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Abstract

We propose a novel multivariate GARCH model that incorporates realized measures for

the variance matrix of returns. The key novelty is the joint formulation of a multivariate

dynamic model for outer-products of returns, realized variances and realized covariances.

The updating of the variance matrix relies on the score function of the joint likelihood

function based on Gaussian and Wishart densities. The dynamic model is parsimonious

while each innovation still impacts all elements of the variance matrix. Monte Carlo evidence

for parameter estimation based on different small sample sizes is provided. We illustrate

the model with an empirical application to a portfolio of 15 U.S. financial assets.
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1 Introduction

Modeling conditional dependency structure of financial assets through time-varying variance

matrices is typically based on multivariate extensions of generalized autoregressive conditional

heteroskedasticity (GARCH) models and stochastic volatility (SV) models for daily returns.

These classes of models aim to extract time-varying variance matrices from vector time series

of financial returns. The dynamic process for multivariate volatility (variances and covariances)

is typically specified as a vector autoregressive moving average process. Various multivariate

GARCH and SV models have been developed and applied in recent years. For a comprehensive

overview of multivariate GARCH models, we refer to Bauwens, Laurent and Rombouts (2006)

and Silvennoinen and Teräsvirta (2009). Reviews of multivariate SV models are provided by

Asai, McAleer and Yu (2006) and Jungbacker and Koopman (2006)

The main shortcoming of traditional multivariate GARCH and SV models is that they solely

rely on daily returns to infer the current level of multivariate volatility. Given the increasing

availability of high-frequency intraday data for a vast range of financial assets, the use of only

low-frequency daily data appears inefficient for making statistical inference on time-varying

multivariate volatility. One important consequence is that models based on daily data do not

adapt quickly enough to changes in volatilities which is key to track the financial risk in a timely

manner; see Andersen, Bollerslev, Diebold and Labys (2003) for a more detailed discussion.

Various attempts have been made to use high-frequency intraday data into the modeling and

analysis of volatility. For instance, information from high-frequency data can be incorporated

by adding it in the form of an explanatory variable to the GARCH or SV volatility dynamics;

see Engle (2002) and Koopman, Jungbacker and Hol (2005).

With the advent of high-frequency data, one can estimate ex-post daily return variation

with so-called realized variance (or realized volatility) measures; see Andersen and Bollerslev

(1998), Andersen, Bollerslev, Diebold and Labys (2001) and Barndorff-Nielsen and Shephard

(2002). Inherent to high-frequency data is the microstructure noise (bid-ask bounce, decimal

misplacement etc.) which leads to bias and inconsistency of standard measures. A number of

related measures have been developed to restore the consistency; see Aït-Sahalia, Mykland and

Zhang (2005), Barndorff-Nielsen, Hansen, Lunde and Shephard (2008), Jacod, Li, Mykland,

Podolskij and Vetter (2009), Hansen and Horel (2009), and references therein. In the case of

multiple assets, realized measures of asset covariance have also been proposed and considered;

see Malliavin and Mancino (2002), Hayashi and Yoshida (2005), Christensen, Kinnebrock and
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Podolskij (2010), Barndorff-Nielsen, Hansen, Lunde and Shephard (2011a), Griffin and Oomen

(2011), and references therein. The analysis and forecasting of realized volatility series can be

based on existing time series methods. Andersen et al. (2001) have explored the use of au-

toregressive models to analyze time series of realized volatilities. They have found considerable

improvements in volatility forecasts over standard GARCH models. More recently, some new

promising models have been proposed that rely on time series of realized measures. Gourier-

oux, Jasiak and Sufana (2009) have proposed (non-central) Wishart autoregressive model for

realized covariance matrix. Asai and So (2013) and Golosnoy, Gribisch and Liesenfeld (2012)

have proposed alternative dynamic formulation for covariance parameters with the underlying

Wishart density. Chiriac and Voev (2011) and Bauer and Vorkink (2011) have proposed models

for realized covariances using appropriate transformations to ensure the positive definiteness of

the variance matrix. In our study we also rely on the Wishart density but we propose a novel

conditional model formulation for the variance matrix. For the updating of the conditional

variance matrix, daily as well as intra-daily financial returns are used.

An approach that combines possibly several measures of volatility based on low- and high-

frequency data is recently proposed by Engle and Gallo (2006). They model jointly close-to-

close returns, range and realized variance with the multiplicative error model (MEM) where

each measure has its own dynamics for the update of latent volatility augmented with lagged

values of other two measures. Engle and Gallo (2006) find that combination of these three noisy

measures of volatility brings gains when making medium-run volatility forecasts. Shephard

and Sheppard (2010) explore a similar model structure and refer to it as the HEAVY model,

which was extended to the multivariate setting in Noureldin, Shephard and Sheppard (2012).

Then a further extension based on the use of more heavy-tailed distributions is proposed by

Janus, Lucas and Opschoor (2014). In the aforementioned models, a time-varying parameter is

introduced for every realized measure that is included in the model. An alternative approach

is the Realized GARCH framework by Hansen, Huang and Shek (2012) where daily returns

and realized measures of volatility are both associated with the same latent volatility which

circumvents the need for additional latent variables. The Realized GARCH framework has

been developed further in Hansen and Huang (2012) and Hansen et al. (2014). A Realized SV

model is proposed by Koopman and Scharth (2013). Our present work can be regarded as an

extension of the Realized GARCH model to the multivariate case, but it is novel since we adopt

a score-driven approach to the time-varying conditional variance matrix.
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We contribute to the recent developments in the joint modeling of daily returns and realized

measures. Our primary aim is to specify a model for the daily time-varying variance matrix

and to extract it by using both low- and high-frequency data. We propose a specification for

the unobserved daily variance matrix as a function of realized measures of daily covariance

matrices and past outer-products of daily return vectors. The challenge is to suitably weight

these different variance and covariance signals. For our purpose, we adopt the score-driven

framework of Creal, Koopman and Lucas (2013). Our joint modeling framework relies on a

Wishart density for realized variance matrices and on a Gaussian density for vectors of daily

returns. The updating of the time-varying variance matrix is driven by the scaled score of the

predictive joint likelihood function. The score function turns out to be a weighted combination

of the outer-product of daily returns and the actual realized measures. The weighting relies on

the number of degrees of freedom in the Wishart distribution. We refer to the resulting model

as the Wishart-GARCH model. In our empirical illustration for a portfolio of 15 U.S. financial

assets, the parameter estimates imply that the realized measures receive more weight than the

outer-product of the vector of daily returns. It confirms that the realized measure is a more

accurate measure of the variance matrix as it exploits intraday high-frequency data. We also

present a model formulation that can accommodate several realized variance matrix measures.

