∑
C∈((N\S)/Γ)i

∑
Q∈RΓ

i (C)

[∑
j∈Q

cj(Γ|Q)
][( |N\Q| − 1

|K|, K∈(N\Q+i)/Γ

) ∏
K∈(N\Q+i)/Γ

∑
h∈NΓ

Q+i
∩K

ch(Γ
Q+i

K )
]]
,

and Shci(uS,Γ) = 0 for every i ∈ N\S.

Proof. For any linear ordering π ∈ Π(N), the marginal contributionmπ
i (uS) = uS(P̄ π(i))−

uS(P π(i)) = 1 if and only if i ∈ S and S ⊆ P̄ π(i), otherwise mπ
i (uS) = 0. From this

it follows immediately that Shci(uS,Γ) = 0 when i ∈ N\S. Moreover, for i ∈ S and
connectivity ordering π ∈ ΠΓ

c (N), mπ
i (uS) = 1 holds only if either π(i) = n, or i ∈ ∂ΓS,

((N\S)/Γ)π−1(n) ∈ ((N\S)/Γ)i, and N\P̄ π(i) ∈ RΓ
i (((N\S)/Γ)π−1(n)). Besides, the sub-

ordering of π on N\P̄ π(i) is a connectivity ordering on the subgraph Γ|N\P̄π(i). In a
connectivity ordering π ∈ ΠΓ

c (N), player i is preceded by one of the neighbors of the
set N\P π(i), not belonging to this set, and each of these neighbors is connected to i
via nodes in N\P π(i). From the connectedness of Γ it follows that every component
C ∈ P π(i))/Γ contains at least one neighbor of N\P π(i) and when Γ is not cycle-free, C
may contain more than one neighbor of this set. In the latter case each pair of neighbors
of N\P π(i) in C is connected both in the component C and outside C via the nodes of
N\P π(i) ⊆ N\C. For π ∈ ΠΓ

c (N) and C ∈ P π(i))/Γ, the linear subordering of π on C
starts with a neighbor h ∈ C ∩NΓ

N\Pπ(i). If |C ∩NΓ
N\Pπ(i)| = 1 the subordering of π on C

satisfies connectivity on the subgraph Γ|C . When C ∩NΓ
N\Pπ(i) contains more than one

neighbor of N\P π(i), then in the subordering of π on C these neighbors being connected
to each other via their predecessors in the set N\P π(i) may follow each other in any
order, which is equivalent that the subordering of π on C satisfies connectivity on the
extended subgraph Γ

N\Pπ(i)
C . Recall that if |C ∩NΓ

N\Pπ(i)| = 1, then Γ
N\Pπ(i)
C = Γ|C , and

therefore both cases |C ∩NΓ
N\Pπ(i)| = 1 and |C ∩NΓ

N\Pπ(i)| > 1 may be considered in the

unique framework of the extended subgraph. For any C ∈ P π(i))/Γ and h ∈ C∩NΓ
N\Pπ(i)

there are exactly ch(Γ
N\Pπ(i)
C ) connectivity orderings on C that start with h, which gives

in total
∑

h∈C∩NΓ
N\Pπ(i)

ch(Γ
N\Pπ(i)
C ) connectivity orderings on C. Since the components

C ∈ P π(i))/Γ are not connected to each other, the connectivity of an ordering does not
depend on the order of nodes in different components. Wherefrom it follows that the
total number of connectivity orderings π ∈ ΠΓ

c (N) for which mπ
i (uS) = 1, i ∈ S, is equal

to

ci(Γ)+
∑

C∈((N\S)/Γ)i

∑
Q∈RΓ

i (C)

[∑
j∈Q

cj(Γ|Q)
][( |N\Q| − 1

|K|, K∈(N\Q+i)/Γ

) ∏
K∈(N\Q+i)/Γ

∑
h∈NΓ

Q+i
∩K

ch(Γ
Q+i

K )
]
.

Then formula (??) follows immediately from the fact that |ΠΓ
c (N)| =

∑
i∈N

ci(Γ).
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Remark 4.1 Note that in formula (??) the collection ((N\S)/Γ)i is empty when i ∈
IntΓ(S). Hence, for such a player i the formula simply reduces to Shci(uS,Γ) = ci(Γ)∑

j∈N
cj(Γ)

.

In particular, for the unanimity graph game (uN ,Γ) on the grand coalition, equation
(??) reduces to

Shci(uN ,Γ) =
ci(Γ)∑

j∈N
cj(Γ)

, i ∈ N.

In this case the payoff to a player is proportional to its connectivity degree.

Remark 4.2 For a connected cycle-free graph game (uS,Γ) ∈ GΓcfN formula (??) reduces
to

Shci(uS,Γ) =
1∑

j∈N
cj(Γ)

[
ci(Γ)+

(10)∑
C∈((N\S)/Γ)i

∑
Q∈RΓ

i (C)

[∑
j∈Q

cj(Γ|Q)
][( |N\Q| − 1

|K|, K∈(N\Q+i)/Γ

) ∏
h∈NΓ

Q+i

ch(Γ|((N\Q+i)/Γ)h)
]]
.

