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Abstract 
 

The agricultural and energy industries are closely related, both biologically and financially. The 

paper discusses the relationship and the interactions on price and volatility, with special focus 

on the covolatility spillover effects for these two industries. The interaction and covolatility 

spillovers, or the delayed effect of a returns shock in one asset on the subsequent volatility or 

covolatility in another asset, between the energy and agricultural industries is the primary 

emphasis of the paper. Although there has already been significant research on biofuel and 

biofuel-related crops, much of the previous research has sought to find a relationship among 

commodity prices. Only a few published papers have been concerned with volatility spillovers. 

However, it must be emphasized that there have been numerous technical errors in the 

theoretical and empirical research, which needs to be corrected. The paper not only considers 

futures prices as a widely-used hedging instrument, but also takes an interesting new hedging 

instrument, ETF, into account. ETF is regarded as index futures when investors manage their 

portfolios, so it is possible to calculate an optimal dynamic hedging ratio. This is a very useful 

and interesting application for the estimation and testing of volatility spillovers. In the 

empirical analysis, multivariate conditional volatility diagonal BEKK models are estimated for 

comparing patterns of covolatility spillovers. The paper provides a new way of analyzing and 

describing the patterns of covolatility spillovers, which should be useful for the future empirical 

analysis of estimating and testing covolatility spillover effects.  

 

Keywords: Energy and agriculture, covolatility spillovers, spot prices, futures prices, 

exchange traded funds, biofuels, optimal dynamic hedging. 

JEL: C32, C58, G13, Q14, Q42. 
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1. Introduction 

 

With the continuous growth in the global population and rapid economic development, there 

are some problems that will become crucial in the future, such as food supplies and energy 

shortage. Both food and energy shortage are associated with energy and agricultural 

commodities and markets. Consequently, expansions of energy and agricultural markets are 

still possible, and necessary, even though these industries are already heavily traded.  

 

In addition, the agricultural and energy industries are closely related, both biologically and 

financially. The paper discusses the relationship and the interactions on price and volatility, 

with special focus on the volatility spillover effects for these two industries. 

 

In the academic literature, researchers have examined the alternative channels in which these 

two industries can impact on each other. For instance, the increasing use of green energy or 

biofuel might cause a trade-off, which suggests that agricultural commodity producers use 

arable land to grow agricultural commodities for biofuel instead of food consumption. 

Moreover, fertilizers are also made by the use of energy commodities, such as crude oil.  

 

Ajanovic (2011) is concerned about the trade-off, and suggests that, although there is not a 

significant impact of biofuel on crop prices, the issue should still be of concern as the growth 

of bioenergy in the past was just moderate. Even if all crops and forests were used, it would 

still not be possible to substitute all the fossil fuel used today. Rathmann et al. (2010) studied 

the land use competition for producing food and biofuel. Patterns of land use have changed, 

driven by biofuel, and this has questioned how biofuel can be produced in a sustainable manner 

without unduly competing with the increasing demand for food. 
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In the USA, 15.7% of total energy consumption is used to produce food, and 10% of crude oil 

is used to make fertilizer, among other related products. Therefore, the interaction and volatility 

spillovers (namely, the delayed effect of a returns shock in one asset on the subsequent volatility 

or covolatility in another asset) between the energy and agricultural industries is the primary 

emphasis of the paper. Although there has already been significant research on biofuel and 

biofuel-related crops, much of the previous research has sought to find a relationship among 

commodity prices. Only a few papers have been concerned with volatility spillovers. However, 

it must be emphasized that there have been numerous technical errors in the theoretical and 

empirical research, which needs to be corrected. 

 

Multivariate conditional volatility models, such as BEKK and DCC, are widely used to model 

and test volatility spillovers. In the paper, the diagonal and scalar BEKK models will be used, 

but not the DCC model. The optimal dynamic hedging ratio can be calculated by using the 

estimated volatility spillovers, or interdependences. The optimal hedging ratio can be derived 

to a form in which the covariance between the hedged asset, or commodity, and the hedging 

instrument is the numerator, and the variance of the hedging instrument is the denominator. 

The empirical results presented in the paper should give significant insights to financial and 

commodity investors. For example, investors in agricultural commodities should not only be 

careful about weather, disaster, and food reserves, but also about variations in the energy market. 

 

As the agricultural and energy markets have many channels through which to affect each other, 

the paper will focus primarily on green energy and agricultural commodities, specifically, 

biofuel and biofuel-related agricultural commodities, where the biological and financial 

impacts are more clear, direct and obvious.  

  

Biofuel is a fuel produced through biological processes, such as agriculture and anaerobic 
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digestion, rather than a fuel produced by geological processes, such as fossil fuels. It can be 

produced by corn, rapeseed, sugarcane, cassava, barley or other agricultural products. Unlike 

fossil fuels, biofuel is renewable and sustainable, which means it can largely be produced in a 

short period of time. 

 

Agricultural commodities and biofuel are closely related in a number of different ways. 

Physically, they are connected by farmland, technology, or processes of producing, such as the 

trade-off through limited farmland, or the possibility of producing biofuel through different 

agricultural sources, specifically, corn, sugarcane and algae.    

 

Financially, high crude oil prices lead to high food prices, as biofuel will be a cheaper substitute 

when the oil price is high. A high crude oil price will increase the demand for green energy, 

such as biofuel, and the growth in demand for biofuel will subsequently increase the demand 

for agricultural commodities. Du and Hayes (2009) suggest that the increase in bio-ethanol 

lowers gasoline prices as ethanol is a substitute for gasoline. 

