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Inclusive Fitness

Matthijs van Veelen1,2,3,∗, Benjamin Allen3,4,5,
Moshe Hoffman3,6,7, Burton Simon8, and Carl Veller3,9.

This paper reviews and addresses a variety of issues relating to inclusive fitness. The

main question is: are there limits to the generality of inclusive fitness, and if so, what

are the perimeters of the domain within which inclusive fitness works? This question

is addressed using two well known tools from evolutionary theory: the replicator dy-

namics, and adaptive dynamics. Both are combined with population structure. How

generally Hamilton’s rule applies depends on how costs and benefits are defined. We

therefore consider costs and benefits following from Karlin & Matessi’s (1983) “coun-

terfactual method”, and costs and benefits as defined by the “regression method”

(Gardner et al., 2011). With the latter definition of costs and benefits, Hamilton’s

rule always indicates the direction of selection correctly, and with the former it does

not. How these two definitions can meaningfully be interpreted is also discussed. We

also consider cases where the qualitative claim that relatedness fosters cooperation

holds, even if Hamilton’s rule as a quantitative prediction does not.

We furthermore find out what the relation is between Hamilton’s rule and Fisher’s

Fundamental Theorem of Natural Selection. We also consider cancellation effects —

which is the most important deepening of our understanding of when altruism is

selected for —and we discuss preference evolution. Finally we also explore the remark-

able (im)possibilities for empirical testing with either definition of costs and benefits

in Hamilton’s rule.
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1 Introduction

In 1964 Hamilton introduced the most famous rule in evolutionary biology. In two back

to back papers, he formulated a model, and derived a rule from it that we now know

as Hamilton’s rule. That rule states that selection will favour altruistic behaviour if the

benefits to the recipient times the relatedness between actor and recipient outweigh the costs

to the actor. This captured both a qualitative insight —genes can make the individuals

that they are in do things that are bad for that particular individual, but good for copies

of that gene in other individuals —and an elegant, intuitive, and simple quantification of

that phenomenon. Both Hamilton’s rule, and the notion of “inclusive fitness”, which the

rule suggests is maximized by evolution, have since become standard material for both

theoretically and empirically inclined biologists. As is natural for a landmark paper, it

came with indications that also signal to outsiders that this is an important result. The

paper has about half as many citations as Darwin’s “On the Origin of Species”, and is

one of the core ingredients in Richard Dawkins’“The Selfish Gene”, which is one of the

must-read books for anyone with a general interest in science.

Besides being a monumental breakthrough, Hamilton’s rule is also the topic of a contro-

versy. In the early ’80s Karlin & Matessi (1983) and Matessi & Karlin (1984, 1986) already

suggested that not all evolutionary scenarios lead to maximization of inclusive fitness, but

those papers did not receive enough attention to make it to the collective memory of evolu-

tionary biology. In the last 7 years a renewed criticism of the generality of inclusive fitness

has appeared, the most notable of which was voiced in a paper by Martin Nowak, Corina

Tarnita and E.O. Wilson. The recent exchange concerning the generality of inclusive fitness

does not yet show any signs of convergence, and positions range all the way from “Hamil-

ton’s rule almost never holds”(Nowak et al., 2010) to “Inclusive fitness is as general as the

genetical theory of natural selection itself”(Abbot et al., 2010).

In this paper, we will review and address a variety of issues relating to inclusive fitness.

We will for instance consider the relation between Hamilton’s rule and Fisher’s Fundamen-

tal Theorem of Natural Selection (Section 2), discuss cancellation effects, which is the most

important refinement of our understanding of how individuals sharing genes matters for

evolution (Section 7), and consider the question how Hamilton’s rule can be tested em-

pirically (Section 9). The recurrent theme, however, will be the central question in this

controversy, which is: are there limits to the generality of inclusive fitness, and if so, what

are the perimeters of the domain within which inclusive fitness works? In order to shed light

on this in a simple and accessible way, we chose to consider two very well known dynam-

ics from evolutionary theory: the replicator dynamics (Section 3) and adaptive dynamics

(Section 6) —besides, of course, Hamilton’s own dynamical model, which is discussed in

Section 2.1

1Many papers in the domain of inclusive fitness consider different models —such as for instance Wright’s

Islands model. This paper is not meant to be a review that encompasses all of inclusive fitness theory. It
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We will argue that the difference in opinions on the generality of inclusive fitness stems

from a disagreement on how to define the costs and benefits in Hamilton’s rule —as sug-

gested by Birch (2014). In this paper, we will follow Karlin & Matessi (1983) and Matessi

& Karlin (1984, 1986) and define costs and benefits by comparing actual fitnesses with

counterfactuals. This is not one of the options considered in Birch (2014), but the “coun-

terfactual method” is a classic possibility that is worth exploring. Alternatively, one can

define costs and benefits using the “regression method”(for example Gardner et al., 2011,

West & Gardner, 2013, and Marshall, 2011). In cases that are uncontroversial, these dif-

ferent definitions lead to the same b and c. In cases that are subject to debate, they lead

to different costs and benefits. If costs and benefits are defined according to the regression

method, inclusive fitness always matches the direction of selection for any given linear spec-

ification (the fact that it does so for any given linear specification is more than a detail;

the model specification issue turns out to be central to the interpretation). If costs and

benefits are defined using counterfactuals, this is not the case. Even then, though, we can

still stake out a sizable set of models where inclusive fitness works.

Knowing that it makes a difference how costs and benefits are defined helps understand

why points of view concerning the generality of Hamilton’s rule are so different. But while

it helps understand the divergence of opinions, it still allows for disagreement on which

choice for b and c is better. Both methods will therefore be discussed in some detail.

In Section 3 we will consider Karlin & Matessi’s original counterfactual method for

defining costs and benefits, and conclude that these definitions have an undesirable property.

With their definitions, the cost of cooperating rather than defecting is not necessarily

minus the cost of defecting instead of cooperating. Inclusive fitness therefore was bound

to only work in special cases, since there is the possibility that both the inclusive fitness

of cooperation vs. defection and the inclusive fitness of defection vs. cooperation are

positive, or that both are negative. An alternative, and perhaps —with hindsight —also

more natural version of the counterfactual method does not allow for such inconsistencies.

It does, however, still allow for inclusive fitness to not agree with the direction of selection.

In Section 4 we will discuss the regression method. We give a derivation of the result

that, with costs and benefits defined by the regression method, Hamilton’s rule always

holds. The starting point for this result, however, is that we already have a specification

for the regression, and that this specification is linear. That implies that Hamilton’s rule

holds just as much for costs and benefits that follow from one linear specification as it

does for costs and benefits that follow from another. For the regression method to be well-

defined for all possible models (or datasets), it would therefore need to be combined with a

method for choosing between different specifications. Subsequently, whatever criterion one

would use for choosing one linear specification over another should also be used to choose

between linear and non-linear specifications, or between different non-linear ones. In other

mostly aims at understanding and illustrating the reasons for the controversy using relatively simple and

well known models.
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words, if we have a way to decide whether or not a linear variable should be included in

the specification, then we immediately also have a criterion that should be used to decide

whether or not a non-linear variable is to be included. This follows from the fact that least

squares regressions treat linear and non-linear variables exactly the same. We therefore

argue that Hamilton’s rule, using the regression method, cannot both always be uniquely

defined, and generally valid. The general validity depends crucially on the specification

being linear, while any criterion that one could use for choosing between different linear

specifications will immediately imply that there will also be models (or datasets) where

the same criterion will rule in favour of a non-linear specification. Non-linearity therefore

remains a problem for inclusive fitness.

The different topics related to Hamilton’s rule will be discussed in the following order. In

Section 2 we will revisit Hamilton’s paper itself. There we will also discuss how his result

relates to the literature at the time, and to Fisher’s Fundamental Theorem of Natural

Selection, both in the interpretation of Ewens (1989) and in the interpretation of Lessard

(1997). It turns out that Hamilton’s rule is the social generalization of Fisher’s FTNS in

neither of the two interpretations, while it does generalize results by Mulholland & Smith

(1959), Scheuer & Mandel (1959) and Kingman (1961a,b) to a setting with social traits.

Hamilton (1964b) conjectured that his rule would also be valid outside the confines of

his model, and in the remainder of the paper we will look at other model settings. In Section

3 we consider the replicator dynamics with population structure. While Hamilton’s model

setup assumes a diploid species and considers difference equations, the replicator dynamics

imply a switch to a haploid setting with differential equations. Here we find that in order

for Hamilton’s rule —with costs and benefits defined using the counterfactual method —to

agree with the direction of selection, we need “equal gains from switching”.

In Section 4 we discuss the regression method.

In Section 5 we look at comparative statics for the replicator dynamics. Comparative

statics capture qualitative results, that may hold, even if Hamilton’s rule — which is a

quantitative prediction — does not apply. We find that there are indeed model settings

in which a higher relatedness unambiguously fosters cooperation, even though Hamilton’s

rule, with costs and benefits according to the counterfactual method, does not hold.

In Section 6 we discuss how inclusive fitness describes what happens under adaptive

dynamics, and what its limitations are there. Adaptive dynamics considers a continuous

space of phenotypes, and assumes a monomorphic population. Here we find that for Hamil-

ton’s rule to hold —again, with costs and benefits according to the counterfactual method

— it is enough if fitnesses are linear locally, and if populations do indeed remain close to

being monomorphic.

In Section 7 we look at cancellation effects, which occur when not only opportunities

for cooperation are local, but competition is local too. The insight that these two opposite

effects occur (Wilson, Pollock and Dugatkin, 1992; Taylor, 1992a,b) is the most important

deepening of our understanding of kin selection. For social behaviour to evolve, it is not
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enough that interactants are related. What is needed is that there is a discrepancy between

the two effects. Those that get the opportunity to cooperate, or that seek each other out

for cooperation, need to be more related than those that they compete with.

Section 8 then goes on to discuss recent advances in the evolution of human preferences,

which relates to the economics literature.

Section 9 discusses how inclusive fitness can be tested empirically, and revisits the

replicator dynamics from Section 3, the adaptive dynamics from Section 6, and the examples

that illustrate cancellation effects from Section 7. Observing violations of Hamilton’s rule

empirically is by definition impossible when costs and benefits are defined according to

the regression method. But also with the counterfactual method, not just any violation

of Hamilton’s rule lends itself to observation by measuring costs and benefits of those

phenotypes that survived selection (as opposed to as selection takes place). What is required

for that to work is that different phenotypes coexist in equilibrium. The empirical literature

nonetheless shows surprisingly many violations, also in cases where we would not expect

those to be observed, and we will explain what causes these “false negatives”.

Section 10 concludes.
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2 Hamilton’s rule and Fisher’s Fundamental Theorem

of Natural Selection

We revisit the central result in Hamilton’s (1964) milestone paper and discuss how it relates to

the literature at the time, and to Fisher’s Fundamental Theorem of Natural Selection, both in

the interpretation of Ewens (1989) and in the interpretation of Lessard (1997). It turns out that

Hamilton’s rule is the social generalization of Fisher’s FTNS in neither of the two interpretations,

while it does generalize results by Mulholland & Smith (1959), Scheuer & Mandel (1959) and

Kingman (1961a,b) to a setting with social traits.

2.1 Hamilton’s rule

The point of departure in Hamilton (1964) is a single locus and a set of alleles G1, ..., Gn.

These give rise to genotypes GiGj , 1 ≤ i, j ≤ n. Before we go to the central claim in

Hamilton’s two papers, we should perhaps first look at the typical question in the literature

at that point, so that we understand why Hamilton chose his setup. In the few papers in

Hamilton’s reference list (Mulholland & Smith, 1959, Scheuer & Mandel, 1959, Kingman,

1961a,b), such genotypes GiGj always concerned properties that only affected the carrier

itself, and not its relatives. The core question that was addressed in those papers was

whether or not average fitness will always increase. This turns out to be a deep question

in some settings, and trivially true, or trivially untrue, in others.

One setting in which it is trivially true, is if we 1) assume that these fitnesses are

growth rates in a differential equation, and if we moreover 2) assume that these fitnesses

are not frequency dependent — that is: the fitness of genotype GiGj does not depend

on the distribution of genotypes in the population that GiGj lives in. In this case it is

relatively straightforward that average fitness will go up. Another setting in which this

is trivially true is if we assume that all alleles can be ranked from unambiguously bad —

G1 —to unambiguously good —Gn. In other words, if one can order the alleles such that

j > i implies that the fitness of GjGk is larger than the fitness of GiGk for all k, then

the frequency of Gj is always increasing relative to the frequency of Gi, both in difference

equations (i.e. in discrete time) and in differential equations (continuous time). If fitnesses

are furthermore not frequency dependent, then this implies that average fitness increases.

In discrete time, the fitness of a genotype GiGj is then defined as the mean number of

offspring produced by individuals of that genotype. Everything that happens within a

generation is collapsed in this number — in Hamilton’s model organisms reproduce “once

and for all at the end of a fixed period”—so this can incorporate both differences in viability

and differences in fecundity.2

2Some papers explicitly look only at differences in viability. In simple models, these also translate

linearly into offspring, so nothing is lost if we subsume viabilities in expected numbers of offspring. One

convention is to have every successful gamete counts for half an offspring, which is what we adopt here.

6



Whether or not average fitness will increase —still in the standard, non-social setting

— becomes a more diffi cult question if update steps are discrete — that is, if we have a

difference equation, and not a differential equation —and if there are pairs of alleles that

cannot unambiguously be ranked. Alleles Gi and Gj can not be ranked unambiguously if

there are alleles Gk and Gl such that the fitness of GiGk is larger than the fitness of GjGk,

but the fitness of GiGl is smaller than the fitness of GjGl. In such a setting, one could

imagine that, when not already in equilibrium, the update step overshoots the equilibrium

values in such a way that average fitness would go down. This is a far from trivial question,

and it is the question that Mulholland & Smith (1959), Scheuer & Mandel (1959) and

Kingman (1961a,b) address. Their answer is positive: also with difference equations, and

allowing for alleles that cannot be unambiguously ranked, average fitness will go up every

step of the way. We do still have to assume that those fitnesses are not frequency dependent

though.

Because Hamilton’s result is sometimes also described as a social version of Fisher’s

Fundamental Theorem of Natural Selection (FTNS), it is worth emphasizing that, first of

all, Hamilton does not present it as such —there is no reference to the FTNS in the papers.

The papers that he does cite are only sideways related to the FTNS, and in no way proof

for it, although it should be said that the relation between the results in those papers and

the FTNS was, at the time, not well understood (see Price, 1972b, Ewens, 1989, Lessard,

1997, and Section 2.2 below).

The big difference between Hamilton (1964) and the previous literature is of course

that in Hamilton’s Part I the genotypes come with social effects; they do not only imply

fitness effects on the carrier itself, but also on its relatives, and it is explicitly allowed for

this to include different effects on different relatives, all at the same time. A genotype

GiGj therefore comes with a vector (δa1, ..., δam)ij of effects on itself —δa1 —and on the

fitnesses of m − 1 relatives —δa2, ..., δam —which have relatednesses r2, ..., rm to the focal

individual. Since individual number 1 is the focal individual itself, r1 = 1. Other than

that, the setting is the same as in Mulholland & Smith (1959), Scheuer & Mandel (1959)

and Kingman (1961a,b); we are 1) looking at a difference equation, 2) there is no frequency

dependence, and 3) the fitness effects could be anything. This is the setting for which the

question whether or not average fitness increases for non-social traits was non-trivial. Also

Hamilton assumes that the frequency of (ordered) genotype GiGj is pipj , where pi and

pj are the frequencies of allele Gi and Gj . This reflects random mating in a population

with non-overlapping generations, and is in line with Mulholland & Smith (1959), Scheuer

& Mandel (1959) and Kingman (1961a,b), but not with Fisher’s setup (see Section 2.2

below).

The question whether or not average fitness will always increase now turns into a differ-

ent one, which is if perhaps it is average inclusive fitness that will always increase here. The

Not all papers are equally explicit about this, but switching to counting every successful gamete as one full

offspring would amount to a different normalization of fitness, leaving the results intact.
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inclusive fitness R•ij of genotype GiGj is defined as baseline fitness 1 plus the weighted sum

of the fitness effects, with relatednesses as weights: R•ij = 1 +
∑m
k=1 rk (δak)ij . Hamilton

denotes average inclusive fitness by R•.., which is short for
∑n
i=1

∑n
j=1 pipjR

•
ij .

The central result in Hamilton (1964a) states that a suffi cient condition for average

inclusive fitness to not decrease is that the average diluting effect is nonnegative. The

diluting effect can be seen as the complement of the inclusive fitness effect. If a social

trait has fitness effects (δa1, ..., δam)ij , then those effects are divided, and subsequently

aggregated, into the inclusive fitness effect δR•ij =
∑m
k=1 rk (δak)ij and the diluting effect

δS•ij =
∑m
k=1 (1− rk) (δak)ij ; every effect on fitnesses is weighted by rk for its contribution

to inclusive fitness, and by the remaining (1− rk) for its contribution to the dilution term.

If we then further aggregate all those dilution terms over all genotypes, we get the (overall,

average) dilution term δS.. =
∑n
i=1

∑n
j=1 pipjδS

•
ij . If this dilution term is nonnegative,

that is, if δS.. ≥ 0, then the result is that average inclusive fitness will not decrease (page

7, Hamilton 1964a).

There are some minor mathematical points that one can make. The first is that δS.. ≥ 0

is indeed a suffi cient condition for the change in average inclusive fitness not to be negative.

Hamilton does however not give an example of a case where this condition is violated —

that is, where δS.. < 0 —and where average inclusive fitness actually goes down. In other

words, from this paper, we do not know if this condition is important to consider, or if it

is really a redundant requirement, and a stronger claim —that average inclusive fitness will

never decrease —will perhaps also hold.

A second minor issue is that Hamilton concludes from this result that

It follows that R•.. certainly maximizes (in the sense of reaching a local maximum

of R•..) if it never occurs in the course of selective changes that δS.. < 0.

For this to follow, we need not just that δS.. is never negative, but that it is strictly positive

everywhere other than at the optimum. With some additional math, one can show that

too (see Theorem 1 in Van Veelen, 2007).

This result, which is about average inclusive fitness being maximized, does not imply

that individuals will behave as if they all maximize their inclusive fitness. With a few simple

counterexamples one can show that this is not the case. Assume, for instance, that there are

two alleles, and that the heterozygote has higher inclusive fitness than both homozygotes.

In this case average inclusive fitness is maximized in a population state that has positive

shares of both alleles. This implies that there will always also be homozygotes, and therefore

there will still be an unavoidable share of individuals that have an inclusive fitness that is

not the highest that it could be. Another counterexample is that with heterozygotes that

have an inclusive fitness that is lower than both homozygotes, the population dynamics can

get stuck in a local optimum, while a trait with a higher inclusive fitness is still available.

If we want to make the maximization of inclusive fitness by individuals follow from

Hamilton’s result, we will have to make an extra assumption. This extra assumption is

8



that inclusive fitnesses of all heterozygotes GiGj must lie between the inclusive fitnesses of

their homozygote counterparts GiGi and GjGj (see Theorem 2 in Van Veelen, 2007).

It is worthwhile to realize that this is not an innocuous assumption. As touched upon

above, the question whether average fitness increases in the case of non-social traits is only

non-trivial if 1) we have a difference equation, 2) there is no frequency dependence, and 3)

there are no restrictions on the fitness effects we consider. If we rule out heterozygote over-

or underdominance, in terms of their inclusive fitnesses, then that means we can rule out

coexistence of different alleles3 —unless they are indistinguishable in terms of their inclusive

fitnesses. In other words, if we make the extra assumption needed for maximization of

inclusive fitness by individuals, then really all that matters is which homozygote has the

largest inclusive fitness. And if we do look at homozygote fitnesses anyway, we might just

as well drop the diploid model, and consider a haploid version.

From Section 3 onwards we will refer to Hamilton’s rule in this individual sense. Hamil-

ton’s rule then states that behaviour with higher inclusive fitness will be selected for, at the

expense of behaviour with lower inclusive fitness. If there are only two behaviours present

in the population —one benchmark behaviour, with fitness effects 0, and one alternative

behaviour —and the behaviour only affects the fitnesses of the actor and one typical other

agent (such as, for instance, a sibling), then Hamilton’s rule is reduced to its simplest,

best known form: the alternative behaviour is selected when rb > c, or rb − c > 0. As

we will see in sections 3 and 4, there are different ways to define the costs and benefits in

Hamilton’s rule. When we step outside the confines of his model, in which fitness transfers

are independent of the genotype of the recipient, these different definitions start to diverge,

and this is the source of disagreements on the validity of Hamilton’s rule. Following Karlin

& Matessi (1983) we will also consider Hamilton’s rule to be qualitatively valid if higher

relatednesses are more conducive to cooperation, in a sense that will be made more precise

in Section 5.

2.2 Fisher’s Fundamental Theorem of Natural Selection

It is sometimes suggested that Hamilton’s model extends or generalizes Fisher’s Fundamen-

tal Theorem of Natural Selection (FTNS) into the domain of social behaviours, or that it

was at least inspired by it (see for instance Grafen, 2004). For the longest time it has been

somewhat unclear what the FTNS actually claimed, which made it hard to judge whether

or not Hamilton’s result was in fact a generalization. Now, with the advantage of later pa-

pers on the FTNS (Price, 1972b, Ewens, 1989, 1992, Lessard & Castilloux, 1995, Lessard,

1997), we can see that Hamilton’s result is not a generalization of Fisher’s Fundamental

3 If we rank the alleles such that Rii < Rjj implies that i < j, then under the assumption that there is

no over- or underdominance, this implies that there is no fixed point of the dynamics in which alleles with

unequal homozygote inclusive fitnesses coexist. In order to show that, assume that they do, and compare

the allele with the largest homozygote inclusive fitness with the one with the smallest. The smallest has

positive frequency, but is dominated by the largest.
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Theorem, but of a different result that can be found in the papers that Hamilton (1964a)

cites, and for which it was presumably unclear at the time how they related to Fisher’s

Fundamental Theorem.

In order to explain the differences, we first follow the presentation of the FTNS in

Ewens (1989). The fitnesses and frequencies of the (ordered) genotypes GiGj are denoted

by wij and Pij , 1 ≤ i, j ≤ n.4 Fitness wij can be interpreted as the mean number of

offspring produced by individuals whose genotype is ij, from the beginning to the end of the

current generation, where every successful gamete counts for half an offspring. Ewens (1989)

interprets wij as a measure of viability, while Lessard (1997) suggests a broader definition

that also encompasses fecundity differences. The frequency of allele Gi is pi =
∑
j Pij , but

it is not assumed that Pij = pipj . The frequency of allele Gi in the new generation is

p′i =
∑
j Pijwij/w, where w =

∑
i,j Pijwij is the mean fitness of the population.

Rather than looking at the change in mean fitness w, the FTNS, as interpreted by

Ewens (1989), looks at something else. Suppose one were to choose α1, ..., αn such that

they minimize
∑
i,j Pij (wij − w − αi − αj)2. This may look a bit like a statistical exercise,

where the ‘true’fitnesses w+αi+αj are estimated by treating wij as noisy data, and treating

the differences between w + αi + αj and wij as i.i.d. draws from a random distribution

with expectation 0. What it really does, however, is assign a number αi to each allele Ai
that best represents that allele’s contribution to fitnesses in the current population; note

that wij is a fixed quantity, which is assumed to stay the same over generations, and not

a noisy observation, which would change with every draw. Being joined with allele Ai
might be good news for allele Ak, and bad news for Al, but on average, given the current

type frequencies, the effect of Ai is quantified by αi. Obviously, which α1, ..., αn minimizes∑
i,j Pij (wij − w − αi − αj)2 depends on the Pij’s.

Fisher’s FTNS, as interpreted by Ewens (1989), states that if we evaluate the change in

frequencies using w+αi +αj —and not wij —then this change equals the “additive genetic

variance”, divided by the mean fitness in the population. The additive genetic variance

is defined as σ2
A =

∑
i,j Pij (αi + αj)

2, and this is obviously non-negative, and only 0 in

equilibrium. In other words,

∑
i,j

(
P ′ij − Pij

)
(w + αi + αj) =

σ2
A

w
≥ 0. (2.1)

No assumption is made about how the alleles in the new generation are matched, as long

as the frequencies of genotypes in the new generation are consistent with the frequencies of

the alleles in the new generation, that is, as long as
∑
j P
′
ij = p′i.

Ewens (1989) and Price (1972b) convincingly argue that the claim is correct, but also

that the quantity that is shown to be larger than 0 is perhaps not that interesting to look

4 In Ewens (1989) the number of alleles is denoted by m. Since Hamilton already uses m for the number

of individuals affected by the social trait, we stick to using n for the number of alleles, as in Hamilton

(1964a). Also, alleles are denoted with A’s in Ewens (1989), but G’s in Hamilton (1964).
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at, because in the new generation, the old α’s no longer apply; if we repeat the minimizing

exercise for the new generation, we typically get a different set α′1, ..., α
′
n.

The interpretation of Lessard (1997) features two minimizations. The first one is the

same minimization as in Ewens (1989), which concerns fitnesses wij . The second minimiza-

tion concerns growth rates Wij , which are defined as Wij =
(
P ′ij
Pij

)
w. One of the results in

Lessard (1997) is that minimizing
∑
i,j Pij (wij − w − αi − αj)2 gives the same values for

α1, ..., αn as minimizing
∑
i,j Pij

(
Wij −W − αi − αj

)2
. BecauseWij and wij can very well

be unequal, the “residual addends”may also differ. With a mix of the notation in Lessard

(1997) and Ewens (1989), the residual addends are defined as δij = wij− w − αi − αj

and εij = Wij −W − αi − αj , both for all i, j (Lessard, 1997, immediately looks at the
multi-locus case, but since Hamilton, 1964, is a single locus model, here we translate back

to the single locus setup that Ewens, 1989, uses in his first two sections).

Fisher’s FTNS, as interpreted by Lessard (1997), does concern the change in frequencies

using wij —and not, as in Ewens’(1989) interpretation, w + αi + αj . Lessard (1997) gives

a decomposition of the change in average fitness that also allows for changes in wij (see

equation 38 on page 127 in Lessard, 1997). The vectors of effects in Hamilton (1964),

however, are constant, and therefore we will also consider constant wij’s, as also Ewens

(1989) does. This implies that Lessard’s decomposition has two remaining non-zero terms:

∑
i,j

(
P ′ij − Pij

)
wij =

σ2
A

w
+

∑
i,j Pijεijδij

w
. (2.2)

The first term on the right hand side of this equation is the same as the one term on the

right hand side of Equation (2.1), but now this reflects the change in average fitness due

to changes in frequencies, insofar as they can be accounted for by the effects of genotypes

as described by the parameters of the linear model. The FTNS is now interpreted as a

statement about this first term only. The total change in average fitness can of course

still be negative, if the second term on the right hand side is negative, and outweighs the

first (the second term is shortened to cov (ε, δ) /w in Lessard, 1997, which is justified by

the observation that
∑
i,j Pijδij =

∑
i,j Pijεij = 0, and by interpreting the frequencies as

probabilities in a random draw from the parent population).

The setup in Mulholland & Smith (1959), Scheuer & Mandel (1959) and Kingman

(1961a,b) is different. Here (ordered) genotypes at this locus are assumed to be in Hardy-

Weinberg proportions —it is assumed that Pij = pipj and P ′ij = p′ip
′
j —and these papers

show that

∑
i,j

(
p′ip
′
j − pipj

)
wij ≥ 0. (2.3)

Hamilton’s result is the social version of this latter result. If we take (δa1, ..., δam)ij such

that (δa1, ..., δam)ij = (δa1, 0, ..., 0)ij for all i and j —that is, if it reflects a trait with no
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effect on others —then R•ij reverts to being individual fitness, and can be interpreted as wij
in Mulholland & Smith (1959), Scheuer & Mandel (1959) and Kingman (1961a,b).

2.3 Fitness, reproductive value, and topics not covered

We restricted attention to the basic, discrete-time, multi-allele, single-locus model with

nonoverlapping generations. Ewens (1989) also includes a continuous time version, and a

discrete time, multi-locus version. Lessard (1997) is a multilocus model from the beginning,

and also includes both continuous and discrete time versions, both with and without over-

lapping generations. The reason why we restrict attention to the more basic version is that

this setup matches Hamilton’s (1964). It also makes the definition of fitness —the success

in leaving progeny (Darwin, 1956, p. 64) — uncomplicated; the fitness wij is the mean

number of offspring produced by individuals of genotype ij, one generation down the road.

This definition incorporates viability as well as fecundity differences, if we assume that

mating and reproduction do not change gene frequencies from the current generation at the

time of maturity to the next generation at the time of conception (for viability selection)

and if mating does not change gene frequencies in the current generation from the time of

conception to the time of reproduction, and if neither meiotic drive nor gametic selection

takes place (for fecundity selection); see Ewens (1989, 1992), Castilloux and Lessard (1995),

Lessard and Castilloux (1995), and Lessard (1997).

With more complicated, or more detailed models, the definition of fitness may require

more than just counting offspring. With haplodiploid organisms, males and females are

not the same in their expected future contribution to the population (Price, 1970, Oster et

al, 1977, Benford, 1978, Pamilo & Crozier, 1982, Frank, 1986, Grafen, 1986, Taylor, 1988).

Helping someone get an extra offspring in the further away future may not be the same as

helping someone get extra offspring now (Fisher, 1930, Leslie, 1948, Charlesworth, 1980).

An offspring on one node in a network may not contribute to future generations in the

same way as an offspring on another node in a heterogeneous network does (Maciejewski,

2014, Taylor & Maciejewski, 2014). All of these examples can be encompassed by defining

different classes of individuals (by sex, age, or position in the network, for instance) and by

using this class-structured populations to define class-specific reproductive values to replace

fitnesses (Taylor, 1990, Grafen, 2006, Barton & Etheridge, 2011).

In the remainder of this paper we will consider models that are all symmetric, and

for which there is a degenerate class structure, with one class only. Therefore we cannot

benefit from the richness that using richer class structures would allow for. Also there is

no need to distinguish between fitness and reproductive value. Such a simple setup comes

with restrictions on the species and phenomena that can be modeled. One of the most

interesting phenomena in social evolution is eusociality. Symmetric models like the ones we

will see in the following sections are hardly appropriate to approach the question when and

why eusociality will evolve and be maintained. Also the question which sex ratios to expect
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requires different models. In this paper we will therefore not discuss some of the most

interesting topics from the literature in the last 50 years. This implies that we will also not

discuss the eusociality part of Nowak, Tarnita & Wilson (2010), and only pay attention to

how costs and benefits are defined in part A of their Supplementary Information, which

contains a model setup that is different from the model of eusociality in part C of their

Supplementary Information. Our setup therefore sidesteps the question whether or not

inclusive fitness helps understand eusociality. The symmetric setup nonetheless leaves us

with more than enough to explore, and allows us to answer interesting questions concerning

the generality of Hamilton’s rule.
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3 Replicator dynamics

In this section we consider the replicator dynamics combined with population structure. We also

discuss the “counterfactual method”, which defines costs and benefits by comparing fitnesses under

one behaviour to what they would have been under the alternative behaviour. This approach was

suggested in Karlin & Matessi (1983). With their method, the inclusive fitness of cooperation is

not necessarily minus the inclusive fitness of defection, but using a natural, improved version of

their approach, consistency is restored. With costs and benefits according to the counterfactual

method, we find that in order for Hamilton’s rule to agree with the direction of selection, the fitness

effects need to satisfy “equal gains from switching”.

Hamilton (1964b) conjectured that his rule would also be valid outside the confines of his

model. In this section we will look at the replicator dynamics as an alternative model.

The replicator dynamics are haploid, while Hamilton’s model was diploid, but this choice

nonetheless connects relatively naturally with what we found in Section 2. There we have

seen that in order to make Hamilton’s central result imply that individuals will behave

as if they all maximize their inclusive fitness —and not just that average inclusive fitness

is maximized — we need to make extra assumptions. These extra assumptions restrict

heterozygote inclusive fitnesses, and they imply that all that matters for the outcome of

the dynamics is how homozygote inclusive fitnesses compare. The outcome of the dynamics

under these extra assumptions therefore is not sensitive to a change from a diploid to a

haploid model, where the genotypes are the homozygotes. A considerable share of the

inclusive fitness literature on cooperation moreover also uses haploid models.

3.1 2-player games

Hamilton describes his intuition in a 1963 prequel in the American Naturalist as follows:

As a simple but admittedly crude model we may imagine a pair of genes g

and G such that G tends to cause some kind of altruistic behaviour while g is

null. Despite the principle of ‘survival of the fittest’the ultimate criterion which

determines whether G will spread or not is not whether it is to the benefit of

the behaver but whether or not it is to the benefit of the gene G; and this will

be the case if the average net result of the behavior is to add to the gene-pool a

handful of genes containing G in higher concentration than does the gene-pool

itself. With altruism this will happen only if the affected individual is a relative

of the altruist, therefore having an increased chance of carrying the gene, and

if the advantage conferred is large enough [...].

The setup in Hamilton (1964a) is one that follows this intuition, and therefore he formulates

the problem in terms of what economists would call an “individual choice problem”. The

gene G causes its bearer to give up c in order for its relative (sibling, nephew, niece) to
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gain b. All that matters is what happens, on average, to the frequency of copies of G, and

all we need to compare is the loss to the donor and the relatedness-weighted benefit to the

recipient.

The model setup in Hamilton (1964a, page 2) is “particularly adapted to deal with

interactions between relatives of the same generation”. Obviously, between any pair of

same-generation relatives, both of them have both roles; both are a possible donor as well

as a possible receiver. It is therefore very natural to think of a population of pairs, in which

every pair is playing a game. With both of them choosing between giving and not giving,

and with benefits being larger than costs, the game they are playing becomes a prisoners’

dilemma. Because there are more possibilities in games between pairs of individuals than

just prisoners’ dilemmas, we will mention all typical cases. We will also use a way of

picturing games that is more common in economics than it is in biology.

In Hamilton (1964a), costs and benefits are additions and subtractions to a basic fitness

of 1. That implies that the game between two possible donors is given by the following

matrix.

g G

g 1 1 + b

G 1− c 1 + b− c

The numbers in this matrix are the fitnesses of an individual that has the genotype that is

indicated in the column to the left of the matrix, when facing the genotype that is indicated

in the row above the matrix. In the replicator dynamics, fitnesses are rates of increase (or

decrease). Following the custom in classical (not evolutionary) game theory, where games

are typically not assumed to be symmetric, we could complement the entries in the matrix

by also indicating what the opponent gets. With the assumption of symmetry, this is

redundant information —we could infer that from the first matrix already — but it will

useful in rendering the game graphically.

g G

g 1, 1 1 + b, 1− c
G 1− c, 1 + b 1 + b− c, 1 + b− c

In Fig. 1 below, we chose c = 1 and b = 3, and plotted all four payoff combinations from

the payoff matrix. Any two points between which only one player’s choice is different are

furthermore joined by a line; for instance the points (1, 1) and (1 + b, 1− c) are joined,
because the first corresponds to (g, g) and the second to (g,G).

In this section, and in Sections 5 and 6, we will use the terms “fitness” and “payoff”

interchangeably. As we will see in Section 7, that is not always OK; payoffs from a game

may translate to fitness effects in intricate ways. The replicator dynamics, however, assume
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that, even if interactions are not taking place in a well-mixed population, competition is

totally symmetric, and everyone competes with everyone else equally intensely. In Section

7 we will consider examples where the local interaction structure makes both competition

and cooperation local affairs. Here we assume that structure only affects who has the op-

portunity to cooperate with whom, while competition is a global affair, in which everyone’s

payoffs directly translate into fitnesses. This fits a situation with kin recognition relatively

well, where competition with those that are recognized as kin may very well be equally

intense as with those that are not recognized as kin.

Figure 1. Prisoners’dilemma with equal gains from switching. The four corners of

the lozenge reflect the payoffs to the players for the four possible combinations of strategies;

(g, g) for the left/down corner, (g,G) for the right/down corner, (G, g) for the left/up corner,

and (G,G) for the right/up corner. The solid lines connect outcomes in which player 1 is

always of the same type, and player 2 switches. The dashed lines connect outcomes in which

player 2 is always of the same type, and player 1 switches. Equal gains from switching is

sometimes also referred to as fitness effects being additive, and for the picture this implies

that the solid lines are parallel and equally long, and the dashed ones too.