A key feature of the Wishart-GARCH model is that the dynamics of the conditional variance

matrix relies on the score function of the predictive likelihood. Blasques et al. (2015) argue that

variance updating based on the score function is locally optimal in a Kullback-Leibler sense. It

also offers a flexible structure that allows for complex interdependence between variances and

covariances since they are all influenced by the score vector. These features distinguish our

model from low frequency GARCH models that rely on outer-product of daily returns only. It

also distinguishes our model from the MEM and HEAVY models which are driven by realized

variances and covariances only. The aforementioned models potentially could be adapted to

allow for cross-asset effects, at the expense of a more complex parameterization. In contrast,

the Wishart-GARCH model achieves this flexibility in a simple parsimonious framework.

The structure of the paper is organized as follows. In Section 2, after we have set out

notation and assumptions, we introduce the Wishart-GARCH model for multivariate volatility.

In Section 3, we conduct a set of simulations to study to the likelihood-based estimation. Section

4 presents the results of our empirical analysis for some portfolio of NYSE equities, while Section

5 concludes the paper. The proofs of the main results in the paper are given in the Appendix.
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2 The Wishart-GARCH Model

The development of our model starts with the assumption that at the end of each trading day

we have a vector of daily returns and a measure (or possibly several measures) of daily realized

covariance of assets under analysis. Our primary goal is to build a model for the vector of

returns, while making use of both low- and high-frequency data. The proposed structure of the

model permits the use of several realized measures, possibly computed with different sampling

frequencies. We start this section by discussing our modeling assumptions. We then describe

the modeling strategy and we provide technical details of new model for multivariate volatility.

Some matrix notation and preliminary results are presented in Appendix A and proofs are

collected in Appendix B.

2.1 Modeling assumptions

Let rt ∈ Rk denote a k × 1 vector of daily (demeaned) log returns for k assets and let the

Xt ∈ Rk×k denote a k × k realized covariance matrix of k assets on day t, with t = 1, . . . , T .

Let Ft−1 be the sigma field generated by the past values of rt and Xt. We assume the following

conditional densities

rt|Ft−1 ∼ Nk(0, Ht), (1)

Xt|Ft−1 ∼ Wk(Vt, ν), (2)

where Ht is the k × k variance matrix of the multivariate normal distribution Nk(0, Ht) with

mean zero and Vt is the mean of the k-th dimensional Wishart distribution Wk(Vt, ν) with

degrees of freedom ν ≥ k. The variance matrices Ht and Vt are both measurable with respect to

Ft−1. The densities in (1) and (2) are conditionally independent. Only the dependence between

Ht and Vt leads to the unconditional dependence of (1) and (2). The coefficient ν encapsulates

the precision by which Xt measures Vt. A larger value of ν implies a more accurate measurement

Xt for Vt.

The normal density function for rt|Ft−1 is given by

1

(2π)
k
2 |Ht|

1
2

exp

{
− 1

2
tr
(
H−1t rtr

′
t

)}
, (3)
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and the density function of the k-variate standard Wishart distribution for Xt|Ft−1 is given by

|Xt|(ν−k−1)/2

2(νk)/2ν−(νk)/2|Vt|ν/2Γk
(
ν
2

)exp

{
− ν

2
tr
(
V −1t Xt

)}
, (4)

with Γk as the multivariate Gamma function Γk (a) = π
k(k−1)

4
∏k
i=1 Γ (a+ (1− i)/2) for any

a > 0.

Remark 1. We assume that realized covariance Xt is available on each day t as it can be

measured consistently by the multivariate realized kernel of Barndorff-Nielsen, Hansen, Lunde

and Shephard (2011a) or related measures described by Griffin and Oomen (2011).

The distributional assumption (1) implies that the outer product of daily returns is dis-

tributed as

rtr
′
t ∼Wk(Ht, 1), (5)

which is the singular Wishart distribution with one degree of freedom since matrix rtr′t has rank

one by construction; see Srivastava (2003). If rt is the vector of close-to-close returns, then

Ht measures overnight variation along with intraday variation, while Vt measures the intraday

variation. If rt is the vector of open-to-close returns, then both Ht and Vt measure the variation

over a particular trading day. It is standard to exclude the overnight return for computation of

realized measures, while modeling of daily returns is based on both open-to-close and close-to-

close returns.

The measurement equations are given by

rt = H
1/2
t εt, Xt = V

1/2
t ηtV

1/2
t , (6)

where A1/2 denotes the square root matrix of A and where measurement innovations are assumed

to be iid distributed as

εt ∼ Nk(0, Ik), ηt ∼W (ν, Ik/ν),

where εt is a vector and ηt is a matrix random variable.

Remark 2. Given the result in (5), we can redefine the conditional densities as

rtr
′
t = H

1/2
t ζtH

1/2
t , ζt ∼Wk(Ik, 1),

Xt = V
1/2
t ηtV

1/2
t , ηt ∼Wk(Ik, ν),
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so that model measurement equations are expressed in terms of variances and covariances.

It is natural to assume that variation of conditional variance of realized returns and of conditional

mean of realized covariance share the same source. For this reason, we impose the following

structure,

Ht = Λ1/2VtΛ
1/2, (7)

where we assume that Λ1/2 is a k × k diagonal matrix with λii = λi > 0, i = 1, . . . , k. We

could have proposed to have two separate models for Ht and Vt, and to link them through the

lagged values of each other. This is the modeling strategy of Noureldin et al. (2012) who refer

to it as the multivariate HEAVY model. This approach implies the explicit modeling of two

latent matrix variables Ht and Vt. Instead, we aim to provide a single dynamic formulation

for conditional multivariate volatility, based on one-step ahead predictions, denoted by Vt+1|t,

which contains any information in the form of noisy measures of current level of volatilities.

Finally, when rt is defined as a vector of daily close-to-close returns, the individual elements of

Λ1/2 should be larger than the corresponding elements when rt includes overnight variation.