Further, if (uS,Γ) ∈ GΓcfN , then for every connected coalition S we have that each
component C of the subgraph Γ|N\S has precisely one neighbor in S. In that case we
call any component in Γ|N\S a satellite of S. Then in the payoff vector for the game
(uS,Γ) all the payoffs that the players in a component C in the subgraph Γ|N\S receive
in the game (uN ,Γ) are transferred to the unique neighbor of C in S. So, when Γ is
connected and cycle-free and S is connected, formula (??) reduces to

Shci(uS,Γ) =

 Shci(uN ,Γ) if i ∈ IntΓ(S),
1∑

j∈N
cj(Γ)

[
ci(Γ) +

∑
C∈((N\S)/Γ)i

∑
j∈C cj(Γ)

]
if i ∈ ∂ΓS. (11)

Example 4.2 We consider the graph game (uS,Γ) with Γ with linear graph Γ = {{i, i+
1} | i = 1, . . . , n− 1}. Every connected coalition Q ⊆ N is of the form Q = {i, ..., i+ l}
for some i ≥ 1 and 0 ≤ l ≤ n − i. Therefore, each component C ∈ S\Γ has at most
two border nodes. For C = {i, ..., i + l} ∈ S\Γ we call i the left border node of C
if i 6= 1 and i + l the right border node of C if i + l 6= n. We denote by ∂Γ

r S (∂Γ
l S)

the collection of right (left) border nodes of the components of S\Γ. Note that node i
belongs to both when {i} is a singleton component in S\Γ (and i 6= 1, n). Every node
i ∈ ∂Γ

r S has a unique i-neighboring component in (N\S)/Γ to its right, similarly every
i ∈ ∂Γ

l S has a unique i-neighboring component in (N\S)/Γ to its left. Consider a right
border node i and let C = {i+1, ..., i+ l} be the corresponding i-neighboring component
in N\S. Then every i-neighboring coalition Q in C has the form {i + 1, ..., i + h} for
some h, 1 ≤ h ≤ l, i.e., the subgraph Γ|Q is a linear graph with h nodes. As shown
in Khmelnitskaya, van der Laan, and Talman (2016), the connectivity degree of a node
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j of Q in the subgraph Γ|Q is given by cj(Γ|Q) =
(
h−1
j−1

)
, i.e., cj(Γ|Q) is the binomial

coefficient Cj−1
h−1 =

(
h−1
j−1

)
. Hence

∑
j∈Q

cj(Γ|Q) =
h−1∑
j=1

Cj−1
h−1 = 2h−1. Moreover, for every

h ∈ NΓ
Q+i

, we have that ch(Γ|((N\Q+i)/Γ)h) = 1. Hence, equation (??) reduces to

Shci(uS,Γ) =
1∑

j∈N
cj(Γ)

[
ci(Γ) +

l∑
h=1

2h−1Ci−1
n−h−1

]
.

The case of i being a left border node is very similar. Since ci(Γ) = Ci−1
n−1 for all i ∈ N ,

we obtain

Shci(uS,Γ)=



0, i /∈ S,

Ci−1
n−1

2n−1
, i ∈ IntΓ(S),

Ci−1
n−1 +

ri∑
h=1

2h−1Ci−1
n−h−1

2n−1
,

i ∈ ∂Γ
r S, |(S/Γ)i| ≥ 2,

or {i}∈S/Γ, i=1,

Ci−1
n−1 +

li∑
h=1

2h−1Ci−h
n−h−1

2n−1
,

i ∈ ∂Γ
l S, |(S/Γ)i| ≥ 2,

or {i}∈S/Γ, i=n,

Ci−1
n−1+

ri∑
h=1

2h−1Ci−1
n−h−1+

li∑
h=1

2h−1Ci−h
n−h−1

2n−1
, {i}∈S/Γ, i 6=1, n,

(12)

where ri = |((N\S)/Γ)i+1| and li = |((N\S)/Γ)i−1| for appropriate i ∈ N .

Next we consider the centrality rewarding Myerson value. We now have that for
every (v,Γ) ∈ GΓcN it holds that

µc(v,Γ) =
∑

S⊆N,S 6=∅

λvΓ(S)µc(uS,Γ).

Since λvΓ(S) = 0 when S is not connected, we only have to consider the unanimity graph
games (uS,Γ) for connected coalitions S. For these coalitions we have that µc(uS,Γ) =
Shc(uS,Γ) and so the centrality rewarding Myerson payoffs for the connected coalitions
S also follow from Theorem ??. Note that again Remark ?? and the second statement
in Remark ?? hold.

5 Axiomatization of the centrality rewarding values

on the class of connected cycle-free graph games

In this section we provide an axiomatic characterization of both centrality rewarding
values on the class of connected cycle-free graph games. In the first subsection we con-
sider the centrality rewarding Myerson value, in the second one the centrality rewarding
Shapley value.
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5.1 The centrality rewarding Myerson value

We characterize the centrality rewarding Myerson value on the subclass GΓcfN of con-
nected, cycle-free graph games by means of six independent axioms, some axioms being
standard within the theory of cooperative games, some of them are similar to axioms
known from the literature of the average tree solution, and some of them are modifica-
tions from axioms for permission values on the class of directed tree games. As for the
average tree solution, characterization of the centrality rewarding Myerson value on the

class of all connected graph games remains an open problem. Let f be a value on GΓcfN .
The standard axiom of efficiency states that the total sum of payoffs is equal to the

worth of the grand coalition.