The game above is described in Nowak & Sigmund (1990) as a prisoners’dilemma with

“equal gains from switching”(see also Wild & Traulsen, 2007). Equal gains from switching

means that the effect of switching between strategies on one’s own fitness as well as the

effect on the other’s fitness is independent of what the other individual does. Sometimes

this is also referred to as “additive fitness effects”. This is obviously the case in the above

game, because of the way it is constructed in the first place; it is a combination of two mir-

rored individual choice problems. However, not every prisoners’dilemma has this property.

Consider the following matrix of fitnesses.
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g G

g 1.5 4

G 0 3

In this game, the costs to oneself of switching from g to G are 1.5 if one is paired with a

g, and 1 if one is paired with a G. The benefits to the other are 2.5 when paired with a g

and 3 when paired with a G. This game therefore does not have equal gains from switching

(see Fig. 2).

Figure 2. Prisoners’ dilemma with unequal gains from switching, or non-

additive fitness effects. The four corners again reflect the payoffs to the players for

the four possible combinations of strategies; (g, g) for the left/down corner, (g,G) for the

right/down corner, (G, g) for the left/up corner, and (G,G) for the right/up corner.

Altogether different games are also possible between two players with two actions. The

following payoff matrix defines a stag hunt game.

g G

g 4 4

G 1 7

While the games above have only one pure Nash equilibrium, the stag hunt game has two

pure Nash equilibria —(g, g) and (G,G) —and one mixed equilibrium (see Fig. 3).
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Figure 3. Stag hunt game. The right/up corner represents the payoffs that players get

at (G,G), the lower point on the diagonal represents payoffs at (g, g), the bottom corner

represents (g,G), and the left corner (G, g).

Figure 4. Hawk dove game. The left/down corner represents the payoffs that players

get at (g, g), the higher up point on the diagonal represents payoffs at (G,G), the right

corner represents (g,G), and the up corner (G, g).
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The last type of game is the hawk-dove game, a.k.a. the snowdrift game.

g G

g 1 4

G 2 2.5

This game has no pure symmetric equilibria —only pure asymmetric ones. The only sym-

metric equilibrium is a mixed one (see Fig. 4).

3.2 Forming pairs

In order to illustrate how relatedness can feature in a natural way, we begin with a totally

unrealistic, but nonetheless instructive genetical system. Assume that parent pairs are

randomly formed from a very large pool in which the frequency of cooperators is p and

the frequency of defectors is (1− p) —we switch here from g and G to the more standard

notation of D for defect and C for cooperate. That means that a fraction p2 of the parent

pairs are both C, 2p (1− p) of the parent pairs are {C,D} pairs, and (1− p)2 of the parent

pairs are all D pairs. Assume that both parents are haploid, and that at reproduction,

every offspring has a 50% chance of inheriting the genotype of either parent. We assume

that all parent pairs produce two offspring, and we will consider those pairs of siblings.

Obviously all {C,C} parent pairs produce only C offspring, and all {D,D} parent pairs
produce only D offspring. A {C,D} parent pair has a 25% chance of producing two C’s, a

25% chance of producing two D’s and a 50% chance of producing one C and one D. That

means that all offspring pairs together occur in the following frequencies.

{D,D} : (1− p)2
+ 1

4 · 2p (1− p) = 1
2 (1− p)2

+ 1
2 (1− p)

{C,D} : 1
2 · 2p (1− p) = 1

2 · 2p (1− p) + 1
2 · 0

{C,C} : p2 + 1
4 · 2p (1− p) = 1

2p
2 + 1

2p

Well mixed (r	=	0) 25%	 	 				50%	 	 					25%	

Full sibs (r	=	0.5) 37.5%	 	 				25%	 	 				37.5%

Clones (r	=	1) 50%	 	 					0%	 	 						50%

Figure 5. Three population structures. In all populations the overall frequency of

both defectors (red) and cooperators (blue) is 50%, but relatednesses are different.
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If pairs were the result of random matching —as the parent pairs are —then the frequencies

would be (1− p)2, 2p (1− p), and p2, respectively. If the pairs were pairs of clones, on

the other hand, then the frequencies would be 1 − p, 0, and p, respectively. Because the

frequencies of the sibling pairs are exactly halfway between those, it makes perfect sense

that relatedness in this case should also be halfway between 0 and 1. It also makes perfect

sense to generalize the frequencies of pair types, using an assortment parameter α:

{D,D} : (1− α) (1− p)2
+ α (1− p)

{C,D} : (1− α) · 2p (1− p)
{C,C} : (1− α) p2 + αp

At α = 0 we get the pair frequencies that random matching would give, at α = 1 the pair

frequencies of clonal pairs, both with a frequency of C’s that is p. In other words, for a

given frequency p, the higher α is, the fewer {C,D} pairs, and the more {D,D} and {C,C}
pairs.

The above description gives pair types as a function of frequency p and assortment

parameter α. We would however also like to be able to start at the other end, with pair

frequencies, and work our way back to p and a measure of assortment or relatedness. This

can be done in an easy and intuitive way too. Denote the frequency of {D,D}-groups,
that is, groups with 0 cooperators, by f0, denote the frequency of {C,D}-groups by f1,

and denote the frequency of {C,C}-groups by f2. The frequency p of C’s in the overall

population is then recovered in an obvious way; p = 1
2f1 + f2. Let P (C|C) furthermore

denote the probability of facing a C if you are a C yourself. That probability equals the

share of cooperators in the population that are facing another cooperator, divided by the

share of all cooperators in the population. In other words,

P (C|C) =
2f2

2f2 + f1
=
f2

p

Let P (C|D) denote the probability of being paired with a C if you are a D yourself. That

probability equals the share of defectors in the population that are facing a cooperator,

divided by the share of all defectors in the population;

P (C|D) =
f1

f1 + 2f0
=

f1

2 (1− p)

If we define relatedness as the difference between those two conditional probabilities, then we

recover the assortment parameter α; r = P (C|C)−P (C|D) = f2
p −

f1
2(1−p) =

2((1−α)p2+αp)
2p −

(1−α)·2p(1−p)
2(1−p) = (1− α) p+α−(1− α) p = α. This property of a population structure is the

definition of relatedness that we will use throughout the paper, although at some points we

will use equivalent definitions to compute it.
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General: f0 f1 f2

Figure 6. General population structure.

In order to illustrate that all combinations of frequencies f0, f1, and f2 define one combina-

tion of p and r and vice versa, we draw a simplex (see Fig. 7). The proportions f0, f1, and

f2 have to add up to 1, and every point on the simplex represents a vector (f0, f1, f2) with

f0 ≥ 0, f1 ≥ 0, f2 ≥ 0 and f0 + f1 + f2 = 1. The corners of the simplex are (1, 0, 0), (0, 1, 0)

and (0, 0, 1). Note that on this simplex, straight vertical lines are population states with

constant frequency p, and the curves from the left down corner to the right down corner

are lines of constant relatedness. Any such line, with constant relatedness r ∈ [0, 1], has to

go through the corners where p = 0 and p = 1. The straight line on the bottom side of the

simplex reflects r = 1, as any population on that line has no mixed groups, and only groups

with two D’s or two C’s —so P (C|C) = 1 and P (C|D) = 0. The higher up the curve is,

the more mixed groups there are, and the lower relatedness is. The curve for r = 0 follows

the shares of the group types that the binomial distribution with probability p would give.

In the setting of Hamilton’s paper, it is natural to assume that relatedness does not

change with frequency p. The production of pairs of full siblings for instance simply imposes

that relatedness is 0.5, whatever the frequency p of a gene is (the example at the very

beginning of Section 3.2 indicates how that works). One could imagine that perhaps there

are population structures for which this may not be the case, and where r varies with

p, but here we will stick to population structures with a fixed and constant r, which fits

Hamilton’s setup perfectly.

For a given r we know for every frequency p how many groups of the three types

there are. With those, and the game payoffs, we can compute the average payoffs of both

strategies. The replicator dynamics (Taylor & Jonker, 1978) is a natural way to translate

that into a differential equation; the time-derivative of the frequency of cooperators p is p

times the difference between the average payoff of cooperators and the average payoff in

the population as a whole:

ṗ = p
(
πC − π

)
(3.1)

= p (1− p) (πC − πD)

It turns out that with relatedness r and payoff matrix A, the change in frequency is the
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same as it is in the replicator dynamics without population structure, but then with a

transformed payoff matrix; A′ = rB + (1− r)A, where [B]ij = [A]ii, that is, B is a matrix

where all elements on row i are the same as the i’th diagonal element of the matrix A (Van

Veelen, 2011b).

Figure 7. The simplex with equal gains from switching. The threshold (green line)

for the game from Figure 1 is at r = 1
3 . The blue lines are trajectories for r = 0 (top, well

mixed population), and r = 2
3 (down). The bottom of the simplex reflects population states

with r = 1 (clones). The corners represent population states with only {D,D}-groups (left
bottom), only {C,C}-groups (right bottom) and only {C,D}-groups (top).

Fig. 7 illustrates how Hamilton’s rule now shows up nicely on the simplex. For any game, we

can divide the simplex up into two parts; one where the frequency of cooperators increases,

and one where it decreases. For a given prisoners’dilemma with equal gains from switching,

the line that separates the plus-region from the minus-region has the exact same shape as a

line with constant r. This implies that with a given r, either the population state is always

below this line —that is: it has a higher relatedness than the threshold relatedness —or it

is always above it. Therefore, if cooperation is selected for one frequency, it is selected for

all; trajectories go to one corner of the simplex, irrespective of the starting point on the

constant r-curve. Which corner that is, is given by Hamilton’s rule.

Without equal gains from switching, the shape of the line that separates the plus-region

from the minus-region no longer has the same shape as a line with constant r, and therefore

they may intersect. That implies that it is possible that either the dynamics do not converge

to a corner, or that they do, but that it depends on the starting point which corner that is.
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In other words, we could get stable coexistence —as is typical in hawk-dove games already

at r = 0 —or bistability —which is typical in stag hunt or coordination games already at

r = 0.

Figure 8. (a) Hawk dove and (b) stag hunt. The green lines separate the plus-

regions, where cooperator frequencies increase, from the minus-regions, where cooperator

frequencies decrease, for the games from Figure 4 and 3, respectively. Since the green line

does not have the same shape as the constant r-arcs (the blue lines) there is a range of r’s

for which we either get coexistence (a) or bistability (b).

In Hamilton’s original setup, as well as in the case of equal gains, costs, benefits, and

relatedness are fixed quantities, and they combine to a rule that predicts the direction of

selection for any current frequency. That is no longer possible, if the direction of selection

changes at the intersection of the threshold (the green curves in Fig. 8) and a line with

constant r (the blue curves in Fig. 8).

In their evaluation of Hamilton’s rule — or, as they called it “the Hamilton rule” —

Karlin & Matessi (1983) and Matessi & Karlin (1984, 1986) require costs and benefits to

be independent of the “kin-group structure”, which in their case implies that it must also

be independent of the current frequency of cooperators. We can, however, choose to allow

benefits b and costs c to change with the population state, and treat Hamilton’s rule not

as a global prediction for the success of a cooperative mutant, but as a local criterion, that

may depend on the frequency p of cooperators.

3.2.1 Costs, benefits, and counterfactuals

As we will see, whether or not Hamilton’s rule applies, depends on how b and c are defined.

Below we consider the definition according to the counterfactual method, as used by Karlin

& Matessi (1983) and Matessi & Karlin (1984, 1986). In Section 4 we will describe the

definition according to the regression method, as used by Gardner et al. (2011), along with
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their application to the same example. We will use standard notation for entries in the

payoff matrix.

D C

D P T

C S R

Cooperators only In order to compute the costs and benefits of cooperation, we can go

over all cooperators in the population and compare their current fitness to what their fitness

would have been, had they defected. For those that are matched with another cooperator,

this difference is T −R. For those that are matched with a defector, this difference is P −S.
If we weigh those differences with how many cooperators are matched with cooperators and

how many with defectors, we find the average cost of cooperating instead of defecting to be

c = (r + (1− r) p) (T −R) + (1− r) (1− p) (P − S) .

Similarly, if we go over all cooperators again, and now compare the fitness of their interaction

partner to what their interaction partner’s fitnesses would have been, had they themselves

defected, we find the average benefits to their interaction partner to be

b = (r + (1− r) p) (R− S) + (1− r) (1− p) (T − P ) .

The criterion for C-players to win at frequency p is πC − πD > 0. If we rewrite that, we

find:

(r + (1− r) p)R+ (1− r) (1− p)S > (r + (1− r) (1− p))P + (1− r) pT (3.2)

r ((1− p) (R− S)) + pR+ (1− p)S > rp (P − T ) + (1− p)P + pT

r ((1− p) (R− S) + p (T − P )) > p (T −R) + (1− p) (P − S) .

This criterion is not the same as rb > c if we use the b and c as we just computed them,

unless P +R = T + S, that is, unless the game satisfies equal gains from switching.

One property that costs and benefits should have, however, is that the cost of coop-

erating should be minus the cost of defecting, and the benefits of cooperating should be

minus the benefits of defecting. In other words, it should not matter whether we take the

benchmark to be cooperation or defection. This, however, is not the case for the defini-

tion used by Karlin & Matessi (1983) and Matessi & Karlin (1984, 1986), already for this

simple example. If we switch to having cooperation as the benchmark, and compute the

costs and benefits of defection, we find c = (1− r) p (R− T ) + (r + (1− r) (1− p)) (S − P )

and b = (1− r) p (S −R) + (r + (1− r) (1− p)) (P − T ), which are not minus the c and b
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we found when defection was the benchmark. The following alternative definition is not

sensitive to the benchmark, and therefore this is the one we will use in the remainder of

the paper.

Cooperators and defectors In their computation of costs and benefits, Karlin &Matessi

(1983) and Matessi & Karlin (1984, 1986) only consider those that actually cooperate. Al-

ternatively, one could consider not only the cooperators, but all individuals in the popu-

lation, since every individual had the opportunity either to cooperate, or to defect. For

all individuals facing a cooperator, the difference in their own fitness between cooperation

and defection is T − R. For all individuals facing a defector, this difference is P − S. The
difference to their interaction partner’s fitness is R−S, if their partner is a cooperator, and
T − P if their partner is a defector. Since p is the share of cooperators, p is also the share

of individuals that is matched with one. Average costs and benefits therefore are:

c = p (T −R) + (1− p) (P − S) (3.3)

b = p (R− S) + (1− p) (T − P ) .

Also with this b and c, Hamilton’s rule does not match the criterion for the frequency

of cooperators to increase, again unless we have equal gains from switching. If indeed

P + R = T + S, then these two definitions using counterfactuals, as well as the regression

method definition from Gardner et al. (2011), all coincide.

3.3 Interactions between more than two individuals

Besides dyadic interactions, there are also interactions that take place between more than

two individuals. In humans, there are football teams and orchestras, corporations and

armies. Also eusocial insects and cells cooperate in large to astronomical numbers.

With more than two players, it could still be that the costs and benefits of one individ-

ual’s possible cooperation are independent from what the others do, so that a generalized

version of equal gains from switching holds. In this case, average costs and benefits are not

frequency dependent, and all three definitions of b and c coincide. One would expect that

inclusive fitness will therefore agree with the prediction again —and it does. Theorem 5

in Van Veelen (2011b) claims even more. With “generalized equal gains from switching”

not only the sign of inclusive fitness matters, but also the absolute value; inclusive fitness

becomes a parameter in the replicator equation, and not only determines the direction of

selection, but also the speed. A simple example of an “n-player game”with equal gains

from switching involves n individuals living in a group, where their living in a group implies

that every so often they get paired with another individual from the same group to play a

prisoners’dilemma with equal gains from switching. Or, even simpler, every so often one

gets the opportunity to give the other benefit b at cost c to itself.
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Many games of cooperation do not have (generalized) equal gains from switching though.

In football teams and orchestras team performance might be as good as the weakest link.

When going to war with a neighbouring tribe, whether or not I contribute may not make

much of a difference if everybody else already does —in which case we will win anyway —

or if nobody does — in which case we lose anyway. Only if there is a fair chance that I

might tip the balance, are there benefits to be gained from my switching from defection to

cooperation.

A general, symmetric n-player game with 2 strategies is determined by its 2n payoffs;

symmetry implies that no one individual is special, so payoffs only depend on how many

cooperators there are in a group, and whether or not one is a cooperator or a defector

oneself. Payoffs therefore can be denoted by πi,C for i = 1, ..., n and πi,D for i = 0, ..., n−1.

The first —πi,C —is the payoff of a cooperator in a group with i cooperators, including itself.

The second —πi,D —is the payoff of a defector in a group with i cooperators. Together this

amounts to 2n parameters that can be chosen freely.

The population structure is determined by f0, ..., fn, where fi is the frequency of groups

with i cooperators and n − i defectors. Because these have to add up to 1, there are only

n, and not n + 1 degrees of freedom. With n = 2 these group frequencies are uniquely

determined by r and p; any choice for r and p comes with one unique combination of

f0, f1 and f2, and any combination of f0, f1 and f2 that adds up to 1 implies one unique

combination of r and p (see Section 3.2). With n > 2 that is no longer true. Because

the space of population states has dimension n, there is a multitude of possible population

states that are consistent with the same value for r and p (see Fig. 9) and in some the

average payoff of cooperators might be higher than that of defectors, and in others the

defectors might have a higher average payoff.

If we just look at what one could describe as the most basic criterion —whether coop-

erators have a higher fitness than defectors —then all of those parameters enter there. The

average payoff to a cooperator is

πC =

n∑
i=1

i · fi · πi,C

np
.

Similarly, the average payoff to a defector is

πD =

n−1∑
i=0

(n− i) · fi · πi,D

n (1− p) .

The fully general criterion πC > πD will therefore always involve all of the fi’s. Generalized

equal gains from switching puts a restriction on the admissible games. Suppose all payoffs

are defined as follows: πi,C = 1 + ib− c and πi,D = 1 + ib. Now all payoffs are functions of
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two parameters only, and the game satisfies equal gains from switching. Substituting the

payoffs into the above equations, we see that πC > πD if and only if rb > c, where net

aggregate benefits b are given by b = (n− 1) b and net costs c by c = c− b.

Well mixed (r	=	0) 1/8 3/8 3/8 1/8

Not well mixed, but also r	=	0	 0 3/4 0 1/4

Full sibs (r	=	0.5) 5/16 3/16 3/16 5/16

Not full sibs, but also r	=	0.5 1/4 3/8 0 3/8

Figure 9. Population structures with n = 3. The table gives values for f0, f1, f2 and

f3.

Without the restriction to games that satisfy equal gains from switching, knowing related-

ness r may not be enough to determine whether cooperation gets selected. The Rock Band

game illustrates this. Suppose a band only sounds good if all three players have rehearsed.

If the band sounds good, then all players get a payoff of 2 from it. Rehearsing comes at a

personal cost to the individual of 1. Payoffs to each band member therefore are πi,C = −1

if i = 1 or 2, πi,C = +1 if i = 3, and πi,D = 0 for all i. For this game, the criterion

πC > πD can be rewritten as f3
p > 1

2 . From Fig. 9 we can conclude that in the case of

siblings, cooperators will be selected for at p = 0.5, because at that frequency f3
p = 5

8 >
1
2 .

For the last population state in Fig. 9, on the other hand, cooperation is selected against

—because f3
p = 3

8 <
1
2 —even though it has both also a relatedness of r = 0.5 and also a

frequency of cooperators of p = 0.5.

If we use the Karlin and Matessi counterfactual method of calculating costs and benefits,

and only consider cooperators, we arrive at average costs of (f1 + 2f2 − 3f3) /3p and average

benefits of 2f3/p. If, instead, we consider all individuals, average costs are f0 +f1 + 1
3f2−f3

and average benefits are 2f3 + 2
3f2. Neither of these choices make Hamilton’s rule work

here.
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Figure 10. The rock band game. (a) The payoffs of the game and (b) the 3D simplex

for the game. A point in this simplex represents a population state (f0, f1, f2, f3), with

f0 + f1 + f2 + f3 = 1 and 0 ≤ fi ≤ 1 for i = 0, 1, 2, 3. The vertex closest to us is f0 = 1,

the rightmost vertex is f3 = 1, the leftmost vertex is f1 = 1 and the top vertex is f2 = 1.

The surface that separates the plus-region from the minus region (green) does not have the

same shape as a constant-r surface (blue; r = 1
4 ). All constant-r surfaces stretch from the

vertex (1, 0, 0, 0), where the frequency of cooperators is 0, to the vertex (0, 0, 0, 1), where

the frequency of cooperators is 1.

Karlin & Matessi (1983) and Matessi & Karlin (1984, 1986) find that in order for Hamilton’s

rule to be qualitatively valid, the fitness functions for cooperators and defectors need to

be parallel linear functions, which they find is only true if the game satisfies what we

call (generalized) equal gains from switching (Matessi & Karlin, 1986, page 697). Their

interpretation of Hamilton’s rule is that it is a global criterion, and independent of the

current frequency p. Both the 2-player and the 3-player cases that we discussed show that

the same restriction applies also if we allow Hamilton’s rule to be a local criterion, where

costs and benefits are allowed to vary with p, provided that we stick to the definition of costs

and benefits using counterfactuals. At the end of Section 4, we will revisit these examples,

this time using the definition of costs and benefits that follow from the regression method

(Gardner et al., 2011).

In the literature, there are many papers about n-player games that do not satisfy equal

gains from switching; for example Zheng et al., 2007, Milinski et al., 2008, Kurokawa &

Ihara, 2009, Pacheco et al., 2009, Souza et al., 2009, Wang et al., 2009, van Veelen, 2009,

2011a,b, Archetti & Scheuring, 2010, 2011, Gokhale & Traulsen, 2010, 2011, Santos &

Pacheco, 2011, van Veelen & Nowak, 2012.
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4 The regression method

In this section we will discuss the “regression method”for defining costs and benefits, and we derive

the result that, with costs and benefits defined according to this method, Hamilton’s rule always

holds. The starting point for this result, however, is that we already have chosen a specification

for the regression, and that this specification is linear. What the costs and benefits are therefore

is not necessarily uniquely defined, and may, for one and the same model (or dataset) differ across

alternative linear specifications. For the regression method to be well-defined for all possible models

(or datasets) it would therefore need to be combined with a method for choosing between different

specifications. Subsequently, whatever criterion one would use for choosing one linear specification

over another should also be used to choose between linear and non-linear specifications, or between

different non-linear ones. We therefore argue that Hamilton’s rule, using the regression method,

cannot both always be uniquely defined, and generally valid. The general validity depends crucially

on the specification being linear, while any criterion that one would use for choosing between

different linear specifications will immediately imply that there will also be models, or datasets,

where the same criterion will rule in favour of a non-linear specification.

The regression method, as employed in Queller (1992a,b), Gardner et al. (2011), West &

Gardner (2013), Marshall (2011, 2015) and Rousset (2015) is the basis for the result that

Hamilton’s rule always holds, provided that we interpret the regression coeffi cients that the

method implies as the benefits and costs in Hamilton’s rule. The difference in opinion on

the generality of Hamilton’s rule results from a disagreement on whether interpreting the

regression coeffi cients as costs and benefits is justified (Okasha, 2016, Okasha & Martens,

2016a,b, see also Birch, 2014, and Birch & Okasha, 2014). Because the regression method is

central to the claim of generality, and because the interpretation of the regression coeffi cients

as costs and benefits is central to the disagreement (see also Allen et al. 2013), it is

worthwhile to discuss the regression method in detail. Moreover, whether one agrees or

disagrees with that interpretation, in any case it is useful to have a formal derivation of the

result itself at hand.

The name “regression method” suggests a link with statistics, and the computation

of the regression coeffi cients is indeed the same as in standard statistical exercises, or at

least very similar. There is however a significant difference. More often than not, the

regression method is applied to theoretical models, computing benefits and costs for a

given fitness function and, possibly, a given state of the population. This implies that the

true model is known. Also the statement that Hamilton’s rule always holds is a claim in

the theory domain; it states that whatever the true theoretical model is, the regression

method will always return costs and benefits such that Hamilton’s rule agrees with the

direction of selection. That is an exercise that is fundamentally different from statistics,

where regressions are applied to data in order to uncover an unknown model that generated

those data. In statistics, regressions therefore are inevitably combined with statistical tests.
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The result that is the basis for the use of regressions in statistics is the Gauss-Markov

theorem. This theorem states that the parameter estimates (which is how the regression

coeffi cients are interpreted here) that result from applying an (ordinary least squares) re-

gression have desirable properties, such as being unbiased, and having minimum variance

among all unbiased estimators. The trueness of the theorem however does depend on as-

sumptions concerning the distribution of the noise term, and on the assumption that the

model specification is correct. If the true model is different from the specification chosen,

then the regression coeffi cients are typically no longer unbiased estimates of the parameters

they are meant to estimate. Statistical tests are concerned with the model specification

part, and they try to find out if the data are not at odds with the specification that is

chosen, and with the assumptions about the noise term. A statistical exercise therefore

combines finding the correct model specification on the one hand with regressions that

estimate model parameters given that specification on the other.

The “regression method” has taken the recipe for estimating parameters out of its

statistical domain, and applies it, mostly, to theoretical models. That means that the

rationale for using regressions in statistics (the Gauss-Markov theorem) no longer applies.

Actually, the regression method is typically applied when the known model is different from

the specification chosen for the regression method, for instance because the true model is

non-linear, while the specification for the regression method is linear. The interpretation of

the regression coeffi cients therefore cannot be the same as their interpretation in statistics.

The regression method is silent about the choice of a specification, and we will see that

this presents us with a problem. Below we will derive the claim that Hamilton’s rule always

holds. After the formal derivation, we will point to the fact that the claim of generality

is true, whichever linear specification is chosen (and provided that the regression does not

lead to an underdetermined system of equations; see Allen & Nowak, 2015). The result

therefore implies that Hamilton’s rule holds just as much for costs and benefits that follow

from one linear specification as it does for costs and benefits that follow from another.

This in turn implies that there is a specification issue that needs resolving in order for

Hamilton’s rule to be uniquely defined; if we do not solve the specification issue, we can

have multiple Hamilton’s rules, with differing costs and benefits. We will argue that any

sensible criteria that one would use for choosing one linear specification over the other

immediately imply that there are also cases where the same criteria will decide in favour of

non-linear specifications and against linear ones. This then undermines the general validity

of Hamilton’s rule, which requires the specification to be linear.

4.1 One variable

Because the regression method is a general approach, that can be applied to populations

with a discrete distribution of traits as well as populations with a continuous distribution

of traits, we will use probability measures to describe population states. This subsumes
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continuous probability densities as well as discrete probability measures. A probability

measure µ will reflect the distribution of trait values at time 0, or in the parent population,

and gives probabilities with which a randomly drawn individual from that population has

certain trait values. In the case that the trait distribution takes on a discrete set of values

x1, ..., xn, with corresponding frequencies p1, ..., pn, the probability measure µ will be a

point measure, where µ (xi) = pi. In particular, if x1, ..., xN are distinct trait values in the

parent population, each occuring once, then µ (xi) = 1
N for each i. In most applications

of the regression method, this represents a population state in a theoretical model. It is

however also possible to have the probability distribution represent the parent population

in a dataset, in which case the probability measure will automatically be discrete.

Besides a probability measure µ, we have a function f : S→R+
0 . This S is the set of trait

values, and f is integrable with respect to µ. This function typically reflects how reproduc-

tion depends on x in a model, but it could also reflect realized reproduction in a dataset.

The population state after reproduction can be written as a new probability measure λ,

which just reflects what one round of reproduction according to fitness function f does to

the distribution of trait values in the population starting at µ; λ (T ) =
∫
T
f (x) dµ/

∫
fdµ

for any measurable set T . Dividing by
∫
fdµ normalizes the new probability measure, so

that it integrates to 1 again. Sometimes a function f is constructed so that
∫
fdµ = 1 by

definition, but normalizing has the same effect.

Together, µ and f contain all the relevant information about a transition from one

generation to the other. In a theory model f is a fitness function, that determines what the

next generation will be like, if the current is µ. In an empirical exercise, µ and f together

represent a dataset, where µ represents the parent generation, and f and µ together make λ,

which represents the offspring generation. Even though µ and f are perfectly informative,

one might still want to replace f with a polynomial, without affecting certain characteristics

of the transition. For this polynomial with degree n we write gn (x) = a0 +a1x+ ...+anx
n.

Suppose furthermore that the coeffi cients a0, ..., an are chosen so that they minimize the

squared difference between f and gn:

min
a0,...,an

∫
(f − gn)

2
dµ.

The first order conditions —setting the derivatives w.r.t. ai, i = 0, ..., n equal to 0 —imply

that: ∫
xifdµ =

∫
xigndµ, i = 0, ..., n. (4.1)

The first two of these n+ 1 conditions —the ones for i = 0 and i = 1 —imply that we can

replace f with gn without affecting the change in average x —of course assuming that n ≥ 1
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∫
xfdµ∫
fdµ

−
∫
xdµ =

∫
xgndµ∫
gndµ

−
∫
xdµ. (4.2)

In other words, one can replace f by any polynomial of degree 1 or higher, without affecting

the change in average x, if we choose the polynomial coeffi cients so that they minimize the

squared difference. If one would want to replace f by a polynomial of the lowest possible

degree and preserve this property, it is enough to take n = 1.

If we do indeed choose n = 1, then that implies∫
fdµ = a0 + a1

∫
xdµ ⇒ a0 =

∫
fdµ− a1

∫
xdµ (4.3)

and ∫
xfdµ = a0

∫
xdµ+ a1

∫
x2dµ (4.4)

⇒
∫
xfdµ =

(∫
fdµ− a1

∫
xdµ

)∫
xdµ+ a1

∫
x2dµ

⇒ a1 =
Cov (X, f)

V ar (X)
.

Moreover, we can use (4.4) and (4.3) to rewrite the condition for the change in average x

to be positive5 : ∫
xfdµ∫
fdµ

−
∫
xdµ > 0 ⇔ a1 > 0 (4.5)

Summarizing, we found that one can replace f (x) by g1 (x) = a0+a1x without consequences

for the change in average x, provided that we choose a0 and a1 such that they minimize∫
(f − g1)

2
dµ. Moreover, the average x goes up if and only if a1 > 0. It might be useful

to also mention that the function g1 is not a local linearization of f .

4.2 Two variables

For considering cases with two relevant trait values, let µ be a probability measure on

R2. These two quantities can be thought of as values for two different traits, which will

be useful as a reference. They can also be interpreted as values of the same trait, the

first representing the trait value that the agent itself has, the second representing the trait

5One can use (4.4) to rewrite
∫
xfdµ1∫
fdµ1

−
∫
xdµ1 > 0 as a0

∫
xdµ1+a1

∫
x2dµ1∫

fdµ1
−
∫
xdµ1 > 0. With (4.3),

this can be rewritten as (
∫
fdµ1−a1

∫
xdµ1)

∫
xdµ1+a1

∫
x2dµ1∫

fdµ1
−
∫
xdµ1 > 0, or

a1(
∫
x2dµ1−(

∫
xdµ1)

2)∫
fdµ1

> 0.

This is true if and only if a1 > 0.
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value of its interaction partner. The second interpretation will lead to the first version of

Hamilton’s rule.

Let f be a function on R2. In the first interpretation, where the two variables represent

different traits in the same individual, this induces a probability measure λ, representing

the distribution of the two traits in the next generation in the same way as it did with

one variable; λ (T ) =
∫
T
f (x, y) dµ/

∫
fdµ for any measurable set T in R2. In the sec-

ond interpretation, y does not represent a different trait within the same individual, but

the value of the same trait in another individual (the interaction partner), which is not

heritable. This fitness function f therefore only informs us about the distribution of x

in the next generation. We can use λx to denote the marginal probability measure that

represents this distribution; λx (T ) =
∫
T×R f (x, y) dµ/

∫
fdµ for any measurable set T in

R. If we would like to arrive at a complete description of the new generation, then more
information is required, or more assumptions need to be made. One possibility is that the

transition as a whole tracks a model, the assumptions of which imply a fitness function

f as well as how individuals are matched in every new generation. Another possibility is

that more straightforward assumptions about matching are made, which define, for every

distribution of traits x, what the according joint distribution of x and y is, for instance

reflecting interactions between siblings. For derivations of Hamilton’s rule, however, it is

enough to have the marginal probability distribution. Hamilton’s rule can perfectly well

pertain to one transition only, in which case the matchings in the next generation do not

matter.

Together, µ and f again contain all the relevant information about a transition from

one generation to the other, and again we will replace f with a function of degree 1, which

this time uses 2 variables: g (x, y) = a00 + a10x + a01y. Suppose that we minimize the

squared difference between f and g:

min
a00,a10,a01

∫
(f − g)

2
dµ

The first order conditions imply that∫
fdµ = a00 + a10

∫
xdµ+ a01

∫
ydµ (4.6)∫

xfdµ = a00

∫
xdµ+ a10

∫
x2dµ+ a01

∫
xydµ (4.7)∫

yfdµ = a00

∫
ydµ+ a10

∫
xydµ+ a01

∫
y2dµ (4.8)

It is possible that this system does not have a unique solution. That happens if the distri-

bution µ is such that any individual’s y value follows linearly from their x value. If µ puts

positive probabilities only on individuals with y = Ax + B, for constants A and B, then

there are infinitely many combinations a00, a10 and a01 that would produce one and the
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same function g (x, y). Therefore, if a given g (x, y) minimizes
∫

(f − g)
2
dµ, then so do

all equivalent choices for a00, a10 and a01. This naturally shows up in the first order condi-

tions; in this case (4.8) is equal to A times (4.7) plus B times (4.6). Equation (4.8) is then

redundant, leaving us with a system with 2 equations and 3 unknowns. One possible way

to arrive at such a situation is if the parent population consists of two (x, y)-combinations

only. We will return to this possibility in Section 4.5.6.

In the typical, and more interesting case where there is a unique solution to this system

of equations, we can use (4.7) and (4.6) to rewrite the change in average x

∫
xfdµ∫
fdµ

−
∫
xdµ =

a00

∫
xdµ+ a10

∫
x2dµ+ a01

∫
xydµ∫

fdµ

−
∫
xdµ (4.9)

=

(∫
fdµ− a10

∫
xdµ− a01

∫
ydµ

)∫
xdµ+ a10

∫
x2dµ+ a01

∫
xydµ∫

fdµ

−
∫
xdµ

=

a10

(∫
x2dµ−

(∫
xdµ

)2
)

+ a01

(∫
xydµ−

∫
ydµ

∫
xdµ

)
∫
fdµ

=

(
a10 +

Cov (X,Y )

V ar (X)
a01

)
V ar (X)∫

fdµ
.

If x and y represent different traits, then this equation captures the possibility that higher

values of x can be selected for, not because having a high value of x is fitness enhancing per

se, but because the covariance between the traits is high enough, and having a high trait

value of y is good for fitness. If we have a model where x is the genotype of the agent, and

y is the genotype of its interaction partner —sometimes also denoted as x′ rather than y

—then Cov(X,Y )
V ar(X) can be interpreted as the relatedness between interaction partners. If we

moreover interpret a10 and a01 as costs and benefits (c = −a10 and b = a01) then it follows

that Hamilton’s rule always holds. In other words,
∫
xfdµ/

∫
fdµ−

∫
xdµ > 0 if and only

if a10 + Cov(X,Y )
V ar(X) a01 > 0.6

In a model with two binary traits, where X = 1 if the agent is a cooperator, and

Y = 1 if its interaction partner is, Cov(X,Y )
V ar(X) = P (C|C) − P (C|D) = r.7 If µ and f would

represent data rather than a model, this quantity would be the sample covariance over

6One can also include the normalization in the b and c, and define c = −a10/
∫
fdµ1 and b = a01/

∫
fdµ1.

This is also what one gets if the normalization is done at the construction of f , that is, if we use f̂ =

f/
∫
fdµ1 instead of f . This is done in, amongst others, Gardner et al. (2011).

7P (C|C) − P (C|D) = E[XY ]
E[X] −

E[Y ]−E[XY ]
1−E[X] =

E[XY ]−E[X]E[Y ]
E[X]−E2[X] . With binary variables, E [X] = E

[
X2
]
,

so this equals Cov(X,Y )
V ar(X)

.
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the sample variance, which would amount to being an estimate of relatedness, rather than

being relatedness itself.