Our set of distributional assumptions implies the following,

E[rtr
′
t|Ft−1] = Λ1/2VtΛ

1/2, E[Xt|Ft−1] = Vt, (8)

and

Var[vec(rtr
′
t)|Ft−1] = (Ik2 +Kk)

(
Λ1/2 ⊗ Λ1/2

)(
Vt ⊗ Vt

)(
Λ1/2 ⊗ Λ1/2

)
, (9)

Var[vec(Λ−1/2rtr
′
tΛ
−1/2)|Ft−1] = (Ik2 +Kk)

(
Vt ⊗ Vt

)
, (10)

Var[vec(Xt)|Ft−1] = ν−1(Ik2 +Kk)
(
Vt ⊗ Vt

)
. (11)

The results of (9) and (11) follow directly from Magnus and Neudecker (1979). We notice

that the result in (8) corresponds to the conditional second moment, while the results in (9)

and (10) correspond to the conditional fourth moment (kurtosis) of returns, possibly adapted

for overnight variation. It is a convenient feature of our modeling framework that conditional

second moments of realized covariance (11) provides model-implied volatilities-of-volatilities and

volatility cross, or spillover, effects.

To model the dynamic properties of Vt, we introduce the vector ft which is assumed to

represent Vt fully and uniquely. To ensure a positive definite variance matrix Vt in our analyses,
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we can employ the Cholesky decomposition as given by

Vt = CtC
′
t, (12)

and we model the dynamic properties of the lower-triangular matrix Ct with unique Cholesky

factors. In this case we can consider the specification ft = vech(Ct) where vech(A) stacks

the diagonal and lower-triangular elements of some matrix A into a vector. Another example

is the specification ft = vech(logm(Vt)) where logm is the matrix-logarithm operator. In our

empirical example we employ the first specification, whereas we detail the second specification

for the univariate case in Section 2.4. It is also possible to impose structure on Vt with the

purpose to lower the dimension of the time-varying parameter vector ft.

2.2 Score-driven dynamics

In this section we discuss how the dynamic properties of the time-varying parameter ft can be

specified. We provide details of how the model formulation is derived taking into account the

measurement densities that are introduced in the previous section. We adopt the score-driven

approach to time-varying parameters as developed by Creal et al. (2013). They construct

a general dynamic modeling framework in which the local (at time t) score function of the

conditional likelihood function is used for updating time-varying parameters. Given that the

conditional score function is a function of past observations, the model belongs to the class of

observation-driven models; see Cox (1981).

Consider a series of m vector or matrix variables Z1
t , . . . , Z

m
t . The measurement density for

the ith variable is given by

Zit ∼ ϕi(Zit |ft,Ft−1;ψ), for i = 1, . . . ,m, and t = 1, . . . , T, (13)

where ft is d× 1 vector of latent time-varying parameters, Ft = {Z1, . . . , Zt} is the information

set containing all observations up to time t, and ψ is a vector of (unknown) static model

parameters. In this framework, the individual densities ϕi may correspond to different families

of distributions. All distributions however depend partially on the same vector of the time-

varying parameter vector ft. In particular, consider (1) and (2), and decomposition (7), where

return vector and variance matrix have different distributions but are assumed to be propelled

by a common variance matrix, Vt = V (ft). Different mappings of ft to Vt can be considered, see
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the discussion below equation (12). We assume that innovations of variables Zt are independent

conditional on ft and on the information set Ft−1. The log-likelihood is then given by

L(ψ) =

T∑
t=1

m∑
i=1

log ϕi(Z
i
t |ft,Ft−1;ψ).

Our assumption rules out the possibility of correlated innovations, that is E[εitηjt] = 0, for any

i, j in (6). However, any asymmetric effects can be easily introduced when specifying updating

equation for the time-varying parameter ft as we discuss below. The density in (13) may also

depend on some exogenous variables, we however omit this extension for simplicity in notation.

The time-varying ft is updated via the recursive equation

ft+1 = ω +

p∑
i=1

Bift−i+1 +

q∑
j=1

Ajst−j+1, (14)

where ω is an d × 1 vector of constants, st is a mean-zero and finite variance martingale dif-

ference sequence, Bi and Aj are d × d matrices with loadings. The parameters ω, B1, . . . , Bp,

A1, . . . , Aq and some possible density specific unknown parameters, such as the number of de-

grees of freedom in the Wishart density, are all collected in the static parameter vector ψ. The

vector autoregressive moving average representation (14) proves convenient for understanding

the statistical dynamic properties of the ft process. The specification (14) can be extended to

incorporate some exogenous variables or other functions of lagged endogenous variables, or one

could also consider long-memory specification of (14).

Given the linear updating in (14), the main challenge is to formulate the martingale inno-

vation st. Here we adopt an observation-driven approach in which we formulate the innovation

term st as a function of directly observable variables. Our modeling approach follows Creal

et al. (2013) by setting the innovation st equal to the scaled score of the predictive likelihood

function which under standard regularity conditions forms a martingale sequence. In particular,

the score vector takes an additive form given by

∇t =

m∑
i=1

∇i,t =

m∑
i=1

∂ log ϕi(Z
i
t |ft,Ft−1;ψ)

∂ft
, (15)

which corresponds to the sum of individual scores. The scaling term is based on the Fisher
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information matrix and can also be expressed in additive form,

It =
m∑
i=1

Ii,t =
m∑
i=1

E[∇i,t∇′i,t|Ft−1]. (16)

The innovation term is now defined as

st = I−1/2t ∇t, (17)

such that E[st|Ft−1] = 0 and E[sts
′
t|Ft−1] = Id. In this approach, the one-step ahead prediction

of latent parameters ft is based on the scaled score that exploits the full likelihood function

at time t. Along with the measurement densities (13), equations (14) and (17) are similarly

formulated as in Creal et al. (2013). In the remainder we will take p = q = 1.

2.3 The main result

In this section we discuss the details of the score-driven model where the time-varying parameter

ft is based on the Cholesky decomposition of Vt. Given the score-driven model as formulated

generally, we specify the dynamic specification for the one-step ahead prediction of the variance

matrix Vt+1|t. To operate the model we have Vt as a function of ft, that is Vt = V (ft) and we

need expressions for the score function and the Fisher information matrix.