Efficiency

For any (v,Γ) ∈ GΓcfN it holds that
∑

i∈N fi(v,Γ) = v(N).

Linearity is a straightforward generalization of the linearity axiom for TU games.

Linearity

For any (v,Γ), (w,Γ) ∈ GΓcfN and real numbers α and β it holds that f(αv + βw,Γ) =
αf(v,Γ) + βf(w,Γ).

As usual a player i ∈ N is called a null player in a TU game v ∈ GN if for all
T ⊂ N\{i} it holds that v(T ∪ {i}) − v(T ) = 0. In a connected cycle-free graph game
(v,Γ) player i ∈ N is said to be a dummy intermediate if for every two non-null players
h and k, different from i, player i is not on the path between h and k. So, it means
that a dummy intermediate is never needed to connect two other non-null players, and
therefore he does not play a role in the communication between any pair of non-null
players. We say that player i is inessential for (v,Γ) when i is both a null player in v
and a dummy intermediate in (v,Γ). The next axiom states that inessential players earn
zero payoff. The axiom modifies the inessential player axiom as used in van den Brink,
Herings, van der Laan, and Talman (2015) on the class of permission tree games to the
class of connected cycle-free graph games. Note that the axiom weakens the usual null
player property, which states that a null player earns zero payoff.

Inessential player property

For any (v,Γ) ∈ GΓcfN it holds that for every inessential player i ∈ N , fi(v,Γ) = 0.

Many values are axiomatized by some type of symmetry axiom. A weak version of
such an axiom is that all players get the same payoff when the game is a multiple of
the unanimity game on the grand coalition. However, although in this case the players
are symmetric in the game, typically players have asymmetric positions in the commu-
nication graph. Thus it is not straightforward to use symmetry axioms in case of graph
games, because such axioms typically ignore the communication structure. In the next
axiom the distribution of the payoffs when v = uN reflects the positions of the players
in the communication graph. Given a link {k, h} ∈ Γ, for j = k, h, let Nj(Γ\{k, h}) be
the set of players in the component of the graph (N,Γ\{k, h}) that contains j, j = k, h.
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Note that Nh(Γ\{k, h})∪Nk(Γ\{k, h}) = N . Then the next axiom states that the ratio
of the payoffs between two neighbors k and h in a graph game (uN ,Γ) is equal to the
ratio of the number of players in their component when the link {k, h} is removed from Γ.

Communication fairness
For any (uN ,Γ) ∈ GΓcfN and {k, h} ∈ Γ it holds that

fk(uN ,Γ)

|Nk(Γ\{k, h})|
=

fh(uN ,Γ)

|Nh(Γ\{k, h})|
.

The next axiom reflects the communication necessity of a player when he is on the
path between two non-null players. It states that when i 6∈ T is a neighbor of j ∈ T on
the path to another k ∈ T , then i is necessary for j in the sense that the payoff distri-
bution in (uT ,Γ) is equal to the payoff distribution in (uT∪{i},Γ). The axiom modifies
the predecessor necessity axiom as used in van den Brink et al. (2015) on the class of
permission tree games to the class of connected cycle-free graph games. This predecessor
necessity axiom for permission tree games requires that the outcome does not change
when a unanimity game uT is replaced by the unanimity game uT∪{i} for any player i
being a predecessor in the tree of a player in T . Here, for T ⊂ N , let H(T ) denote the
set of players that are on a path between two members of T . We say that H(T ) is the
connected hull of T . Then the axiom requires that the outcome does not change when
uT is replaced by uT∪{i} for any i ∈ H(T )\T that is a neighbor of a player in T .

Inside neighbor necessity

For any T ⊂ N , (uT ,Γ) ∈ GΓcfN , and j ∈ T and i ∈ H(T )\T such that {i, j} ∈ Γ, it
holds that f(uT ,Γ) = f(uT∪{i},Γ).

The axioms of inessential player property and inside neighbors necessity are together
weaker than the axiom of restricted null player property used in Suzuki (2015, Chapter
2) to characterize the Myerson value.1 So, the restricted null player property implies the
inessential player property and inside neighbor necessity, but not the other way around.
For instance, the restricted null player property implies that every player gets zero payoff
when v(S) = 0 for every connected S, but this does not follow from the inessential player
property and inside neighbor necessity together.

For TU games, Haller (1994) considers collusion neutrality properties, one of them
stating that when two players are going to act together in the sense that the marginal
contribution of a player to a coalition that does not contain the other player is made
equal to zero, then the sum of the payoffs of the two players does not change. A different,
but equivalent collusion neutrality property was introduced by Malawski (2002). In van
den Brink (2012) it is shown that on the class of TU games there is no solution that
satisfies efficiency, the null player property, and collusion neutrality, but that on the class
of communication graph games all hierarchical outcomes and their convex combinations
satisfy these three properties when only cooperation is allowed among neighbors. For a

1In Mishra and Talman (2010) the restricted null player property is called dummy and in van den
Brink (2009) it is called the superfluous player property. In both studies the property is used to
characterize the average tree solution on the class of connected cycle-free graph games.
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game v ∈ G and two players i, j ∈ N , the game in which players i and j act together is
defined as the game vij ∈ G given by

vij(T ) = v(T\{i, j}) if {i, j} 6⊆ T,
= v(T ) otherwise.