Notice that (4.8) is not actually used in the derivation. That implies that, even though

the regression method prescribes that we do minimize
∫

(f − g)
2
dµ with respect to all

three variables, we could actually have chosen any value for a01, minimized
∫

(f − g)
2
dµ

only with respect to a00 and a10, and have arrived at a Hamilton’s rule with the exact same

derivation. An alternative choice for a01 will typically lead to a alternative values for a00

and a10 too, and different choices for a01 would therefore come with different Hamilton’s

rules, with different b’s and c’s, that all still correctly reflect the direction of selection. One

particular alternative choice for a01 would be a01 = 0. In that case the model specification

would revert to the case with one variable, where we wrote a0 for a00 and a1 for a10.

Because specification issues are a recurrent theme, it may help to stress that if the true

model f would be a linear function of both x and y, a specification with x only would

not stop us from getting the direction of selection right, but will make us draw incorrect

conclusions. Suppose that f (x, y) = d00 + d10x + d01y with d10 < 0 and d01 > 0, and

suppose furthermore that f and µ combine in such a way that the average value of the first

trait increases;
∫
xfdµ/

∫
fdµ −

∫
xdµ > 0. If we then choose the specification from the

previous subsection, with one variable and g1 (x) = a0 + a1x, then minimizing the squared

difference between f and g would have to return a value a1 > 0, because the average

trait value has increased. One would — incorrectly —conclude from this choice of g that

having a high trait value itself is a good thing. If instead we use the specification from this

section, with g (x, y) = a00 + a10x+ a01y, we bring this integral all the way down to 0, and

find a00 = d00, a10 = d10, and a01 = d01 —provided that µ has suffi ciently rich support,

to avoid trivial cases. We would then conclude that having a higher trait value for x is

in fact not good (a10 < 0) but that it is selected anyway, because it covaries suffi ciently

much with y, and higher values of y are good (a01 > 0). Both specifications come with

Hamilton’s rules that indicate the direction of selection correctly; the first specification has

one with b = a1 > 0 and c = 0, and the second specification has one with b = a10 < 0 and

c = a01 > 0. Given that the second specification matches f perfectly, it makes perfect sense

to suggest that the first Hamilton’s rule is not the right one, even though it also matches

the direction of selection correctly, and that the second Hamilton’s rule is in fact the right

one. Here, with only two specifications to choose from, that is an obvious point to make.

In Sections 4.3 and 4.4 we will have a richer set of specifications to choose from. There we

will make the same point, which then may seem less immediately obvious.

The setup with a function f only allows for a fixed number of offspring to go with every

combination of x and y. This implies that in a theory model, this restricts attention to

models where the number of offspring is deterministic. Also, if the probability measure

represents a dataset, then this rules out the possibility of having multiple observations with

the same value of (x, y), but different numbers of offspring. In Appendix A we show that
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one can relax this restriction without changing the results. The arguments there also justify

using functions f that are not restricted to return integers.

4.2.1 More than one equally related interaction partner

The above conclusions hold also if there is not just one interaction partner, but if individuals

interact in groups of size k > 2. In that case we can take y to be the sum of trait values

of all k − 1 interaction partners. If we do, then Cov(X,Y )
V ar(X) amounts to k − 1 times the

relatedness between two individuals in the same group. One can still interpret a01 as the

per partner benefits. If we multiply this by the number of interaction partners —which is

k− 1 —then we could interpret that product as total benefits, and we again get Hamilton’s

rule; the change in average x is positive if rb− c > 0, where c = −a10, b = (k − 1) a01, and

r = 1
k−1

Cov(X,Y )
V ar(X) .

4.3 More than two variables, more than one Hamilton’s rule

The starting point in Hamilton (1964) is an array of fitness effects on individuals with dif-

ferent relatednesses to the agent. Thereby Hamilton’s model not only allows for behaviour

with effects on siblings or on cousins, but also on siblings and cousins at the same time. Also

elsewhere in the literature, behaviours are considered that simultaneously affect different

individuals that have distinct degrees of relatedness to the agent (see for instance Grafen,

2007b). This can be encompassed by allowing for more than two independent variables.

The first will then pertain to the agent, the second to the first type of interaction partner,

the third to the second type of interaction partner, and so on. We will therefore allow for

f to depend on m independent variables, and also consider functions g to do the same, but

moreover are linear: g (x1, ..., xm) = a0,...,0 + a1,0,...,0x1 + ... + a0,...,0,1xm. Suppose again

that we minimize the squared difference between f and g:

min
a0,...,0, a1,0,...0, ... , a0,...,0,1

∫
(f − g)

2
dµ

The first order conditions imply that

∫
x1fdµ∫
fdµ

−
∫
x1dµ =

(
a1,0,...,0 +

Cov (X1, X2)

V ar (X1)
a0,1,0,...,0 + ...+

Cov (X1, Xm)

V ar (X1)
a0,,...,0,1

)
V ar (X1)∫

fdµ

(4.10)

If we now interpret −a1,0,...,0 as the costs c of the behaviour to the agent, a0,1,0,...,0 up

to a0,...,0,1 as the benefits b2 to bm to differently related individuals, and Cov(X1,X2)
V ar(X1) up to

Cov(X1,Xm)
V ar(X1) as relatednesses r2 to rm to these different types of individuals, then, also in this

more general setup, it follows that Hamilton’s rule always holds;
∫
x1fdµ/

∫
fdµ−

∫
x1dµ >
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0 if and only if −c + r2b2 + ... + rmb2 > 0. This nicely mirrors Hamilton’s original setup

(see also Section 2).

The derivation is a straightforward generalization of the derivation with two variables in

Section 4.2. Also here, it only uses the first order conditions that pertain to the derivatives

with respect to a0,...,0 and a1,0,...,0. Again that implies that there is scope for multiple

specifications, leading to multiple Hamilton’s rules, all of which indicate the direction of

selection correctly. We can choose to minimize
∫

(f − g)
2
dµ using all coeffi cients, but we

can also set some of them to 0, and only minimize with respect to the others. As long as

a0,...,0 and a1,0,...,0 are not set to 0, these will all result in Hamilton’s rules. Examples in

Section 9.3 illustrate that. Picking the right one is again a relatively straightforward task

if f has the same general form as g; if f (x1, ..., xm) = d0,...,0 + d1,0,...,0x1 + ...+ d0,...,0,1xm,

with all coeffi cients non-zero, then the squared difference between f and g is reduced to 0

if we choose the specification that includes all coeffi cients.

4.4 More than two variables with higher order terms

Although the regression method as a way to determine benefits and costs is restricted to

linear terms (see Gardner et al., 2011, Box 4), we would also like to allow for a more general

setup, where the difference between f and a polynomial gJ is minimized. This requires a

little notation. The set of all coeffi cients that are included in this polynomial is J . This
is a finite subset of Nm0 , and an element of J is a vector, elements of which indicate the

exponents of the variables in the term they are a (possibly non-zero) coeffi cient for. In

other words, gJ =
∑
j∈J ajx

j1
1 x

j2
2 ...x

jm
m . The minimization then becomes

min
j∈J

∫
(f − gJ )

2
dµ.

The first order conditions of this minimization imply a more general form of the identities

in Sections 4.1, 4.2 and 4.3, all of which are special cases of the general version. For brevity,

we write X(j) = Xj1
1 X

j2
2 ...X

jm
m .∫

x1fdµ∫
fdµ

−
∫
x1dµ =

 ∑
j∈J\{a0,...,0}

Cov
(
X1, X

(j)
)

V ar (X1)
aj

 V ar (X1)∫
fdµ

(4.11)

This implies that the change in average trait value
∫
x1fdµ/

∫
fdµ−

∫
x1dµ is larger than

0 if and only if
∑
j∈J\{a0,...,0}

Cov(X1,X
(j))

V ar(X1) aj > 0.

The derivation is again a straightforward generalization of the derivations in Sections

4.2 and 4.3, where only the first order conditions that pertain to (0, ..., 0) and (1, 0, ..., 0)

are used. This implies that this identity holds, whatever set of coeffi cients J we allow to

be non-zero, as long as (0, ..., 0) and (1, 0, ..., 0) are included.
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This leaves us with a possible multitude of rules. The choice of gJ —or in other words:

the choice which coeffi cients to include in J —is the specification. For a given f and µ,

different specifications may lead to different values for the coeffi cients that are included in

both, and all specifications produce rules that indicate the direction of selection correctly.

Some of those are Hamilton’s rules. If the regression contains only linear terms and a fixed

term —in other words,
∑m
k=1jk ≤ 1 for all aj with j ∈ J —then we are back in the situation

described in Section 4.3. Others, that do include coeffi cients for non-linear terms, qualify

as proper generalizations of Hamilton’s rule, but are not Hamilton’s rules themselves. The

specification problem now amounts to finding criteria for choosing the right J .
For functions f that are polynomials themselves, one can imagine that the recipe for

finding the right specification involves starting with a fixed term, and a coeffi cient for x1,

and then adding ever more coeffi cients. What one will typically find is that, as coeffi cients

are added to J , the values of the coeffi cients that are already in there will keep changing,
until the point where all coeffi cients that are non-zero in f are included in gJ , at which

point
∫

(f − gJ )
2
dµ = 0. After this, every coeffi cient that is added will get the value 0 in

the minimization, and the coeffi cients already in there will stop changing. At this point we

have found the right specification, because f = gJ .

If f (x1, ..., xm) = 1 − x1 + x2 + x3 —where x1 might represent the agent’s own trait

value, x2 the trait value of the agent’s sibling, and x3 the trait value of the agent’s cousin

—such a recipe will typically choose the specification g (x1, ..., xm) = a0,...,0 + a1,0,...,0x1 +

a0,1,0,...,0x2 +a0,0,1,0,...,0x3 over g (x1, ..., xm) = a0,...,0 +a1,0,...,0x1 and over g (x1, ..., xm) =

a0,...,0 + a1,0,...,0x1 + a0,1,0,...,0x2, even though those other two also come with Hamilton’s

rules that get the direction of selection right. If f (x1, ..., xm) = 1 + x1x2, then this recipe

would choose g (x1, ..., xm) = a0,...,0 + a1,1,0,...,0x1x2, which comes with a rule, but not a

Hamilton’s rule. The examples below, as well as in Section 9.3, illustrate that further. Of

course this recipe would need to be augmented when applied to functions f that are not

themselves polynomials, but for functions f that are, there is no reason to treat the decision

whether or not to include coeffi cient a0,0,1 any different from the decision whether or not

to include coeffi cient a1,1,0.

4.5 Coeffi cients, models and statistics

Our preferred definition of costs and benefits follows the “counterfactual method”. This

approach compares fitnesses with their counterfactuals, and has the differences between

them determine the costs and benefits of cooperation. For us, therefore, there is no need

to replace fitness functions f , that we can use directly to derive model implications, with

other functions g, and minimize the squared difference. The regression method is claimed

to be a method for defining costs and benefits, and, for a given linear specification, it

is. What we argue, however, is that the right specification does not fall from the sky,

but has to be chosen too. The regression method, without a recipe how to chose one, is
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therefore incomplete. Moreover, reasonable recipes for choosing between specifications will

sometimes choose non-linear ones too, and once we allow for non-linear specifications, we

basically are back to square one, and have to decide what the costs and benefits are in the

presence of non-zero coeffi cients for non-linear terms. For this, the counterfactual method

seems the most logical choice. But if we use the counterfactual method anyway, there is no

reason not to apply it to f directly.

In the remainder of this section we would like to look at a few examples. The first

examples are meant to illustrate the difference between regressions in models and regressions

in statistics. Then we will reconnect the regression method to the examples from Section

3, and see how the regression method leads to costs and benefits that differ from the costs

and benefits of the counterfactual method.

4.5.1 Example 1

Theory model without noise Noisy data

g1 (x) = x g1 (x) = 0.03 + 0.94x

Figure 11. In the theory model on the left
∫

(f − g1)
2
dµ = 0, whereas on the right the

randomness in the data causes
∫

(f − g1)
2
dµ > 0.

Suppose we have a theoretical model with f (x) = x, and let µ be the uniform distribution

on [0, 1]. If we minimize the squared difference with g1 (x) = a0 + a1x we, trivially, find

a0 = 0, a1 = 1, and
∫

(f − g1)
2
dµ = 0 (Fig. 11a).

If instead we generate data with a process in which the number of offspring is normally

distributed around x, then the randomness in the observations implies that if we minimize

the sum of squares, using g1, this minimum will typically be larger than 0 (Fig. 11b).

Because the data are generated by a linear model, with uncorrelated, homoscedastic errors,

the Gauss-Markov theorem implies that the OLS estimator has minimum variance among

the class of linear unbiased estimators. In other words, the expected value of the estimates

of a0 and a1 (i.e., the estimates of slope and intercept) will be equal to their true values, and

their variances are minimal. Here we know the true values, because we generated the data

ourselves, but typically they will not be known, because if they were, there would be no need

to do statistics. Here we also happen to know that the assumptions that the Gauss-Markov
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theorem requires hold, but these can, and typically should, also be tested statistically. With

the data generated for Fig. 11b, we get estimates â0 = 0.03 and â1 = 0.94, which are both

relatively close to their true values, which are 0 and 1.

4.5.2 Example 2

Theory model without noise Noisy data

Figure 12. If OLS is applied in a statistical setting, then there are two distinct rea-

sons that can make the sum of least squares be larger than 0; randomness (b and d) and

misspecification (d). In a theory context, only misspecification remains (c).

Suppose now that f (x) = x2, and let µ be the uniform distribution on [0, 1] again. If we

now minimize the squared difference with g1 (x) = a0 + a1x, then we find a0 = − 1
6 and

a1 = 1 (Fig. 12c). If we minimize the squared difference with polynomials of degree 2 or

higher, then we find that only a2 = 1, while all other coeffi cients are 0 (Fig. 12a). Moreover∫
(f − gn)

2
dµ = 0 if n > 1, but not if n = 1. One could therefore say that if we use a

polynomial of degree 1, then the reason that least squares minimization gives us a0 = − 1
6

and a1 = 1, instead of both being 0, is that g1 has no coeffi cient for x2 in it.

If we generate data with a process in which the number of offspring is normally distrib-

uted around x2, then the randomness in the observations implies that if we minimize the

sum of squares, using g2, this will typically be minimized at some value larger than 0 (Fig.

12b). If, however, we minimize the sum of squares using g1, then there are two reasons

why the sum of squares is larger than 0. One is again that there is randomness, and the

other is that the model is misspecified —we have used g1 instead of g2, or, in other words,

we have not included a coeffi cient for x2 (Fig. 12d). Methods in statistics are all geared
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towards avoiding the latter. If we now go back to the theory domain, and use g1 instead of

g2 there, however, then the only reason that remains for why
∫

(f − gn)
2
dµ > 0 is that g1

is not equal to f .

It is therefore important to realize that if the regression method is applied to a determin-

istic model that is not itself linear, then this is a different exercise than applying it to data

that are produced by a linear, but noisy data-generating process. Without randomness,

the only reason why
∫

(f − gn)
2
dµ is not 0 is misspecification. Properties such as those

implied by the Gauss-Markov theorem —which is why OLS is applied in statistics —do not

apply here. Equation (4.2) nonetheless remains as true as it was before; the direction of

selection in a theory model does not change if we replace f with g1.

4.5.3 Example 3

A simple example with two variables is f (x, y) = a11xy. When the squared difference

between f and g (x, y) = a00 + a10x + a01y is minimized, this will, for many probability

distributions µ, lead to non-zero a00, a10 and a01, while all three of them are in fact 0.

4.5.4 More specification issues

Allen et al. (2013) give examples that also indicate that the regression method is blind to

specification. They illustrate that if the standard linear specification is used, regardless of

its fit, then one easily arrives at a c and b that can certainly not properly be interpreted

as describing the costs and benefits of the behavior. One example is “hanger-on”behavior,

where individuals seek out high fitness individuals to hang out and interact with, but where

this interaction does not confer any benefit to the high fitness individual. The regression

method would then nonetheless conclude that b > 0, and mistake the hanging on for

something with a positive effect on fitness. One could argue that this is due to the fact

that the regression method in this case is clearly misspecified, but that only underscores

the fact that we apparently apply, and need, criteria for what good and bad specifications

are. And as soon as goodness of fit starts to matter for the specification of the model, there

is no reason why the goodness of fit might not pick a non-linear model as the winner. We

will return to this point in Section 9. Here we continue with applications of the regression

method to examples that feature in the previous section.

4.5.5 Back to the replicator dynamics for the prisoners dilemma

Gardner et al. (2011) apply the regression method both to the prisoners dilemma, allowing

for unequal gains from switching, and to the rock band game. For the prisoners dilemma,

we include the least squares minimization in Appendix A, where it should be noted that

we use R, S, T and P for payoffs, as we do throughout this paper, while Gardner et al.

(2011) follow Queller (1985) by parametrizing those payoffs with B, C and D.

The values that result from applying the regression method are:
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c =
1− p+ rp

1 + r
(P − S) +

p+ r (1− p)
1 + r

(T −R) (4.12)

b =
1− p+ rp

1 + r
(T − P ) +

p+ r (1− p)
1 + r

(R− S) .

These are different from the values we find using the counterfactual approach (see Section

3.2.1).

4.5.6 One partner versus many partners

In Section 3 we have assumed that each individual is paired with one partner and with one

partner only. Alternatively, one can assume that each individual interacts with a large,

effectively infinite, sample of the population, and retains the average payoff from these

interactions. In this case every individual cooperator gets the same payoff, equal to the

average for cooperators from the “one partner”case (πC), while every individual defector

is assumed to get πD. This “many partners” setup leads to the same equation for the

replicator dynamics as the one partner setup (Eq. 3.1). The counterfactual benefits and

costs described in Section 3 would also remain the same, but a change to the many partners

setup does have an effect when applying the regression method. The parent population

now consist of only two distinct points: (x, y) = (1, α+ (1− α)p), with frequency p for

cooperators and fitness f (1, α+ (1− α)p) = πC , and (x, y) = (0, (1− α)p), with fitness

f (0, (1− α)p) = πD . Because there are only two distinct points, x and y are linearly

related: y = αx+ (1−α)p. It follows from the discussion in Section 4.2 that the regression

method does not produce a unique benefit b and cost c in this case.8

4.5.7 Back to the replicator dynamics for the rock band game

For the rock band game, Gardner et al. (2011) find

c = 1− 3p (1− p)
9p (1− p)− 2 (f1 + f2)

× f3

p
× 2

b =
6− p (1− p)

9p (1− p)− 2 (f1 + f2)
× f3

p
× 2.

where we have left out the normalization (this is inconsequential; see footnote 6). Also

these are different from the costs and benefits based on counterfactuals (see Section 3.3).

8This failure of the regression method was first noticed by Allen and Nowak (2015) in the context of a

finite-population model. Rousset (2015) seems to claim that this finding is erroneous, because it does not

reproduce the result of Gardner et al (2011). However, Rousset (2015) apparently missed the fact that the

“one partner” and “many partners” setups lead to different outcomes in the regression method. Gardner

et al (2011) and Rousset (2015) use a “one partner”setup, so it is not surprising that they obtain different

results from Allen and Nowak (2015), who used a “many partners” setup.
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How we define costs and benefits is therefore consequential for whether or not Hamilton’s

rule holds; it always does if we choose to define b and c as regression coeffi cients, but it

does not always hold if we define them by comparing fitnesses to their counterfactuals. A

related, but different question is if it helps understand the dynamics it describes better, if

we rewrite the criterion for cooperators to win with Hamilton’s rule, where b and c follow

from the regression method. This is at least to some extent a matter of preference. Our

preference in this particular case goes to the condition

f3

p
>

1

2
.

All that matters in the Rock Band Game is that more cooperators get 2 instead of 1 than

get 0 instead of 1 (see Fig. 10 and Section 3). Therefore at least half of the cooperators must

find themselves in groups of 3 cooperators. That is exactly what this condition says. For

us, replacing this criterion with its equivalent Hamilton’s rule alternative, with regression

coeffi cients for costs and benefits, is not a gain in clarity or insight in the condition:

(
6p (1− p)

9p (1− p)− 2 (f1 + f2)
× f3

p
× 2

)
r −

(
1− 3p (1− p)

9p (1− p)− 2 (f1 + f2)
× f3

p
× 2

)
> 0.

4.5.8 Different costs, different benefits, different rules

The idea that the disagreement about the generality of Hamilton’s rule might be the result

of a failure to disambiguate different versions of it was put forth by Birch (2014). He

also compares different ways to define costs and benefits in Hamilton’s rule. One of the

possibilities he considers is the regression method, which, in his terminology, leads to the

general version of Hamilton’s rule. The other possibility is termed the special version, and

it is meant to capture the way b and c are defined in Nowak, Tarnita & Wilson (2010) as

well as in Van Veelen (2009) and Van Veelen et al., (2012). Since the latter three papers

differ in their treatment of b and c, it is unavoidable that the description of the special

version there has features of both, but reflects neither choice perfectly. For discussing this,

it will be useful to understand a point made by Grafen (2007b), and since this is discussed

in Section 7, we will postpone these more detailed points to the final section.

In the remainder of this paper we will consider Hamilton’s rule with costs and benefits

based on counterfactuals, and not on the regression method. We will find that even then,

there is a sizeable domain within which inclusive fitness works, but also that there is a

domain where it does not. With b and c defined according to the regression method,

whether or not inclusive fitness always aligns with the direction of selection is no longer a

question, as the first order conditions imply that it always does.
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5 Comparative statics

Even if Hamilton’s rule may not always hold as a quantitative prediction, it may still be valid

qualitatively, in the sense that higher relatedness is conducive to the evolution of cooperation.

With appropriate definitions of what it means for relatedness to favour cooperation, this turns out

to be true for 2-player games. For games with more players these comparative statics do not apply

generally, but may apply in reasonably restricted subsets of all possible population structures.

One of the obvious implications of Hamilton’s rule is that relatedness is good for coop-

eration. The higher relatedness is, the larger the scope for the evolution of cooperation,

because with a higher r we can make do with a smaller benefit b to offset the same costs

c. In Section 3 we found that Hamilton’s rule, with definitions of costs and benefits based

on comparisons with counterfactuals, is only accurate for games with (generalized) equal

gains from switching. But even if rb > c is not the right criterion to determine whether or

not cooperation gets selected, it could still be that an increase in relatedness is typically

good news for cooperation. In other words, there may be a whole set of games for which

the quantitative prediction does not fit Hamilton’s rule, but for which it remains true that

an increase in relatedness increases the scope for the evolution of cooperation.

In this section we will explore different ways to formalize what we could mean when we

say that an increase in relatedness r is good for cooperation (Matessi & Karlin, 1984, 1986

call this the qualitative validity of the Hamilton rule, or the Hamilton Property). We will

look at “comparative statics”(see also Section 2.4 in Frank, 1998, Milchtaich, 2006, Allen

& Nowak, 2015, and Cooney & Veller, 2015) and find out that, indeed, there are many

2-player games for which one can unambiguously say that relatedness fosters cooperation.

For games with more than 2 players there are complications, but even there it is possible

to use comparative statics for specific models within which a similar claim is true.

There is a variety of reasons why this is worth doing. One reason is that in the debate

concerning inclusive fitness and the evolution of cooperation, kin selection and Hamilton’s

rule are sometimes conflated (some examples are Foster et al., 2006a,b, Nowak et al. 2010

and Birch & Okasha, 2015). When the general validity of Hamilton’s rule is questioned, it

is therefore often assumed that kin selection is under attack. By looking at comparative

statics, we show that those should be treated separately; increasing relatedness does favour

cooperation in an unambiguous sense in almost all 2-player games, including games for

which we already showed that Hamilton’s rule does not predict the direction of selection.

We therefore would also argue that much of the empirical evidence that is claimed to

support Hamilton’s rule should really be interpreted as supporting the comparative statics

instead.

Another reason for looking into this is that it is just very interesting to see if we can

formalize and explore if and how relatedness helps cooperation evolve.
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5.1 Definitions, derivatives and isoclines with 2 players

The first question we might ask is how increasing the degree of relatedness affects the speed

at which cooperation grows (or shrinks) under the dynamics. From Section 3.2 we know the

dynamics —they are given by
.
p = p (1− p) (πC − πD). From Section 3.2.1 we know that

πC = (r + (1− r) p)R+ (1− r) (1− p)S and πD = (r + (1− r) (1− p))P + (1− r) pT . In
order to evaluate the effect of a change in r, holding p fixed, we take the first derivative

with respect to r to find that

∂ṗ

∂r
= p(1− p)

(
∂πC
∂r
− ∂πD

∂r

)
(5.1)

= p(1− p) [(1− p)(R− S) + p(T − P )]

When this quantity is positive, an increase in r implies an increase in the rate of increase,

or a decrease in the rate of decrease, of cooperators.9 This is the main comparative static

of interest with regard to cooperation, and it allows us to define the first, strongest sense

in which increased relatedness might “favour”cooperation:

Definition 1 Increased relatedness favours cooperation in the first sense if ∂ṗ(p,r)∂r ≥ 0 for

all (p, r).

It is immediately clear that for all 2-player games with R ≥ S and T ≥ P —which includes
all prisoners’dilemmas —increased relatedness favours cooperation in the strongest sense.

It is also clear that if R < S, or if T < P , there will be frequencies p for which ∂ṗ(p,r)
∂r < 0;

they are low frequencies p if R < S and high frequencies p if T < P .

A second definition would be useful in the case where the dynamics always result in

convergence to a pure state comprising only cooperators or only defectors —except when

starting on the boundary between the plus- and the minus-region. If an increase in r is to

favour cooperation, then the basin of attraction of the cooperative outcome should expand

as we increase r. This would follow if the proportions of cooperators at unstable fixed

points were decreasing in r. These fixed points typically represent polymorphisms, with

both cooperators and defectors present.

Definition 2 Increased relatedness favours cooperation in the second sense if, writing p∗(r)

as the locally unstable equilibrium proportion of cooperators for a given r, p∗(r) is non-

increasing in r.

9 It should be noted that the results are not dependent on the linearity of the replicator dynamics; they

generalize to any dynamics with the form ṗ = F (p, πC − π) = F (p, (1 − p)[πC − πD]) where the partial
derivative F2 > 0, since then

∂ṗ

∂r
= (1− p)F2(p, (1− p)[πC − πD])

(
∂πC

∂r
− ∂πD

∂r

)
,

which is of the same sign as ∂πC
∂r
− ∂πD

∂r
.

45



Finally, in instances where there is a mixed equilibrium comprising both cooperators and

defectors for some r, a third definition is useful. Relatedness favouring cooperation could

then mean that the proportion of cooperators in equilibrium is higher for higher r, where

the equilibrium typically contains defectors as well as cooperators.

Definition 3 Increased relatedness favours cooperation in the third sense if, writing p∗(r)

as the locally stable equilibrium proportion of cooperators for a given r, p∗(r) is non-

decreasing in r.

It can be shown (see Appendix B) that if increased relatedness favours cooperation under

the first definition, then it necessarily does so under the second and third definitions too.

In this sense, Definitions 2 and 3 are weaker than Definition 1. Appendix B also shows that

for every r, there is at most one polymorphic equilibrium, which justifies defining p∗(r) as

the share of cooperators at that equilibrium.

We will go over the games that feature in the previous section in a systematic way. In

all those cases, the line that separates the “plus-region” from the “minus-region”will be

important. That line, the isocline where πC = πD, gives those values of (p, r) for which

ṗ = 0, and hence p is a fixed point of the dynamics.

5.1.1 Prisoners’dilemmas

Prisoners’dilemmas are defined by the ordering of payoffs T > R > P > S. The first

and the third inequality represent that the individual always gains from defecting. The

second represents the ineffi ciency of mutual defection relative to mutual cooperation. As

a result, we have R > S and T > P , so, as mentioned already in Section 5.1, higher

relatedness always favours cooperation under the stronger definition of increasing the growth

rate of cooperators relative to defectors. This is a particularly strong result: in precisely

those games where cooperation is best defined and most studied, increasing the degree

of relatedness promotes cooperation under our strongest definition, with or without equal

gains from switching.

Although the first definition is the strongest, and implies the other two, it is still worth

confirming that the second and third do indeed hold in the respective cases to which they

apply. That is illustrated in Figure 13 (the corresponding calculations are found in Ap-

pendix B). In Fig. 13a the intersection of the constant-r arc and the isocline separates the

basins of attraction of full defection on the left and full cooperation on the right. As r goes

up, and we move to ever lower constant-r arcs, the intersection moves more to the left,

which increases the size of the basin of attraction of cooperation. In Fig. 13c, the stable

fixed point of the dynamics is a point in the interior of the simplex. As r goes up, we again

go to ever lower constant-r arcs, but now the intersection moves more to the right, where

the equilibrium proportion of cooperators is higher.
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P − S > T −R P − S = T −R P − S < T −R

Figure 13. Prisoners’ dilemmas. Phase planes with sample constant-r trajectories

for the prisoners’ dilemma. In each case, the green line represents the isocline πC =

πD on which the proportion of cooperators is stationary. In the region above the green

threshold the proportion of cooperators is decreasing; in the region below it the proportion of

cooperators is increasing. The blue arcs are constant-r arcs. In the first case the intersection

of a constant-r arc and the isocline separates the basins of attraction of full cooperation

(p = 1) and full defection (p = 0) (a). The middle case has equal gains from switching,

and no intersections if r 6= c
b (b). In the third case, the intersection of a constant-r arc and

the isocline is a stable and attracting fixed point (c). In each case, increasing relatedness

favours cooperation under the strongest definition.

5.1.2 Stag hunt games

Stag hunt, or coordination games are defined by the inequalities R > P , P > S and

R > T . For consistency, we again call the strategy which yields R when mutually played

the cooperative strategy. The difference with prisoners’ dilemmas is that there T > R,

which, in combination with the other inequalities, implies that playing D rather than C

always came with higher payoffs. In stag hunt games the best response to D is D, as it is in

the prisoners’dilemma, but the best response to C is C, as R > T . Here it is again useful to

distinguish three cases: (a) R > T ≥ P > S, (b) R > P > T > S, and (c) R > P > S ≥ T .
In case (a), it follows immediately that increased relatedness favours cooperation in the

strongest sense, because R > S and T ≥ P . In cases (b) and (c), increased relatedness

only increases the growth rate of cooperation if the frequency of cooperators p is below a

maximum level R−S
R+P−S−T . Cooperation is therefore not favoured by increased relatedness

under the strongest definition. However, the fact that selection for cooperation is not

everywhere increased by an increase in r here only implies that there is a region where

selection for cooperation is slower (right of the rightmost grey lines in Fig. 14b and c).

The more important effect of an increase in r is that it increases the basin of attraction of

the cooperative equilibrium, which implies that relatedness does favour cooperation by the

second definition. Calculations are in Appendix B.
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R > T ≥ P > S R > P > T > S R > P > S ≥ T

Figure 14. Stag hunt games. Phase planes for stag hunt, or coordination games. In case

(a), increasing relatedness favours cooperation under the strongest definition. In cases (b)

and (c), increasing relatedness does not favour cooperation under the strongest definition.

The rightmost grey line reflects states with p = R−S
R+P−S−T . To the right of it, increasing

relatedness slows down the growth rate of cooperation. Increasing relatedness however

does favour cooperation under the weaker second definition. An increase in r implies that

the blue and the green line intersect at a point with a lower fraction of cooperators, and

since here the intersection is an unstable mixed equilibrium, this implies that the basin of

attraction of full cooperation expands.

5.1.3 (General) hawk dove games

General hawk dove, or snowdrift games are defined by the inequalities T > R, R > P

and S > P . For consistency, we call the strategy which yields R when mutually played

the cooperative strategy, although that is not as unambiguous a label as with prisoners’

dilemmas. It is useful to distinguish between three cases: (a) S ≥ T > R > P , (b)

T > S ≥ R > P , and (c) T > R > S > P , where the third corresponds to the usual

snowdrift game.

In case (c), the usual snowdrift game, it follows immediately that increased relatedness

favours cooperation in the strongest sense, because, as in the case of the prisoners’dilemma,

R > S and T > P . In cases (a) and (b), increased relatedness only increases the growth

rate of cooperation if the frequency of cooperators p is above a minimum level S−R
S+T−R−P .

Cooperation is therefore not favoured by increased relatedness under the strongest defin-

ition. However, the fact that selection for cooperation is not everywhere increased by an

increase in r only implies that there is a region where selection for cooperation is slower

(the region to the left of the left grey lines in Figure 15a and b). The more important effect

of an increase in r is that it shifts the mixed equilibrium in favour of cooperators, which

implies that relatedness favours cooperation by the third definition. Calculations are in

Appendix B.
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S ≥ T > R > P T > S ≥ R > P T > R > S > P

Figure 15. Hawk dove games. Phase planes for the general hawk dove game. In

cases (a) and (b), increasing relatedness does not favour cooperation under the strongest

definition. The leftmost grey line reflects states with p = S−R
S+T−R−P . To the left of it,

increasing relatedness slows down the growth rate of cooperation. Increasing relatedness

however does favour cooperation under the weaker third definition. An increase in r implies

that the blue and the green line intersect at a point with a higher fraction of cooperators,

and since here the intersection is a stable mixed equilibrium, this implies that there are more

cooperators in equilibrium. In case (c), the usual snowdrift game, increasing relatedness

favours cooperation under the strongest definition.

5.2 Comparative statics on effi ciency (still with 2 players)

So far, we have simply labeled one strategy as cooperative and the other as defecting, based

on the fact that one strategy, when played against itself, yields more than the other does,

when played against itself. We included a broad spectrum of games that one could consider

to be cooperative dilemmas. Within this broad set, we have shown that, at least under the

weaker two definitions, increased relatedness always favours cooperators. For some of the

games that are included, however, having more of the strategy that is labeled as cooperative

does not always imply higher average payoffs. For some of the general snowdrift games,

for instance, cooperators increase the average payoff when rare, but not when abundant.

When abundant, playing the strategy we labeled “cooperate” is therefore not necessarily

the cooperative thing to do.

A way around this problem is to ask whether relatedness also favours effi ciency —where

we take effi ciency to be the average payoff across the population: π = pπC + (1 − p)πD.
Though our discussion will be more brief than that around cooperation, it will again be

useful to distinguish between three definitions of ‘favouring’effi ciency, the first being the

strongest, implying the second and third.

Definition 4 Increased relatedness favours effi ciency in the first sense if ∂π(p,r)
∂r ≥ 0 for

all (p, r).

Analysis of the system under this strong definition is somewhat intractable. We will there-

fore turn to the two weaker definitions in what follows.
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If we expect convergence to pure states, the basin of convergence (in terms of p) for

the effi cient outcome should increase with r. Since the fully cooperative pure state is, by

definition, more effi cient than the fully defecting pure state, this would follow from favouring

cooperation under the earlier second definition.

Definition 5 Increased relatedness favours cooperation (and effi ciency) in the second sense

if, writing p∗(r) as the locally unstable equilibrium proportion of cooperators for a given r,

p∗(r) is non-increasing in r.

In situations where we expect a stable mixed equilibrium, relatedness favours effi ciency if

the average payoff at equilibrium increases with r.

Definition 6 Increased relatedness favours effi ciency in the third sense if, writing p∗(r) as

the locally stable equilibrium proportion of cooperators for a given r, π (p∗(r), r) is nonde-

creasing in r.

5.2.1 Prisoners’dilemmas

In the previous section we saw that in case (a) P − S > T − R, we have, for some r, an
unstable mixed equilibrium, and so the second definition is appropriate. It was shown in

Section 5.1.1 that, in this case, increased relatedness favours cooperation under the second

definition, so it favours effi ciency under the second definition too.