The log-likelihood function at time t can be decomposed into two contributions, that is

Lt(ψ) = L1,t + L2,t,

where the individual log-likelihoods are given by

L1,t = d(k)− 1

2
log |Λ1/2VtΛ

1/2| − 1

2
tr
(
(Λ1/2VtΛ

1/2)−1rtr
′
t

)
, (18)

L2,t = d(k, ν) +
ν − k − 1

2
log |Xt| −

ν

2
log |Vt| −

ν

2
tr
(
V −1t Xt

)
, (19)

with d(k) = −k
2 log (2π) and d(k, ν) = νk

2 log (ν)− νk
2 log (2)− log

(
Γk
(
ν
2

) )
.

The positive definiteness of the variance matrix Vt is ensured by employing the Cholesky

decomposition of (12), that is Vt = CtC
′
t. It then suffices to specify a model for the diagonal

and lower-triangular parts of matrix Ct and the time-varying parameter vector is defined as

ft = vech(Ct) ⇔ Vt = unvech(ft)unvech(ft)
′, (20)
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such that ft is a k∗× 1 vector with k∗ = k(k+ 1)/2. For the updating equation (14), we require

the score vector and Fisher information matrix that we obtain as described in Section 2.2.

Theorem 1. For the measurements densities (1) and (2), and for the decomposition (12), the

score vector of dimension k∗ × 1 is given by

∇t =
1

2
V̇ ′tD

′
k

(
V −1t ⊗ V −1t

)(
ν
[
vec(Xt)− vec(Vt)

]
+
[
vec(Λ−1/2rtr

′
tΛ
−1/2)− vec(Vt)

])
,

where V̇t = Lk(Ik2 +Kk)(Ct ⊗ Ik)L̃′k.

It follows that E[∇t|Ft−1] = 0 under standard regularity conditions implying that ∇t forms

martingale sequence. The expression for the score in Theorem 1 indicates that when making

one-step ahead prediction from Vt to Vt+1, information from the deviations of realized covari-

ance Xt from its mean Vt receives a weight ν, whereas information from deviations of rtr′t from

Vt (correcting for overnight variation Λ if rt is vector of close-to-close returns) receives a weight

of one. This model feature is pertinent as the outer-product of daily returns contains only a

weak signal about the current covariance of assets as it does not exploit intraday information. It

follows from Theorem 1 that score-based derivation of the model is not invariant to the decom-

position applied to the covariance matrix Vt to ensure positive definiteness. The dependence

enters through the term V̇t which is unique for a selected decomposition. We find that V̇t collects

the first order derivatives of the full covariance matrix Vt = V (ft) with respect to ft.

Theorem 2. For the measurements densities (1) and (2), and for the decomposition (12), the

Fisher information matrix of dimension k∗ × k∗ is given by

It = E[∇t∇′t|Ft−1] =
1 + ν

4
V̇ ′tD

′
k

(
V −1t ⊗ V −1t

)(
Ik2 +Kk

)
DkV̇t.

The square root of the inverse of the conditional information matrix may be used to scale the

score vector, such that E[sts
′
t|Ft−1] = Ik∗ with st defined in (17). The scaling (17) implies the

need to invert the Fisher information matrix It whose dimension grows at a rate proportional

to O(k2). This step is therefore the most computationally demanding.

Remark 3. The results in Theorems 1 and 2 hold for two measurement equations defined as in

(1) and (2). Applying the results presented in the Appendix, it is straightforward to extend

the model setup to incorporate several noisy measures of daily equity covariance matrix. For
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instance, let

Xi
t = V

1/2
t ηitV

1/2
t , ηit ∼Wk(Ik, ν

i), i = 1, . . . , G,

where Xi
t is a noisy measure of daily realized covariance, for i = 1, . . . , G, with G ∈ N. Then

∇t =
1

2
V̇ ′tD

′
k

(
V −1t ⊗ V −1t

)( G∑
i=1

νi
[
vec(Xi

t)− vec(Vt)
])
,

and

It = E[∇t∇′t|Ft−1] = V̇ ′tD
′
k

(
V −1t ⊗ V −1t

)(
Ik2 +Kk

)
DkV̇t

∑G
i=1 ν

i

4
,

where the numbers of degrees of freedom ν1, ν2, . . . , νG are estimated along with other model

static parameters, and where νi ≡ 1 if Xi
t = rtr

′
t.

The key distinguishing feature of our model specification is that each element of the innovation

vector st exploits the full likelihood information. This feature turns out to be relevant when

avoiding the curse of dimensionality as we may consider diagonal specifications such as Bi =

diag(βi1, . . . , β
i
k∗) and Aj = diag(αj1, . . . , α

j
k∗) or even a simple scalar version defined through

Bi = βiIk∗ and Aj = αjIk∗ in (14). In either case, the model dynamics allows for a complex

interdependence between all variances and covariances such that the one-step update from Vt

to Vt+1|t is driven by own as well as cross-asset effects. This feature is model-specific and

distinguishes our model from low frequency standard GARCH model that are driven by daily

returns, typically the outer-product of daily returns rtr′t. It also distinguishes our model from

the high frequency HEAVY model that is driven by a single realized measure and does not

immediately lend itself to allow for cross-asset effects.

2.4 Special Case k = 1: The univariate model

We provide the details for the case of a single asset, the univariate case. We formulate an

alternative volatility model for a single asset. Consider the case of k = 1, let rt denote daily

return, let Xt denote realized measure of variance and let Vt denote the unobserved daily

variance. Our modeling assumptions from Section 2.1 apply in this specific case. Hence, the

Wishart reduce to Gamma distributions. We obtain

r2t |Ft−1 ∼ Gamma(1, Vt), (21)

Xt|Ft−1 ∼ Gamma(ν, Vt/ν), (22)
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where Gamma(a, b) denotes the Gamma distribution with shape parameter a > 0 and scale

parameter b > 0, which has the density

f(x) =
1

Γ(a/2) (2b)a/2
xa/2−1exp

(
− x

2b

)
.

In the univariate case, an alternative specification for Vt in terms of ft can be considered. To

guarantee a non-negative Vt, it is natural to take Vt = exp(ft). Our score-driven model is then

based on ft = log Vt and we obtain

∇t =
1

2Vt

(
ν
(
Xt − Vt

)
+
(
r2t − Vt

))
and It =

1 + ν

2
,

which can also be straightforwardly extended to incorporate several noisy measures of daily

variance Vt in a similar manner as discussed in Remark 3. For instance, this result provides the

possibility to define a new realized EGARCH model by

ft+1|t = ω + βft + α

{
ν

(
Xt

Vt
− 1

)
+

(
r2t
Vt
− 1

)}
,

such that daily log-variance is propelled by model-implied weighted sum of squared return and

realized variance measure.