The collusion property then states that fi(v) + fj(v) = fi(v
ij) + fj(v

ij).
When applied to a unanimity game uT , T ∈ 2N , the colluded game uijT becomes

uijT = uT if {i, j} ⊆ N\T,
= uT∪{i,j} otherwise.

Therefore, for a unanimity game uT , j ∈ T , and i 6∈ T , the collusion neutrality property
reduces to fi(uT ) + fj(uT ) = fi(uT∪{i}) + fj(uT∪{i}). For a graph game (uT ,Γ) we only
consider connected sets T and players j ∈ T and i 6∈ T such that {i, j} ∈ Γ. On the
other hand, the next axiom is stronger than the collusion property in the sense that
when two neighbors, one in T and the other not, collude, the payoffs to all other players
in T do not change. Note that for a connected T every player h 6∈ T ∪ {i} is inessential
in both (uT ,Γ) and (uT∪{i},Γ). So, together with the inessential axiom, the next axiom
implies that the joint payoff of the players i and j does not change. In fact, the next
axiom coinides with the independence in unanimity games axiom used in Mishra and
Talman (2010) to characterize the average tree solution.

Independence of joining outside neighbors

For any connected T ⊂ N , (uT ,Γ) ∈ GΓcfN , and j ∈ T and i ∈ N\T such that {i, j} ∈ Γ,
it holds that fk(uT ,Γ) = fk(uT∪{i},Γ) for all k ∈ T\{j}.

The next proposition states that the six axioms determine a unique solution.

Proposition 5.1 On the class of connected cycle-free graph games there is a unique
solution that satisfies efficiency, linearity, the inessential player property, communication
fairness, inside neighbor necessity, and independence of joining outside neighbors.

Proof. The proof goes in four steps.2

(i) For every connected cycle-free graph Γ, the payoff vector f(uN ,Γ) is unique de-
termined by efficiency and communication fairness.

(ii) For connected T ⊂ N , consider the unanimity graph game (uT ,Γ). Then there
exists a sequence of connected sets T 0, . . . , T r with r = |N\T |, such that T 0 = N , T r = T
and T k = T k−1\{tk} for some tk ∈ T k−1\T , k = 1, . . . , r. Since every T k is connected,
any i not in T k is inessential in the game (uTk ,Γ) and so fi(uTk ,Γ) = 0. Then, starting
from f(uN ,Γ), the payoffs of the players i ∈ T follow uniquely by repeated application
for k = 1, . . . , r of the independence of joining outside members.

(iii) For T ⊂ N not connected, it follows from repeated application of inside neighbor
necessity that f(uT ,Γ) = f(uH(T ),Γ). SinceH(T ) is connected, this determines f(uT ,Γ).

2We only give a scetch of the proof. Similar proofs for solutions on the class of directed tree games
are given in more detail in e.g. van den Brink et al. (2015) and van den Brink et al. (2016).
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(iv) By the steps (i)-(iii) the payoffs are uniquely determined for every unanimity
graph game (uT ,Γ), ∅ 6= T ⊆ N . Then by linearity f(v,Γ) is uniquely determined for

any (v,Γ) ∈ GΓcfN .

Next we show that the centrality rewarding Myerson value µC satisfies the six axioms

on the class of connected cycle-free graph games. Let (v,Γ) ∈ GΓcfN . Since Γ is connected
and cycle-free it follows that for any π ∈ Πi(Γ) and h ∈ N , the set P π(h) contains all
players that are the subordinates of h in the unique admissible spanning tree having
player i as root. Therefore we have for any π ∈ Πi(Γ) that

mπ(v,Γ) = hDi(v,Γ),

where Di denotes the admissible spanning tree on N with root node i. It now follows
that

µc(N, v,Γ) =
∑
i∈N

ci(Γ)

|ΠΓ
c (N)|

hDi(N, v,Γ), (13)

i.e., on the class of connected cycle-free graph games the centrality rewarding Myerson
value assigns the weighted average of the hierarchical outcomes with the weight of hier-
archical outcome with respect to tree Di equal to the fraction of connectivity orderings
having player i as last player. The following lemma has been proven in Khmelnitskaya,
van der Laan, and Talman (2016).

Lemma 5.1 Let Γ be a connected, cycle-free graph. Then for every k, h with {k, h} ∈ Γ
it holds that

ck(Γ)

ch(Γ)
=
|Nk(Γ\{k, h})|
|Nh(Γ\{k, h})|

.

We are now ready to prove the next proposition.

Proposition 5.2 On the class of connected cycle-free graph games the centrality re-
warding Myerson value satisfies efficiency, linearity, the inessential player property,
communication fairness, inside neighbor necessity, and independence of joining outside
neighbors.

Proof.
1. By definition every hierarchical outcome is efficient. Since

∑
h∈N ch(Γ) = |ΠΓ

c (N)|, it
follows that µc is efficient.