In the other case, (c) P − S < T −R, for certain r, there is a stable mixed equilibrium,
and so the second definition is applicable. At the stable equilibrium the average payoff of

both cooperators and defectors are equal to each other —πC = πD —and therefore also

equal to the overall average payoff:

π = pπC + (1− p)πD = p [πC − πD] + πD = πD = πC

The frequency p at the intersection of the isocline and a constant-r arc is found by taking

the equation of the isocline — πC = πD — and isolating p. This way we find p∗(r) =
S−R+(R−P )/(1−r)

(T−R)−(P−S) . The equilibrium is on the isocline, so if we substitute this for p either

in πC = (r + (1− r) p)R+ (1− r) (1− p)S or in πD = (r + (1− r) (1− p))P + (1− r) pT ,
we find the average payoff as a function of T , R, P and S, and of r. Either way we find

π = πC = πD =
r (R− S) (T − P )− PR+ ST

(T −R)− (P − S)

This is increasing in r, since R > S and T > P in the prisoners’dilemma (the denominator

is positive, since P−S < T−R). Hence, in this case, increased relatedness favours effi ciency
under the third definition.
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5.2.2 Stag hunt games

In stag hunt, or coordination games, for large enough r, we have an unstable mixed station-

ary point: starting off the isocline, the population converges either to the fully cooperative

or fully defective outcome. Thus, the second definition of favouring is appropriate. We

showed in the previous section that, in these games, increased relatedness favours cooper-

ation under the second definition, and so increased relatedness favours effi ciency under the

second definition as well.

5.2.3 General hawk dove games

In the hawk dove, or snowdrift game, it was shown that, for suffi ciently low r, we have a

stable mixed equilibrium (for higher r, we always have convergence to the fully cooperative

outcome). Thus, the second definition is apposite. Since, in the mixed equilibrium, πD =

πC , we may use the same simplification as above in writing π = πC = πD. On the isocline,

again, we have p∗(r) = S−R+(R−P )/(1−r)
(T−R)+(S−P ) , and πC simplifies as in the previous subsection.

So, ∂π∂r = (R−S)(T−P )
(T−R)+(S−P ) . Since (T − R) + (S − P ) > 0 and T > P in the general snowdrift

game, this expression is positive if and only if R > S. So, increased relatedness favours

effi ciency in the third sense if and only if R > S (case (c) in figure 15); for R < S, the

equilibrium outcome becomes less effi cient as we increase r. The intuition for this negative

result is clear: in these ‘unusual snowdrift’games, both off-diagonal payoffs, S and T , are

greater than the diagonal payoffs, R and P . Since the effect of increasing r is precisely to

increase the instances of diagonal payoffs relative to off-diagonal payoffs, in these games,

the effect would be to decrease effi ciency.

5.3 Comparative statics with more than 2 players

With more than 2 players things are a bit more complicated. If games are played between

n players, a fully general rule that summarizes when cooperators are selected for is going

to have to feature n− 1 parameters for population structure. Using only one parameter for

population structure —such as r —opens up the possibility of counterintuitive findings. Even

in games where it is unambiguous what the cooperative thing to do is, it can still be that

one population structure has a higher relatedness r while the other favours cooperation and

effi ciency more. So here it is certainly not true that a higher r is always good for cooperation

(this is also noted, in a somewhat more complicated setting, in Matessi & Karlin, 1984,

1986).

The possibility of such paradoxical findings exists, because we are looking for a totally

general claim, which is to allow for all combinations of all possible fitness effects on the one

hand, and all possible population structures on the other hand. We can however impose

restrictions on either ingredient. One example, as we have seen in Section 3.3, is to restrict

the set of games, or fitness effects, to those that have generalized equal gains from switching.

51



If we do, then no matter which population structure we choose from the set of all population

structures, all that matters is relatedness r. This implies that for a given game that has

generalized equal gains from switching, the comparative statics are that an increase in r

fosters cooperation.

Another possibility is that we restrict the set of population structures. For a game that

does not have equal gains from switching, it is of course still possible to only consider a

restricted set of population structures. It could for instance be that a number of species are

all the same in almost all respects, and only differ along a single dimension, for instance in

the number of matings that a queen has. That implies that within this set of species, not

all population structures are possible, and we are only looking at those that are attained

by varying the number of matings per queen, for instance, or whatever it is that the

one dimension represents. If this particular subset of all possible population structures is

combined with a game that does not have equal gains from switching, then it is very well

possible that within this subset, population structures with a higher r favour cooperation.

This is illustrated in the next two figures.

The game in the figures is the same as in Section 3.3; πi,C = −1 if i = 1 or 2, πi,C = 1 if

i = 3, and πi,D = 0 for all i. There we rewrote the criterion πC > πD as
f3
p > 1

2 . In Figure

16, the green surface represents that threshold; it separates all population states where

πC > πD, and cooperators win, from all population states where πC < πD, and defectors

win. The blue surface are all states with relatedness 1
4 . Clearly the dissimilarity in shape

implies that one can find points with r < 1
4 where cooperators nonetheless are selected for,

and points with r > 1
4 where defectors are selected for (see Fig. 16).

Figure 17 shows that within a restricted set of population structures, the comparative

statics may still hold. As an example we take f0 = (1− α) (1− p)3
+ α (1− p), f1 =

(1− α) p (1− p)2, f2 = (1− α) p2 (1− p) and f3 = (1− α) p3 +αp. For this one-parameter

set of population structures, relatedness equals α. The basins of attraction of cooperation

and defection meet at frequency p =
√

1−2α
2−2α , which is decreasing in α —with 0 ≤ α ≤ 1.

The basin of attraction of cooperation therefore increases with relatedness. Many empirical

studies may fit such restricted sets of population structures.
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Figure 16. Comparative statics in general do not apply. The vertex closest to us

is f0 = 1, the rightmost vertex is f3 = 1, the leftmost vertex is f1 = 1 and the top vertex is

f2 = 1. The surface that separates the plus-region from the minus region (green) does not

have the same shape as a fixed-r surface (blue; r = 1
4 ). This implies that we can find two

population states, one with r < 1
4 where cooperation is nonetheless selected, and one with

r > 1
4 where defection is nonetheless selected.

Figure 17. Comparative statics in a restricted set of population structures. The

black lines reflect three specific population structures; one with r = 0 (the most outward),

one with r = 0.25 and one with r = 0.5 (the most inward). The green surface separates

the basins of attraction of full defection at f0 = 1 and full cooperation at f3 = 1, for those

three population structures. The figure shows that the basin of attraction of cooperation

is larger for higher r.
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6 Adaptive dynamics

In this section we consider adaptive dynamics in structured populations. For fitness functions that

exhibit “equal gains from switching” globally, Hamilton’s rule matches the direction of selection

at any point in time along the trajectory. Fitness functions that are differentiable will exhibit

equal gains from switching locally, and for those that do not have bifurcations, the same will be

true. With bifurcations, Hamilton’s rule matches the direction of selection up to the bifurcation.

We furthermore generalize the canonical equation from Allen (2013) to non-differentiable payoff

functions. For those, Hamilton’s rule does not apply. For some fitness functions, moreover, the

assumption of monomorphic populations that adaptive dynamics makes is hard to justify.

Rather than assuming that there are two types to begin with —cooperators and defectors —

one could assume instead that there is a whole continuum of possible levels of cooperation.

Moreover, one could assume that at any point in time the population is close to being

monomorphous. We get a stylized version of being close to monomorphous if we assume that

selection is much faster than mutation. Mutations then either go to fixation or go extinct

before the next mutation arises, so at any point in time there are at most two strategies

present: an incumbent, and a (more recent) mutant. One can furthermore assume that

mutations are typically local; any mutation is most likely taking only a very small step on

this continuum.

Although the profusion of possible strategies implies an enormous scope for deviations

from equal gains from switching at the global level, the assumption of local mutations can

bring us back to a setting where locally equal gains from switching is restored. If this is the

case, inclusive fitness will describe the success or failure of a succession of mutants, and one

can easily imagine a dynamics that keeps moving up to the point where inclusive fitness is

maximized. There are however also exceptions, as we will see below.

A continuous trait space and local mutations are assumptions that feature in many

inclusive fitness papers (some examples are Taylor, 1989, Taylor & Frank, 1996, Rousset

& Billiard, 2000, Roze & Rousset, 2004, and Lehmann, 2012). They are also the basic

assumptions in adaptive dynamics (Metz et al., 1996, Dieckmann & Law, 1996, Geritz et

al., 1998, Champagnat et al., 2001, 2006, 2007, Dercole and Rinaldi, 2008). Besides sharing

a basic setup, there are also differences between this part of the inclusive fitness literature

and adaptive dynamics. The adaptive dynamics literature typically assumes a well-mixed

population, and focusses on non-social traits. The inclusive fitness papers are about traits

that do have fitness effects on others, and typically do not assume a well-mixed population.

More recently, some authors have introduced population structure in adaptive dynamics

(Champagnat & Méléard, 2007, Allen et al., 2013). This is a nice cross-over, and it turns

out that this approach is also very instructive in describing how inclusive fitness works, and

what its limitations are.

The actual results pertaining to adaptive dynamics with population structure are mostly
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in Appendix C. Here in the main text we will apply them to a few instructive examples.

The first two show that inclusive fitness can describe the evolution of a trait value in a

variety of cases. In the third example inclusive fitness no longer works, but one version of

adaptive dynamics remains a relatively accurate description of dynamics with reasonable

parameter choices. The fourth example shows that adaptive dynamics can also cease to be a

good description of evolution altogether. The examples in Section 6.6 illustrate limitations

of inclusive fitness as pointed out by Doebeli & Hauert (2006), based on Doebeli, Hauert

& Killingback (2004).

6.1 Four games with continuous trait space

Even for discussing some instructive examples, it is unavoidable to introduce some notation.

Traits will be values in R. The first examples reflect interactions between 2 players that

both exhibit a trait in R. We assume, as always, that the game is symmetric. In a 2-player

game this means that, if πj (x, y) was to denote the payoff to player j if player 1 plays x and

player 2 plays y, then π2 (x, y) = π1 (y, x). This implies that it is in fact redundant to have

vector valued payoff function; it is suffi cient to have a simple payoff function π : R2 → R
which describes how much player 1 gets as a function of what player 1 and 2 do. How much

player 2 gets immediately follows from interchanging the variables.

Later we will also consider interactions between n players that all have traits in R. Again,
a payoff function π : Rn → R is suffi cient to describe a symmetric game; the payoff of player
j in the action profile (x1, ..., xn) is the value of payoff function π evaluated in the action

profile where x1 and xj have swapped places. Symmetry does, however, impose a restriction

on the payoff function π now, and that is that π (x1, x2, ..., xn) = π (x1, p (x2, ..., xn)) for

all permutations p.

The first payoff function generates a prisoners’dilemma with equal gains from switching

for every combination of two different strategies in
[
0, a2

]
, with a > 0.

π (x, y) = ay − x2 (6.1)

This function is called additively separable, which means that there are functions b (y) and

c (x) such that π (x, y) = b (y) − c (x). Additive separability guarantees that all possible

restrictions to 2 by 2 matrix games exhibit equal gains from switching. If a player changes

from playing x to playing x+δ, then the opponent gains b (x+ δ)−b (x), while that change

implies a loss of c (x+ δ)− c (x) to the player itself, regardless of the action of its opponent.

This independence of the action of the opponent is what defines equal gains from switching.

Fig. 18 illustrates that property. We get this picture by choosing different values for x and

y and plotting the payoffs that they result in. The dotted lines keep the action of one

player fixed and vary the actions of the other continuously, while the solid lines depict a

succession of bimatrix games.
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Figure 18 The dashed lines give combinations of payoffs that are attained by keeping one

player’s trait value fixed (at 1, 2, 3, 4 and 5, respectively) and continuously varying the trait

value of the other, all with payoff function π (x, y) = 10y − x2. With this payoff function,

any two given trait values constitute a bimatrix game with equal gains from switching.

The solid lines represent four such games; with trait values {1, 2} , {2, 3} , {3, 4} and {4, 5},
respectively. The figure, as well as the formula, shows that an increase in cooperation gets

ever more expensive as the trait value increases.

The second example is a slight variation; for every combination of two strategies in
[
0, a2

)
we still get a prisoners’dilemma.

π (x, y) = ay − xy (6.2)

Again we assume that a > 0. This function is not additively separable and it generates a

sequence of prisoners’dilemmas that does not have equal gains from switching. However,

for ever smaller mutations we get ever closer to a game that does have equal gains from

switching. In other words, in the limit of weak selection in phenotype space (or δ-weak

selection; see Wild & Traulsen, 2007), we do arrive at a game with equal gains from switch-

ing. This is visible if we take the limit for δ → 0 of the appropriately rescaled payoffmatrix

that comes with resident t and mutant t+ δ:

limδ→0
1
δ

([
at− t2 a (t+ δ)− t (t+ δ)

at− (t+ δ) t a (t+ δ)− (t+ δ)
2

]
−
(
at− t2

) [ 1 1

1 1

])
=

limδ→0
1
δ

[
0 aδ − tδ
−δt aδ −

(
2tδ + δ2

) ] = limδ→0

[
0 a− t
−t a− 2t− δ

]
=

[
0 a− t
−t a− 2t

]
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Figure 19. With payoff function π (x, y) = 10y− xy the bimatrix games with trait values
{1, 2} , {2, 3} , {3, 4} and {4, 5} are games with unequal gains from switching. In the limit

of δ-weak selection, however, one can say that it does have equal gains from switching.

The third example is a 2-player version of the minimum effort game (Van Huyck, Battalio

& Beil, 1990). This is a well known game in economics, and the only difference with the

standard minimum effort game is that here we have quadratic costs.

π (x, y) = amin (x, y)− x2 (6.3)

Again we assume that a > 0. For every combination of two different strategies in
[
0, a2

]
this

gives us a stag hunt (or coordination) game10 , which by definition does not have equal gains

from switching. This remains true, even in the limit of δ-weak selection (weak selection in

phenotype space).

This function is obviously not additively separable. The quadratic costs again ensure

that whatever the population structure, there will always be a point where increases in

costs inhibit the evolution of ever higher values of the trait.

10The matrix is:

[
ax− x2 ax− x2

ax− (x+ δ)2 a (x+ δ)− (x+ δ)2

]
. It is a stag hunt game for any {x, x+ δ} for

which ax − x2 < a (x+ δ) − (x+ δ)2 or 2xδ + δ2 < aδ or 2x + δ > a. This is certainly true if both x and

x+ δ are smaller than a
2
.
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Figure 20. With payoff function π (x, y) = 10 min (x, y) − x2, the bimatrix games with

trait values {1, 2} , {2, 3} , {3, 4} and {4, 5} do not have equal gains from switching.

The fourth example could be dubbed a maximum effort game.

π (x, y) = amax (x, y)− x2 (6.4)

In this game it is suffi cient for the production of the benefit if only one individual con-

tributes. This implies that if the other would not contribute at all, one would be better

off choosing a positive trait value rather than 0, but between the two players, both would

obviously prefer the other to be the one that does the contributing.

Again we assume that a > 0, and for every combination of two different strategies in[
0, a2

]
this gives us a hawk-dove game11 , which by definition does not have equal gains

from switching. This remains true, even in the limit of weak selection in phenotype space

(δ-weak selection).

This function is obviously not separable either. The quadratic costs again ensure that

whatever the population structure is, there will always be a point where increases in costs

inhibit the evolution of ever higher values of the trait.

Straightforward n-player versions of these four games are: the n-player linear public goods

game, with π (x1, ..., xn) = a

n∑
i=2

xi−(n− 1) (x1)
2, an n-player non-linear public goods game,

11The matrix is:

[
ax− x2 a (x+ δ)− x2

a (x+ δ)− (x+ δ)2 a (x+ δ)− (x+ δ)2

]
. Because with δ > 0 it is always the

case that a (x+ δ)− x2 > a (x+ δ)− (x+ δ)2, this game is a hawk-dove game for any {x, x+ δ} for which
ax − x2 < a (x+ δ) − (x+ δ)2 or 2xδ + δ2 < aδ or 2x + δ < a. This is certainly true if both x and x + δ

are smaller than a
2
.
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Figure 21. With payoff function π (x, y) = 10 max (x, y) − x2 the bimatrix games with

strategies {1, 2} , {2, 3} , {3, 4} and {4, 5} do not have equal gains from switching.

with π (x1, ..., xn) = a

n∑
i=2

xi−
n∏
i=1

xi, the n-player minimum effort game, with π (x1, ..., xn) =

amin {x1, ..., xn} − (x1)
2, and the n-player maximum effort game, with payoff function

π (x1, ..., xn) = amax {x1, ..., xn} − (x1)
2
.

6.1.1 Hamilton’s rule with a continuous trait space

If we want to depict Hamilton’s rule in a similar figure, we can first go back to the original

setup, where the problem is described as an individual choice problem. For any given status

quo, and from the viewpoint of player 1, Hamilton’s rule defines a straight line with slope

− 1
r through the fitnesses that belong to the status quo. If π1 represents the fitness, or

payoff, of the agent, and π2 the fitness of it’s interaction partner, then the line is given by

the equation π1 + rπ2 = K + r. This can be rewritten as π2 = K+r−π1
r , which makes π2 is

a function of π1with slope − 1
r . Inclusive fitness rb − c remains constant on that line, and

it separates mutants that are selected for (right/up from the line, with positive inclusive

fitness) from mutants that are not (left/down from it, with negative inclusive fitness). This

is depicted in Fig. 22a, for a status quo with fitness 1 and relatedness r = 0.5. If a mutant

fixes, then we have a new status quo, because every individual is now both making the

transfer and receiving it. This new status quo is given in Fig. 22b, where the mirror image

of the original situation is also drawn, because that is what the original situation looks like

from the perspective of player 2. Through the new status quo, there is of course a new

line that separates further mutants that would, and mutants that would not be selected

for. In adaptive dynamics, the status quo changes all the time, so we can fill R2 with those

separator lines (Fig. 22c). Fig 22d includes those from the viewpoint of player 2.
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Figure 22. Hamilton’s rule for different choices. A line with equal inclusive fitness

through the fitnesses in the status quo separates mutations with an advantage from muta-

tions with a disadvantage (a). The mutation with a disadvantage is the one with a cross

in the figure. After an advantageous mutation has gone to fixation, the status quo has

changed, and we have a new line separating advantageous from disadvantageous mutants.

In grey the previous lines, the previous status quo, and mutant fitnesses, both from the

perspectives of player 1 and 2 (b). Lines of equal inclusive fitness from the viewpoint of

player 1 (c) and from the viewpoint of both players (d).

Of course not all combinations of payoffs or fitnesses are feasible; Hamilton’s rule only tells

us which mutants, if they were to appear, would be selected for, and which not. What is

and what is not feasible, is given by the fitness function. In order to illustrate what happens

with a given relatedness r and a given payoff function π, we will therefore superimpose the

“Hamilton’s rule picture”for that value of r over the game-figure for that π. The combined

figure will then illustrate up to what point we should expect the trait value to increase (see

for instance Fig. 23a, 24a and 27).
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6.2 Game 1: global equal gains

With the first payoff function, Hamilton’s rule should work perfectly well in describing the

dynamics. This payoff function is additively separable, and therefore any two types play

a game with equal gains from switching. That implies that we would not even have to

assume that the typical step size of mutations is small for the dynamics to converge to the

point where rb = c. If we do assume small mutations, we expect the dynamics to slowly

approach this point from below, or from above, depending on which side of the rest point

it happens to have started.

The game payoffs for the first example were given by π (x, y) = ay − x2. If a player

changes from playing x to playing x+ δ, then the opponent gains aδ, and the player itself

loses (x+ δ)
2 − x2 = 2δx+ δ2, which is approximately 2δx for small δ. Inclusive fitness

is therefore positive if x < ra
2 and negative if x > ra

2 . At x = ra
2 the dynamics should

not be expected to move any further, and the (individual) payoffs of all individuals in the

population are ra2

2 −
(
ra
2

)2
. In Fig. 23, a = 10 and r = 0.5, so the equilibrium value of x

is 2.5, and the payoff there is 75
4 . The outcome of a simulation with only somewhat rare,

local mutations (Fig. 23b) indeed matches what we would expect (Fig 23a; lines drawn

from player 1’s perspective only).

Figure 23. With π (x, y) = 10y − x2 and r = 0.5 inclusive fitness is maximized at trait

value x = 5
2 . The corresponding payoffs are π

(
5
2 ,

5
2

)
= 18 3

4 . The solid lines in the left

picture depict payoffs for player 1 and 2 for a fixed trait value of player 2 and a varying

trait value of player 1, as in Fig 18—21. Here the fixed trait values for player 2 are 1
2 ,

3
2 ,

5
2

and 7
2 , respectively. The broken lines reflect Hamilton’s rule, from the perspective of player

1, as explained in Fig. 22. Simulations on the right indeed show an increase in trait value

to x = 2.5. The simulations use a Wright-Fisher process with relatedness r, as described

in Appendix C1.

Adaptive dynamics are typically described with a differential equation that is referred to

as the canonical equation. For a setting with population structure, which is what we have
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here, Allen et al. (2013) arrived at the following canonical equation.

·
x = Ne

N − 1

N

uε2

π (x, y)

(
∂π (x′, x)

∂x′

∣∣∣∣
x′=x

+ r
∂π (x, x′)

∂x′

∣∣∣∣
x′=x

)
(6.5)

This is equation (5) from Allen et al. (2013), with a few variables relabeled (see Appendix

C; see also Champagnat & Méléard, 2007, Champagnat & Lambert, 2007, and Lehmann,

2012). The population size is N , Ne is the ‘effective population size’, u is the individual

mutation probability when producing an offspring, and ε is the standard deviation of the

distribution from which the step size of the mutation is drawn. What the effective popula-

tion size is depends on the reproduction process. In the standard Wright-Fisher process, a

new generation is created by choosing N new individuals independently, and at every draw

every individual in the parent generation has a probability proportional to their payoffs of

being drawn as a parent. For this process the effective population size Ne equals N . If one

single individual is chosen to produce the entire next generation, and every individual has

a probability proportional to their payoffs of being that one individual, then the effective

population size Ne equals 1. If the payoffs just do not matter at all for the probabilities

with which individuals reproduce, then the effective population size is 0. More details

about effective population size can be found in Allen et al. (2013) and in Appendix C.

For the simulations, we use a version of the Wright-Fisher process that allows for positive

relatedness. This process is also used in García & Van Veelen (2016) and Van Veelen et al.

(2012), and is described in Appendix C1. For this process the effective population size Ne
equals N

1+r .

Arriving at the canonical equation (6.5) involves three steps. The first is that we imagine

the following hypothetical process. Suppose that mutations arise at a rate Nu. The step

size of a mutation is drawn from some distribution with expected value 0 and standard

deviation ε. If a mutant does arise, then instantly it is determined whether it goes to

fixation or goes extinct. The probability with which it fixes is taken to be the fixation

probability that we would get for the actual reproduction process, given the size of the

mutation that is drawn. One difference with more detailed and less stylized processes such

as the one that we use for the simulations is that there time is discrete, so that mutations

can only arise at times 1, 2, ..., when new generations are formed, while here they can arrive

at any moment t > 0. Also, the uncertainty concerning whether or not the mutation fixes

is not resolved immediately in the simulations, but in however long it takes the mutant to

fix or go extinct.

The second step is that the expected change in trait value in one generation is computed

in the limit of ∆t ↓ 0 and ε ↓ 0. This expected change is proportional to u times ε2, so with

small u and small ε this is going to be a very small number.

The third step is that we consider a deterministic approximation, where the time deriv-

ative of the trait value is set equal to its expected change.
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Whether or not the canonical equation describes actual processes of evolution well de-

pends on how innocuous the assumption of instantaneous resolution of the uncertainty is,

and how much is lost in step three, where we go to a deterministic approximation. For

both steps the payoff function matters, and also how small u and ε really are can make a

difference. The process that treats the dynamics as if the uncertainty about the fate of a

mutant is resolved immediately is only a good representation if we can be relatively sure

that the fate of one mutant is decided before the next one arises. For this to be the case,

we need to have a suffi ciently low mutation probability u, so that it is very unlikely that

a next mutant arises before the previous one has either gone to fixation or gone extinct.

What suffi ciently low is also depends on the payoff function π.

In this first example, we see that the population is certainly not always monomorphous,

implying that mutants typically do not fix or go extinct before the next one arises. The

speed with which the average trait value in the population moves is therefore somewhat

different from the speed that the canonical equation would give (the simulations move a bit

slower). The direction of selection, however, matches the adaptive dynamics very well. We

can therefore conclude that the adaptive dynamics describe the stochastic dynamics rela-

tively well, even with not so small mutation rates, and that inclusive fitness does determine

the direction of selection and the rest point of the dynamics.
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6.3 Game 2: local equal gains

The game payoffs for the second example were given by π (x, y) = ay − xy. This game
is not additively separable, but if we assume small mutations, the game between resident

and mutant is very close to having equal gains from switching. If a player changes from

playing x to playing x + δ, then the opponent gains (a− y) δ, and the player itself loses

yδ. This is evaluated at y = x, so inclusive fitness is positive if x < r (a− x) and negative

if x > r (a− x). At x = ra
1+r the dynamics do not move any further, and the (individual)

payoffs of both are ra2

1+r −
(
ra

1+r

)2

. The outcome of a simulation with rare, local mutations

(Fig. 24b) again matches this prediction (Fig 24a; lines from player 1’s perspective only).

Figure 24. With π (x, y) = 10y − xy and r = 0.5 inclusive fitness is maximized at trait

value x = 10
3 . The corresponding payoffs are π

(
10
3 ,

10
3

)
= 22 2

9 . The fixed trait values for

player 2 in the left figure are 4
3 ,

7
3 ,

10
3 and 13

3 , respectively. Simulations on the right indeed

show an increase in trait value to x = 10
3 .

It is not only for this particular game that we recover equal gains from switching locally.

This is the case for all differentiable payoff functions. If we take the limit for δ → 0 of

the appropriately rescaled payoff matrix that comes with resident t and mutant t + δ for

general differentiable payoff functions — as we did for this particular game above, where

game 2 was introduced —then we find

limδ→0
1
δ

[
π (t, t)− π (t, t) π (t, t+ δ)− π (t, t)

π (t+ δ, t)− π (t, t) π (t+ δ, t+ δ)− π (t, t)

]
=

[
0 dπ

dy
dπ
dx

dπ
dx + dπ

dy

]

In other words, locally the benefits-to-costs ratio is well defined; we can think of dπdy as the

benefit to the other of a small increase in my trait value, and of dπdx as its costs to me. Not

just for this example, but with differentiable payoff functions in general, we expect the trait

value to go up if rb − c > 0, with b = dπ
dy and c = dπ

dx , as is also reflected in the canonical

equation. The link between differentiability and (local) additivity was pointed out early
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on in the literature; see for instance Taylor, 1988, p. 151—152, Taylor, 1989, p. 140, and

Rousset, 2004, p. 95.

That does not clear us from all problems, even with differentiable payoff functions, as

we will see below in Game 5. But it does imply that there is a much larger set of payoff

functions, on top of the additively separable ones, for which inclusive fitness also works, if

we assume local and small mutations. Additively separable functions have equal gains from

switching built in there right from the beginning, while differentiable ones get equal gains

in the limit of very small mutations.
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6.4 Game 3: minimum effort

The third payoff function is not differentiable; for π (x, y) = amin (x, y)−x2 the derivative

does not exist at the point where it is most needed, which is at x = y. But differentiable

or not, there are of course still dynamics to be studied. Determining the dynamics here

is complicated by the fact that if an increase in trait value is favoured, a decrease is no

longer automatically disfavoured, and vice versa. Also the lack of differentiability implies

that however small we choose the mutation size δ, the game between resident and mutant

never has equal gains from switching. As we will see, this implies that the intuition from

Hamilton (1964) that worked in Game 1 and Game 2 no longer works here. The key is in

the fact that the loss of equal gains from switching implies that it is no longer possible to

assume that any effect I have on others is mirrored by their effect on me.

The game between resident x and mutant x+ δ is given by the payoffmatrix below. We

assume that δ > 0 in order to make the mutant a proper increase in trait value.

x x+ δ

x ax− x2 ax− x2

x+ δ ax− (x+ δ)
2

a (x+ δ)− (x+ δ)
2

With relatedness r and a frequency of the mutant that is approaching 0, the average payoff

to the resident x is simply π (x, x) = ax− x2. The average payoff to the mutant when rare

is rπ (x+ δ, x+ δ) + (1− r)π (x+ δ, x) = ax+ raδ− (x+ δ)
2. Therefore the mutant x+ δ

can invade if raδ − 2xδ − δ2 > 0. Assuming that δ is suffi ciently small, this boils down to

x < ra
2 .

The game between resident x and mutant x − δ is given by the next payoff matrix —
where the mutant now represents a proper decrease in trait value.

x x− δ
x ax− x2 a (x− δ)− x2

x− δ a (x− δ)− (x− δ)2
a (x− δ)− (x− δ)2

With relatedness r and a frequency of the mutant that is approaching 0, the average payoff

to the resident x is still π (x, x) = ax − x2. The average payoff to the mutant when rare

is rπ (x− δ, x− δ) + (1− r)π (x− δ, x) = a (x− δ)− (x− δ)2. The mutant x− δ therefore
can invade if −aδ + 2xδ − δ2 > 0, that is, if x > a

2 , assuming that δ is suffi ciently small.

(We would get the same answer if we considered the first matrix, and check how x does

when x+ δ is the resident. The version with x− δ for x+ δ we thought may be a bit more

intuitive though).

Taking those two thresholds together, we find that for values of x between ra
2 and

a
2 , both

an increase and a decrease in trait value is disfavoured. When we draw a pairwise invasion

plot —which is a traditional way to visualize this in the adaptive dynamics literature; see
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for instance Brännström, Johansson, & von Festenberg, (2013) —then any x between those

bounds is suggested to be stable (see Fig. 25a).

A possible alternative approach might take into consideration that some disadvantageous

mutations are more disadvantageous than others. Even though for any x ∈
(
ra
2 ,

a
2

)
both

increases and decreases are disfavoured, it is still possible that mutants with an increased

trait value are disfavoured more (or disfavoured less) than mutants with an equally large

change, but in the opposite direction. With suffi cient time, it could therefore be that

however sticky a trait value, it might still be more likely to be replaced by a mutant with

a higher trait value than it is to be replaced by a mutant with a lower trait value —or vice

versa.

Figure 25. Pairwise invasion plot for π (x, y) = 10 min (x, y) − x2 with r = 2/5. It

describes, given a trait value of the incumbent (the variable on the horizontal axis), whether

a trait value of a mutant (on the vertical axis) would give that mutant an advantage or

a disadvantage. For x between 2 and 5 both increases and decreases are disadvantageous

(a). One can also use the σ-result from Tarnita et al. (2009) to determine which mutant is

favoured. There, the two balance at trait value x = 3.5 (c). Both criteria are combined in

the middle panel (b).

In order to determine which direction is more likely, or less unlikely, it seems natural to use

the σ-result from Tarnita et al. (2009). This result does not (just) look at whether or not a

mutant has an advantage or a disadvantage when rare. The σ-result gives a criterion that

indicates, for two strategies, which one has the larger fixation probability when appearing as

a single mutant in a population where the other is the incumbent. It therefore by definition

does have the property that if one has the smaller fixation probability, the other has the

larger one, and vice versa. The σ-result assumes weak selection in payoff contribution

(which is sometimes called w-weak selection) but also works with small mutation size δ

(a.k.a. δ-weak selection; see Wild & Traulsen, 2007, for the difference). We do have to

assume that π is continuous, which it is here, but not that it is differentiable.

With strategies A and B and our simple population structure with assortment parameter

r, the fixation probability of a single A mutant is larger than the fixation probability of

a single B mutant if and only if 1+r
1−rπ (A,A) + π (A,B) > π (B,A) + 1+r

1−rπ (B,B) — see
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Appendix C6. If we now take trait values x and x + δ, then the second is favoured when

x < (1+r)a
4 and δ is suffi ciently small.12 With a = 10 and r = 2/5 this threshold value is

3.5 (see Fig. 25c).

The two different possibilities for what to expect from the dynamics, as depicted in Fig.

25, can also be described somewhat more formally. The first approach would depend on the

fact that increasing the population size exaggerates even the smallest disadvantages that

a mutant may have. If we keep the distribution of mutants, and therefore the ε constant,

as well as mutation probability u, then increasing the population size would make mutants

with even a very small disadvantage have a fixation probability that is ever closer to 0

compared to 1/N (or, in other words, it would make N times the fixation probability

approach 0). Choosing a very large population would then create a marked separation

between the middle part of the trait space, where x ∈ [2, 5], and the two other parts, with

x < 2 or x > 5. In the middle part, the speed with which the trait moves would be much

lower than in the other two, and this difference in relative speed could be made ever more

pronounced by increasing the population size (see Appendix C9 ).

The second option generalizes the canonical equation from Allen (2013) to non-differentiable

payoff functions. This approach keeps the population size constant, and implies choosing a

small u and taking a limit of ∆t ↓ 0 and ε ↓ 0. This is what we do in Appendix C, where

we arrive at the same canonical equation, but now with the symmetric derivative replacing

the normal derivative.

·
x = Ne

N − 1

N

uε2

π (x, y)

(
∂sπ (x′, x)

∂sx′

∣∣∣∣
x′=x

+ r
∂sπ (x, x′)

∂sx′

∣∣∣∣
x′=x

)
(6.6)

The symmetric derivative is the average of the left- and right derivative, both of which exist

in our case, and is defined as:

∂sf (x)

∂sx
= lim
ε→0

f (x+ ε)− f (x− ε)
2ε

.

Simulations show that the generic case is relatively well described by the latter approach.

For mutation probabilities that are not actually very small, and a population size that is

not very large, the trait evolves to x = 3.5, without much noticeable change in speed at

x = 2. The third panel from Fig. 25, with the pairwise invasion plot based on the σ-result,

12

1 + r

1− r

(
a (x+ δ)− (x+ δ)2

)
+ ax− (x+ δ)2 > ax− x2 + 1 + r

1− r
(
ax− x2

)
⇔

1 + r

1− r
(
aδ − 2δx− δ2

)
− 2δx− δ2 > 0⇔

(1 + r) (a− 2x− δ)− (1− r) (2x+ δ) > 0⇔

x <
(1 + r) a

4
− (1− r) δ
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therefore describes the direction of selection best, even if the mutation probability is not

actually very small. In order to observe a difference between the speed for x < 2 and x > 2,

we have to choose a very large population size.

Figure 26. With π (x, y) = 10 min (x, y) − x2 and r = 2/5 the simulations with take the

population to a trait value of around 3.5. This is the trait value where Tarnita’s σ-result

applied to this game suggests that neither increases nor decreases in trait value have a

selective advantage. The corresponding payoffs are π
(

7
2 ,

7
2

)
= 22 3

4 .

The simple inclusive fitness intuition that worked for Games 1 and 2 turns out not to work

for Game 3. If we draw a figure similar to Fig. 23 (for Game 1) and Fig. 24 (for Game

2), with the effects of the changes in trait value on self and on the other, then we get Fig.

27. The idea “I weigh the effect I have on myself with 1 and the effect on the other with

relatedness r”is represented by the dotted lines, which did serve us before to separate the

mutants with an advantage from those with a disadvantage. This picture now suggests

that at trait values 1, 2, 3 and 4 both increases and decreases in trait value reduce inclusive

fitness, as all the solid lines are below their respective broken counterparts. The catch is

that at the diagonal, all games between mutant and incumbent, however small δ is, are

coordination games. This figure keeps the strategy of the other player constant. With

equal gains that is not a problem, because the effects then do not depend on what the

other is. Without equal gains, however, keeping the strategy of the other player constant

is not inconsequential. For those games we have seen in Section 3 that inclusive fitness

does not work. For the mutant, playing against a copy of itself really is quite different from

playing against the incumbent —and this difference would not have been there if the payoff

function π had been differentiable.

69



Figure 27. The solid lines are payoff combinations for a fixed trait value of player 2, and

a varying trait value of player 1, for π (x, y) = 10 min (x, y) − x2. When the trait value of

player 1 is below the trait value of player 2, increases in trait value by player 1 increase

the minimum. This always increases the payoff of player 2, and when the derivative of

x2 is not too high, the payoff of player 1 increases as well, but less so. This is reflected

in the upward sloping part. When the trait value of player 1 is above the trait value of

player 2, then increases in trait value by player 1 do not increase the minimum. Hence,

the payoff to player 2 remains the same, while the payoff to player 1, which includes the

x2 term, decreases. This is reflected in the horizontal part. The dotted lines reflect points

with equal inclusive fitness for r = 2/5. If we follow the logic of Fig. 23 and 24, then

for trait values of 1, 2, 3 and 4 both increases and decreases in trait value would be at a

disadvantage. The analysis of the dynamics shows that this is not correct; for y = 1 an

increase is actually favoured, and for y = 2, 3 and 4 the dynamics also go up.
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6.5 Game 4: maximum effort

The fourth payoff function is also not differentiable; for π (x, y) = amax (x, y) − x2 the

derivative does not exist, again, at x = y. Again there are complications for the dynamics,

although somewhat different ones.