3 Estimation procedure and Monte Carlo study

We discuss the maximum likelihood estimation procedure and present simulation evidence for

the statistical small-sample properties of the maximum likelihood estimation method for our

model. We study estimation performance for varying sample size T and number of assets k.

3.1 Estimation procedure

The log-likelihood function is given by

L =

T∑
t=1

(
L1,t + L2,t

)
, (23)

where L1,t and L2,t are given in (18) and (19), respectively. The time-variation of Vt is deter-

mined by the score recursion (14), decomposition (12) and parametrization (20). The static
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parameter vector is given by

ψ =
[
ω′, vec(B1)

′, . . . , vec(Bp)
′, vec(A1)

′, . . . , vec(Aq)
′, ν, (λ1, . . . , λk)

]′
,

and contains pk2 + q(k(k + 1)/2) + k + 1 elements that need to be estimated; the number of

parameters is therefore of order O(k2). The recursion (14) needs to be initialized and it is natural

to set s0 = 0 and f0 either to the unconditional first moment estimated from the data or it can

be added to the vector of parameters ψ which is then jointly estimated. In our empirical analysis

we set f0 to be the sample average of the matrices R1, . . . , RT . For given parameter values ψ,

the log-likelihood function can be evaluated in a straightforward way. In practice, ψ is unknown

and estimation of all parameters is carried out by numerically maximizing (23) with respect to

ψ. Maximization can be based on a standard quasi-Newton numerical optimization procedure

and initial values of ψ can be determined through a grid search method. In the simulation study

and the empirical application, the model parameters are estimated using numerical derivatives.

With increasing dimension k, the estimation of model parameters may become computa-

tionally demanding. A possible approach to reduce the number of parameters can be based

on covariance targeting as proposed by Engle and Mezrich (1996) for GARCH models. Since

the score recursion (14) admits a vector ARMA representation, the model intercept can be

expressed, if stationarity conditions are satisfied. We can verify this by considering the uncon-

ditional moment and obtain

ft+1 = (Ik∗ −
p∑
i=1

Bi)E[ft] +

p∑
i=1

Bift−i+1 +

q∑
j=1

Ajst−j+1,

where E[ft] is replaced by the moment estimator, Ê[ft] = vech(Ĉ), with T−1
∑T

t=1RKt = ĈĈ ′

such that Ĉ is the lower-triangular matrix with Cholesky factors of a long run target as measured

by the mean of realized measures series. The introduction of targeting leads to a two-step

approach in estimation. We first remove the vector of constants by replacing it through some

consistent estimator of the unconditional mean. Then maximize the log-likelihood function with

respect to the remaining parameters. To avoid the curse of dimensionality further, parameter

reduction can be achieved by setting A1, . . . , Aq and B1, . . . , Bp as diagonal matrices or to

scalars. In either case, the diagonal and off-diagonal elements of covariance matrix are driven by

own lagged values and importantly by cross-asset effects captured by individual score elements

which all contain full likelihood information.
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3.2 Monte Carlo study

We study properties of the likelihood-based estimation method by means of simulation exercises.

We consider a dimension of k ∈ {2, 5, 10} and we simulate a series of T ∈ {250, 500, 1000} daily

returns and daily variance matrices. For simplicity, we study the scalar specification. The

Monte Carlo data generation process has taken the following parameter values

ν = k, ω = 0.10 ek∗ , β = 0.97, α = 0.10, and λ = 1, (24)

where ek∗ is the k∗×1 vector of ones. The parameter values are roughly in line with the empirical

estimates that we present in Section 4. A high value of the autoregressive coefficient β = 0.97

is typically found in many volatility studies. We simulate 5000 datasets in our Monte Carlo

study. For each generated dataset, we maximize the likelihood and we collect the estimates of

parameters (24). We estimate the parameters without constraints and with covariance targeting.

Figure 1: Simulation densities

In Figure 1 we present the density kernel estimates of the histograms of the 5000 estimates

for each parameter in ψ. Each graph contains three densities which are associated with the
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three time series dimensions 250, 500 and 1000. For increasing sample size T , the estimates

concentrate more at their true values while the densities become more symmetric. We find some

more skewness and heavy tails in the densities of the estimates obtained from the smaller sample

size T = 250. In particular, the density for the memory parameter β is skewed to the left and

the mode is shifted to the left near β = 0.97. This bias for β in small samples is somewhat

expected since its estimation requires a relatively long time series. The number of degrees of

freedom of the Wishart density ν can be estimated fairly robustly, even at moderate sample

sizes. This finding is somewhat surprising given that ν is a highly nonlinear parameter.

If we increase k, the number of assets in our simulation study, the shapes of the densities

become considerably more symmetric and more peaked around their respective true values, for

example, compare panels a) to c). The improvement is particularly remarkable for parameters

α and β. We may conclude from a practical viewpoint that the maximum likelihood method

works well in terms of estimating the model parameters as long as the time series dimension is

sufficiently large.

4 Empirical illustration

4.1 Dataset

In our empirical study for a portfolio of equities, we aim to measure the variation across firms

and across market conditions. The equities consist of fifteen Dow Jones Industrial Average

components with ticker symbols AA, AXP, BA, CAT, GE, HD, HON, IBM, JPM, KO, MCD,

PFE, PG, WMT and XOM. The empirical study is based on consolidated trades (transaction

prices) extracted from the Trade and Quote (TAQ) database through the Wharton Research

Data Services (WRDS) system. The time stamp precision is one second. The sample period

spans ten years, from January 2, 2001 to December 31, 2010, with a total of T = 2515 trading

days for all equities.