2. Consider two games v, w ∈ G, real numbers α, β, and define z = αv + βw. Since
for every D ∈ T s(Γ) the hierarchical outcome hD(v,Γ) is linear in its first argument, it
follows that hD(z,Γ) = hD(αv + βw,Γ) = αhD(v,Γ) + βhD(w,Γ). Since the centrality
rewarding Myerson value is the weighted sum of all n hierarchical outcomes, it follows
that µc is linear.

3. Recall that any characteristic function v can be written as v =
∑

T⊆N,T 6=∅ λT (v)uT
with λT (v) the Harsanyi dividend of coalition T in TU game v. Then k is inessential in
(v,Γ) if and only if k is inessential in every (uT ,Γ) with λT (V ) 6= 0. Consider such a
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game (uT ,Γ) and any hierarchical outcome hD(uT ,Γ). Then either every j ∈ T is a suc-
cessor of k in D or every j ∈ T is a predecessor of k in D. In both cases hDk (uT ,Γ) = 0.
By the linearity it follows that µck(v,Γ) = 0.

4. For the unanimity graph game (uN ,Γ) it follows that hDk (uN ,Γ) = 1 if k = r(D)
and hDk (uN ,Γ) = 0 for all k 6= r(D). It then follows from Lemma ?? that µc satisfies
communication fairness.

5. Consider (uT ,Γ) ∈ GΓcfN and i ∈ H(T )\T . Since Γ is connected and cycle-free,
by definition of hierarchical outcome it follows for every D ∈ T s(Γ) that hDk (uT ,Γ) = 1

if and only if k ∈ H(T ) and H(T ) ⊆ ŜD(k), and hDk (uT ,Γ) = 0 otherwise. Since
i ∈ H(T ), it follows that H(T ∪{i}) = H(T ). Hence for every D ∈ T s(Γ) it follows that
hD(uT∪{i},Γ) = hD(uT ,Γ), which shows that inside neighbor necessity is satisfied.3

6. Consider connected T ⊂ N , (uT ,Γ) ∈ GΓcfN , and {i, j} ∈ Γ such that j ∈ T ,
i ∈ N\T , and {i, j} ∈ Γ. Then for every D ∈ T s(N,Γ) we have that either (j, i) ∈ D
or (i, j) ∈ D. In the first case we have that hD(uT∪{i},Γ) = hD(uT ,Γ). In the second
case hDk (uT∪{i},Γ) = hDk (uT ,Γ) = 0 for all k ∈ T\{j}.4 Hence, independence of joining
outside neighbors is satisfied.

From Propositions ?? and ?? the following theorem immediately follows.

Theorem 5.1 On the class of connected cycle-free graph games the centrality rewarding
Myerson value is the unique solution that satisfies efficiency, linearity, the inessential
player property, communication fairness, inside neighbor necessity, and independence of
joining outside neighbors.

It remains to show the logical independence of the axioms in Theorem ??.

1. The solution f on GΓcfN given by f(v,Γ) = 2µc(v,Γ) satisfies linearity, inessential
player property, communication fairness, inside neighbor necessity, and indepen-
dence of joining outside neighbors. It does not satisfy efficiency.

2. Let f on GΓcfN be given by f(v,Γ) = µc(v,Γ) when λT (v) is not equal to zero for
at most one non-empty coalition T ⊆ N , otherwise f(v,Γ) = AT (v,Γ). Then
f satisfies efficiency, inessential player property, communication fairness, inside
neighbor necessity, and independence of joining outside neighbors. It does not
satisfy linearity.

3. Let f on GΓcfN be given by fk(v,Γ) = ck(Γ)
|ΠΓ
c (N)|v(N), k ∈ N . Then f satisfies efficiency,

linearity, communication fairness, inside neighbor necessity, and independence of
joining outside neighbors. It does not satisfy inessential player property.

3Note that this holds for every i ∈ H(T )\T . In the axiom it is only required when i is a neighbor of
a player j ∈ T .

4In this case hD
i (uT∪{i},Γ) = hD

j (uT ,Γ) = 1 and hD
i (uT ,Γ) = hD

j (uT∪{i},Γ) = 0, i.e. the payoff
moves from j to i when T is replaced by T ∪ {i}.
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4. The average tree solution AT on GΓcfN satisfies efficiency, linearity, inessential player
property, inside neighbor necessity, and independence of joining outside neighbors.
It does not satisfy communication fairness.

5. Let f on GΓcfN be given by

f(v,Γ) =
1

|ΠΓ
c (N)|

∑
π∈ΠΓ

c (N)

mπ(v), (v,Γ) ∈ GΓcf ,

i.e. we take the average over all connectivity orderings of the marginal vectors of
the game v instead of the Myerson restricted game. Then f satisfies efficiency,
linearity, inessential player property, communication fairness, and independence of
joining outside neighbors. It does not satisfy inside neighbor necessity.

6. Let f be the weighted Shapley value of the Myerson restricted game with weights
ωk = ck(Γ)

|ΠΓ
c (N)| , k ∈ N . Then f satisfies efficiency, linearity, inessential player prop-

erty, communication fairness, and inside neighbor necessity. It does not satisfy
independence of joining outside neighbors.