The game between resident x and mutant x + δ is given by the payoff matrix below,

where we still assume δ > 0.

x x+ δ

x ax− x2 a (x+ δ)− x2

x+ δ a (x+ δ)− (x+ δ)
2

a (x+ δ)− (x+ δ)
2

With relatedness r and a frequency of the mutant that is approaching 0, the average payoff

to the resident x is simply π (x, x) = ax − x2. The average payoff to the mutant when

rare is π (x+ δ, x+ δ) = a (x+ δ) − (x+ δ)
2. The mutant x + δ therefore can invade if

aδ − 2xδ − δ2 > 0, that is, if x < a
2 , assuming that δ is suffi ciently small.

The game between resident x and mutant x − δ is given by the next payoff matrix —
where the mutant now represents a proper decrease in trait value.

x x− δ
x ax− x2 ax− x2

x− δ ax− (x− δ)2
a (x− δ)− (x− δ)2

With relatedness r and a frequency of the mutant that is approaching 0, the average payoff

to the resident x has not changed: it is still π (x, x) = ax − x2. The average payoff to

the mutant when rare is rπ (x− δ, x− δ) + (1− r)π (x− δ, x) = ax− raδ − (x− δ)2. The

mutant x− δ therefore can invade if −raδ+ 2xδ− δ2 > 0, that is, if x > ra
2 , assuming that

δ is suffi ciently small.

Taking those two thresholds together, we find that for values of x between ra
2 and a

2 ,

both an increase and a decrease in trait value are favoured.
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Figure 28. Pairwise invasion plot for π (x, y) = 10 max (x, y) − x2 with r = 2/5. It

describes, given a trait value of the incumbent (the variable on the horizontal axis), whether

a trait value of a mutant (on the vertical axis) would give that mutant an advantage or a

disadvantage. For x between 2 and 5 both increases and decreases are advantageous (a).

One can also use the σ-result from Tarnita et al. (2009) to determine which mutant is

favoured. There, the two balance at trait value x = 3.5 (c). Both criteria are combined in

the middle panel (b).

We can obviously hope to get around this in a way that is similar to the way we did for

Game 3. With both increases and decreases in trait value being advantageous, we can again

use the σ-result in order to determine which direction is more likely. With trait values x

and x+ δ, increases in trait value are favoured when x < (1+r)a
4 and δ suffi ciently small.13

With a = 10 and r = 2/5 this threshold value is 3.5 (see Fig. 28c).

The trouble with this, though, is that the adaptive dynamics limit must assume muta-

tion rates that are suffi ciently small such that previous mutants typically have either gone

extinct or gone to fixation before the next mutant arises. With games between mutants

and incumbents that are anti-coordination games, this requires mutation rates that are

spectacularly low. Moreover, if we are not that close to the limit, the dynamic behaviour

is very different, as we can see in the simulations. The starting point of adaptive dynamics

—monomorphic populations on the move —therefore turns out to be inappropriate for such

a game, where also mixtures are prone to invasions beyond the extremities of the mixture.

The canonical equation therefore is not a good approximation of the dynamics..

In Section 6.6 we will see more examples, including differentiable ones, where heterogene-

ity is to be expected, and where the adaptive dynamics framework requires such extremely
13

1 + r

1− r

(
a (x+ δ)− (x+ δ)2

)
+ a (x+ δ)− (x+ δ)2 > a (x+ δ)− x2 + 1 + r

1− r
(
ax− x2

)
⇔

1 + r

1− r
(
aδ − 2δx− δ2

)
− 2δx− δ2 > 0⇔

(1 + r) (a− 2x− δ)− (1− r) (2x+ δ) > 0⇔

x <
(1 + r) a

4
− (1− r) δ
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low mutation rates that the limit results that the adaptive dynamics framework offers are

no match with dynamic behaviour with reasonable mutation rates. These and similar issues

are also pointed out by Barton & Polechevá (2005).

Figure 29. With π (x, y) = 10 max (x, y) − x2 and r = 2/5 the simulations take the

population to distributions of the trait value stretching from 2 to 5. Heterogeneity is the

rule for this game; one needs extremely low mutation rates to maintain the assumption

of monomorphic populations, even more so than with Game 3. Moreover, when mutation

rates are not actually suffi ciently low, the dynamics nonetheless still followed what the σ-

result in Tarnita et al. (2009) implied with Game 3 (see Figure 28), while here that is not

the case.

6.5.1 Life without adaptive dynamics

Game 4 suggests that there are cases in which it is not reasonable to assume that populations

are almost always relatively close to being monomorphous. With the point of departure of

adaptive dynamics out the door, what else can we do to describe where we should expect

evolutionary dynamics will take us? Monomorphous populations are one extreme; the other

extreme is a distribution of strategies on a continuum. The alternative approach is therefore

to look for stable distributions (see Van Veelen & Spreij, 2009).

A necessary condition for a distribution to be stable is that every strategy in it should

earn the same payoff (if that would not be the case, some strategies would be selected for,

and hence the distribution could not have been stable in the first place). This requires

that the derivative, taken with respect to the trait, must be 0 for every trait value that is

in the distribution. Let the probability distribution be given by the function f : R → R.
The payoff function is defined for interactions between trait values x and y (in this case it

is π (x, y) = amax (x, y) − x2), but we would like to extend the definition to include the

expected payoff of trait value z against the entire distribution f , and include relatedness r.

For this, we write πr (z, f).
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Against x ≤ z, the payoff of z is az − zβ , and against x > z the payoff of z is ax− zβ .
The payoff therefore is

πr (z, f) = rπ (z, z) + (1− r)π0 (z, f)

= r
(
az − z2

)
+ (1− r)

a z∫
−∞

zf (x) dx+ a

∞∫
z

xf (x) dx− z2


= a

rz + (1− r)

z z∫
−∞

f (x) dx+

∞∫
z

xf (x) dx

− z2

This implies that we are looking for a distribution that satisfies

dπr (z, f)

dz
= a (r + (1− r)F (z))− 2z = 0

where F (z) =

z∫
−∞

f (x) dx.

Because F (z) must lie between 0 and 1, the uniform distribution on the interval
[
ar
2 ,

a
2

]
must be invariant:

F (z) =


1 if z ≥ a

2
2z−ar
a(1−r) if ar2 ≤ z <

a
2

0 if z < ar
2

f (z) =

{
2

a(1−r) if ar2 ≤ z <
a
2

0 elsewhere

Although the population is of course at no point an actual uniform distribution, this does

describe the simulation results much better than the adaptive dynamics does (see Fig.

29).14

14An analytical stability check could be done by showing global superiority of the uniform distribution on

the interval
[
ar
2
, a
2

]
. Then local superiority is obviously implied in any metric, which is suffi cient to imply

asymptotic stability in any metric; see Spreij & van Veelen (2009). Here we just rely on the simulations,

which suggest that the uniform distribution is not only invariant, but also stable.
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6.6 Game 5: bifurcations

There are two good reasons why it is worth looking at another example. The first is

that both differentiability and non-differentiability are of course stylized characteristics of

a model with a continuous trait space, where we allow for mutations of any size. Mutations

are typically not infinitesimally small though, and discussing whether differentiability is

a reasonable assumption, or a particularly unreasonable one, is therefore a little artificial

from the get go. We can try to circumvent that issue altogether by looking at different

(continuous, differentiable) payoff functions that differ gradually as for how strongly the

payoff function is bent at x = y, and see if the things we see in Game 4 really depend on

non-differentiability per se. Within the following family of payoff functions, the “curvature”

at the diagonal varies with a parameter β. In the limit of β →∞, the function ceases to be
differentiable, as it converges to the payoff function of Game 4. Therefore we can approach

Game 4 with a sequence of payoff functions that themselves are all differentiable.

An even better reason is that with this family of payoff functions, we can illustrate

how, even if we make all the assumptions that are required for adaptive dynamics to work

in examples like Game 1 and Game 2 — differentiable payoff function, local, small and

infrequent mutations —we can still end up in a situation where inclusive fitness does not

determine entirely what happens in an evolving population. The problem is caused by the

fact that Hamilton’s rule may help find a “singular point”—a point where rb = c, and

where a monomorphous population ceases to move —but that once at such a singular point,

there are still different possible scenarios, depending on the properties of the payoff function

—as pointed out by Ajar (2003), Doebeli & Hauert (2006) and Wakano & Lehmann (2014);

see also Doebeli, Hauert & Killingback (2004). One is that the population remains where

it is forever. Another is that we see a bifurcation. After a bifurcation, we get two divergent

subsets of the population. In that case, despite the fact that we have local and small

mutations, and a differentiable payoff function, the population ceases to be monomorphic,

and will consist of individuals with increasingly different trait values. In this case we

therefore get substantial deviations from equal gains from switching.

The family of payoff functions we consider is a
(
xβ + yβ

) 1
β − x2. For β = 1, the pay-

off function simplifies to a (x+ y) − x2. For β → ∞ the payoff function simplifies to

amax (x, y)− x2. For ease of comparison, we choose a = 10
(

2−
1
β

)
in all examples below.

If we do, then the derivatives are dπ
dx

∣∣
y=x

= 5− 2x and dπ
dy

∣∣∣
y=x

= 5, which implies that the

adaptive dynamics would see an increasing trait value for x < 5
2 (1 + r), regardless of β.

Fig. 30 shows that we do indeed get ever more bifurcations as β increases, and the payoff

functions get ever more curved around the diagonal. After the bifurcations, equal gains

from switching no longer applies, and both the dynamics and the equilibrium distribution

can no longer be described with inclusive fitness.
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Figure 30. With π (x, y) = 10 ·2−
1
β
(
xβ + yβ

) 1
β −x2 inclusive fitness is maximized at trait

value x = 5
2 (1 + r). The corresponding payoffs are π

(
5
2 (1 + r) , 5

2 (1 + r)
)

= 25 (1 + r) −
25
4 (1 + r)

2. These figures all have have r = 0.3, and go from β = 2 (top row), to β = 7

(middle row), to β = 17 (bottom row).
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6.7 An example of how equal gains is sometimes implicitly as-

sumed

One of the classic references in the inclusive fitness literature is Rousset & Billiard (2000).

Given a population structure of n demes, located on a circle, Rousset & Billiard (2000)

allow for a structure of effects on the fecundity of others that is very general in one sense.

The average trait value in a deme j is allowed to have an effect on fecundity of individuals

in all other demes, with the only restriction that these effects have to be symmetric.

“Migration rates between demes depend only on their relative position, so that

the relative contribution of an individual in deme j to gametes competing in

deme l may be written as gl−j (where gl−j = gj−l)”(page 817).

Our setting, where individuals only have an effect on the individuals they are interacting

with, is a special case of Rousset & Billiard (2000) in the sense that effects on fecundity

of individuals on demes other than the one an individual is on itself are assumed not to

exist. This implies a simplification to the island model, which is also treated by Rousset &

Billiard (2000) as a special case (page 820—821).

There is, however, one aspect in which their setting is less general. Both in the general

formulation (equations (2) and (3) on page 817) and in the island model (page 820) the

arguments of the functions gr and w are average trait values (gr is a function that returns the

relative contribution of an individual to gametes competing in a deme r steps apart on the

circle, and w is the fitness function). If we take their island model, where w ≡ w (z•, z0, z1)

is the fitness function, and try to match it with Game 2, we see that we cannot, because

it is not enough only to know averages. In their function w ≡ w (z•, z0, z1) the variables

z•, z0 and z1 are the focal individual’s own phenotype, the average phenotype on the focal

individual’s own deme (excluding the focal individual) and the average phenotype of all

individuals in other demes. In our Game 2, where the payoff function is π (x, y) = ay− xy,
we choose again a = 10. The cases below all have three groups of size 2.

Case 1:
Trait values 1, 1 1, 3 1, 3

Payoffs 9, 9 27, 7 27, 7

If we take as a focal individual the first individual in group 1, then its fitness is 9
86 . Fur-

thermore z• = 1, z0 = 1 and z1 = 2. Below, the z•, z0 and z1 are the same, but the fitnesses

are different; for the focal individual it is 9
78 .

Case 2:
Trait values 1, 1 1, 1 3, 3

Payoffs 9, 9 9, 9 21, 21

The reason why they are different is that games with this payoff function do not satisfy

equal gains from switching. The effect on total payoff of the two individuals with trait value
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3 is not the same if they both are matched with an individual with trait value 1 compared

to if they are matched with each other.

This particular example can easily be encompassed by reformulating their islands model

as a special case of their general model, by replacing the variable z1, which now is the average

over all demes other than the one the focal individual is on, by a vector which gives per

deme averages, as is possible in their more general setup. This, however, would still not

allow a fitness function based on averages to capture everything. If we compare Case 1 with

Case 3 below, we find that the deme averages are still the same (1, 2 and 2, respectively)

but the fitness of the focal individual is still different; now it is 9
82 .

Case 3:
Trait values 1, 1 2, 2 2, 2

Payoffs 9, 9 16, 16 16, 16

Note that if we want to make a payoff function for which we can in fact derive a fitness

function for the island model that depends only on the trait value of the individual and

on the average trait values per deme, we are restricted to a set of payoff functions that

not only are additively separable (which implies that all games satisfy equal gains from

switching) but also has constant costs and benefits of (more) cooperation; only π (x, y) =

c (y) − b (x) = cy − bx works here, where the bold b and c are constants. This is not
the most interesting case, because the value added of a model with a continuum of trait

values lies exactly in the possibility that marginal costs and benefits of cooperation are not

constant. If the benefit/cost ratio of an increase in cooperation is the same everywhere, we

expect that an increase in cooperation is selected for (or against) everywhere, whereas we

are most interested in finding a point up to which increases in the level of cooperation are

selected for, but beyond which further increases are not.

Again, differentiability of payoff function π offers an escape here. In the limit of small

mutations, and with the fitness function π (x, y) differentiable at all points where x = y, the

games between mutant and incumbent do exhibit equal gains from switching, and payoffs

are even locally linear in x and y. One way of encompassing that is to acknowledge that with

a differentiable payoff function, the true fitness of a focal individual can be approximated

properly with a fitness function w that uses averages, if, of course, trait values are suffi ciently

close to each other (which we get if we assume few mutants, and small mutations). It is

worth observing, though, that equal gains from switching is built in in this model from the

get go.
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7 Local interaction vs. local competition

In this section we discuss cancellation effects. Wilson, Pollock and Dugatkin (1992) and Taylor

(1992a,b) found that cooperation may not evolve in populations with local reproduction, even

though that makes relatedness between interacting agents positive. The reason for this is that in

such models not only the opportunities for cooperation are local, but competition is local too. We

illustrate this by combining the cycle —which is a very simple stylized population structure —with

different update rules. This is the most important deepening of our understanding of kin selection

since Hamilton (1964). What matters is not so much that interacting agents are related; what

matters is that there is a discrepancy between how assorted the opportunities for cooperation are,

and how assorted competition is. A classic way to generate such a discrepancy is kin recognition.

One of the ways in which interactants could end up being related is by reproduction not

being a global affair, but a local one —which it typically is. Assuming that individuals also

find their opportunities to cooperate locally, this implies that if two individuals interact,

they are close by, and if they are close by, they are more likely to share common ancestry

than with individuals that are further apart. Limited dispersal therefore may seem to be a

good way to get cooperation to evolve. In Hamilton (1964a, page 10) “population viscosity”

is therefore suggested to foster cooperation:

With many natural populations it must happen that an individual forms the

centre of an actual local concentration of his relatives which is due to a general

inability or disinclination of the organisms to move far from their places of birth.

In such a population, which we may provisionally term “viscous”, the present

form of selection may apply fairly accurately to genes which affect vagrancy.

It follows from the statements of the last paragraph but one that over a range

of different species we would expect to find giving-traits commonest and most

highly developed in the species with the most viscous populations whereas un-

inhibited competition should characterize species with the most freely mixing

populations.

Whether or not viscosity would have that effect was investigated in a paper by Wilson,

Pollock and Dugatkin (1992). With a specific choice of how to generate viscosity, they

found that there was no such effect. This was confirmed in a more formal and general way

in Taylor (1992a,b), and the reason why the suggested effect was not found, was that limited

dispersal also implies that competition is local, and the effect of that was left out of the

equation.15 What is needed to have altruism evolve, is therefore not just that opportunities

15Considerations that do include local competition are also found earlier; Hamilton (1971), Boyd (1982),

Grafen (1983) and other references in Wilson, Pollock and Dugatkin (1992) and Taylor (1992a,b).
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for cooperation are local, and with related individuals, but that the symmetry between local

competition and local opportunities for cooperation is broken.

In this section we will illustrate this with a simple example of a local interaction struc-

ture: the cycle. The cycle is suffi ciently stylized to make for a good, insightful illustration,

and also illustrates how different approaches have advantages and limitations of their own.

The setup was introduced by Ellingsen (1993), Eshel et al. (1998), Lieberman et al. (2005)

and Ohtsuki et al. (2006a,b), and the analysis was repeated, but now in inclusive fitness

terms, in Grafen (2007b) and Taylor et al. (2007).

7.1 Different intuitions

There are different ways to form an intuition about how kin selection works. One is the

core intuition from Hamilton (1964a,b), which looks at the effects of the behaviour on the

actor itself, and at the effects on other individuals. It then considers whether or not those

combined effects result in a net plus or a net minus for the gene. Alternatively, since many

settings are symmetric in some relevant sense, all behaviours can also be mirrored. That

is, instead of considering the effect that I have on, say, my sibling, and include his or her

change in fitness in my books, one could also consider the effect that my sibling has on me

instead. With equal gains from switching, we can be sure that this is an unambiguous swap,

and that the numbers in the overall accounting system do not change. This different way of

accounting does however foster a different intuition —where different is neither superior nor

inferior —and the second way of balancing the books is typically referred to as “neighbour

modulated fitness”.

The “neighbour modulated fitness” intuition says that population structure can make

cooperation evolve, because it gives those that cooperate with others an increased prob-

ability of also receiving cooperation. With population structure, what you are will be

informative about what you are likely to face, and if you are a cooperator yourself, you are

extra likely to also face a cooperator and get the benefits of being on the receiving end too.

The intuition for the counterbalancing effect of local competition can now be described

as a complication within this neighbour modulated fitness idea. With local dispersion, you

find not only your possible cooperators close by, but also your competition. And one can

easily imagine that the competition in a cluster of cooperators is also extra intense. Those

that you are interacting with have an increased probability of being cooperators too —which

is good for you, because you will benefit from their cooperation. But those that you are

competing with also have an increased probability of being cooperators too, and, more

importantly, they have an increased chance of being surrounded by cooperators too, just

like you do. Which implies that the competition is also enjoying increased fitness benefits

because of the proximity of other cooperators —and that is bad for you.
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7.2 Cooperation on the cycle

In order to illustrate this, we will look at three examples. The first example is the Birth

Death process on the cycle. Here local competition completely washes out the effect of local

opportunities for cooperation. The second example is Death Birth on the cycle, and there

the cancelling out is only partial. The last example is a mixture of the two, with a twist

that allows for a complete breaking of the symmetry, and no cancelling at all.

Individuals are organized on a circle. They play a game with their two neighbours. Here

we will consider a simple prisoners’dilemma with equal gains from switching:

D C

D 0 b

C −c b− c

These payoffs are then translated into scaled payoffs to allow for a parameter that reflects

the intensity of selection. In the earlier papers, the scaled payoffs were: 1−w +w·payoffs,
where w is the intensity of selection (Ohtsuki et al., 2006a, Ohtsuki & Nowak, 2006b). In

more recent papers ew·payoff s is also used (Gokhale & Traulsen, 2010, Van Veelen & Nowak,

2012). These scaled payoffs determine probabilities in the update step.

In the Birth Death process, the probability with which an individual is chosen to repro-

duce is proportional to its scaled payoff. In other words, the probability with which any

specific individual begets an offspring is its scaled payoff divided by the sum of all scaled

payoffs. Then one of the neighbours of the individual that reproduces dies —where both

neighbours are chosen with equal probability —and is replaced by the new individual.

In the Death Birth process, first an individual is chosen to die, where all individuals

have equal probability to be chosen. The two neighbours of the just vacated spot then

compete to put an offspring there, and their chances are again proportional to their scaled

payoffs.

In the Shift process (Allen & Nowak, 2012), the probability with which an individual

is chosen to reproduce is again proportional to its scaled payoffs. Then either the offspring

is placed between the parent and its left neighbour, or between the parent and its right

neighbour, both with probability one half. One individual is also chosen to die, where all

have equal probability of being chosen. The individuals in between the new offspring and

the vacated spot move one position, so that we again have a full circle with no empty spots.

The offspring thereby pushes the neighbours away towards the vacated place. If the parent

is chosen to die, then the offspring just takes the parent’s place.

The first two processes are analysed in Ohtsuki et al. (2006a) and Ohtsuki & Nowak

(2006b) using the Moran process. The central measure of expected evolutionary success is

the fixation probability of a mutant. There are two criteria that can be used to classify

mutants as advantageous or disadvantageous. One can compare the fixation probability of

a mutant cooperator in a world of defectors to the fixation probability of a neutral mutant,
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which is one over the population size N . Another possibility is to compare the fixation

probability of a mutant cooperator in a world of defectors to the fixation probability of

a mutant defector in a world of cooperators. For the Death Birth and the Birth Death

process on the cycle, Ohtsuki et al. (2006a) find that these criteria give the same results.

These results imply that, in the limit of weak selection, cooperation is never favoured in the

Birth Death process, and cooperation is favoured in the Death Birth process if cb >
N−4
2N−4 ,

which, for large N , comes down to 1
2b > c.

It is tempting to see Hamilton’s rule already in there. Ohtsuki et al. (2006a) did notice

the similarity, but it is important to realize, as Grafen (2007b) pointed out, that b and c

are only payoff parameters, which in this case cannot be equated to fitness effects. Also

relatedness is not 1
2 ; one can easily imagine that in a process where the cooperators are

always grouped together in one string, and defectors in another, with only two boundaries,

relatedness should be larger than 1
2 . For large population size N it should actually get close

to 1. The fitness effect of being a cooperator instead of a defector are found by looking at

how these payoffs affect reproduction. They are given, along with relatedness for both the

Birth Death and the Death Birth process, in Table 1 of Grafen (2007b). Below, this table

is reproduced, and an extra row is added to also give the fitness effects in the third process.

Relatedness for this process may be different from the relatedness for the Birth Death and

the Death Birth process.

Individual j − 3 j − 2 j − 1 j j + 1 j + 2 j + 3

Related

ness to j
N2−18N+53

N2−1
N2−12N+23

N2−1
N2−6N+5
N2−1 1 N2−6N+5

N2−1
N2−12N+23

N2−1
N2−18N+53

N2−1

≈ 1− 18
N 1− 12

N 1− 6
N 1 1− 6

N 1− 12
N 1− 28

N

Effect on

payoff
0 0 +b −2c +b 0 0

Fitness effect

(BD)
0 −b/2 +b+ c −b− 2c +b+ c −b/2 0

Fitness effect

(DB)
−b/4 +c/2 +b/4 −c +b/4 +c/2 −b/4

Fitness effect

(Shift)
− 2(b−c)

N − 2(b−c)
N +b− 2(b−c)

N −2c− 2(b−c)
N +b− 2(b−c)

N − 2(b−c)
N − 2(b−c)

N

Table 1. These examples illustrate how cancellation effects work. Relatedness is computed

in the limit of low mutation; rk = limu↓0
qk−q
1−q , where qk is the stationary IBD probability of

neighbors at distance k —which depends on mutation probability u —while q is the average

IBD probability among all pairs (see also Grafen, 2007b, and Allen & Nowak, 2012).

Birth Death on the cycle. In the first case the opportunities for cooperation that one

has are with the exact same individuals that one is competing with. In this case cooperation
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never evolves —that is, not as long as c > 0. Somewhat more formally: if c > 0, there is

always a population size N such that the fixation probability of a cooperator is larger than

the fixation probability of a defector (this actually holds for any intensity of selection; see

Proposition 5 in Van Veelen & Nowak, 2012). Inclusive fitness suggests the same; going

over all affected neighbours, and weighing the effects on them with relatednesses, Grafen

(2007b) finds that the inclusive fitness effect of cooperation is

−N
2 − 12N + 23

N2 − 1
b+

N2 − 6N + 5

N2 − 1
(2b+ 2c)− b− 2c =

12 (b− c (N − 1))

N2 − 1

For every c > 0 this will be negative from some N onwards. In this case local competition

completely cancels out local opportunities for cooperation.

One can think of the effects in this formula as effects a player has on itself and its

neighbours. The effect I have on myself is −b− 2c; I twice lower my chance of being picked

for reproduction by c, and I twice lower it by another b/2 through adding benefit b to my

neighbours. The effect I have on my left and right neighbour is +b + c on both sides; me

being a cooperator increases their fitness with b plus half of the decrease in my payoff,

which is 2c). The effect I have on my left and right neighbours twice removed is −b/2 on
both sides; by cooperating, I lower their chances by b/2, as I did to myself, since I am the

other neighbour of my neighbour.

These effects can of course also be mirrored. My neighbour being a cooperator would

increase my fitness by b + c, for the exact same reason why me being a cooperator would

increase his or hers. Similarly, the neighbour one further removed being a cooperator

hurts me −b/2. The latter perfectly captures the cancellation effect. With this type of
local interaction, if I am a cooperator, it is quite likely that my neighbour is too. But

my neighbour also has an increased opportunity to border with another cooperator on the

other side as well, which makes me face increased competition. In this case these two effects

cancel out exactly.

Death Birth on the cycle. In the second case the opportunities for cooperation and

competition do not overlap anymore; one competes with neighbours twice removed, and

interacts for cooperation with direct neighbours. This discrepancy helps avoid full cancella-

tion, although there is still some. In this case cooperation evolves if c/b > 1/2. Somewhat

more formally: if c/b > 1/2, there is always a population size N such that the fixation prob-

ability of a cooperator is larger than the fixation probability of a defector (see Proposition

7 in Van Veelen & Nowak, 2012). Inclusive fitness suggests the same:

−N
2 − 18N + 53

N2 − 1

b

2
+
N2 − 12N + 23

N2 − 1
c+

N2 − 6N + 5

N2 − 1

b

2
− c =

6 ((N − 4) b− (2N − 4) c)

N2 − 1

If c/b > 1/2 this will be positive from some N onwards.
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In this case local competition does not completely cancel out local opportunities for

cooperation. I might benefit from my direct neighbours on both sides in competing with my

two neighbours twice removed, who both may also benefit from their two direct neighbours,

one of which is my neighbour too, and one of which is my neighbour three times removed.

Shift on the cycle. The third example is extreme, in that there is no cancelling at all.

The opportunities for cooperation are local —with the direct neighbours —but competition

is global, because who reproduces and who dies is not linked, and any increase in aggregate

payoffs hurts every individual on the cycle equally. It will come as no surprise that here

cooperation can evolve as soon as it implies an effi ciency gain, that is, when b > c. A

standard computation shows that, indeed, if b > c then there is a population size N such

that cooperation is favoured from that N onwards16 . The process is analyzed in much more

detail in Allen & Nowak (2012).

The relatednesses for the shift process may not be the same as for the Birth Death

and the Death Birth process. A nice property of relatednesses on the cycle, however, is

that they by definition add up to 0.17 This implies that if we take all − 2(b−c)
N terms and

weigh them by relatedness to the actor, they also add up to 0. Inclusive fitness is therefore

positive if

r2b > c

where rn is the relatedness to the individual n − 1 spots removed. With limN→∞ r2 = 1,

and with b > c, this will also be true from some N onwards.

16The core ingredient of the computation is the ratio of two probabilities; T+i is the probability of going

up one state, from i to i + 1, and T−i is the probability of going down one state, from i to i − 1, where i
is the number of cooperators and N − i the number of defectors (see Lieberman, Hauert & Nowak, 2005,

Ohtsuki et al, 2006a, Ohtsuki & Nowak, 2006b, Nowak, 2006, Van Veelen & Nowak, 2012).

T+i
T−i

=
1− w + w ((2i− 2) b− 2ic)

1− w + w2b
=
1− w + 2w (i (b− c)− b)

1− w + 2wb

The fixation probability of a mutant cooperator is larger than 1/N if
N−1∏
i=1

T+i
T−i

> 1. In the limit of weak

selection,

N−1∏
i=1

T+i
T−i

= 1 + w

(
N−1∑
i=1

(2i (b− c)− 2b)−
N−1∑
i=1

2b

)
=

= 1 + w (N (N − 1) (b− c)− 4b (N − 1))

hence

N−1∏
i=1

T+i
T−i

> 1 if N >
4b

b− c

17

N∑
k=1

rk = lim
u↓0

N∑
k=1

qk − q
1− q

= 0

See also the caption of Table 1.
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8 Preference evolution

In this section we consider evolution of preferences, first in the absence of population structure,

and later with possibly positive relatedness. If agents can infer each other’s preferences, then these

preferences can serve as a commitment device. Depending on the fitness function this can lead to

the evolution of altruistic preferences, or spiteful ones, even without population structure. When

combined with relatedness, Hamilton’s rule still describes the equilibrium outcome.

The first known reference to what later became known as Hamilton’s rule was made by

J.B.S. Haldane. When asked if he would jump into a river to save a brother from drowning,

he is said to have answered that he would to save two brothers, but not one, or to save eight

cousins, but not seven. With the hindsight of the cancellation effect, the example of siblings

and cousins turns out to be a particularly good one. Identifying siblings, and singling them

out for altruism, is a perfect way to break the symmetry between local opportunities for

cooperation and local competition. Once past a certain age, siblings don’t compete with

each other any more intensely than they do with other individuals their own age. Yet, if they

can identify each other, they can single each other out for altruism and cooperation, and

if they do, the benefits accrue to related individuals, without coming back at the agents

through increased competition. Breaking the symmetry using kin recognition therefore

works (see also papers on kin recognition in humans by Lieberman, Tooby & Cosmides,

2003, 2007).

There are also reasons why that may not be the end of the story for the model species

“humans”. We do have a theory of mind, and engage in all kinds of strategic behaviours,

given what we know, or think we know, about the world and about each other. That may

open the door for complications. In this section we will discuss a few of those complications

—which are not necessarily limited to humans, but which are certainly easiest to think of

in our own species.

Let’s go back to the basic model as proposed by Hamilton. That model begins with a

behaviour that comes with a given cost c to the actor and a given benefit b to the recipient.

Every individual in every generation is thought of as facing the same choice: to give or

not to give, always at the same cost c and always for the same benefit b. For any possible

combination of c and b, the model gives a prediction; either the altruistic act is selected

for, or it is not.

In reality, individuals may face a variety of choices. Sometimes the altruistic act confers

a large benefit on the other at a low cost to the actor, sometimes only a small benefit

at high costs, and everything in between. If the individual has no way of identifying the

differences between those cases, it will have to make a generic choice, and evolution will

select what is best on average. But if an individual can tell different costs and benefits

apart, then it can also differentiate, and decide to be cooperative/altruistic in some, and

not cooperative/selfish in other cases. If the individual can differentiate perfectly, then the
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prediction is that the decision rule that the individual will use will in fact coincide with

Hamilton’s rule; they will act altruistically only in those cases where rb > c (Theorem 1,

Van Veelen, 2006).

The mathematical toolbox in economics provides just the right framework to describe

such decision rules. A decision rule, assuming that it satisfies some basic consistency

conditions, can be summarized by a utility function. With two individuals, a utility function

has two arguments: my fitness and your fitness. We will denote those with π1 and π2, taking

the perspective of player 1. When faced with a bunch of possible combinations of fitness

for self and other, the decision rule that goes with a specific utility function is to choose

the one that comes with the highest value of the utility function. The utility function that

goes with Hamilton’s rule is: u1 (π1, π2) = π1 + rπ2.

Such a decision rule is typically depicted with “indifference curves”, or, in other words,

lines of equal utility. For the utility function u1 (π1, π2) = π1 + 1
2π2, some such lines are

drawn in Fig. 31.

Figure 31. (a) Faced with a choice between (1, 1) and (0.5, 3), a player 1 with utility

function u1 (π1, π2) = π1 + 1
2π2 prefers the latter option, as 1 + 1

2 · 1 = 11
2 < 2 = 0.5 + 1

2 · 3.
This is reflected in the figure, where (0.5, 3) lies on a higher iso-utility line, or indifference

curve. If (1, 1) is the status quo, then the other option implies a cost of 0.5 to self and a

benefit of 2 for the other. (b) Faced with a choice between a whole set of options, the point

on the highest indifference curve is chosen.

The payoffs π1 and π2 are not chosen directly, but indirectly. Players 1 and 2 choose

actions x and y, the combination of which leads to payoffs π1 = π (x, y) and π2 = π (y, x).

(As in Section 3, we assume that the game is symmetric). Players 1 and 2 are assumed

to understand those consequences, and choose x and y so as to maximize their respective

utilities u1 and u2, given what the other player is doing. In other words, they are playing

a Nash equilibrium, where each evaluates the outcomes according to their utility function.

While individuals choose their actions x and y on the basis of their own utility functions,

and the utility function of the individual they are paired with, evolution chooses utility
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functions on the basis of the payoffs that they imply for the player that has them. This is

called preference evolution (examples include Robson, 2001, Samuelson, 2001, Weibull &

Salomonsson, 2006, Van Veelen, 2006, Dekel, Ely, Yilankaya, 2007, Akçay et al., 2009, Rob-

son & Samuelson, 2011, Akçay & Van Cleve, 2012, Alger & Weibull, 2012) and sometimes it

is also referred to as the indirect evolutionary approach (Güth & Yaari, 1992, Güth, 1995).

Now suppose that the phenotypes that evolution can choose from are all linear utility

functions of the type depicted in Fig. 31. In other words, what evolves is the altruism

parameter α in the utility function u (π1, π2) = π1 + απ2, where α is the weight attached

to the payoff of the interaction partner. In a world with very simple games, where all that

happens is that individuals at times have the opportunity to make transfers of different

kinds, as in Hamilton (1964), selection would always favour α = r over all other values of

α (see Theorem 1, Van Veelen, 2006). But now let’s look at a world where individuals play

slightly more complicated games, and where both players are aware of the utility function

of the other, and where both individuals make inferences as to what that implies for the

action that the other player is going to choose. Below, we will write α for the altruism

parameter of player 1 and β for the altruism parameter of player 2.

Again, there are games where nothing special happens. If we take a prisoners’dilemma

with equal gains from switching, and two players that have a utility function of this form,

then for both players the preferred action is independent of the action of the other, whatever

their respective altruism parameters are. But there are also games where what I would

prefer to do depends on what the other does. In such cases interesting things can happen,

as was pointed out by Akçay et al. (2009) and Alger & Weibull (2012).

Let’s consider the payoff function π (x, y) = 4 (xy)
1
2 − x2. With this payoff function,

and with two selfish individuals —α = 0 and β = 0 —what one would prefer to do, depends

on what the other does. For both players, the utility-maximizing choice is to play the cube

root of the choice of the other.18 Since α = β = 0, this is also the payoff-maximizing choice

for both. Therefore in Nash equilibrium, we would have x = 3
√
y and y = 3

√
x, and hence

both players will choose x = y = 1. Both players get a payoff of π (1, 1) = 3.

But what happens if a mutant with a positive level of altruism enters? If player 1 is

a mutant with altruism parameter α = 1
3 , then its best response

19 is to play x = 3

√
16
9 y.

The best response of player 2, with altruism parameter β = 0 is still y = 3
√
x. The Nash

equilibrium between those two players is x =
(

16
9

) 3
8 > 1 and y =

(
16
9

) 1
8 > 1. What has

happened now is that player 1 increased its choice of x, because it cares about player 2.

Player 2 subsequently increased its choice of y too, not because player 2 cares about player

1 too, but only because increasing y is the self-interested best thing to do in response to an

increase in x of player 1.

18With α = 0 the first derivative of player 1’s utility fnction is du
dx
= 2

( y
x

) 1
2 − 2x. This is 0 if x = 3

√
y.