Before we construct realized kernels, we carry out cleaning procedures to the raw transaction

data. The importance of tick-by-tick data cleaning is highlighted by Hansen and Lunde (2006)

and Barndorff-Nielsen et al. (2009) who provide a guideline on cleaning procedures based on the

TAQ qualifiers that are included in the files (see TAQ User’s Guide from WRDS). In particular,

we carry out the following steps: (i) we delete entries with a time stamp outside the 9:30am-

4:00pm window; (ii) we delete entries with transaction price equal to zero; (iii) we retain
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entries originating from a single exchange (NYSE in our application); (iv) we delete entries

with corrected trades (trades with a correction indicator, “CORR” 6= 0); (v) we delete entries

with abnormal sale condition (trades with “COND” has a letter code, except for “E" and “F");

(vi) we use the median price for multiple transactions with the same time stamp; (vii) we delete

entries with prices that are above the ask plus the bid-ask spread.

We have in total 15 equities and will present results for a selection of k ∈ {2, 5, 15}. To

conserve space, we will present results for the randomly selected ten bivariate systems and ten

5-variate models amongst the 15 equities. We also present results for our model of all 15 equities

which require the modeling of a 15× 15 conditional variance matrix.

In our empirical study we use the realized kernel based on the Parzen kernel and a sub-

sampled realized covariance. Barndorff-Nielsen et al. (2011b) has shown that the subsampled

realized covariance is equivalent to the Realized Kernel using the Bartlett kernel which we de-

note by RKB. This estimator is based on returns with a sample frequency of 5 minutes. By

shifting the starting time in 1-second increments, we obtain 300 different estimates and these

are averaged to obtain RKB.

Table 1 provides the number of observations and Table 2 provides the data fractions that we

have retained in constructing the refresh sampling scheme. Given the dimension k, we record

the resulting daily number of price observations. These statistics are averaged over particular

years in our sample. We observe that for the 2-variate system we retain on average of around

60− 65% observations and this fraction is somewhat robust over time and across equities. The

average number of refresh time observations is around 2800 and it moderately varies in time

with higher volatility during crisis in 2007-2009. The average p statistics implies that we need,

on average, to refresh observation every 8 seconds for k = 2.

For the 5×5 case the data loss is more pronounced. We retain around 35−40% and we have

1800 refresh observations on average. Again, the p statistics is rather flat in time. In this case,

we have an observation on average around every 13 seconds. For the 15 × 15 case, the overall

average of fraction of retained observations equals around 22%, while the average number of

observations is around 950 implying refresh observation every 25 seconds.

4.2 Capturing overnight variation

First we focus on the difference between modeling open-to-close and close-to-close returns.

While the realized measures are defined over a period of a trading day i.e. from open-to-close,
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the daily returns in the traditional GARCH modeling are defined as either open-to-close or

close-to-close returns. Thus, for consistency with the realized measure one should use the open-

to-close daily returns over the same interval. However, since it is commonly of interest to gauge

and predict overnight variation, we provide a model specification that should be sufficiently

flexible to distinguish the definition of daily returns. In case we use close-to-close returns, the

individual elements of Λ in (7) need to capture the additional variation due to the overnight

effects. Based on the univariate realized GARCH model of Hansen et al. (2012), we find that

overnight variation may stand for around 25% of total daily variation. Hence we can expect

that the individual elements of Λ are equal to approximately 1.25.

Table 3 presents the maximum likelihood estimates of the parameters in the Wishart-

GARCH model based on the open-to-close returns data while Table 4 presents the estimates

based on the close-to-close returns; both for a selection of equity portfolios of size k = 2, 5, 15.

These estimates are based on a model specification with A = αIk∗ and B = βIk∗ . A key ob-

servation is that the parameter estimates of ν, α and β do not display large variation across

different equity pairs. Nor are there large differences between the reported estimates in Tables

3 and 4. The exceptions however are the estimates of the elements in Λ that differ considerably

in the two Tables. Table 5 reports the estimates of Λ for the full portfolio of 15 equities, and

for both open-to-close and close-to-close returns. In the former case of open-to-close returns,

the estimates of Λ (and for all portfolios), are close to unity and somewhat below. For the

close-to-close returns, the estimates of Λ are between 1.20 and 1.40. These results suggest that

if the interest is also to predict covariances of daily close-to-close returns, then the basic link

function (7) is convenient and useful for modeling additional overnight variation. The estimates

of other model parameters are virtually the same. In general, we find estimates of β being rather

close to unity implying high persistence of the covariance matrix. We observe also that the dy-

namics of Vt put more weight on realized kernel measures as implied by the highly significant

estimates of ν. Furthermore, we find that for a higher dimension k, more reliance is given to

the realized measures as the estimates of the estimates of ν become higher and more significant.

We notice that the degrees of freedom ν needs to grow with dimension k in order to ensure that

the Wishart variance matrix does not become non-singular; also see the discussion Seber (1998,

Section 2.3). However, when the dimension of k is fixed, a larger value for ν implies that the

information coming from the realized measure is given more prominence in our Wishart model

specification. The estimates of ν appear to be moderately high in relation to the dimension k
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15× 15 AA/.../XOM
Open-to-Close Close-to-Close

ν 28.3960
(0.0572)

28.4060
(0.0572)

β 0.9828
(0.0003)

0.9827
(0.0003)

α 0.0268
(0.0002)

0.0269
(0.0002)

λ1 0.9196
(0.0235)

1.3078
(0.0331)

λ2 0.9741
(0.0237)

1.3415
(0.0322)

λ3 0.9755
(0.0251)

1.3511
(0.0342)

λ4 0.9716
(0.0241)

1.4280
(0.0351)

λ5 0.8328
(0.0188)

1.1993
(0.0270)

λ6 0.8907
(0.0221)

1.2406
(0.0307)

λ7 0.8603
(0.0200)

1.1426
(0.0262)

λ8 0.9900
(0.0246)

1.4063
(0.0349)

λ9 0.9101
(0.0220)

1.2030
(0.0291)

λ10 0.8642
(0.0225)

1.1720
(0.0304)

λ11 0.8939
(0.0237)

1.1958
(0.0316)

λ12 0.8962
(0.0235)

1.2751
(0.0332)

λ13 0.8031
(0.0209)

1.0857
(0.0280)

λ14 0.8120
(0.0203)

1.1624
(0.0292)

λ15 0.9032
(0.0227)

1.1677
(0.0290)

logL −69226.50 −75245.35

Table 5: Maximum likelihood estimates for open-to-close and close-to-close returns for the
15× 15 model. Note: Standard errors are shown in parentheses.
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and we may therefore conclude that realized covariance measures play a considerable role in our

estimation framework.