5.2 The centrality rewarding Shapley value

Again we consider the subclass GΓcfN of connected, cycle-free graph games. Since Shc is
the average of a collection of marginal vectors of the game v, it follows straightforwardly
that it is efficient and linear, and also satisfies the null player property. The latter
property implies that it also satisfies the weaker inessential player property, but it does
not satisfy the inside neighbor property because in a unanimity game (uS,Γ) an inside
neighbor of S may not get the same payoff as the members of S. Since Shc coincides
with µc on (uN ,Γ), it follows immediately that also communication fairness is satisfied.
Further, from the second statement in Remark ??, in particular formula (??), it follows
that Shc also satisfies independence of joining outside neighbors. To characterize the
centrality rewarding Shapley value we replace the inside neighbor property by a new
(algorithmic type) axiom. This new axiom also implies the null player property and
independence of joining outside neighbors.

Without restrictions on cooperation all players in the unanimity game uN are sym-
metric. So it is reasonable that in such a case the classical Shapley value assigns equal
payoffs to all players. But when cooperation is limited, the restrictions introduce asym-
metries between the players and dividing the worth equally is not a priori reasonable.
For instance, it might be natural to expect that a player with more connections in the
communication structure is rewarded better. This basic requirement is reflected by the
communication fairness axiom. When instead of the unanimity game uN on the grand
coalition the unanimity game uS on a proper coalition S ⊂ N is considered, the players
outside S become null-players and therefore they get a zero payoff when applying Shc.
Because of efficiency this implies that all payoffs that the players outside S receive in
graph game (uN ,Γ) need to be reallocated among players belonging to S. We assume
that in this redistribution procedure (i) every player is myopic; (ii) every player knows
only if he belongs to S or not, i.e., if he is a null-player or not, and (iii) every player
knows who are his neighbors in the communication graph Γ. However, a player has
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no information whether or not his neighbors belong to S, and also he knows nothing
about non-neighboring players. Moreover, the payoffs that players outside S receive in
(uN ,Γ) are distributed independently of each other. Finally, we require that the payoff
fk(uN ,Γ) of a player k outside S is reallocated to his neighbors proportionally to their
communication abilities given in terms of the numbers of players in the components they
represent in the subgraph Γ|N\{k}, so each neighbor represents the players in the corre-
sponding satellite. Then each neighbor of k that belongs to S absorbs fully his share,
while a neighbor that is also outside S distributes the obtained share again, now among
the neighbors of himself and the null-player who initiated this redistribution step. This
continues until all payoffs that the players outside S receive in uN are reallocated to the
players in S. It is assumed that each player has full memory concerning the origin of
his possession, more precisely, he knows which part of his possession is his own share
in uN , which parts he got as the result of the reallocation of null-players possessions,
and whom of the null-players was involved in the creation of this or another part of
his possession. So, the described redistribution procedure is well defined and can be
performed by the algorithmic procedure given below for every unanimity graph game

(uS,Γ) ∈ GΓcfN , S ⊆ N , and every solution ξ on the class of connected cycle-free graph
games.

We first introduce some additional notation. Let Π be a collection of linear orderings
on subsets of N , so Π may contain orderings of different length and on different sets of
players. In the procedure below the set Π is initiated as a set of orderings of length one.
For π = (π1, . . . , πr) ∈ Π, we denote the set {π1, . . . , πr} of players in π by N(π), and
given a player h ∈ N\N(π), we define an ordering π+h ∈ Π as π+h = (π1, . . . , πr, h).
Further, for simplicity of notation, the set NΓ

N(π) of neighbors of N(π) in Γ is denoted

by NΓ(π). Finally, for h ∈ NΓ(π), let Ch(π) be the component C ∈ (N\NΓ(π))/Γ such
that C 3 h, i.e. Ch(π) contains all players outside NΓ(π) that are connected with NΓ(π)

through node h, including h itself. Given a solution ξ on GΓcfN , we then have the follow-
ing algorithm to find ξ(uS,Γ) through Full Memory Myopic Proportional reallocation of
ξ(uN ,Γ).

FMMP-Algorithm
Step 0 Take S ( N . Set xi = ξi(uN ,Γ) for every i ∈ S and set Π = {(i) | i ∈ N\S}.
For every π = (i) ∈ Π, set xπi = ξi(uN ,Γ). Go to Step 1.

Step 1 Take some π = (π1, . . . , πr) ∈ Π. For every h ∈ NΓ(π), set xπ
+h

h = |Ch(π)|
|N |−|NΓ(π)|x

π
πr .

Set Π = Π\{π}. Go to Step 2.

Step 2 For every h ∈ NΓ(π), set xh = xh + xπ
+h

h if h ∈ S and set Π = Π ∪ {π+h}
if h /∈ S. Go to Step 3.

Step 3 If |Π| > 0, return to Step 1. Otherwise, set ξi(uS,Γ) = xi if i ∈ S and
ξi(uS,Γ) = 0 otherwise. Stop.

We now state the following axiom.
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Full Memory Myopic Proportional Fairness

For any (uT ,Γ) ∈ GΓcfN , T ⊂ N , it holds that f(uT ,Γ) is obtained from f(uN ,Γ) by
applying the FMMP-algorithm.