19With α = 1
3
the first derivative of player 1’s utility function is du

dx
= 2

( y
x

) 1
2 − 2x+ 1

3

(
2
( y
x

) 1
2

)
. This

is 0 if x = 3
√

16
9
y.
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Figure 32. The payoff function π (x, y) = 4 (xy)
1
2 −x2. A red line represents combinations

of payoffs to player 1 and player 2 that player 1 can effectively choose from by choosing x,

given a fixed choice of ŷ of player 2. It is described by (π (x, ŷ) , π (ŷ, x)), where ŷ is chosen

to be 1, 1 1
6 , 1

2
6 and 1 3

6 , respectively, and x varies continuously. A blue line does the same

from the perspective of player 2. The graph thereby takes the action of one player constant,

and pictures the effect of the other’s possible actions on the payoffs of both players.
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Figure 33. (a) The Nash equilibrium, given that both are selfish (α = β = 0). (b) If player

1 changes to an altruistic preference (for instance α = 1
3 , as in the picture) it induces the

other player to increase the level of cooperation, even though player 2 still has β = 0. The

possibility to credibly commit to playing a more cooperative action pays off with strategic

complements; player 1 ends up with a higher payoff at α = 1
3 than at α = 0. Therefore
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α = β = 0 is not an equilibrium in preference evolution (for the record: α = β = 1
3 is).

It turns out that this is actually good for the material payoff of player 1. The payoff of

player 1 is now π
((

16
9

) 3
8 ,
(

16
9

) 1
8

)
= 4

(
16
9

) 1
4 −

(
16
9

) 3
4 > 3, which therefore is more than a

player with α = 0 would earn against a player with β = 0. Caring for the other individual

now has worked as a way to credibly commit to increasing one’s action x, which induced

the other to increase her action y, which in this case turned out to pay off at the ultimate

level.

With utility functions as phenotypes, evolution acts on the altruism parameter α. It

increases until α reaches 1
3 , where it increases no further. Note that this still is all within

a well-mixed setting, with relatedness 0. In spite of this, altruism has evolved, not be-

cause of positive relatedness, but because altruism serves as a commitment device in games

with strategic complements. The next example shows that the opposite can happen with

strategic substitutes.

For this we consider the payoff function π (x, y) = 8 (x+ y)
1
2 −
√

2x2. With this payoff

function, and with two selfish individuals — that is, α = 0 and β = 0 —what one would

prefer to do also depends on what the other does. Here also the Nash equilibrium is that

both players choose x = y = 1.20 Since α = β = 0, this is also the payoff-maximizing choice

for both. The payoff of both players is π (1, 1) = 7
√

2.

But what happens if a mutant with a negative level of altruism enters? If player 1

is a mutant with altruism parameter α = − 1
5 , then the Nash equilibrium between those

two players is21 x = 19
20

(
40
39

) 1
3 < 1, and y =

(
40
39

) 1
3 > 1. What has happened now is that

player 1 decreased its choice of x, because it dislikes payoff going to player 2. Player 2

subsequently increased its choice of y, because increasing y is the self-interested best thing

to do in response to an increase in x by player 1.

It turns out that this is actually good for the material payoff of player 1. The payoff

of player 1 increases, compared to what a player with α = 0 would earn against a player

with β = 0. Being jealous of the other individual, or spiteful, now has worked as a way to

credibly commit to decrease one’s action x, which induced the other to increase her action

y, which in this case turned out to pay off at the ultimate level.

With utility functions as phenotypes, evolution acts on the altruism parameter α. For

this example it decreases until α reaches − 1
5 , where it will decrease no further. Again

this still is all within a well-mixed setting. In spite of this, spite has evolved, not because

of negative relatedness, but because spite serves as a commitment device in games with

strategic substitutes.

20With α = 0 the first derivative of player 1’s utility fnction is du
dx

= 4 (x+ y)−
1
2 − 2

√
2x. This is 0 if

x2 (x+ y) = 2. In symmetric equilibrium x = y = 1.
21With α = − 1

5
the first derivative of player 1’s utility function is du

dx
= 4 (x+ y)−

1
2 − 2

√
2x −

1
5

(
4 (x+ y)−

1
2

)
. This is 0 if x

√
x+ y = 19

20

√
2.

With β = 0, the first derivative of player 2’s utility function is 0 if y
√
x+ y =

√
2. In equilibrium

therefore x = 19
20
y, hence x = 19

20

(
40
39

) 1
3 , y =

(
40
39

) 1
3 .
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Figure 34. The payoff function π (x, y) = 8 (x+ y)
1
2 −
√

2x2. The red lines represent

the payoff combinations (π (x, ŷ) , π (ŷ, x)) where ŷ is a fixed value (here chosen to be

0.8, 0.9, 1.0 and 1.1) and x varies continuously. The blue lines represent the payoff combi-

nations (π (x̂, y) , π (y, x̂)) where x̂ is a fixed value (again 0.8, 0.9, 1.0 and 1.1) and y varies

continuously.
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Figure 35. (a) The Nash equilibrium, given that both are selfish (α = β = 0). (b) If player

1 changes to a spiteful preference (for instance α = − 1
5 , as in the picture) it induces the

other player to increase the level of cooperation, even though player 2 still has β = 0. The

possibility to credibly commit to playing a spiteful action pays offwith strategic substitutes;

player 1 ends up with a higher payoff at α = − 1
5 than at α = 0. Therefore α = β = 0 is

not an equilibrium in preference evolution (for the record: α = β = − 1
5 is).

90



What this shows is that altruism — or spite — may also evolve for reasons other than

interactants being related and without being matched assortatively otherwise. Of course,

on top of room for commitment, there could be relatedness too. In their paper, Alger &

Weibull (2012) look at how the combination of both ingredients leads to levels of altruism

or spite that depend on the type of game as well as relatedness. Here we would also like

to do that, and see how that fits into Hamilton’s rule. We will do that in a somewhat

more general way than in the previous examples, and comprise the entire Nash-equilibrium

finding in a single function, assuming that there is a unique Nash equilibrium. The Nash

equilibrium is a combination (x∗, y∗) of actions of players 1 and 2, that obviously depends

on their respective altruism parameters α and β, and on the payoff function π. This

function is denoted by Nπ (α, β). For brevity, we also write x∗1, x
∗
2, y
∗
1 and y

∗
2 for derivatives

dx∗(α,β)
dα , dx

∗(α,β)
dβ , dy

∗(α,β)
dα and dy∗(α,β)

dβ . The resulting payoffs for player 1 are obviously

π (Nπ (α, β)) = π (x∗, y∗).

One way to write down the indirect evolution method in formulas in this setting, with

relatedness r, is to say that it leads to an altruism parameter α∗ for which at least the

following must hold

(1− r) dπ (Nπ (α, β))

dα

∣∣∣∣
β=α=α∗

+ r
dπ (Nπ (α, α))

dα

∣∣∣∣
α=α∗

= 0 (8.1)

With x∗ and y∗ both as functions of both the altruism parameter of player 1 and of player

2, we can rewrite the stability condition as

(1− r)
[
dπ

dx
x∗1 +

dπ

dy
y∗1

]
β=α=α∗

+ r

[
dπ

dx
(x∗1 + x∗2) +

dπ

dy
(y∗1 + y∗2)

]
β=α=α∗

= 0 (8.2)

This can be reorganised as

dπ

dx
x∗1

∣∣∣∣
β=α=α∗

+
dπ

dy
y∗1

∣∣∣∣
β=α=α∗

+ r

[
dπ

dx
x∗2 +

dπ

dy
y∗2

]
β=α=α∗

= 0 (8.3)

These three terms now allow for a nice summary of effects. The first term describes how

(further) changes in my altruism parameter α would affect my own payoff through its effect

on my own choice of a variable x in Nash equilibrium. This term is typically negative; if I

start caring more for the other, I am more inclined to trade my own payoff for the payoff

of the other. Therefore, if a positive α evolves, this has to be offset by a positive effect

through other channels. The second term describes how (further) changes in my altruism

parameter α would affect my payoff through its effect on my opponents, or co-player’s,

choice of her variable y in Nash equilibrium. This captures the commitment effect. It is

positive in the first example, where me becoming more altruistic makes the other choose a

more cooperative y. It is negative in the second example, where me becoming less altruistic
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makes the other choose a more cooperative y. The last term concerns the effects on my

payoff of a corresponding change in the altruism parameter by my opponent, or co-player,

which I am facing with probability r. These are, again, subdivided; first there is the effect

through my own equilibrium choice x, and then the effect through the choice y of my

co-player.

This is not yet inclusive fitness according to the intuition from Hamilton (1964), but

rather the neighbour-modulated fitness version. In order for this to be inclusive fitness, we

have to realize that the symmetry of the game implies that the effect of a change in my

opponent’s β on my equilibrium choice x∗ equals the effect of a change in my own α on my

opponent’s equilibrium choice y∗, provided that α = β. In other words, y∗2 |α=β = x∗1|α=β .

Similarly, x∗2|α=β = y∗1 |α=β . Therefore we can rewrite the condition as a proper inclusive

fitness maximization condition.

dπ

dx
x∗1

∣∣∣∣
β=α=α∗

+
dπ

dy
y∗1

∣∣∣∣
β=α=α∗

+ r

[
dπ

dx
y∗1 +

dπ

dy
x∗1

]
β=α=α∗

= 0 (8.4)

The properties of the examples all show up in this formula. In the two previous examples

in this section, r = 0, so all that happens does so through the first two terms. Strategic

complementarities make the two terms balance at a positive α. As long as the sum of the

two terms is still positive, then increasing α hurts me less through the effect on myself —

reflected in the first term —than it gains me trough the effect through the other —reflected

in the second term, which is positive with complementarities. The second example is the

mirror image. With strategic substitutes the two terms balance at a negative α. When the

sum of the two terms is still negative, then decreasing α hurts me less through the effect on

myself —reflected in the first term; I am now actually willing to pay to reduce the other’s

payoff —than it gains me through the effect on the other player —reflected in the second

term, which is negative in case of complementarities.

We can construct another example by taking the first payoff function from Section 6,

and consider π1 (x, y) = ay − x2. This payoff function has equal gains from switching for

every two choices of trait values, which implies that there are no strategic substitutes or

complements, or, in other words, that the second term in the formula is always 0. The

reason is that with linear altruistic preferences and games with no strategic substitutes or

complements, my choice of x has no effect on the optimal choice y of my opponent, or

co-player. If I have utility function u1 (π1, π2) = π1 +απ2, then with this game my utility is

maximized at x = α · a2 . This is independent of the other player’s choice y, and hence this
immediately is x∗. The other player’s utility is maximized at y = β · a2 , which is independent
of my choice x. Because both players’optimal choices do not depend on what the other

does, also the altruism parameters α and β only affect the behaviour of the one that has

them, and not the behaviour of the opponent in Nash equilibrium. In other words, both

y∗1 = 0 and x∗2 = 0. The resulting formula for this payoff function with equal gains from

switching therefore is
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dπ

dx
x∗1

∣∣∣∣
β=α=α∗

+ r
dπ

dy
x∗1

∣∣∣∣
β=α=α∗

= 0 (8.5)

In our example, dπdx = −2x, which has to be evaluated at x = x∗ = α · a2 . Furthermore we
have x∗1 = a

2 and
dπ
dy = a. Solving this equation gets us α∗ = r.

In this last example, altruism evolves because of relatedness. In the other two, even

though equation (8.4) is still Hamilton’s rule, we get α∗ = 1
3 6= 0 = r and α∗ = − 1

5 6= 0 = r,

and hence in both those cases it does not capture kin selection. Altruism and spite there

evolve because it helps individuals commit.

8.1 Commitment issues, secret handshakes and green beards

The mechanism at work in these examples is that altruism and spite are used as commitment

devices. The idea that solving commitment issues is what many human emotions are for,

is, in a much broader sense, the central thesis in the book Passions within Reason by Frank

(1988). One relevant question there, and in the above examples, is of course if players

can indeed infer each other’s level of altruism or spite. Truthful revealing of preferences

is complicated by the fact that in both situations players have an incentive to lie. In the

first example players would like to be perceived as more altruistic than they really are; in

the second they would like to be perceived as more spiteful. One would have to assume

that preferences are observable, and players cannot deceive each other, for this commitment

argument to work. The extent to which humans can credibly commit has been the subject

of some debate; Binmore (1994) for instance disagrees with Frank (1987, 1988) on our

capacity to read each other. This is not the place to try to answer that question, but it is

clear that at least in principle it is possible that altruism or spite evolves for reasons other

than shared genes.

An alternative possibility that observable preferences open up, is that they can serve

as a “secret handshake”(Robson, 1990, Samuelson, 2001, Dekel, Ely & Yilankaya, 2007),

or, in biological terms, a green beard. A mutant individual could have a preference for

being cooperative when matched with someone with the same preference, and not when

matched with others. This mutant could invade a selfish population. This possibility comes

with similar complications concerning truthfulness. A subsequent mutant that has the right

handshake, or beard colour, and defects nonetheless, could in turn invade a population with

a suffi ciently high share of the first mutant. The green beard effect, although not yet by

that name, was suggested as a possibility already by Hamilton (1964b) himself. On page 25

of part II he suggests, with some skepticism, that there could be “a supergene affecting (a)

some perceptible feature of the organism, (b) the perception of that feature, and (c) the social

response upon what was perceived.”The term “green beard”was coined by Dawkins (1976).

A larger literature about this possibility developed later; some examples include Keller &
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Ross (1998), Riolo, Cohen & Axelrod (2001), Axelrod, Hammond & Grafen (2004), Jansen

& Van Baalen (2006), and García, Van Veelen & Traulsen (2014).

8.2 Siblings vs. friends

Haldane’s famous example involves relatives saving relatives from drowning. Yet friends

might also rescue each other. A core ingredient of friendship seems to be that friends care

for the well-being of each other too, and display a willingness to bear certain costs to the

benefit of the other. One approach to explain that could be to model that as a repeated

game (for example Axelrod & Hamilton, 1981). A somewhat different, and interesting

alternative is proposed by Eshel & Motro (1981). Their main observation is that if I know

that you are altruistic to me, and that you would save me, or help me, if that is not too

risky or costly to you, then your being alive becomes something that is valuable to me. If

you are drowning, then my saving you has as an extra benefit that I will have you around

to save me, if tables turn and I am in need of saving. That could reinforce the altruism

between for instance siblings that is generated by kin selection. Note that this does not

have to imply a violation of Hamilton’s rule; the saving of the other now just implies an

additional benefit to the actor.

Their observation also implies that there could be helping behaviour even between

unrelated individuals. The other’s possible future help can make it a worthwhile investment

to help him or her today. Whether the label “altruism”applies here is a matter of taste. In a

strict sense, this is not altruism, because it just serves the individual’s best interests to save

the other. In a less strict sense, one could also defend calling it altruism, as the proximate

mechanisms and the behaviour between a person saving a sibling from drowning and saving

a friend from drowning might be relatively close. In the final section we will avoid confusion

by referring to all those behaviours as “helping behaviour”, and save altruism for use in a

stricter sense.
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9 Empirical testing

In this section we look at how we can test empirically whether or not Hamilton’s rule holds.

First we return to the replicator dynamics. With costs and benefits according to the regression

method, Hamilton’s rule always holds, so there is no need for empirical testing. With costs and

benefits according to the counterfactual method, we can get violations, but if we want to observe

violations in equilibrium, we need to look for equilibria where cooperators and defectors coexist.

With no scope for finding violations in equilibria where either one has gone to fixation, the “false

negatives”in an overview by Bourke (2014) need explaining too. We furthermore discuss empirical

complications if we assume a continuous trait space with adaptive dynamics, and we look at a

hypothetical statistical exercise that tries to distinguish between different update rules on the

cycle.

There is, obviously, an enormous empirical literature that is inspired by or based on Hamil-

ton’s rule. Describing it would be a massive task, well beyond the scope of this paper,

and we will not attempt to do that. What we will do in this section, is discuss explicit

empirical tests of Hamilton’s rule. For that we first need to determine what a violation of

Hamilton’s rule would look like. This is best done by going back to the setting with the

replicator dynamics from Section 3. We will start with that in Section 9.1. Here we can,

again, choose to define costs and benefits using the counterfactual method, or the regression

method.

With the regression method, no true model would ever violate Hamilton’s rule. With

the counterfactual method, true models can violate Hamilton’s rule, in the sense that

Hamilton’s rule can disagree with the direction of selection. In many empirical studies,

however, it is moreover assumed, tacitly or explicitly, that the system we observe is in

equilibrium. In this section we will show that, if this is a monomorphic equilibrium, in

which either cooperators or defectors have gone to fixation, then, in equilibrium, Hamilton’s

rule will also not be violated when we use costs and benefits according to the counterfactual

method. It is important to realize that this does not mean that Hamilton’s rule generally

holds after all. It can still point in the wrong direction concerning out-of-equilibrium

dynamics, and it can still give the wrong answer to the question if the behaviour would still

be stable if relatedness is increased or decreased by a certain amount.

If the equilibrium is a mixture of cooperators and defectors, and we use the counterfac-

tual method to determine costs and benefits, then we can observe a violation of Hamilton’s

rule in equilibrium. This does moreover require that we allow our statistical model to be

non-linear —provided, of course, that this is what the data tells us.

Bourke (2014) reviews twelve explicit tests of Hamilton’s rule. None of these papers

look at polymorphisms, and none of these papers use non-linear statistical models. This

implies that we should expect no violations of Hamilton’s rule. Yet there are quite a few,

and therefore we will also discuss what could have caused these “false negatives”.
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In Section 9.2 we will switch to adaptive dynamics. We will discuss some empirical

diffi culties that arise when one would want to try to establish empirically whether or not

a population finds itself at the equilibrium trait value, for which rb = c, as the results in

Section 6 predict for a considerable set of fitness functions.

In Section 9.3 we will revisit the cycle. This setup was used in Section 7 to illustrate

cancellation effects. Models like the cycle are meant to illustrate a principle, and not as a

model that matches the local interaction structure of a specific organism particularly well.

It can nonetheless be instructive to imagine an empirical exercise, where we know that

individuals are organized on a cycle, but not which update rule is used. Since the different

update rules imply different fitness effects, trying to reconstruct the update rule becomes

an empirical exercise in measuring fitness effects and model specification.

9.1 Replicator dynamics and actual tests

When considering empirical tests of Hamilton’s rule, one relevant question is: which Hamil-

ton’s rule are we testing? In Sections 3 and 4 we have seen that there are different definitions

of costs and benefits, depending on whether we use the counterfactual method (see Karlin

& Matessi, 1983, Matessi & Karlin, 1984, 1986, and Section 3.2.1) or the regression method

(see Gardner et al. 2011, and Section 4). With the latter definition of costs and benefits,

Hamilton’s rule always holds.

The fact that with this definition, Hamilton’s rule leaves no scope for testing its validity

empirically is of course not a bad thing. The idea that natural selection works because fitter

genotypes are more likely to survive than less fit genotypes also escapes empirical testing, if

the fitness of a genotype is measured by counting how many survive and procreate and how

many do not. In this sense, natural selection is also tautologically occurring, and, needless

to say, this in no way diminishes the relevance and importance of the idea of evolution

by natural selection. What it does imply, however, is that when there are papers that set

out to test the validity of Hamilton’s rule empirically, then it is to be expected that they

will not be using the regression method to compute b and c, because that would render

the actual data-collection a waste of energy, as we already know that whatever the data,

Hamilton’s rule will always be confirmed.

The studies in the review by Bourke (2014) cover a range of behaviours; egg dumping

in lace bugs (Loeb, 2003); guarding and worker behaviour in a variety of bees (Hogendoorn

& Leys, 1993, Stark, 1992, Bourke, 1997, Richards, French & Paxton, 2005); female joining

behaviour in a variety of wasps (Queller & Strassmann, 1988, Nonacs & Reeve, 1995,

Noonan, 1981, Metcalf & Whitt, 1977, Gadagkar, 2001); kin discrimination in cannibalizing

behaviour in larvae of tiger salamanders (Pfennig, Collins & Ziemba, 1999); cooperative

lekking in wild turkeys (Krakauer, 2005); and helping at the nest in the white-fronted bee-

eater (Emlen & Wrege, 1989). Seven of those studies find that the behaviour has positive

inclusive fitness (rb > c), one of them finds a negative inclusive fitness (rb < c), three
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studies have mixed results (some cases or years with rb > c, some with rb < c) and one

finds inclusive fitness equal to 0 (rb = c).

These studies are summarized in the review as follows:

Overall, the studies considered in this review strongly confirm the predictions of

Hamilton’s rule regarding the conditions and likely causes that underpin social

evolution at ecological and evolutionary timescales.

That is a remarkably positive aggregation of these results, which contain quite a few vio-

lations of Hamilton’s rule. Observed worker behaviour in halictid bees was found to have

negative inclusive fitness in Richards, French & Paxton (2005). Guarding behaviour in

allodapine bees was found to have positive inclusive fitness for observations from 1987, and

negative for observations from 1988 (Stark, 1992, Bourke, 1997). Female joining behaviour

was found to have negative inclusive fitness in Polistes annularis for 5 out of 5 group sizes

observed in 1977, and for 3 out of 5 group sizes observed in 1978 by Queller & Strassmann

(1988). Female joining behaviour was found to have negative inclusive fitness in Polistes

fuscatus for 3 out of 4 group sizes (Noonan, 1981), and to be not statistically different

from 0 in Polistes dominulus in Nonacs & Reeve (1995). It is true that Hamilton’s rule is

confirmed quite a few times (7 out of 12 studies, where one study is taken to be a set of two

papers on the same behaviour and species). But together these 12 studies certainly do not

imply that Hamilton’s always holds —assuming that we have confidence in the statistical

power of the individual studies. After all, one behaviour in one species for which we are

confident that the data imply that inclusive fitness really is negative is enough to reject the

claim that Hamilton’s rule always applies.

There are some statistical concerns though, that imply that the violations of Hamilton’s

rule that are found do not have to be the final answer in these specific cases. Also it is

worth trying to answer the question what could have generated the violations, and whether

the authors were using the regression method, the counterfactual method, or neither, to

compute the costs and benefits. For that it will be useful to return to Section 3, in which

individuals also face a binary choice. That is what we will do below.

9.1.1 Violations of Hamilton’s rule in equilibrium

Hamilton’s rule always holds if we use the regression method to define costs and benefits.

If we use the counterfactual method, and the game has equal gains from switching, then

Hamilton’s rule also always holds. One would therefore only expect possible violations in

an empirical study if the counterfactual method is used, and if the game moreover does

not satisfy equal gains from switching. There are two cases to be considered: the case

where bistability is possible (P − S > T − R) and the case that allows for coexistence

(P − S < T −R).
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P − S > T − R, the defecting equilibrium If we expect to find a population in equi-

librium, then P −S > T −R implies that the population will either be in the corner of the
simplex where the frequency of cooperators is 0, or in the corner where that frequency is 1.

At the first corner, the inclusive fitness of the cooperative behaviour, if b and c are defined

according to the regression method, is negative, because with this definition, inclusive fit-

ness always matches the direction of selection. With equation (4.12), and filling in p = 0,

we find that bregr = 1
1+r (T − P ) + r

1+r (R− S), and cregr = 1
1+r (P − S) + r

1+r (T −R).

For benefits and costs according to the counterfactual method, we use equation (3.3), and

filling in p = 0, we find that bcount = T − P and ccount = P − S. Since we assumed that
P − S > T −R, the costs according to the counterfactual method in this corner are higher
than the costs according to the regression method, while the benefits are lower. Therefore,

given that in this corner rbregr < cregr, certainly rbcount < ccount.

P − S > T −R

Figure 36. The solid green line separates the region with rising shares of cooperators

(below it) from the region with declining shares of cooperators (above it). The dashed

green lines separate the regions where inclusive fitness is positive (below) and negative

(above), when benefits and costs are computed according to the counterfactual method. In

the left corner, the dashed line is below the solid green line, implying that if defection is

stable, then certainly inclusive fitness with the counterfactual method is negative too. In

the right corner, the dashed line is above the solid green line, implying that if cooperation

is stable, then certainly inclusive fitness with the counterfactual method is positive too.

P − S > T − R, the cooperative equilibrium The situation in the other corner is

the mirror image with the same conclusion; in equilibrium, there is no scope for observing

violations. With equation (4.12), this time filling in p = 1, we find that, according to

the regression method, bregr = r
1+r (T − P ) + 1

1+r (R− S), while cregr = r
1+r (P − S) +
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1
1+r (T −R). For benefits and cost according to the counterfactual method, we use equation

(3.3) again, and filling in p = 1, we find that bcount = R − S and ccount = T − R. Since
we assumed that P − S > T − R, that implies that in this corner, the costs according to
the counterfactual method are lower than the costs according to the regression method,

while the benefits are higher. Therefore, given that in this corner rbregr > cregr, certainly

rbcount > ccount. In equilibrium, such a violation would therefore never be observed. For

violations, we would need to see selection in action in the region between the solid and

broken green lines in Fig. 36, but in equilibrium, this will not be observed, also not with

the counterfactual method.

P−S < T−R The case with coexistence does allow for violations of Hamilton’s rule to be

observed in equilibrium. The equilibrium fraction of cooperators is p(r) = 1
1−r

(1−r)S+rR−P
S−R+T−P

(see Appendix B). If we fill in this frequency in (3.3), we get bcount = 1
1−r (T − S + r (P −R+ S − T ))

and ccount = r
1−r (R− P ), which implies that rbcount−ccount = r

1−r (T −R+ P − S + r (P − T + S −R)).

With P−S < T−R, this is non-zero, except where the solid green line intersects the dashed
one in Fig. 37. If we would like to find violations of Hamilton’s rule in equilibrium, there-

fore, we should focus on cases that allow for coexistence.

P − S < T −R

Figure 37. The equilibrium is found at the intersection of the solid green line and the blue

constant-r arc, and this intersection is below the green dotted line, which means that inclu-

sive fitness with costs and benefits according to the counterfactual method would incorrectly

suggest that selection would lead to a further increase of the frequency of cooperators.

9.1.2 What causes the violations in the empirical studies?

Given that there are so many ways not to find violations of Hamilton’s rule, it is interesting

to find out what causes the relatively large number of studies that find that the prevalent
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behaviour has negative inclusive fitness. It will also be interesting to find out how costs

and benefits are computed in such empirical studies. In order to answer those questions,

we first look at the right/down corner of Fig. 36, where the share of cooperators is 1. In

that corner, there are no defectors around. By lack of observations of defectors, both the

regression method and the counterfactual method would be at a loss. (The reason why the

counterfactual method would also be at a loss there, is that it also depends on estimating

a statistical model that describes how fitnesses depend on behaviours. A difference is that

the counterfactual model does not restrict the statistical model to being linear, but both

need observations of cooperators and defectors).

The absence of defectors does not have to imply that it is impossible to recover what

the fitnesses would be without giving or receiving help. One can gather observations on

individuals that do not give or receive help for reasons other than being a defector, or their

partner being one. One such reason could be that they have no interaction partner to

receive help from, or to give help to, to begin with. Such observations offer a perfect way

to get around a possible lack of defectors.

The studies surveyed in Bourke (2014) do indeed typically use clever workarounds to

get at the payoff of defectors. They do, however, use linear specifications. Linearity is a

feature that is shared with the regression method, while a discrepancy between Hamilton’s

rule using the counterfactual method on the one hand, and the direction of selection on

the other, would hinge on the true relation between fitnesses and the type of oneself and

one’s interaction partner not being linear. The question therefore remains what generates

the violations. We will discuss three possible reasons.

The observations are only a sample, and the number of offspring is a random

variable Suppose the population is not actually in the corner with cooperators only, but

we have a population in which there are still some defectors around. Suppose we now draw

a number of pairs from that population. Fitness is only the expected number of offspring,

and clearly the number of offspring has to be a random variable. In the sample, it might

be that the individuals in DD-pairs happen to all have many offspring. This then could

lead to inclusive fitness within our sample being negative, even though in the population

as a whole inclusive fitness is positive, and the fraction of cooperators in the population as

a whole is still rising. Notice that with the regression method, it is still tautologically true

that inclusive fitness is positive if and only if the frequency of cooperators is going up. Here

that only implies that if randomness gives us a sample in which inclusive fitness is negative,

then within this sample, indeed the share of cooperators went down —or vice versa. An

ever larger sample size would reduce the probability of this happening ever more.

Relatedness is estimated separately Relatedness in equation (4.9) is computed based

on the distribution of cooperators and defectors in that sample; it is defined as Cov(X,Y )
V ar(X) ,

where X and Y pertain to with the distribution of cooperators over pairs in the sample.
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Note that this is only an estimate of the true relatedness, but one that would make Hamil-

ton’s rule work. That, however, is not how relatedness is computed in empirical studies.

Some find r using the pedigrees of the interacting individuals (Metcalf and Whitt, 1977;

Emlen and Wrege, 1989; Stark, 1992; Hogendoorn and Leys, 1993; Richards et al., 2005;

Gorrell et al., 2010). Others use genetic marker testing when gathering genetic information

of the organisms is feasible (e.g. in Loeb, 2003; Krakauer, 2005; Hatchwell et al., 2014).

Replacing Cov(X,Y )
V ar(X) with another measure for r implies that equation (4.9) no longer is a

tautology, and it becomes possible that inclusive fitness —with benefits and costs according

to the regression method, but Cov(X,Y )
V ar(X) replaced with a different estimate of r —is positive,

while in the sample the frequency of cooperators goes down. Again, more data will reduce

the likelihood of this problem occurring.

The workaround might get the frequencies of pair types wrong For the third

reason, we take a closer look at the computation of the costs and benefits according to

the regression method, when applied to the replicator dynamics for the prisoners’dilemma.

This is done in Appendix A3 (see also Gardner et al., 2011). The important thing to observe,

is that the solution to the minimization depends on the shares f0, f1 and f2 of, respectively,

DD-pairs, CD-pairs, and CC-pairs, unless we have equal gains from switching. With equal

gains from switching, fitnesses of different types in different pairs can be made to match the

linear model exactly, which makes the minimization independent of f0, f1 and f2. Without

equal gains from switching, this is no longer the case. If we have obtained our observations

not from matches with defectors, but from not being matched at all, for instance, then there

is no reason to assume that the numbers of the different types of observations happen to be

the same as the f0, f1 and f2 that would go with the relatedness r at hand, in combination

with a small p. This problem cannot be reduced by just gathering more data.

Because one would not expect to observe a violation of Hamilton’s rule in a model with a

binary choice and without coexistence, we would think that the violations of Hamilton’s

rule are there because of these three reasons. Notice that this implies that, while chance

events may make for underestimations of the inclusive fitness in some cases, they will make

for overestimations in others.

9.2 Adaptive dynamics

For the setup of Section 6, where a continuous trait is assumed to evolve, one could also ask

what the empirical implications of the observations there would be. Suppose therefore that

we do indeed observe a trait that can naturally be seen as continuous. This would be in

line with a fair share of the inclusive fitness literature, such as, for example Taylor & Frank

(1996) and Rousset & Billiard (2000), as well as with adaptive dynamics; see for example

Metz et al. (1996), Dieckmann & Law (1996), and Champagnat et al. (2001, 2006, 2007).
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A first question is, again, if we expect to see evolution in action, and watch a mutant for

which rb is larger than c take over the population, or if we expect to observe a population

in equilibrium. The first option would imply that we start in a disequilibrium state. In

experiments one could get a disequilibrium state by manipulating either the phenotype of

the species, for instance by knocking out some genes, or activating others, or one could

manipulate the environment to change the selective pressure. Fig. 38a illustrates this; we

would like to see a mutant with rb > c appear and succeed. In this figure, the intersection

of what is feasible (below the curved solid line) and which mutants would have increased

inclusive fitness (above the straight dashed line) is non-empty.

Figure 38 The dotted lines are lines with equal inclusive fitness through the fitnesses in

the status quo (which are assumed to be 1 for both players). They separate mutations with

an advantage from mutations with a disadvantage. The curved, solid lines separate feasible

fitness effects and non-feasible fitness effects. (a) A mutant that is both feasible and that

implies an increase in inclusive fitness. (b) An equilibrium state, where no increases in

inclusive fitness are feasible. (c) A cloud of observations near equilibrium. (d) A binary

choice. Eating a fellow brood member would have positive inclusive fitness when it concerns

an unrelated individual (vertical line), but negative inclusive fitness when it is a sibling

(downward sloping line).
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Alternatively, one might want to assume that the trait is at its equilibrium value. In the

cases of games 1 and 2 from Section 6, that would imply that the intersection of what

is feasible and what would increase inclusive fitness is empty. This is illustrated by Fig.

38b. A possible empirical test of Hamilton’s rule, with costs and benefits according to the

counterfactual method, would then need an estimate of the slope of the curved line that

separates the feasible from the infeasible phenotypes at the status quo. This slope should

equal − 1
r .
22 Of course, estimating this slope is a problem. One option could be that with

a little diversity, one could hope to get a cloud of observations that might serve as a proxy

for the trade off. But even if that would lead to an estimate of the slope that is significantly

different from − 1
r , this would not necessarily imply a violation of Hamilton’s rule. Suppose

that the estimated slope is found to be smaller than − 1
r . That would suggest that there

are traits that are more cooperative than the current ones that have a higher inclusive

fitness. It could very well be, however, that this is really caused by the fact that it is

easier to trace fitness effects between interactants than it is to pick up cancellation effects.

Counterfactuals that pertain to the immediate effects between interactants are easier to

establish, while counterfactuals that pertain to cancellation effects (which might consist of

many small effects) are harder to pinpoint. If those cancellation effects are not picked up

by the statistics, then one would overestimate the inclusive fitness of an increase in trait

value.

If the observations are suggestive of a continuously differentiable fitness function, as they

are in Fig. 38c, and especially if they suggest a convex set of feasible points, one would

also have no reason to expect that Hamilton’s rule would actually fail. Only if even locally,

cooperative behaviours are strategic complements, or if diversity is too large to maintain

the assumption that the population is close to monomorphic, would one expect Hamilton’s

rule, with costs and benefits according to the counterfactual method, to fail.

None of the empirical tests of Hamilton’s rule that are reviewed by Bourke (2014) treat

their cooperative trait as continuous. Many choices are also binary by definition. Pfennig

et al., (1994, 1999) study cannibalizing larvae, and eating or not eating a fellow brood

member is an all or nothing choice, because eating half a fellow brood member is not an

interesting option. Such a case could provide a test of Hamilton’s rule. One might first of

all check qualitatively if they developed kin recognition, and whether kin are less likely to

eat kin. One could however also check quantitatively whether the threshold matches what

one would expect from Hamilton’s rule (see Fig. 38d). Other traits may not be binary by

definition; helping at the nest could also be a continuous trait, as the amount of help may

22The dotted lines in Fig 38 represent points with inclusive fitnesses equal to the point where both agent

and interaction partner have fitness 1. Therefore, if π1 represents the fitness, or payoff, of the agent, and

π2 the fitness of it’s interaction partner, then the line is given by the equation π1 + rπ2 = 1 + r. This can

be rwritten as π2 = 1 +
1−π1
r
, which makes π2 is a function of π1with slope − 1

r
.
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vary. One could, however, make a case for treating it as a binary choice if the amount of

help provided has one peak at 0 and one at a different amount of help.

9.3 The cycle and the regression method

Suppose we observe a population of individuals that are organized on a cycle of length

N . Each individual interacts with both neighbours. We moreover observe that there are

two types only, and that there is one string of i consecutive individuals of type C and one

string of N − i consecutive individuals, all of type D. This puts us firmly within the setup
of Ohtsuki et al. (2006a), Ohtsuki & Nowak (2006b), Grafen (2007b), and Section 7. We

do, however, not know what the update process is; it could be Birth-Death, Death-Birth,

or Shift. We would like to figure out, by looking at how the population changes from one

moment in time to the next, which of these processes we are dealing with, and what the

benefits and costs according to the regression method are. Because we assume that the

game in payoff terms has equal gains from switching, we should expect that the game in

fitness effect terms does too, and hence also that the counterfactual method will result in

the same costs and benefits as the regression method.

Every reproduction event gives us a population at two moments in time, which we can

feed into the regression method as discussed in Section 4. Let’s say that variable x1 now

reflects the type of any individual itself; x1 = 1 for a C-player, while being a D-player

implies that x1 = 0. Variable x2 reflects the average type of the two direct neighbours —

which means that it could be 0, 1
2 , or 1 —and variable xm reflects the average type of the

two neighbours m− 1 steps away. The fitness f of an individual is 0 if it dies and does not

reproduce, 2 if it reproduces and does not die, and 1 otherwise.