4.3 Benchmarking against common alternatives

We compare performance of the Wishart-GARCH model against alternative models. We relate

our model to the BEKK model of Engle and Kroner (1995). In the standard BEKK(1, 1) model

it is assumed that rt|Ft−1 ∼ N(0, Vt) and the covariance of assets is driven by the outer-products

of daily returns,

Vt+1 = CC ′ +BVtB
′ +Artr

′
tA
′, t = 1, . . . , T, (25)

where A, B, and C are k×k parameter matrices of which C is restricted to be lower-triangular.

The scalar BEKK model with covariance targeting can be represented by

Vt+1 = (1− b− a)R̄+ bVt + artr
′
t, a, b ≥ 0, a+ b < 1 (26)

where R̄ = T−1
∑T

t=1 rtr
′
t is the sample covariance of daily returns with a and b being unknown

coefficients. When contrasting the BEKK model to the result in Theorem 1, it is evident that

BEKK does not exploit high-frequency data to infer about the current level of covariances.

We also consider a simple exponentially weighted moving average (EWMA) one-step ahead

forecasting scheme for high-frequency based realized kernels. The EMWA filter is often used by

practitioners and regulators, see, for example, in the RiskMetrics of J.P.Morgan (1996). The

EMWA assumes that the conditional variance matrix is an integrated process given by the

updating equation

Vt+1 = c Vt + (1− c)RKt,

where c is a fixed smoothing parameter which is typically set equal to c = 0.96.

The considered models in our study are non-nested and log-likelihood ratio tests cannot be

used. We evaluate the performance of our Wishart-GARCH model relative to the BEKK and

EWMA using two loss functions. We use the quasi-likelihood loss function given by

Q(Vt,Σt) = log |Vt|+ tr
(
V −1t Σt

)
, (27)
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and we use the root mean squared error based on the matrix norm given by

F (Vt,Σt) = ||Σt − Vt||1/2 =

[∑
i,j

(Σij,t − Vij,t)2
]1/2

,

where Σt is true latent covariance matrix and Vt is the model-based covariance matrix. In our

application, the proxy for the latent covariance matrix is based on the realized kernel and on

the subsampled realized covariance using 5min returns. As we have done for our in-sample

analysis, we report the average loss functions. Furthermore, we study the open-to-close returns

and we use baseline p = q = 1 model specification.

Table 6 presents the results for the loss functions for ten randomly selected cases with k = 2

and k = 5, and for the case with all equities, k = 15. These results show that our Wishart-

GARCH model delivers overall a substantially better fit than the BEKK specification. For two

bivariate cases of IBM/PG and MCD/PG, the BEKK model provides better in-sample fits.

Figure 2: Model-based (co)variances

Note: Panels i-a) to i)-c) plot the case of variance of AA equity, while panel ii-a) to ii)-c)
present the case of covariance of pair AA/CAT.

Figure 2 presents the model-based covariances for the case of the AA/CAT pair. When
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we compare the model-based estimates with the subsampled realized covariance, we find a

clear improvement for the Wishart-GARCH model. Its estimated covariances quickly adapt to

changes in the location of the covariances. In contrast, the traditional BEKK model smooths

the outer-product of daily returns without exploiting high-frequency information. The panels

i-b) and ii-b) zoom in on a period of high volatile markets, the years 2008-2009. The BEKK

response to changes is remarkably longer in this period. Since the Wishart-GARCH model

weighs the realized measure more than the outer-product of returns, the time-varying variance

matrix remains more robust to large return innovations; see panels i-c) and ii-c).

5 Conclusions

We have proposed a new model for the modeling and predicting of daily time series of covariance

matrices of financial assets: the Wishart-GARCH model. The challenge is to capture the

complex temporal interdependencies among variances and covariances of assets. There are two

distinguishing features of our model when compared to alternative frameworks. First, the model

relies both on low- (daily) and on high-frequency (intraday) information. It turns out that the

high-frequency measures receive most weight given that it exploits intraday data of financial

assets to infer about current level of covariances. Several noisy and frequency-varying measures

of current covariance levels can be adopted. A second feature of the Wishart-GARCH model is

that the innovations driving the update of covariance matrix exploits full likelihood information.

Consequently, even a simplified scalar specification allows for complex interdependences between

variances and covariances of all assets. The model can therefore attain without loss of flexibility

parsimonious formulation which is convenient property for multivariate volatility models. In an

empirical study for a portfolio of fifteen NYSE equities, we have compared our Wishart-GARCH

model with other multivariate GARCH models and with exponentially weighted moving avarage

schemes. The in-sample fit of our model dominates the fit in the comparisons. This finding

carries over to different subsets of equities but also to the full portfolio of equities. The proposed

model is capable to track sudden changes in volatility and the dependence structure of the assets

in a more efficient way than standard multivariate GARCH.
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APPENDICES

A Matrix Notation and Preliminary Results

The results in this paper make use of the following matrix notation and definitions. Let A and

B be k×k matrices, then A⊗B denotes the Kronecker product, which is a k2×k2 block matrix

{aijB} where aij is the (i, j) element of matrix A. The vec(A) operator stacks the columns of

matrix A consecutively into the k2×1 column vector, while vech(A) stacks the lower triangular

part including diagonal into k∗× 1 column vector, with k∗ = k(k+ 1)/2. The reverse operators

are denoted as unvec and unvech, respectively The k × k identity matrix is denoted by Ik. We

define the k2×k2 commutation matrix Kk, the k2×k∗ duplication matrix, Dk, and the k∗×k2

elimination matrix Lk, by the identities

Kkvec(B) = vec(B′) Dkvech(A) = vec(A), and Lkvec(A) = vech(A),

where B is an arbitrary k × k matrix and A an arbitrary symmetric k × k matrix. Here

Lk = (D′kDk)
−1D′k is the Moore-Penrose inverse of the duplication matrix Dk. Similarly, for a

lower triangular k × k matrix, C, we let D̃k denote the k2 × k∗ duplication matrix and L̃k the

k∗ × k2 the elimination matrix defined by the identities

D̃kvech(C) = vec(C) and L̃kvec(C) = vech(C),

with D̃′kD̃k = Ik∗ and L̃k = D̃′k. The difference between Lk and L̃k arises because vec(C)

contains zeros. Additional properties and results related to these matrices can be found in

Magnus and Neudecker (1988) and Seber (2007).