Theorem 5.2 On the class of connected cycle-free graph games the centrality rewarding
Shapley value is the unique solution that satisfies efficiency, linearity, communication
fairness, and full memory myopic proportional fairness.

Proof.
For every connected cycle-free graph Γ, the payoff vector f(uN ,Γ) is uniquely determined
by efficiency and communication fairness. Then for every T ⊂ N , f(uT ,Γ) follows from
the full memory myopic proportional fairness. By linearity f(v,Γ) is uniquely determined

for any (v,Γ) ∈ GΓcfN .
To show existence, note that Shc satisfies efficiency and linearity. Since it coincides

with µc when v = uN it also satisfies communication fairness. For T ⊂ N , the FMMP
algorithm distributes for every k outside T its payoff Shck(uN ,Γ) in the unanimity game
on the grand coalition to the border nodes of T . The FMMP algorithm gives each i ∈ T
payoff

ci(Γ)+
∑

C∈((N\S)/Γ)i

∑
j∈C

∑
Q∈CΓ

i (C) : Q3j

cj(Γ|Q) ·
(

|N\Q| − 1

|K|, K∈(N\Q+i)/Γ

) ∏
h∈NΓ

Q+i

ch(Γ|((N\Q+i)/Γ)h).

Changing the order of the second and third summation in the second term yields formula
(??). This shows that Shc satisfies full memory myopic proportional fairness.

It remains to show the logical independence of the four axioms in Theorem ??.

1. The solution f on GΓcfN given by f(v,Γ) = 2Shc(v,Γ) satisfies linearity, communi-
cation fairness, and full memory myopic proportional fairness. It does not satisfy
efficiency.

2. Let f on GΓcfN be given by f(v,Γ) = Shc(v,Γ) when λT (V ) is not equal to zero for
at most one non-empty coalition T ⊆ N , otherwise f(v,Γ) = AT (v,Γ). Then f
satisfies efficiency, communication fairness, and full memory myopic proportional
fairness. It does not satisfy linearity.

3. Let f on GΓcfN be given by (i) f(uN ,Γ) = AT (uN ,Γ), (ii) for every S ⊂ N the
payoff vector f(uS,Γ) is obtained by applying the FMMP algorithm and (iii)
f(v,Γ) =

∑
S⊆N,S 6=∅

λS(v)f(uS,Γ). Then f satisfies efficiency, linearity, and full

memory myopic proportional fairness. It does not satisfy communication fairness.

4. Let f on GΓcfN be given by fk(v,Γ) = ck(Γ)
|ΠΓ
c (N)|v(N), k ∈ N . Then f satisfies efficiency,

linearity, and communication fairness. It does not satisfy full memory myopic
proportional fairness.
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6 Further remarks

In this paper we introduce two solutions for graph games that rewards centrality. The
centrality rewarding Myerson value rewards also for communication necessity, whereas
the centrality rewarding Shapley value has the null player property. As shown in Section
3 existing values for graph games as the Myerson value and the average tree solution
reward for communication necessity, but not for centrality in the graph, while the so-
lution of Bilbao and the gravity center punish for centrality. Note from the examples
showing the logical independence that the average tree solution satisfies all the axioms of
Theorem ??, except communication fairness. Instead the average tree solution is char-
acterized by the symmetry axiom saying that, fi(cuN ,Γ) = fj(cuN ,Γ) for all i, j ∈ N
and real numbers c, see Mishra and Talman (2010). This axiom requires that every
player gets the same payoff when the game is (a multiple of) the unanimity game on
the grand coalition, irrespective of the underlying graph. The Myerson value also sat-
isfies this symmetry requirement together with efficiency, linearity, inessential player
property, and inside neighbor necessity, but it does not satisfy independence of joining
outside neighbors.

Another class of values that rewards for communication and centrality is the class of
Harsanyi power solutions introduced in van den Brink, van der Laan. and Pruzhansky
(2011). A power (or centrality) measure answers the question which nodes in a graph
under consideration are important. In fact, it gives a complete or partial ordering of
the nodes with respect to importance, cohesiveness, or influence. On the class Γ c

N of
connected graphs, a power measure is a function p which assigns to each graph Γ ∈ Γ c

N a
non-zero vector p(Γ) ∈ IRN

+ . The entry pi(Γ) measures the power (or centrality) of node
i in graph Γ, the higher pi(Γ) is, the higher the influence of node i within the graph. A
well-known power measure is the degree measure which assigns to any graph the vector
of degrees of its nodes. For a graph Γ and connected set S ⊆ N , the vector p(Γ|S) ∈ IRS