Looking at one reproduction event will not be very informative; one can of course apply

the regression method, and it would give a b and a c, but which b and c that is, will depend

on which reproduction event that happens to be. With one transition, that will be a very

noisy signal, from which one cannot draw any conclusions. What one would need is very

many observations, starting from the same population state, which would then have to be

aggregated, such that we get a less noisy measure of how fitnesses of individuals depend

on their own type and on the types of their neighbours. The most interesting positions on

the cycle to look at will be the ones at or close to the boundaries, where C-players and D-

players meet. Fig. 39 below shows the expected values of those fitnesses, if the underlying

process is Birth-Death, Death-Birth, and Shift, respectively. These values are found simply

by applying the fitness effects from Grafen (2007b); see also Table 1 in Section 7.

The easiest process is the Shift process. If we have a sample that is suffi ciently large, we

can be confident that the fitnesses are relatively close to the expected values from Fig. 39c.

If we were to run the simple two-variable regression on these expected values, we would

find a00 = 1− 2i(b−c)
N , a10 = −2c and a01 = 2b. With a suffi ciently large sample generated

by the Shift process, the regression run on the data will be likely to return values close
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to these. If we were to rerun the regression with more variables —for instance x1, x2 and

x3 instead of just x1 and x2 —then the fixed term as well as the coeffi cients of x1 and x2

would still be close to the same values, while the newly introduced coeffi cients would be

close to 0. Notice that the expected values from Fig. 39c exactly match the description

according to the regression model: 1 − i
N 2 (b− c) = a00, 1 − i

N 2 (b− c) + b = a00 + 1
2a01

(where 1
2a01 represents the benefits of having one out of two neighbours cooperating),

1− N−i
N 2 (b− c)− b = a00 + a10 + 1

2a01, and 1− N−i
N 2 (b− c) = a00 + a10 + a01.

Figure 39. Fitnesses with different update rules. Red individuals are D-players, blue

ones play C. Notice that the b and c’s here are just parameter values, as in Ohtsuki et

al. (2006a), Ohtsuki & Nowak (2006b), Grafen (2007b) and Section 7. Independent of

the process, and according to the regression method, rm = Cov(X1,Xm)
V ar(X1) = N(i+1−m)−i2

Ni−i2 for

m < min {i,N − i}.

Running the two-variable regression on expected values of the Birth-Death process gives

a00 = 1+b iN

(
1− Ni−i2

Ni−i2−N

)
, a10 = −b−2c and a01 = b Ni−i2

Ni−i2−N +2c. In this case, however,

if we rerun the regression method with variables x1 to x3 instead of just x1 and x2, we

do find differences. While the coeffi cients of x1 remains −b − 2c, the coeffi cient of x2 will

change to 2b+2c, and the coeffi cient of x3 will become −b. After this, adding more variables
does not induce more such changes, and the additional coeffi cients will be 0. Again, with a

suffi ciently large sample generated by the Birth-Death process, the regressions run on these

data, instead of the expected values, will be likely to return values close to these.
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One important thing to notice here is that we have now found two Hamilton’s rules

for the Birth-Death process. Both are derived with the regression method; one by using

variables x1 and x2, and one by using x1, x2, and x3. If we now return to the derivation

of the result that Hamilton’s rule always holds, in Section 4, we see that the same logic

applies to both rules equally, even though they return different fitness effects; the effect on

a neighbour once removed is b
2

Ni−i2
Ni−i2−N + c in the first, and b+ c in the second, while the

effect on a neighbour twice removed is set to 0 in the first, and equal to − b
2 in the second.

The Death-Birth process combined with the regression method gives three Hamilton’s

rules; one for the regression that uses variables x1 and x2, one for the regression that uses

x1, x2 and x3, and one for the regression that uses x1 to x4. Again, the logic of the derivation

of the result that Hamilton’s rule always holds does not depend on which variables are used,

as long as the fixed term and x1 are included (see Section 4, equation 4.10).

It seems natural, though, to think that benefits and costs should be uniquely determined

quantities, which would give us one Hamilton’s rule per case only. The most natural choice

seems to be to choose the regression with a fixed term and x1 to x4 for the Death-Birth

process, the regression with a fixed term and x1 to x3 for the Birth-Death process, and

the regression with a fixed term and x1 and x2 for the Shift process, because those are the

smallest sets of variables that return the true benefits and costs as computed in Grafen

(2007b).

We started out, however, with a situation where we did not know what the process is,

and only have the data to infer that from. A natural thing to do here would therefore be

to do a specification test. First we run a regression including x1 to x4, and do a statistical

test on whether or not a0001 is zero. If a0001 is significantly different from 0 then one would

conclude that the underlying process is Death-Birth. If not, then one would conclude that it

must be one of the other two (assuming that the test has suffi cient power). In that case, one

would repeat this exercise with independent variables x1 to x3 and test if coeffi cient a0010 is

significantly different from 0, which would then help decide between Birth-Death and Shift

(again assuming that we have suffi ciently many observations to give such a test suffi cient

power). These tests determine which variables should be included in the final regression,

that will estimate the fitness effects, from which we then back out the parameters b and

c. Notice that the setup with parameters b and c —not to be confused with actual fitness

benefits and costs —implies that neighbours play a game with equal gains from switching in

payoff terms. This translates to fitness effects that also satisfy equal gains from switching.

This, in turn, implies that if we compute benefits and costs with the regression method,

we will not be choosing a different specification than we would in a statistical exercise that

is not a priori restricted to a linear model. The counterfactual method, combined with an

unrestricted, standard statistical search for an appropriate model would therefore result in

the same costs and benefits. There would be a difference between the two only if the game

between neighbours does not satisfy equal gains from switching.

None of these considerations are anything out of the ordinary. The reason why it is still
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worth discussing them is that they illustrate a point made in Section 4. The point there was

that nothing in the derivation of the result —that Hamilton’s rule always holds, provided

that we interpret the regression coeffi cients as costs and benefits —depends on the choice of

variables which are included in the function g, as long as g is assumed to be linear in all of

them (see Section 4). That suggests that model choice might be irrelevant for the validity

of Hamilton’s rule. The example shows, however, that there is no avoiding model choices,

if we want Hamilton’s rule to be uniquely defined. The example also suggests that if f and

µ represent data, a natural criterion would be a statistical test on coeffi cients a0001 and

a0010. This also implies that reducing the squared difference between f and g a whole lot by

adding one variable only would be a relevant reason to include that variable (f represents

the data here, and g the statistical model; see Section 4). There is, however, no difference

between statistical tests for whether or not a0001 is different from 0, and statistical tests

for whether a1100 or a2000 is non-zero or not. Those tests are not just conceptually the

same; also the actual test is exactly the same for variable x4 as it is for the variable x1x2 or

the variable (x1)
2. Therefore, when choosing between specifications, there is no reason to

treat the question whether or not to include x4 as any different from the question whether

we should include x1x2 or (x1)
2. The derivation of the result that Hamilton’s rule always

holds, however, crucially depends on x1x2 and (x1)
2 not being included.

A few more small remarks are in order here. One is that average fitnesses are not the only

type of useful information in the data. If we want to figure out which of the three processes

we are looking at, then it might be worthwhile, and certainly more effi cient, to also look at

the variances in fitnesses. Cooperators and defectors in the Birth-Death as well as in the

Death-Birth process all have an expected fitnesses of 1 if they are suffi ciently far removed

from the boundary. In the Death-Birth process, cooperators and defectors have the same

birth rate and they also have the same death rate. In the Birth-Death process they do not;

cooperators surrounded by suffi ciently many cooperators have both a higher birth rate and

a higher death rate than defectors. This means that if we wait for a fixed time interval, even

though both have the same expected number of offspring (where still being alive oneself

counts for a fitness of 1), the variance in the number of offspring in the Birth-Death process

is larger for cooperators surrounded by at least two cooperators on either side than it is

for defectors surrounded by at least two defectors on either side. More generally: a richer

statistical model, which estimates birth and death rates, depending on variables x1 to xm,

will give statistical tests with much more power, because only the reproduction events at

or close to the boundaries count as informative if we depend on estimating a model with

fitnesses, while every reproduction event is informative if we depend on estimating birth

and death rates.
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10 Discussion

Fifty years after the introduction of Hamilton’s rule, its generality is still debated. The

spectrum of positions stretches all the way from the claim that “Hamilton’s rule almost

never holds” (Nowak, Tarnita & Wilson, 2010) to inclusive fitness being “as general as

the genetical theory of natural selection itself”(Abbot et al., 2010). The debate seems to

be a disagreement about the validity of a well-defined, agreed upon rule. One key to the

disagreement, however, is that there are different ways to define the benefits and costs in

the rule (Birch, 2014, see also Birch & Okasha, 2015). In Section 4 we have seen that if

the regression method is used to determine b and c, then indeed Hamilton’s rule always

holds, provided that we have a given, linear specification, and that we do not have an

underdetermined system. In Section 3 we have seen that if we determine costs and benefits

by comparing current fitnesses to what they would have been under alternative behaviour

(the counterfactual method), then Hamilton’s rule is only guaranteed to match the direction

of selection if we assume “equal gains from switching”, in which case both definitions result

in the same b and c. Finally, some papers have parameters b and c determine the payoffs

in a prisoners dilemma with equal gains from switching, and choose those for benefits and

costs in Hamilton’s rule (Ohtsuki et al., 2006, and the first version of Hamilton’s rule in the

SI, Part A.7, of Nowak et al., 2010). In this case, Hamilton’s rule only applies if, on top of

the assumption of equal gains from switching, payoffs translate linearly to fitnesses. This

is not the case with many local interaction models (Grafen, 2007b). This third option —b

and c as parameters —is not how we think benefits and costs should be defined. Hamilton’s

rule is about fitness effects, and not model parameters, and therefore we restrict attention

to the first two options: b and c according to the regression method; and b and c according

to the counterfactual method.

It might be helpful to realize that the difference in definitions drives the difference in

claims concerning the generality of Hamilton’s rule. That is not going to be the end of

the debate, though, because the obvious next point of disagreement is which definition is

preferable. Choosing between those two does leave room for individual preferences, and

therefore for persisting disagreement. Some authors view the general validity of Hamilton’s

rule, with the regression method determining b and c, as a deep, fundamental insight (for

instance Gardner et al., 2011, West & Gardner, 2013, Marshall, 2011, and Rousset, 2016).

Our view is that it “makes”Hamilton’s rule work by allowing for just the right kind of

model misspecification. Sections 4 and 9.3 explains why we see it that way.

The regression method minimizes the squared difference between a fitness function (ei-

ther reflecting a model, or observed numbers of offspring) and a linear function (which

we, for lack of a better word, refer to as the statistical model). The central result here is

that Hamilton’s rule always holds, when costs are defined as the coeffi cient of the variable

that represents the individual’s own level of cooperation (which is 0 or 1 in models with

binary choice), and when benefits to interaction partners in different roles (e.g., siblings,
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nephews and nieces, nearby neighbours, faraway neighbours) are defined as the coeffi cients

of the variables that represent the levels of cooperation of the interaction partners in those

roles. One observation we make in Section 4 is that the derivation of that result does not

assume anything about the specification of the statistical model —that is, it is silent about

which variables are to be included in the regression and which are not. With the regres-

sion method, Hamilton’s rule therefore is not necessarily uniquely defined, as the costs and

benefits of the cooperative behaviour may depend on which variables are included. The

benefits of having a cooperative sister as computed by the regression method, for instance,

may depend on whether or not the level of cooperation of nieces is included as a variable.

In order to overcome the problem that Hamilton’s rule is not uniquely defined, one

could add a criterion for model choice to the minimization of the squared difference. A

natural criterion would be: all the variables that play a role should be included, and not

more. If the fitness function is a theoretical model, or follows from one, then that criterion

is relatively straightforward to apply. If it reflects data, that requires statistical testing. In

neither of the two cases is there a reason why that criterion should apply when we choose

whether or not to include different linear terms in the model (such as, for instance, the

cooperativity of one’s nephews or nieces), but not when we choose whether or not to include

non-linear terms (such as, for instance, the interaction term between my cooperativity and

my sibling’s). Also, the statistical test for those two choices is one and the same. The

general validity of Hamilton’s rule, however, depends on all non-linear terms not being

included. This implies that either model choice does matter, in which case non-linear

terms should allowed to be included, and Hamilton’s rule does not generally hold, or model

choice does not matter, in which case Hamilton’s rule is not always uniquely defined.

The counterfactual method is also not without complications. Karlin & Matessi (1983)

and Matessi & Karlin (1984, 1986) compute the costs and benefits of cooperation by going

over all cooperators, and comparing their current fitness to what their fitness would have

been, had they defected. That does have an intuitive appeal, given that it is the actual

cooperators that, in Hamilton’s words, “add to the gene-pool a handful of genes containing

G [the altruistic gene] in higher concentration than does the gene-pool itself”. A problem

with this definition, is that the inclusive fitness of a cooperator is not necessarily minus the

inclusive fitness of a defector. A choice that we prefer, and that solves this inconsistency, is

to consider everyone, cooperators and defectors. A cooperator then actually incurred those

costs, and provided the benefits, and a defector faced them too, but acted differently.

Karlin & Matessi (1983) and Matessi & Karlin (1984, 1986) moreover imposed that costs

and benefits should be fixed, and independent of the current frequency of cooperators. They

found that Hamilton’s rule only applies if fitnesses are linear in the frequency of cooperators,

which translates directly to equal gains from switching. We allow for a local definition,

where costs and benefits are allowed to change with the frequency of cooperators, but

find that the same restriction still applies; also locally, Hamilton’s rule applies only with

equal gains from switching, provided that we define b and c with either version of the
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counterfactual method.

For games with equal gains from switching —that is, in the absence of synergy or the

opposite of synergy —the regression method and both versions of the counterfactual method

lead to the same costs and benefits. Hamilton’s rule then applies, whichever way we define

costs and benefits. Equal gains from switching can be a basic assumption of a model, or it

can be implied by other choices, such as local mutations in combination with restrictions

on the fitness function. In Section 6 we have seen that in an adaptive dynamics context,

where we assume local and infrequent mutations, this results in a relatively large domain

where inclusive fitness works, with costs and benefits defined according to the counterfactual

method. If we have a differentiable fitness function, and no bifurcations, then locally we

regain equal gains from switching, and therefore dynamics according to Hamilton’s rule.

Birch (2014) also compares different ways to define the benefits and costs in Hamilton’s

rule. He distinguishes the general version of Hamilton’s rule (HRG) from the special version

(HRS). The first version uses the regression method to define b and c. The second version

uses payoff parameters, which is to capture how b and c are defined in Nowak, Tarnita &

Wilson (2010) as well as in Van Veelen (2009). These two papers however differ in their

treatment of b and c. In the Hamilton’s rule in Part A.7 of the Supplementary Information

of Nowak, Tarnita & Wilson (2010), the b and c are indeed parameters that determine the

payoffs in a prisoners dilemma with equal gains from switching, and it is those parameters

that are indeed considered to be the benefits and costs in Hamilton’s rule. This is also done

in Ohtsuki et al., (2006), and Grafen (2007b) pointed out that these payoffs do not reflect

the fitness effects of playing C instead of D in the local interaction model from Ohtsuki

et al.,(2006). Since the b and c in Hamilton’s rule should represent fitness effects, Grafen

(2007b) argued that it is not correct to use those parameters instead.

In Van Veelen (2009), on the other hand, the translation from payoff to fitness is not

a problem, as the fitness effects there by definition align with the payoffs (see also Van

Veelen, 2011b, and Section 3). Moreover, no specific choice for the b and c in Hamilton’s

rule is made there. All that the counterexamples (pp. 594—595) do, is show that there

exists no b and c that are independent from the current population state, and that combine

with r to a Hamilton’s rule that matches the direction of selection for any frequency. One

can therefore say that Van Veelen (2009), like Karlin & Matessi (1983), was looking for a

global rule, with fixed, frequency-independent costs and benefits. Without stating what the

proper definition of b and c would be, it showed that no choice for b and c would produce

such a global rule, unless the game has (generalized) equal gains from switching.

In this paper we did allow for b and c to depend on the current population state. Here

we found that even if we allow for Hamilton’s rule to be a local rule, with frequency-

dependent b and c, equal gains from switching is required for it to work, if we choose the b

and c according to the counterfactual method. Finally, between the counterfactual and the

regression method, neither one of the two is more special or more general than the other.

For any given game and population state, both methods will simply produce a b and a c.
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10.1 Helping behaviour, kin selection, and inclusive fitness

The discussion about kin selection and inclusive fitness is sometimes also clouded by a

lack of distinction between kin selection and inclusive fitness (see for example Foster et al.,

2006a,b, Nowak et al., 2010, and Birch & Okasha, 2015). We would like to stress that kin

selection and inclusive fitness are not the same. The replicator dynamics and the adaptive

dynamics typically have equilibrium outcomes that depend on relatedness. If with positive

relatedness the outcome differs from what we get at r = 0, then it is safe to say that this

is the result of kin selection. But, absent equal gains from switching, inclusive fitness may

not point to the equilibrium outcome, if we let b and c be determined by the counterfactual

method. That was more or less a recurrent theme in this paper. But also the opposite is

possible, for instance if positive assortment is not caused by common descent. Individuals

can for instance also self-assort on phenotypic similarity (Fletcher & Doebeli, 2009). When

the game has equal gains from switching, Hamilton’s rule, with r = P (C|C) − P (C|D) as

a measure for assortment, can still hold, even though this is not kin selection (see Section

3 for the definition of r).

It is also useful to stress that not all explanations for helping behaviour are kin selection

explanations or even rely on other sources of assortment. If someone jumps into the river

to save her sister, then that can be explained by a kin selection model. If someone jumps

into the river to save a friend, then that can be explained by a model in which the value

of saving the other lies in the fact that the other is unable to return the favour when dead,

as suggested in Eshel & Motro (1981). In settings that are less all-or-nothing, helping

behaviour can also be explained with classical repeated interaction models, where only the

willingness to help is affected, and not the capacity. Finally, sexual selection models can also

explain helping behaviour. If someone jumps into the river to save an unrelated stranger

and ends up producing healthy offspring happily ever after with a top quality partner who

happened to have witnessed the act of bravery, or gets to spend time with more partners

than otherwise, then sexual selection can explain that (Miller, 2001).

In the latter two examples, Hamilton’s rule is not necessarily violated, although it is also

not the condition to look to for an answer to the question whether or not helping behaviour

will evolve. In a typical model of sexual selection, the only thing that matters is whether or

not behaviour promotes the fitness of the one that performs it. The one that gets saved is

just lucky, and typically not assumed to be related to its saviour. With relatedness 0 to the

helped individual, a behaviour that serves the actor well through better mating chances

trivially has positive inclusive fitness. But whether or not helping behaviour can evolve

depends crucially on whether or not the fitness cost function satisfies the ‘single crossing’

condition (Kreps & Sobel, 1994, see also Zahavi, 1997). Including the effect on the helped

individual and weighing that with 0 does not add to this.

The situation with repeated interactions is somewhat similar. There typically is a

multiplicity of equilibria. With relatedness 0, none of the equilibria violates Hamilton’s
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rule; at all of them, deviating would be bad for the one who deviates, and that would

trivially reduce its inclusive fitness. But Hamilton’s rule does not help finding equilibria,

nor does it provide assistance in determining if some equilibria are perhaps more stable or

more likely to be played than others (some references for repeated games are Friedman,

1971, Axelrod & Hamilton, 1981, Boyd & Lorberbaum, 1987, Fudenberg & Maskin, 1986,

1990, Binmore & Samuelson, 1992, Bendor & Swistak, 1995, Cooper, 1996, Volij, 2002, and

Imhof, Fudenberg & Nowak, 2005. For a general analysis with relatedness, see Van Veelen,

García, Rand & Nowak, 2012).

Figure 40. Not all models that explain the evolution of helping behaviour are kin selection

models. Sexual selection, or signalling models more generally, may explain helping behav-

iour. Models of reciprocity with repeated interactions may too. These do not necessarily

violate inclusive fitness, but Hamilton’s rule does not provide the relevant criterion. Not

all models that explain the evolution of helping behaviour have a prediction that follows

Hamilton’s rule; not even all kin selection ones —unless we use the regression method to

determine costs and benefits.

10.2 Understanding cancellation effects is a major step ahead

In Section 7 we have seen that being related is not enough for cooperation to evolve.

What matters is that there is a discrepancy between with whom there are opportunities

for cooperation and with whom there is competition. Cooperation and altruism evolves

when these two do not coincide —and of course they have to not coincide the right way;

if the discrepancy is in the other direction, spite can evolve (see for instance Boyd, 1982).

The setting in Sections 3, 5 and 6 is actually an explicit way to break the symmetry, as

interactions in which the games are being played are decoupled from competition, both

in the replicator dynamics with population structure, and in the adaptive dynamics with
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population structure. Even in Hamilton’s original paper, now that we have this new insight,

it is true that in order for his setup to be valid, the fitness effects should be interpreted as

final, and not imply uneven in- or decreases in competition. Kin recognition therefore is

a good fit with those models, and a good tool to break the symmetry. Once past a phase

where for instance siblings also compete more intensely for parental attention and resources,

they may no longer compete any more intensely with each other than with anyone else. Kin

that seek each other out for cooperation therefore will break the symmetry in the exact

same way as the stylized replicator dynamics do (see Section 3; see also Lieberman, Tooby

&Cos mides, 2003, 2007 for interesting papers on kin recognition in humans). Some of

the empirical examples in Section 9 also concern kin recognition. Also life cycles where

opportunities for cooperation occur in a phase that is different from the one in which

competition happens can help breaking the symmetry. In some settings, one can combine

interaction and competition effects in one “effective”payoffmatrix (see for instance Lessard,

1997). The insight that local competition can (partially) cancel out local opportunities for

cooperation, as described by Wilson, Pollock and Dugatkin (1992) and Taylor (1992a,b)

might very well be the most important refinement of our understanding of kin selection

since Hamilton’s 1964 paper.

10.3 Empirical tests of Hamilton’s rule

Hamilton’s rule will by definition never be violated if the regression method is used to

compute costs and benefits. Therefore, whatever the specification, there is no scope for

empirical testing with the regression method. If we use the counterfactual method instead,

then there is scope for violations, and hence for empirical testing. It is important, though,

to know what a violation would look like. In Section 9 we have seen that in a setting with

the replicator dynamics the particulars of the mismatch between Hamilton’s rule and the

direction of selection imply that we cannot observe violations of Hamilton’s rule in a pure

equilibrium, whether it consists of cooperators only or of defectors only. Violations can only

be observed out of equilibrium, as selection happens, or in equilibrium, if that equilibrium

is a polymorphism. In either case the statistics should allow for non-linear terms in order

to be able to detect a violation.
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11 Appendix A: The Regression Method

11.1 One independent variable

In the main text, the function f assigned a fixed fitness to every x. Here we relax

that, by letting y be the fitness, and by letting probability measure µ be defined over{
(x, y) ∈ R2 | y ≥ 0

}
. We will also need probability measures that are implied by the mar-

ginal distribution of x (which we denote by µx) and by the conditional distribution of y

given x (denoted by µy | x).

Minimizing least squared differences with gn (x) = a0 + a1x + ... + anx
n now implies

that

d

dai

∫
(y − gn) dµ = 0, i = 0, ..., n (A.1)

m∫
xiydµ =

∫
xigndµ, i = 0, ..., n

Because there is no y in xign, we can replace probability measure µ by µx in the integral

on the right;
∫
xigndµ =

∫
xigndµx. The integral on the left can be rewritten as:

∫
xiydµ =

∫
x

(∫
y

xiydµy | x

)
dµx (A.2)

=

∫
x

xi
(∫

y

ydµy | x

)
dµx

=

∫
x

xiE [y|x] dµx

This brings us back to the case from the main text, where f (x) = E [y|x].

11.2 Two or more independent variables

This is basically the same as the previous subsection, but the presence of more than one

independent variable implies that we will need to do this using more notation. We havem ≥
2 independent variables, x1, ..., xm, and one dependent variable; xm+1. For the indexing,

we need to define J as a finite subset of Nm0 , and it represents all the terms for which
polynomial gJ allows non-zero coeffi cients; gJ =

∑
j∈J ajx

j1
1 x

j2
2 ...x

jm
m . We will also need

probability measures that are implied by the marginal distribution of x1, ..., xm (denoted

by µx1,...,xm) and by the conditional distribution of xm+1 given x1, ..., xm (denoted by

µxm+1 | x1,...,xm).

Minimizing least squared differences with gJ now implies that

127



d

daj

∫
(xm+1 − gJ ) dµ = 0 ∀j ∈ J (A.3)

m∫
xj11 x

j2
2 ...x

jm
m xm+1dµ =

∫
xj11 x

j2
2 ...x

jm
m gJ dµ ∀j ∈ J

Because there is no xm+1 in xj11 x
j2
2 ...x

jm
m gJ , we can replace probability measure µ by

µx1,...,xm in the integral on the right;
∫
xj11 x

j2
2 ...x

jm
m gJ dµ =

∫
xj11 x

j2
2 ...x

jm
m gJµx1,...,xm . The

integral on the left can be rewritten as:

∫
xj11 x

j2
2 ...x

jm
m xm+1dµ =

∫
x1,...,xm

(∫
xm+1

xj11 x
j2
2 ...x

jm
m xm+1dµxm+1 | x1,...,xm

)
dµx1,...,xm

(A.4)

=

∫
x1,...,xm

xj11 x
j2
2 ...x

jm
m

(∫
xm+1

xm+1dµxm+1 | x1,...,xm

)
dµx1,...,xm

=

∫
x1,...,xm

xj11 x
j2
2 ...x

jm
m E [xm+1 | x1, ..., xm] dµx1,...,xm

This brings us back to the case from the main text, where f (x1, ..., xm) = E [xm+1 | x1, ..., xm].

11.3 Application to prisoners dilemmas allowing for unequal gains

from switching

The regression method considers two moments in time, and uses numbers that belong to

these two discrete moments in time. The model we are considering is a replicator dynamics

with relatedness r and game

D C

D P T

C S R

This is a continuous time model, and therefore the regression method should also be used

in a marginal version, using derivatives instead of discrete changes. For a simple population

with only one type and constant growth rate a, the fitness w typically depends on how long

a time interval one would take, as w = eat. At any instance, though, one could instead

look at the marginal change, by considering lim∆t→0
w(t+∆t)−w(t)

∆t

∣∣∣
t=0

= dw
dt

∣∣
t=0

= a, where

t = 0 is the moment we are considering.

Here we will do the same, and with two types in the population, we now have four growth

rates to consider; the growth rate P of D individuals matched with D individuals, and T ,
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S, and R for their respective combinations. The regression method writes these growth

rates as a linear function of whether the individual itself is a cooperator or a defector and

whether its interaction is a cooperator or a defector; g (x, y) = a00 + a10x + a01y, where

x = 0 if an individual is a defector, x = 1 if an individual is a cooperator, y = 0 if its

interaction partner is a defector, and y = 1 if its interaction partner is a cooperator. The

population state is given by the frequencies f0, f1, f2 of the different types of pairs. As

before, −a10 will be interpreted as costs, a01 as benefits, and a00 as baseline fitness, so

we will write this as g (x, y) = w0 − cx + by. A perfect fit with least squares 0 would be

achieved if we would fit this to the functional form g (x, y) = a00 + a10x + a01y + a11xy;

with a00 = P , a10 = S − P , a01 = T − P and a11 = R + P − S − T all growth rates are
equal to g (x, y). With g (x, y) = w0 − cx+ by, on the other hand, we minimize

f0 (P − w0)
2

+
f1

2
(T − (w0 + a10))

2
+
f1

2
(S − (w0 + a01))

2
+ f2 (R− (w0 + a10 + a01))

2

If we denote this sum of squares with E, then the choice of w0, b and c that minimizes E

should satisfy dE
dw0

= dE
db = dE

dc = 0. If we take those derivatives, we find the following

equations:

dE

dw0
= 0 ⇔ −2f0 (P − w0)− f1 (T + S − 2w0 − b+ c)− 2f2 (R− w0 − b+ c) = 0

dE

db
= 0 ⇔ −f1 (T − w0 − b)− 2f2 (R− w0 − b+ c) = 0

dE

dc
= 0 ⇔ f1 (S − w0 + c) + 2f2 (R− w0 − b+ c) = 0

From the last two equations together, we can immediately see that c + b = T − S. Using
f0 + f1 + f2 = 1 and p = 1

2f1 + f2, the conditions can be simplified to

w0 = f0P +
1

2
f1 (T + S) + f2R+ p (c− b)

pw0 =
1

2
f1 (T − b) + f2 (R− b+ c)

pw0 =
1

2
f1 (S + c) + f2 (R− b+ c)

Finding the solution to this system of equations requires some not very exciting algebra,

but if we do it anyway, we find that the solution is:

b =
1− p+ rp

1 + r
(T − P ) +

p+ r (1− p)
1 + r

(R− S)

c =
1− p+ rp

1 + r
(P − S) +

p+ r (1− p)
1 + r

(T −R)

w0 =
1

1 + r
{(1 + p+ r − pr) (1− p+ rp)P + (1− r) p (p+ r (1− p)) (S + T −R)}
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This is Equation (4.12) from the main text. It is equally unexciting, but straightforward,

to check that this is a solution indeed; just fill them in in the three equations above, and

use f0 = (1− r) (1− p)2
+ r (1− p), f1 = (1− r) 2p (1− p)2 and f2 = (1− r) p2 + rp.

11.4 Straightforward construction of b and c according to the re-

gression method

Because we know that Hamilton’s rule applies if we define b and c according to the regression

method, we can also find those directly. The condition πC > πD for the prisoners dilemma

is rewritten as

r (p (T − P ) + (1− p) (R− S)) > p (T −R) + (1− p) (P − S)

in Section 3. If we multiply by 1 + r and subtract r (p (T −R) + (1− p) (P − S)) left and

right we get

(1 + r) (r (p (T − P ) + (1− p) (R− S))) > (1 + r) (p (T −R) + (1− p) (P − S))

(1 + r) (r (p (T − P ) + (1− p) (R− S)))−r (p (T −R) + (1− p) (P − S)) > (p (T −R) + (1− p) (P − S))

r2pT +
(
r + r2 (1− p)

)
R−

(
r + r2p

)
P − r2 (1− p)S > (p (T −R) + (1− p) (P − S)) .

Then we add r (1− p) (T −R) + rp (P − S) left and right and reorganize to obtain

r2pT +
(
r + r2 (1− p)

)
R−

(
r + r2p

)
P − r2 (1− p)S + r (1− p) (T −R) + rp (P − S)

> p (T −R)+(1− p) (P − S)+r (1− p) (T −R)+rp (P − S)

r ((1− p+ rp) (T − P ) + (p+ r (1− p)) (R− S)) > (p+ r (1− p)) (T −R)+(1− p+ rp) (P − S) .

Then we divide by 1 + r again, and find

r· 1
1+r ((1− p+ rp) (T − P ) + (p+ r (1− p)) (R− S)) > 1

1+r ((p+ r (1− p)) (T −R) + (1− p+ rp) (P − S)) .

This is rb− c > 0, with

b =
1− p+ rp

1 + r
(T − P ) +

p+ r (1− p)
1 + r

(R− S)

and

c =
1− p+ rp

1 + r
(P − S) +

p+ r (1− p)
1 + r

(T −R) .
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12 Appendix B: Comparative statics

12.1 Proofs that Defs. 2 and 3 are implications of Def. 1

Def. 1 ⇒ Def. 3

We prove the stronger claim that, if for all (p, r), ∂ṗ(p,r)∂r ≥ 0, then if (p′, r′) and (p′′, r′′) are

distinct locally stable fixed points, we must have (p′ − p′′)(r′ − r′′) > 0. We may restrict

our attention only to cases of stable fixed points (p′, r′) with p′ ∈ (0, 1) and r ∈ (−1, 1).

Claim (1): For each r ∈ (−1, 1), there is at most one p′ ∈ (0, 1) such that (p′, r′) is on the

isocline. (Note that this justifies the term ‘the locally stable’in the definition.)

Proof: The isocline is defined by πC = πD. Isolating p then gives a unique solution:

p(r) =
1

1− r
(1− r)S + rR− P
S −R+ T − P . (B.1)

Claim (2a): If (p′, r′) is locally stable on r = r′, then (p′, r′) is, for p ∈ (0, 1), globally stable

on r = r′. That is, if ∃ ε > 0 such that (p− p′) [ṗ(p, r′)] < 0 for all p ∈ (p′ − ε, p′ + ε)\{p′},
then (p− p′) [ṗ(p, r′)] < 0 for all p ∈ (0, 1).

Proof: Suppose that (p′, r′) is locally stable, but that there is p′′ > p′ such that ṗ(p′′, r′) ≥ 0.

If ṗ(p′′, r′) = 0, we have a contradiction of Claim (1), so assume ṗ(p′′, r′) > 0. Now from lo-

cal stability of (p′, r′) and Claim (1), ∃ δ ∈ (0, p′′−p′) such that ṗ(p, r′) < 0 ∀ p ∈ (p′, p′+δ].

Now we have ṗ(p′+δ, r′) < 0 and ṗ(p′′, r′) > 0, with p′+δ < p′′. Since ṗ(·, r′) is continuous,
the intermediate value theorem requires that ∃ p′′′ ∈ (p′ + δ, p′′) such that ṗ(p′′′, r′) = 0,

in contravention of Claim (1). The case where there exists p′′ < p′ such that ṗ(p′′, r′) ≤ 0

yields a similar contradiction.

Now suppose that there exist (p′, r′) and (p′′, r′′) on the isocline with r′ > r′′ and p′ < p′′ (we

need not worry about the case p′ = p′′, since each p defines at most one r on the isocline).

Since ∂ṗ(p,r)∂r ≥ 0 for all (p, r), we have ṗ(p′′, r′) ≥ ṗ(p′′, r′′) = 0. If ṗ(p′′, r′) = ṗ(p′′, r′′) = 0,

we have a contradiction of Claim (1). If ṗ(p′′, r′) > ṗ(p′′, r′′) = 0, we have a contradiction

of Claim (2a).

Def. 1 ⇒ Def. 2

This follows similarly from Claim (1) and Claim (2b), which is: if (p′, r′) is locally unstable

on r = r′, then (p′, r′) is, for p ∈ (0, 1), globally unstable on r = r′. The proof of Claim

(2b) is similar to that of Claim (2a).
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12.2 Prisoners’dilemmas

Definition 2 applies to cases where both extreme frequencies p = 0 and p = 1 are locally

stable, which is the case when P − S > T − R. Definition 3 requires there to be a stable
mixture, which is the case when P − S < T −R. The distinction between those two cases
shows in the shape of the isocline, which describes an arc in the simplex. This arc hits the

corner f0 = 1 (where p = 0) at the same slope as the arc r̄ = P−S
R−S ∈ (0, 1), and it hits the

corner f2 = 1 (where p = 1) at the same slope as ¯̄r = T−R
T−P ∈ (0, 1). Along constant-r arcs

that lie above the isocline, the proportion of cooperators is decreasing; below the isocline,

the proportion of cooperators is increasing. We can discern three cases: (a) r̄ > ¯̄r, (b)

r̄ = ¯̄r, (c), r̄ < ¯̄r which amount to P − S > T − R, P − S = T − R, and P − S < T − R
respectively. In the case (b), we have equal gains from switching.

In case (a), r̄ > ¯̄r, and so the isocline is a right-skewed arc, with maximum attained

for p > 1
2 . Thus, for any given r ∈ (¯̄r, r̄), the constant-r arcs begin above the isocline

at f0 = 0, intersect the isocline at some p = p∗(r), and reach f2 = 1 from below the

isocline (see Fig. 11a). For these constant-r arcs, cooperation is increasing if p > p∗(r),

and decreasing if p < p∗(r). Here, P − S > T − R, so now p∗(r) is decreasing in r (with
¯̄r < r < r̄ ensuring 0 < p∗(r) < 1). Increasing relatedness therefore favours cooperation

under the second definition, that the threshold proportion of cooperation above which full

cooperation eventuates decreases as we increase relatedness. Since the first definition of

favouring applies and is stronger than the second, this is to be expected.