The proofs below make use of the following results on matrix calculus. For a p × q matrix

function F (X) and a m × n matrix of variables X, the derivative of F (X) with respect to

x = vec(X), denoted by the pq ×mn matrix DF (X), is given by

DF (X) =
∂vec(F (X))

∂x′
.

If F (X) is m×m symmetric matrix, we have

∂vec(F (X))

∂x′
= Dm

∂vech(F (X))

∂x′
.

31



The intermediate results for any k × k matrices A, X and B are

∂ log |AXB|
∂X

= vec[(X−1)′]′, (A,B nonsingular),

∂X−1

∂X
= −(X−1)′ ⊗X−1,

∂tr(AXB)

∂X
= A′B′. (28)

The above results are combined with the following result for any k × k matrices A, B and C

with matrix B being symmetric,

vec(ABC) = (C ′ ⊗A)vec(B). (29)

B Proofs

Lemma 1. Suppose V is a symmetric positive definite k×k matrix and C is a lower triangular

k × k matrix such that V = CC ′. Then vech(V ) is a differentiable function of vech(C) and

V̇ =
∂vech(V )

∂vech(C)
= Lk(Ik2 +Kk)(C ⊗ Ik)L̃′k.

Proof. The proof is based on various matrix manipulations stated in Magnus and Neudecker

(1988). Since V = CC ′, we obtain

dV = (dC)C ′ + C(dC ′).

By vectorization and using the result that vec(dX)A = (A′⊗ I)dvecX, Magnus and Neudecker

(1988, p. 182), we have

dvec(V ) = (C ⊗ Ik)dvec(C) + (Ik ⊗ C)dvec(C ′),

= [(C ⊗ Ik) + (Ik ⊗ C)Kk]dvec(C).

Since for any k × k matrices A and B, we have Kk(A ⊗ B) = (B ⊗ A)Kk, see Magnus and

Neudecker (1988, p. 46) for more general rules on commutation matrix. We have

dvec(V ) =
(
(C ⊗ Ik) +Kk(C ⊗ Ik)

)
dvec(C),

=
(
(Ik2 +Kk)(C ⊗ Ik)

)
dvec(C).
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Finally, after pre-multiplication by Lk, we obtain

dvech(V ) = Lk
(
(Ik2 +Kk)(C ⊗ Ik)

)
L̃′kdvech(C),

where

dvec(C) = D̃kdvech(C) = L̃′kdvech(C) (30)

since matrix C is a lower triangular matrix.

Proof of Theorem 1. We derive the score vector whose general form is given by (15). It follows

from (18) and (19) that the relevant parts of log-likelihoods for the score vector derivation are

given by

L1,t = −1

2

(
log |Λ1/2VtΛ

1/2|+ tr
(
(Λ1/2VtΛ

1/2)−1rtr
′
t

))
, (31)

L2,t = −ν
2

(
log |Vt|+ tr

(
V −1t Xt

))
. (32)

We consider the Cholesky decomposition (12) of the covariance matrix Vt and parameter vector

ft, as given by (20). Using the chain rule for vector differentiation, the score for individual

measurement densities (1) and (2) can be expressed by

∂ log ϕi(Z
i
t |ft,Ft−1;ψ)

∂f ′t
=
∂ log ϕi(Z

i
t |ft,Ft−1;ψ)

∂(vec(Vt))′
∂vec(Vt)

∂vech(Vt)′
∂vech(Vt)

∂f ′t
.

We first differentiate the measurement density of returns (31). Using (28) and (29), together

with noting that Vt is symmetric and V −1t = V −1t VtV
−1
t , we obtain

∂L1,t
∂vec(Vt)′

= −1

2
[vec(V −1t )′ − vec(Λ−1/2rtr

′
tΛ
−1/2)′(V −1t ⊗ V −1t )]

= −1

2
[vec(Vt)

′(V −1t ⊗ V −1t )− vec(Λ−1/2rtr
′
tΛ
−1/2)′(V −1t ⊗ V −1t )]

=
1

2
[vec(Λ−1/2rtr

′
tΛ
−1/2)′ − vec(Vt)

′](V −1t ⊗ V −1t ), (33)

and similarly for the measurement density of covariance (32), we have

∂L2,t
∂vec(Vt)′

= −ν
2

[vec(V −1t )′ − (vec(Xt)
′(V −1t ⊗ V −1t )]

= −ν
2

[(vec(Vt)
′(V −1t ⊗ V −1t )− vec(Xt)

′(V −1t ⊗ V −1t )]

=
ν

2
[vec(Xt)− vec(Vt)]

′(V −1t ⊗ V −1t ). (34)
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The results (33) and (34), combined with the Lemma in Appendix 1 and with the score defined
in (15), the proof of Theorem 1 is completed. �

Proof of Theorem 2: We derive the Fisher information matrix whose general form is given

by (16). Using the results from the proof of Theorem 1, the individual score functions are given

by

∇1,t =
1

2
V̇ ′tD

′
k

(
V −1t ⊗ V −1t

)[
vec(Λ−1/2rtr

′
tΛ
−1/2)− vec(Vt)

]
,

∇2,t =
ν

2
V̇ ′tD

′
k

(
V −1t ⊗ V −1t

)[
vec(Xt)− vec(Vt)

]
,

for the measurement densities of returns and of covariance, respectively. Taking E[∇i,t∇′i,t|Ft−1],

we obtain

I1,t =
1

4
V̇ ′tD

′
k

(
V −1t ⊗ V −1t

)
var
[
vec(Λ−1/2rtr

′
tΛ
−1/2)− vec(Vt)|Ft−1

](
V −1t ⊗ V −1t

)
DkV̇t,

I2,t =
ν2

4
V̇ ′tD

′
k

(
V −1t ⊗ V −1t

)
var
[
vec(Xt)− vec(Vt)|Ft−1

](
V −1t ⊗ V −1t

)
DkV̇t.

Using the results (10) and (11), and given that (V −1t ⊗ V −1t )(Vt ⊗ Vt) = Ik2 , we have

I1,t =
1

4
V̇ ′tD

′
k

(
V −1t ⊗ V −1t

)
(Ik2 +Kk)DkV̇t,

I2,t =
ν2

4
V̇ ′tD

′
k

(
V −1t ⊗ V −1t

)
(Ik2 +Kk)DkV̇t =

ν2

4
I1,t,

which combined with (16) completes the proof. �
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