+

measures the power of the nodes of S in the subgraph of Γ on S. Given a power function
p, the Harsanyi power solution fp on the class of connected graph games assigns to every
(v,Γ) ∈ ΓN

c the vector fp(v,Γ) ∈ IRN given by

fpi (v,Γ) =
∑

S⊆N :i∈S

pi(Γ|S)λvΓ(S), i ∈ N,

i.e. for every connected coalition S the Harsany dividend of S in the Myerson restricted
game is distributed amongst the players in S according to the power measure on the
subgraph Γ|S. Since the Harsanyi power solution distributes the dividends of the My-
erson restricted game, it respects communication necessity. Further, since all dividends
are distributed according to the power measure, it rewards centrality as far as the power
measure reflects centrality. For instance, consider a linear graph and take the degree
measure. Then for any connected set S the power of the two extreme nodes of S in
the subgraph Γ|S is equal to one, and all other nodes have power equal to two. So,
the dividend of a connected coalition S in the Myerson restricted game is distributed
such that the share of every non-extreme node is twice as big as the shares of the two
extreme nodes of S. It is easy to verify that any Harsanyi power solution satisfies ef-
ficiency, linearity, inessential player property, inside neighbor necessity, and a modified
symmetry axiom, namely that in a unanimity game on the grand coalition the payoff
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is distributed according to the power measure on Γ. It does not satisfy independence
of joining outside neighbors. A disadvantage is that the distribution of the dividends
depends on an exogenous given power function, whereas the centrality feature of the two
centrality rewarding values result from the endogenous determined communication fair-
ness. Another difference between the two centrality rewarding values and the Harsanyi
power solutions is that the distribution of the dividends according to the new values
depends on the full graph Γ, whereas the distribution of the dividend of a coalition
S according to a Harsanyi power solution only depends on the subgraph Γ|S. In fact,
on the class of connected cycle-free graph games the two values reward a player in the
border of S for representing the players outside S that are connected by that player to
the other players in S, whereas a Harsanyi power solution ignores this.

When taking the degree measure the Harsanyi power solution is equal to the position
value introduced by Borm, Owen and Tijs (1992) on the class of cycle-free graph games.
This implies that also the position value reflects centrality. However, in case there exists
cycles the position value is not equal to the Harsanyi (degree) power solution and the
position value has the disadvantage that it might reward players that do not generate
value (i.e. they are null players in the game) and not needed for communication between
the non-null players. For instance, consider the graph of Example ?? and characteristic
function u124. Then player 3 is a null player in the game and is not needed for the
communication between the players 1, 2 and 4, but receives positive payoff 1

6
according

to the position value. In fact, for this example the position value gives payoff vector
(11

24
, 1

6
, 1

12
, 7

24
) and the Harsanyi (degree) power solution gives payoff vector (1

2
, 1

4
, 0, 1

4
).

Recall that in Example ?? we found that the centrality rewarding value gives payoff
vector ( 8

14
, 4

14
, 0, 2

14
).

According to equation (??) the centrality rewarding Myerson value assigns to any
connected cycle-free graph game the weighted average of hierarchical outcomes with
weights the fractions of connectivity orderings having each player as last player. For
an exogenous vector of weights ω ∈ IRN

+ , with sum of the weights equal to one, on the
class of connected cycle-free graph games we can define the value µω as the solution that

assigns to every (v,Γ) ∈ GΓcfN the weighted average of the hierarchical outcomes given
by

µω(v,Γ) =
∑
i∈N

ωih
Di(v,Γ). (14)

It follows that µc(v,Γ) = µω(v,Γ) when ωi = ci(Γ)
|ΠΓ
c (N)

, i ∈ N and that AT (v,Γ) =

µω(N, v,Γ) with ωi = 1
n

for all i ∈ N . So, on the class of connected cycle-free graph
games the only difference between µc and the AT solution is the vector of weights. It is
straightforward to verify that for given weight vector ω ∈ IRN

+ (with all weights strictly
positive and sum of weights equal to one), the solution µω on the class of connected cycle-
free graph games is characterized by efficiency, linearity, the inessential player property,
inside neighbor necessity, independence of joining outside neighbors, and the weighted
symmetry axiom saying that fi(uN ,Γ) = ωi for all i ∈ N .5 Indeed, the weighted sym-

metry axiom coincides with the communication fairness axiom when ωi = ci(Γ)
|ΠΓ
c (N)

, i ∈ N .
Again, the latter axiom is induced endogenously by the graph, whereas in the weighted

5In van den Brink et al. (2011) this axiom is called ω-communication ability on the class of graph
games.
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symmetry axiom the weights are given exogenously. Also note that any (exogneous

given) power function (or centrality measure) p induces weights ωi = pi(Γ)∑
k∈N pk(Γ)

for all

i ∈ N , and therefore yields a corresponding solution µω. Finally, we remark that within

the framework of river games the value µω has been characterized on the class GΓcfN in van
den Brink, van der Laan, and Moes (2012) as the unique solution that satisfies efficiency

and ω-fairness6, where a solution f satisfies ω-fairness when for every (v,Γ) ∈ GΓcfN and
{k, h} ∈ Γ it holds that∑

i∈Nh(Γ\{k,h}) fi(v,Γ)− v(Nh(Γ\{k, h})∑
i∈Nk(Γ\{k,h}) fi(v,Γ)− v(Nk(Γ\{k, h})

=

∑
i∈Nh(Γ\{k,h}) ωi∑
i∈Nk(Γ\{k,h}) ωi

.

It means that after deleting a link the ratio of the total payoffs in the two resulting
components minus the own worth of the components is equal to the ratio of the total
weights in these two components. In case that all weights are equal, this reduces to
component fairness introduced in Herings et al. (2008) for characterizing the average
tree solution.
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