In case (c), r̄ < ¯̄r, and so the isocline is skewed leftward, with its maximum attained for

p < 1
2 (see Fig. 11c). Since the constant-r arcs are symmetric about p = 1

2 , we have that for

all r ∈ (r̄, ¯̄r), the constant-r arcs begin below the isocline at f0 = 1, intersect the isocline at

some p = p∗(r) ∈ (0, 1), and reach f2 = 1 from above the isocline (see Fig. 11a). On these

constant-r arcs, cooperation is increasing at all p < p∗(r), and decreasing for all p > p∗(r),

so that the intersection point p = p∗(r) is the unique stable equilibrium proportion for each

r. For r < r̄, cooperation decreases for all p, while for r > ¯̄r, cooperation increases for

all p. We find the intersection by solving πC = πD to p for a given r, and if we do, we

get p∗(r) = S−R+(R−P )/(1−r)
S+T−R−P . Since P − S < T − R, the equilibrium frequency p∗(r) at

the intersection is increasing in r (with the further condition r̄ < r < ¯̄r ensuring that it

is between 0 and 1). Increasing relatedness therefore favours cooperation under the third

definition, that it never decreases the equilibrium proportion of cooperators. Again, this is

to be expected, since we know that the first definition applies in this case, and is stronger

than the third.

Finally, in case (b), that of equal gains from switching, the isocline is symmetric about

p = 1
2 , so that it coincides with the particular constant-r arc r = P−S

R−S ∈ (0, 1). For higher

r, we have full cooperation in equilibrium; for lower r, we have full defection.
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12.3 Stag hunt games

In order to describe the dynamics in the simplex, we will still need the intersection of the

isocline and the r-arc, which is still at the point p∗(r) = R−S−(R−P )/(1−r)
R+P−S−T - only slightly

rewritten to have both enumerator and denominator positive. This function is decreasing

in r, which implies that relatedness favours cooperation in the second sense, as it increases

the basin of attraction of cooperators. Moreover, the isocline hits the left corner point,

where f0 = 1, and therefore p = 0, with a slope equal to the slope of the arc r = P−S
R−S . We

will furthermore need two more points; the point p∗∗ where the isocline hits the edge of the

simplex, and the point p∗∗∗ where ∂ṗ(p,r)
∂r changes sign.

In cases (a) and (b), the isocline goes from the corner where f0 = 1, and therefore

p = 0, to a point on the simplex face where f0 = 0. This intersection of the isocline and

the simplex face is at the point p∗∗ = R−S
2R−S−T , r

∗∗ = −R−TR−S . In case (c), the isocline

intersects the other simplex face, where f0 = 0, and it does so at the point p∗∗ = P−S
2P−S−T ,

r∗∗ = −P−S
P−T .

Left of the isocline (the green lines in Figs. 13a—c), the proportion of cooperators is

decreasing. We therefore have two possible outcomes of the dynamics. If r ≥ P−S
R−S , cooper-

ation is always increasing on constant-r arcs, and the dynamics take the population to the

corner where p = 1. If r < P−S
R−S , then for p < p∗(r) the dynamics take the population to

the left down corner, where p = 0, and when p > p∗(r) the dynamics take the population

to the right down corner, where p = 1,.

In all cases, relatedness favours cooperation under the second definition: p∗(r) is de-

creasing in r, and therefore the basin of attraction of the cooperative equilibrium increases

with r. In cases (b) and (c) relatedness does not favour cooperation under the first defi-

nition, as for high p, the growth rate of cooperator decreases as r increases. In case (a),

increased relatedness does favour cooperation also under the strongest first definition.

12.4 (General) hawk dove games

In order to describe the dynamics in the simplex, we will still need the intersection of the

isocline and the r-arc, which is at the point p∗(r) = S−R+(R−P )/(1−r)
S+T−R−P . This function is

increasing in r, which implies that relatedness favours cooperation in the third sense, as it

increases the equilibrium proportion of cooperators. Moreover, the isocline hits the right

corner point, where f2 = 1, and therefore p = 1, with a slope equal to the slope of the arc

r = T−R
T−P . We will furthermore need two more points; the point p

∗∗ where the isocline hits

the edge of the simplex, and the point p∗∗∗ where ∂ṗ(p,r)
∂r changes sign.

In case (a), the isocline goes from a point on the simplex face where f0 = 0 to the corner

where f2 = 1, and therefore p = 1. This intersection of the isocline and the simplex face

is at the point p∗∗ = S−R
S+T−2R , r

∗∗ = T−R
R−S . In cases (b) and (c), the isocline intersects the

other simplex face, where f2 = 0, and it does so at the point p∗∗ = S−P
S+T−2P , r

∗∗ = P−S
T−P .

Right of the isocline (the green lines in Figs. 12a—c), the proportion of cooperators
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is decreasing. We therefore have two possible outcomes of the dynamics. If r ≥ T−R
T−P ,

cooperation is always increasing on constant-r arcs, and the dynamics take the population

to the corner where p = 1. If r < T−R
T−P , then for given r, there is a stable equilibrium

proportion p∗(r) of cooperators. For p below it, the proportion of cooperators is increasing,

for p above it, the proportion of cooperators is decreasing.

In all cases relatedness favours cooperation under the third definition: the equilibrium

proportion p∗(r) of cooperators is increasing in r. In cases (a) and (b) relatedness does not

favour cooperation under the first definition, as for low p, the growth rate of cooperator

decreases as r increases. In case (c), increased relatedness does favour cooperation also

under the strongest first definition.
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13 Appendix C: Adaptive Dynamics with pairwise in-

teractions and fixed relatedness

13.1 A model for games in finite populations with relatedness

The update process is the same as the one used in Van Veelen & García (2010) and Van

Veelen et al. (2012). It is a version of the Wright-Fisher that allows for positive assortment.

The parent population consists of individuals i = 1, ..., N . We will make a new genera-

tion, consisting of 1
2N interaction pairs as follows. For the first individual in pair 1, a parent

is drawn from the parent population, where every individual from the parent population

has a probability of being drawn proportional to their payoff. For the second individual

in pair 1, a nested procedure applies. First with probability r, the same parent is chosen.

With probability 1− r, a parent is drawn from the entire parent generation, where, again,

every individual from the parent population has a probability of being drawn proportional

to their payoff. This procedure creates one pair with relatedness r. This entire procedure

is repeated 1
2N times to create an entire new population of interacting pairs.

13.2 Adaptive dynamics with interaction structure for piecewise-

differentiable fitness functions

Here we generalize Allen et al. (2013) to games whose payoff functions are piecewise-

differentiable rather than differentiable. We consider a class of evolutionary processes for

which a trait value x evolves under rare and incremental mutation, with interactions de-

scribed by the game π(x, y). This class is defined by a set of general assumptions specified

below. The canonical equation we will arrive at is the following differential equation.

ẋ = Ne
N − 1

N

u(x)

π(x;x)
ε2
(

∂s

∂sx′

∣∣∣∣
x′=x

π(x′, x) +
σ − 1

σ + 1

∂s

∂sx′

∣∣∣∣
x′=x

π(x, x′)

)
. (1)

Above, N is the equilibrium population size, Ne is the effective population size, defined in

Section 13.3, u is the per capita rate of stochastic mutant appearance (which may depend

on the resident trait value x), π(x, y) is the payoff to an individual with trait x interacting

with an individual with trait y, ε2 is the variance in mutational steps in the trait value,

and σ is the structure coeffi cient of Tarnita et al. (2009), also defined in Section 13.3. The

notation ∂S
∂S • refers to the symmetric partial derivative, as defined below.

This equation is arrived at in three steps, as described in the main text. We assume that

mutations arise at intensity Nu (x), and that the uncertainty about whether it will fixate

or go extinct is resolved instantly, of course according to the true fixation probability. If

∆x is the change in the population trait value from time t to time t+ ∆t, then with those
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assumptions, we show that E[∆x] satisfies

E [∆x]

∆t
= Ne

N − 1

N

u(x)

π(x;x)
ε2
(

∂s

∂sx′

∣∣∣∣
x′=x

π(x′, x) +
σ − 1

σ + 1

∂s

∂sx′

∣∣∣∣
x′=x

π(x, x′)

)
+ ε2Q (x,∆t, ε) , (2)

where Q (x,∆t, ε) is a function satisfying

lim
ε→0

lim
∆t→0

Q (x,∆t, ε) = 0 for all x ∈ R.

Section 13.3 introduces the symmetric derivative and other basic concepts. In Section 13.4

we define the classes of evolutionary models to which our result applies, and prove basic

results about these models. The derivation of Eq. (2) appears in Section 13.5.

13.3 General definitions and lemmas

13.3.1 One-sided and symmetric derivatives

Definition 7 Let f : R→ R be a continuous function. We define

• The left derivative of f at x ∈ R as

d−f

d−x
(x) = lim

ε→0−

f(x+ ε)− f(x)

ε
,

• The right derivative of f at x ∈ R as

d+f

d+x
(x) = lim

ε→0+

f(x+ ε)− f(x)

ε
,

• The symmetric derivative of a continuous function f : R→ R at x ∈ R is defined as

dsf

dsx
(x) = lim

ε→0

f(x+ ε)− f(x− ε)
2ε

,

where each derivative above is defined only if the corresponding limits exist. If so, we

say f is left-, right-, or symmetric-differentiable at x, respectively.

If f is instead a function of n real arguments x1, . . . , xn, then the left, right, and symmetric

partial derivatives of f in the kth argument, denoted

∂−f

∂−xk
,

∂+f

∂+xk
, and

∂sf

∂sxk
,

are defined as the corresponding derivatives of the function

xk 7→ f(x1, . . . , xk, . . . , xn).

We state without proof the following elementary lemmas:
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Lemma 8 (Multivariate chain rule for one-sided derivatives) Let f(x1, . . . , xn) be

a differentiable function of n real arguments, and let a1(t), . . . , an(t) be continuous functions

which are left- (resp., right-, symmetric-) differentiable at t = 0. Then the function g defined

by

g(t) = f
(
a1(t), . . . , an(t)

)
is left- (resp., right-, symmetric-) differentiable at t = 0, and

d−g

d−t
(0) =

n∑
k=1

∂f

∂xk

(
a1(0), . . . , an(0)

)d−a
d−t

(0)

(
resp.,

d+g

d+t
(0) =

n∑
k=1

∂f

∂xk

(
a1(0), . . . , an(0)

)d+a

d+t
(0),

dsg

dst
(0) =

n∑
k=1

∂f

∂xk

(
a1(0), . . . , an(0)

)dsa
dst

(0)

)
.

Lemma 9 If f is left- and right-differentiable at x ∈ R, then f is symmetric-differentiable
at x and

dsf

dsx
(x) =

1

2

(
d−f

d−x
(x) +

d+f

d+x
(x)

)
.

Lemma 10 If f is differentiable at x ∈ R, then f is left-, right-, and symmetric-differentiable
at x and

d−f

d−x
(x) =

d+f

d+x
(x) =

dsf

dsx
(x).

13.3.2 Scaling of functions

Definition 11 Let U : R→ R be an integrable function. For ε > 0, we define the ε-scaling

of U to be the function Uε : R→ R with

Uε(x) =
1

ε
U
(x
ε

)
.

Note that Uε is integrable and∫ ∞
−∞

Uε(x) dx =

∫ ∞
−∞

U(x) dx,

for all ε > 0.

13.4 Models of adaptive dynamics in structured populations

Our results apply to a class of models representing evolution in populations with interaction

structure. Here we define this class by specifying the assumptions that each model in this

class must satisfy. We separate our assumptions into those describing competition between

resident and mutant types (C1-C6), those describing the game (G1), and those describing

the process of evolution by trait substitutions (M1-M3).
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13.4.1 Resident-mutant competition

We first describe the class of resident-mutant competition models by stating the assump-

tions that define this class. In the definition, S refers to the set of all states, FM ⊂ S is

a subset of states that corresponds to mutant fixation, and the probability distribution µ

quantifies the likelihood of a being in state at the moment after a mutation first appears (at

which point resident-mutant competition is initiated). For a given resident-mutant compe-

tition model and payoff matrix G, we define the fixation probability ρ as the probability

the Markov chain associated to G hits FM, given that its initial state is sampled according

to µ.

C1. There is a finite set S with an associated probability distribution µ, and a distin-

guished subset FM ⊂ S which is assigned zero probability by µ.

C2. For any payoff matrix G of the form

G =

(
aMM aMR

aRM aRR

)
, (3)

where the entries reflect payoffs from interactions between mutants (M) and resi-

dents (R), there is a collection {ps′|s}s,s′∈S of transition probabilities, giving S the
structure of a Markov chain.

C3. The Markov chain associated to any such payoff matrix G has the following prop-

erties:

a) There is zero probability of transitioning from a state in FM to a state not

in FM.

b) For any s ∈ S which is assigned positive probability by µ, and any s′ ∈ FM,

there is a positive integer n for which the probability of transitioning from s

to s′ in n steps is positive.

C4. The transition probabilities ps′|s vary twice differentiably with respect to the entries

of G.

C5. If the payoff matrix G is multiplied by a constant K > 0, the probability that the

Markov chain hits FM, given that its initial state is sampled from µ, is unaffected.

C6. The probability ρ is increasing in aMM and aMR, and decreasing in aRM and aRR,

for all values of aMM, aMR, aRM, and aRR suffi ciently close to 1.

We define the reverse matrix G̃ to be the payoff matrix in which the roles of resident and

mutant are switched,

G̃ =

(
aRR aRM

aMR aMM

)
.

and the reverse fixation probability ρ̃ is the fixation probability associated to G̃.
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Lemma 12 For any resident-mutant competition model satisfying Assumptions C1—C4,

the fixation probability ρ varies twice differentiably with respect to the entries of the game

matrix G.

Proof. Assumption C3 implies that ρ varies smoothly with respect to the transition

probabilities ps′|s (see, for example, Theorem 3.3 of Iofescu, 1980). By Assumption C4, ρ

varies twice differentiably with respect to the entries of G.

For given G and δ > 0, we denote

Gδ =

(
1 1

1 1

)
+ δG.

This allows us to analyze the case of weak selection (δ � 1). We let ρδ and ρ′δ denote the

fixation probabilities associated to Gδ and G′δ, respectively.

Theorem 13 (Structure coeffi cient theorem of Tarnita et al., 2009) For any resident-

mutant competition model satisfying Assumptions C1—C6, there is a positive constant σ such

that, given any payoff matrix G, ρδ > ρ̃δ for all suffi ciently small δ > 0 if

σaMM + aMR > aRM + σaRR. (4)

Conversely, ρδ < ρ̃δ for all suffi ciently small δ > 0 if

σaMM + aMR < aRM + σaRR.

Definition 14 For a fixed resident-mutant competition model, we define the effective pop-

ulation size as

Ne =
N2

N − 1

∂ρ

∂s

∣∣∣∣
s=0

, (5)

where ρ is the fixation probability of mutants in the game

G =

(
1 + s 1 + s

1 1

)
. (6)

In the game G above, mutants and residents have constant payoff 1 + s and 1, respectively

(regardless of interaction partners), so that s can be identified as the mutant’s selection

coeffi cient. For models that are amenable to the diffusion approximation, Ne is equal to

the variance effective population size (Kimura, 1964).

13.4.2 Piecewise-differentiable games

The definitions, assumptions, and results in Section 13.4.1 apply to 2 × 2 matrix games.

We will use these results to study the long-term evolution of real-valued strategies in a

continuous game, using the adaptive dynamics approach. We assume that the game payoff

function π(x, y) satisfies

G1. For each x ∈ R, π(x, y) is positive and left- and right-differentiable in both arguments

at y = x.
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13.4.3 Evolution by trait substitution

We now describe the class of models representing long-term evolution by a stochastic trait

substitution sequence. Suppose a resident-mutant competition model has been fixed. For

x, x′ ∈ R, let ρ(x′;x) denote the fixation probability ρ for this model, as defined in As-

sumption C5, with the entries of G given by

aMM = π(x′, x′), aMR = π(x′, x),

aRM = π(x, x′), aRR = π(x, x).

The class of long-term evolution models is defined by the following assumptions:

M1. In a monomorphic population with trait value x, mutants appear as a Poisson process

with rate Nu(x) per unit time, where u is a positive-valued function.

M2. When a mutant appears, a mutational step y ∈ R is sampled from a probability

distribution with density function Uε(y) = (1/ε)U(y/ε), where ε is a positive constant

and U is an integrable, compactly supported function that is symmetric about 0 and

has unit variance: ∫ ∞
−∞

y2U(y) dy = 1. (7)

The trait value x′ ∈ R of the mutant is then assigned to be x′ = x+ y.

M3. If a mutant of trait value x′ arises in a monomorphic population with trait value x,

then with probability ρ(x′;x) the population becomes monomorphic with trait value

x′; otherwise it reverts to being monomorphic with trait value x. (The fixation or

disappearance of trait value x′ is regarded as instantaneous.)

We note that the distribution Uε of mutational steps that appears in Assumption M2 has

variance ε2.

Overall, Assumptions M1—M3 imply a Markov jump process representation of evo-

lution, in which the population jumps stochastically from one monomorphic trait value

to another. The rate of transition from a trait value x to x′ is given by the density

Nu(x)Uε(x
′) ρ(x;x′) dx.

13.5 Results

Lemma 15 For any model satisfying C1—C4 and G1, the fixation probability ρ(x′;x) is

left- and right-differentiable in both arguments at x′ = x.

Proof. This follows from Lemmas 8 and 12 and Assumption G1.

Theorem 16 For any model satisfying Assumptions C1—C4, G1, and M1—M3, the expected

change in trait value E [∆x] from a given value x in the time window [t, t+ ∆t) satisfies

E [∆x]

∆t
= Nu(x)ε2

∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x) + ε2Q (x,∆t, ε) ,
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where Q (x,∆t, ε) is a function satisfying

lim
ε→0

lim
∆t→0

Q (x,∆t, ε) = 0 for all x.

Proof. Assumptions M1—M3 imply that the expected change in trait value, E[∆x],

satisfies
E [∆x]

∆t
= Nu(x)

∫ ∞
−∞

y ρ(x+ y;x)Uε(y) dy + S (x,∆t, ε) ,

where S (x,∆t, ε) is a function satisfying

lim
∆t→0

S(x,∆t, ε) = 0 for all x ∈ R and all ε > 0.

We separate the positive and negative values of y:

E [∆x]

∆t
= Nu(x)

∫ 0

−∞
y ρ (x+ y, x) Uε(y) dy

+Nu(x)

∫ ∞
0

y ρ (x+ y, x) Uε(y) dy + S (x,∆t, ε) . (8)

By changing variables and invoking the symmetry of Uε, we can rewrite the first integral

on the right-hand side of (8) as follows:∫ 0

−∞
y ρ (x+ y, x) Uε(y) dy =

∫ 0

∞
(−y) ρ (x− y, x) Uε(−y) d(−y)

= −
∫ ∞

0

y ρ (x− y, x) Uε(y) dy

This allows us to recombine the two terms on the right-hand side of (8) to yield

E [∆x]

∆t
= Nu(x)

∫ ∞
0

y [ρ (x+ y, x)− ρ (x− y, x)]Uε(y) dy + S (x,∆t, ε) .

The integrand above is symmetric around y = 0, allowing us to write

E [∆x]

∆t
= Nu(x)

∫ ∞
−∞

y
ρ (x+ y, x)− ρ (x− y, x)

2
Uε(y) dy + S (x,∆t, ε)

= Nu(x)

∫ ∞
−∞

y2 ρ (x+ y, x)− ρ (x− y, x)

2 y
Uε(y) dy + S (x,∆t, ε) .

We now substitute Uε(y) = (1/ε)U(y/ε) and change variables from y to z = y/ε. This

yields

E [∆x]

∆t
= Nu(x)

∫ ∞
−∞

y2 ρ (x+ y, x)− ρ (x− y, x)

2 y
U(y/ε) d(y/ε) + S (x,∆t, ε)

= Nu(x)ε2
∫ ∞
−∞

z2 ρ (x+ zε, x)− ρ (x− zε, x)

2 zε
U(z) dz + S (x,∆t, ε) . (9)

Since ρ (x′, x) is symmetric-differentiable in x′ at x′ = x, we can write

ρ (x+ zε, x)− ρ (x− zε, x)

2 zε
=

∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x) +R(x, zε),
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where

lim
ε→0

R (x, zε) = 0

for each fixed z ∈ R . Substituting this into (9), we obtain

E [∆x]

∆t
= Nu(x)ε2

∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x)

∫ ∞
−∞

z2 U(z) dz

+Nu(x)ε2
∫ ∞
−∞

z2R (x, zε) U(z) dz + S (x,∆t, ε) ,

which simplifies, using (7), to

E [∆x]

∆t
= Nu(x)ε2

∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x)

+Nu(x)ε2
∫ ∞
−∞

z2R (x, zε)U(z) dz + S (x,∆t, ε) .

We now define

Q (x,∆t, ε) = Nu(x)

∫ ∞
−∞

z2R (x, zε) U(z) dz +
1

ε2
S (x,∆t, ε) (10)

so that
E [∆x]

∆t
= Nu(x)ε2

∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x) + ε2Q (x,∆t, ε)

as required. It only remains to consider the limit

lim
ε→0

lim
∆t→0

Q (x,∆t, ε) = Nu(x) lim
ε→0

∫ ∞
−∞

z2R (x, zε) U(z) dz. (11)

Above, we have used the fact that lim∆t→0 S (x,∆t, ε) = 0 for all x and all ε > 0; thus

lim
ε→0

lim
∆t→0

1

ε2
S (x,∆t, ε) = 0.

Since U is compactly supported, there exists some ε0 > 0 such that the integrand in

(11) is bounded, for each ε < ε0, by the integrable function

B(x, z) = z2U(z)M(x),

with

M(x) = sup
z∈SuppU
ε<ε0

R(x; zε).

The supremum above is finite as long as ε0 is suffi ciently small, since R(x, zε) converges

to zero for each fixed x as zε approaches zero. Therefore, by the Lebesgue dominated

convergence theorem, the limit and integral in (11) can be interchanged, yielding

lim
ε→0

lim
∆t→0

Q(x,∆t, ε) = Nu(x)

∫ ∞
−∞

z2
(

lim
ε→0

R(x; zε)
)
U(z) dz = 0,

for each x, completing the proof of the theorem.
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By Theorem 16, the approximation

E [∆x]

∆t
≈ Nu(x)ε2

∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x)

becomes increasingly accurate as ε→ 0. We therefore consider the following deterministic

approximation to the dynamics of x:

ẋ = Nu(x)ε2
∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x) .

Theorem 17 For any model satisfying Assumptions C1—C6 and G1, the fixation probability

ρ(x′;x) satisfies

∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x) = Ne
N − 1

N2π(x;x)

(
∂s

∂sx′

∣∣∣∣
x′=x

π (x′, x) +
σ − 1

σ + 1

∂s

∂sx′

∣∣∣∣
x′=x

π (x, x′)

)
,

where σ is the structure coeffi cient from Tarnita et al. (2009) and Theorem 13.

Proof. This proof is organized in three steps.

Step 1: Obtain ρ in terms of partial derivatives of π

Using Lemma 8 we obtain

∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x) =
∑

j,k∈{M,R}

∂ρ

∂ajk

∣∣∣∣
G=

(
π(x;x) π(x;x)
π(x;x) π(x;x)

) ∂sajk
∂sx′

∣∣∣∣
x′=x

. (12)

By Assumption C5, each of the payoff values ajk can be divided by aRR = π (x, x)

without changing the value of ρ. This implies that

∂ρ

∂ajk

∣∣∣∣
G=

(
π(x,x) π(x,x)
π(x,x) π(x,x)

) =
1

π (x, x)

∂ρ

∂ajk

∣∣∣∣
G=( 1 1

1 1 )
,

so that, combining with (12),

∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x) =
1

π (x, x)

∑
j,k∈{M,R}

∂ρ

∂ajk

∣∣∣∣
G=( 1 1

1 1 )

∂sajk
∂sx′

∣∣∣∣
x′=x

. (13)

By Lemma 8, the partial derivatives of the ajk at x′ = x are given by

∂saMM

∂sx′

∣∣∣∣
x′=x

=
∂s

∂sx′

∣∣∣∣
x′=x

π (x′, x) +
∂s

∂sx′

∣∣∣∣
x′=x

π (x, x′) ,

∂saMR

∂sx′

∣∣∣∣
x′=x

=
∂s

∂sx′

∣∣∣∣
x′=x

π (x′, x) ,

∂saRM
∂sx′

∣∣∣∣
x′=x

=
∂s

∂sx′

∣∣∣∣
x′=x

π (x, x′) ,

∂saRR
∂sx′

∣∣∣∣
x′=x

= 0.
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We can therefore rewrite (13) in the form

∂s

∂sx′

∣∣∣∣
x′=x

ρ (x′, x) =
κ

π (x, x)

(
∂s

∂sx′

∣∣∣∣
x′=x

π (x′, x) + κ′
∂s

∂sx′

∣∣∣∣
x′=x

π (x, x′)

)
. (14)

The quantities κ and κ′ are linear combinations of partial derivatives of ρ with respect to

the payoff values ajk at aMM = aMR = aRM = aRR = 1. In particular, κ and κ′ are

independent of π, x, and x′.

It now only remains to relate κ and κ′ to Ne and σ. We can establish these relationships

by considering particularly simple payoff functions π, and substituting these payoff functions

into (14). Since κ, κ′, σ and Ne are all independent of π, any relationship derived using a

particular π will hold generally.

Step 2: Relate κ and Ne

To relate κ and Ne we choose a specific payoff function π to substitute into (14). We

consider π (x, y) = 1 + x, describing frequency-independent selection. Note that ρ (x′, x) is

differentiable in both arguments for this game. For x = 0 and x′ = s, the game between

residents and mutants is described by the matrix (6), which we used to define the effective

population size. Substituting this payoff function and x = 0 in (14) yields

∂

∂x′

∣∣∣∣
x′=0

ρ (x′, 0) = κ. (15)

Identifying x′ with s and comparing with (5), we obtain

κ = Ne
N − 1

N2
. (16)

Since the values of κ and Ne do not depend on the game being played, (16) holds for all

games.

We can also use this game to show that κ and Ne must be positive, a fact which

we use in relating κ′ to σ. For the mutant type x′ and resident type x = 0 we have

aMM = aMR = 1 + x′, aRM = aRR = 1. By Assumption C6,

∂

∂x′

∣∣∣∣
x′=0

ρ (x′, 0) =

(
∂ρ

∂aMM
+

∂ρ

∂aMR

)∣∣∣∣
G=( 1 1

1 1 )
> 0.

Subsequently (15) implies that κ > 0, and it follows from (16) that Ne > 0.

Step 3: Relate κ′ and σ

To relate κ′ and σ we first observe that for x = x′,

G =

(
π (x′, x′) π (x′, x′)

π (x′, x′) π (x′, x′)

)
= π (x′, x′)

(
1 1

1 1

)
.
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By Assumption C5, the fixation probability ρ (x′, x′) does not depend on the value of

π (x′, x′), and is therefore constant with respect to x′. Taking the right derivative at x′ = 0,

and making use of Lemma 8 we obtain

0 =
d+

d+x′

∣∣∣∣
x′=0

ρ (x′, x′) =
d+

d+x′

∣∣∣∣
x′=0

ρ (x′, 0) +
d+

d+x′

∣∣∣∣
x′=0

ρ (0, x′) ,

and therefore
∂+

∂+x′

∣∣∣∣
x′=0

ρ(x′; 0) = − ∂+

∂+x′

∣∣∣∣
x′=0

ρ(0;x′).

Since the two above derivatives have opposite signs, there exists an interval [0, δ) such that

if ρ(x′; 0) is increasing in x′ ∈ [0, δ), then ρ(0;x′) is decreasing on this interval, and vice

versa. It follows that for x′ in this interval,

ρ(x′; 0) > ρ(0;x′) ⇐⇒ ∂+

∂+x′

∣∣∣∣
x′=0

ρ(x′; 0) > 0. (20)

As in Step 2, we now choose a particular payoff function π to substitute into (14). We

consider the linear Prisoner’s Dilemma with π (x, y) = −cx+by+1, b > c > 0, with resident

and mutant trait values x = 0 and x′ > 0. The payoff matrix G can then be written as

G =

(
1 1

1 1

)
+ x′

(
b− c −c
b 0

)
.

The mutant trait value x′ can therefore be interpreted as a selection-strength parameter

(Nowak et al., 2004, Tarnita et al., 2009). By the defining condition of the structure

coeffi cient, (4), we have that for suffi ciently small x′ > 0,

ρ (x′, 0) > ρ (0, x′) ⇐⇒ σ (b− c)− c > b. (21)

On the other hand, (14) implies

∂s
∂s x′

∣∣∣∣
x′=0

ρ (x′, 0) = κ (−c+ κ′b) .

Since ρ (x′, x) is differentiable in both arguments for this game, we also have

∂+

∂+x′

∣∣∣∣
x′=0

ρ (x′, 0) =
∂

∂x′

∣∣∣∣
x′=0

ρ (x′, 0) = κ (−c+ κ′b) .

Applying (20) and the positivity of κ > 0 (proven in Step 2), we obtain that for suffi -

ciently small x′ > 0.

ρ (x′, 0) > ρ (0, x′) ⇐⇒ −c+ κ′b > 0. (22)

Comparing (21) and (22), we see that

κ′ =
σ − 1

σ + 1
. (23)

Again, since the values of κ′ and σ do not depend on the game being played, this identity

holds for all games.

Substituting (23) and (16) into (14) yields the desired result.

Combining Theorems 16 and 17 yields:

145



Corollary 18 For any model satisfying Assumptions C1—C6, G1, and M1—M3, the ex-

pected change in trait value E [∆x] from a given value x in the time window [t, t+ ∆t)

satisfies

E [∆x]

∆t
= Ne

N − 1

N

u(x)

π (x, x)
ε2
(

∂s

∂sx′

∣∣∣∣
x′=x

π (x′, x) +
σ − 1

σ + 1

∂s

∂sx′

∣∣∣∣
x′=x

π (x, x′)

)
+ ε2Q (x,∆t, ε) ,

where Q (x,∆t, ε) is a function satisfying

lim
ε→0

lim
∆t→0

Q (x,∆t, ε) = 0 for all x ∈ R.

13.6 Adaptive dynamics of the r-process

We now apply the general results of Section 13.4 to the evolutionary process defined in

Section 13.1.

13.6.1 Structure coeffi cient

For the r-process with large population size (N � 1), we have

σ =
1 + r

1− r . (24)

This is easily verified by using theorem 13, and noting that in the game

( C D

C b− c −c
D b 0

)
,

cooperation is favoured (in the sense ρC > ρD for all suffi ciently small δ > 0) if and only if

br > c.

13.7 Effective population size

We compute the effective population size Ne using the approach of Kimura (1964). We

consider neutral drift between types A and B under the r-process.

Let the random variable X (t) represent the (relative) frequency of A individuals at

time t. (Here, time t refers to time-steps in the r-process, rather than the continuous-time

process considered in Section 13.2). To find Ne we must compute the variance of X (t+ 1)

conditioned on X (t) = p.

We let the random variable Yj (t) denote the number of A’s (0, 1, or 2) among the jth

pair, for j = 1, . . . , N/2 at time t. Thus X (t) = 1
N

∑N/2
j=1 Yj (t). Conditioned on X (t) = p,

we have, for each j = 1, . . . , N/2,

Yj (t+ 1) =


0 with probability r (1− p) + (1− r) (1− p)2,

1 with probability (1− r) p (1− p) ,

2 with probability rp+ (1− r) p2.
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Based on the above probabilities, we have

Var[Yj (t+ 1) | X(t) = p] = 2(1 + r)p (1− p) .

Now, since the Yj (t+ 1) are independent when conditioned on X(t) = p, we have

Var[X (t+ 1) | X (t) = p] = Var

 1

N

N/2∑
j=1

Yj (t) | X (t) = p


=

1

N2
Var

N/2∑
j=1

Yj (t) | X (t) = p


=

1

N2
N(1 + r)p(1− p)

= (1 + r)
p (1− p)

N
.

The effective population size is defined by equating the above variance to the corresponding

variance in a haploid Wright-Fisher model with population size Ne . That is, we set

(1 + r)
p (1− p)

N
=
p (1− p)
Ne

.

This yields

Ne =
N

1 + r
. (25)

13.8 Adaptive dynamics

We turn now to the adaptive dynamics of x under the r-process. We suppose that mutants

arrive at a constant rate per unit time: u(x) = u. Substituting the values of σ and Ne from

Eqs. (24) and (25) into Eq. (1), we obtain the following deterministic approximation to the

adaptive dynamics of game strategy in the r-process:

ẋ =
N − 1

1 + r

uε2

π (x, x)

(
∂s

∂sx′

∣∣∣∣
x′=x

π (x′, x) + r
∂s

∂sx′

∣∣∣∣
x′=x

π (x, x′)

)
. (26)

We now apply this result to the games introduced in the main text.

13.8.1 Game 1

Game 1 has payoff function

π (x, y) = ay − x2.

The partial derivatives are

∂s

∂sx′

∣∣∣∣
x′=x

π (x′, x) = −2x,
∂s

∂sx′

∣∣∣∣
x′=x

π (x, x′) = a.

So Eq. (26) becomes

ẋ =
N − 1

1 + r
uε2
−2x+ ar

ax− x2
.
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13.8.2 Game 2

Game 2 has payoff function

π (x, y) = ay − xy.

The partial derivatives are

∂s

∂sx′

∣∣∣∣
x′=x

π (x′, x) = −x, ∂s

∂sx′

∣∣∣∣
x′=x

π (x, x′) = a− x.

So Eq. (26) becomes

ẋ =
N − 1

1 + r
uε2

(−x+ r(a− x))

10x− x2
.

13.8.3 Game 3

Game 3 has payoff function

π (x, y) = amin (x, y)− x2. (27)

The partial derivatives are

∂s

∂sx′

∣∣∣∣
x′=x

π (x′, x) = a/2− 2x,
∂s

∂sx′

∣∣∣∣
x′=x

π (x, x′) = a/2.

So Eq. (26) becomes

ẋ =
N − 1

1 + r
uε2

a/2− 2x+ ar/2

ax− x2
. (28)

13.8.4 Game 4

Game 3 has payoff function

π (x, y) = amax (x, y)− x2. (29)

The partial derivatives are

∂s

∂sx′

∣∣∣∣
x′=x

π (x′, x) = a/2− 2x,
∂s

∂sx′

∣∣∣∣
x′=x

π (x, x′) = a/2.

So Eq. (26) becomes

ẋ =
N − 1

1 + r
uε2

a/2− 2x+ ar/2

ax− x2
. (30)

13.9 Adaptive dynamics in the large population limit

The canonical equation is formulated for a fixed population size, where we look at a limit in

which ∆t and ε are going to 0, and where we assume that the mutation rate u is suffi ciently

small, so that we can treat fixation or extinction of mutants as instantaneous. In the main

text we see that this describes the dynamics in the simulations in some games (Games 1,

2 and 3) better than in others (Games 4 and 5). In the latter two cases, this is due to

mutation rate u not being small enough for the population to be close to monomorphic
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almost all of the time. In Game 4 they would actually have to be outrageously small to

keep the population monomorphic, and in Game 5 the same would be necessary to prevent

bifurcations.

There are however also other limits one could consider. One of the variables we could

include in the limit taking is population size N . Such alternative limits would not always

give different results, but in particular for Game 3 there would be a noticeable difference.

One example is the order of limits described by Champagnat et al. (2006). This involves

two steps:

1. The limits N → ∞ (large population) and u → 0 (rare mutation) are taken so that

the inequalities

e−CN � u� 1

N logN
for all C > 0

are maintained. Simultaneously, time is rescaled by the factor 1/ (Nu), so that the

expected time until the appearance of a new mutation remains constant under the

above limits.

2. The limit ε → 0 (small mutational steps) is taken. Simultaneously, time is rescaled

by the factor 1/ε2 so that the expected change in trait value E [∆x] remains constant

to first order in ∆t.

Under these limits, we expect that in Game 3, the dynamics within the interval ra/2 <

x < a/2, where both increases and decreases in trait value are disadvantageous, would be

an order of magnitude slower than outside this interval, where mutations in one direction

are actually advantageous. This is because for most evolutionary models, the fixation

probability of a given disadvantageous mutation goes to zero exponentially fast as N →∞.
We expect this result to hold for the r-process as well; thus we expect no fixation of new

mutations in the interval ra/2 < x < a/2 once the limit in Step 1 is taken.
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