 

Furthermore, government policy also plays an important role in the connection between biofuel 

and agricultural commodities. The USA relies on bio-ethanol as a substitute for fossil fuels. 

However, corn as a source of biofuel is not generally an efficient source as compared with 

sugarcane, although it is cost-efficient for the USA (see Figure 1). The widespread use of bio-

ethanol in Brazil is not for environmental issues but owing to increasing the independence of 

energy supplies after the Oil Crisis in 1973. Such policies can have great impacts on the energy 

and agricultural markets. McPhail and Babcock (2011) examine the influence of biofuel 

policies on biofuel and gasoline prices, and suggest that government policies have impacts on 

commodity prices in the biomass and biomass-related markets.  
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Biofuel comprises two major types, namely, bio-ethanol and bio-diesel (see Figure 2). The 

paper will focus on bio-ethanol, but not bio-diesel, primarily for health and pollution 

considerations. After numerous scandals, such as Volkswagen faking its own toxic vapor 

emission test results, it is clear that most diesel automobiles will not be able to meet the exacting 

US regulations. The diesel car market is facing a devastating situation, which is definitely 

having a significant negative impact on the demand for diesel.  

 

Moreover, diesel emission contains carcinogens (that is, cancer-causing substances), which 

may lead to various cancers in other chronic physical ailments. Moreover, diesel creates far 

greater pollution than does gasoline. The costs of health and medical care for cancer and other 

illnesses from pollution will become unthinkable. In the long run, diesel is unsustainable, as is 

bio-diesel.  

  

Bio-ethanol is usually used as a gasoline additive to increase octane and improve vehicle 

emissions. According to the proportion of the ethanol in the mixture, there are products like E5 

(that is, 5% is ethanol), E10, and so on. USA and Brazil use bio-ethanol widely as bio-ethanol 

is a substitute for fossil fuels.  

 

Indeed, not everyone is willing to support bio-ethanol, and its pros and cons are also debateable. 

However, bio-ethanol may be the best and easiest option until there is a broad-based solution 

for alternative energy sources. The expansion of the bio-ethanol market is still possible, 

especially as bio-ethanol has recently reached an 18-month high, so that there is an expectation 

of rising production. Moreover, the recently reported news that the Environmental Protection 

Agency (EPA) plans to boost further ethanol use in gasoline gives significant encouragement 

to biofuel producers (see Figure 3). 
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For agricultural products, attention will be on the commodities which can be converted into 

biofuel, especially bio-ethanol. Moreover, the financial derivatives of these commodities will 

also be taken into the consideration, such as futures prices. Another derivative, namely, 

exchange-traded funds (ETF), will also be considered in the paper for a more comprehensive 

analysis of these industries, and will provide further analysis for hedging purposes. This is the 

one of the primary purposes and applications for testing covolatility spillovers. 

 

In recent years, investors have been targeting increasingly specific niches, so there have been 

numerous financial indices, which have a wide range from the whole market to a sub-market 

sector, or even only a basket of several assets in the market. These spot indices provide 

investors with the information to understand their targets. However, spot prices or spot indices 

are not tradeable. As one of the solutions for this inherent need, an Exchange Traded Fund 

(ETF) is an investment fund that tracks an index and replicates its performance, and indirectly 

makes the stock index tradeable by trading the ETF. Over the past few years, there has been a 

flourishing expansion of ETF in financial markets.  

   

As ETF is designed to provide investors with access to the returns of various market 

benchmarks, there are several reasons why investors it appealing. First, as a derivative that is 

underlying an index, which is usually a weighted mean of different assets, ETF is already 

diversifying risks. Second, for investors who are not willing to spend time in analyzing 

individual stocks but are optimistic about the whole market, ETF is a simple and time-saving 

solution. In addition, ETF also provides accessibility to some assets, such as precious metal 

index, energy index, or even some stocks at a high price, which are not easy to trade or acquire 

for small individuals with only limited resources.  

 

The advantages of ETF are not merely those stated above, but also some more practical 
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functions, such as offering both tax efficiency and lower transaction costs. Poterba and Shoven 

(2002) compared the pre-tax and post-tax returns of ETF and traditional mutual funds, and 

suggest that ETFs offer taxable investors a method of holding broad baskets of stocks that are 

comparable to those of low-cost index funds.  

 

Furthermore, as the ETF replicates the performance of an index, its contents and holdings of 

assets is highly transparent. Therefore, investors can understand the features of the portfolio 

and take appropriate action. Although the ETF is referred to as a fund, it is actually traded like 

a stock, which is easy to buy and sell, and usually with high liquidity. Therefore, with the 

capability of taking long and short positions, ETF is definitely an alternative option as a 

hedging instrument.  

 

ETF is gradually regarded as a hedging instrument by more and more investors. However, its 

importance seems to have been both underrated and understated, and there does not seem to 

have been as great an emphasis on hedging with ETF as is importance might dictate. As both 

prices underlie a basket of assets, and are also designed to trade the spot index, ETF has a 

similar concept to that of index futures. Therefore, some investors treat ETF in the same manner 

as index futures when they manage their portfolios. The biggest difference between these two 

financial derivatives is that ETF does not have a maturity date, or the period is much longer 

than a futures contract that can be regarded as having no maturity date. 

 

In the past, corporations could only use futures as a hedging instrument for the long term. 

However, they had to roll over or switch positions every month, and it brings about transaction 

costs, spread costs, and other related issues. With ETF, corporations can save a lot of effort by 

eliminating their switching positions every month as there is no maturity date for ETF. The 

emergence of ETF, as an alternative option for hedging, provides investors alternative choices 
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and strategies for hedging. 

 

In short, the main purpose of the paper is to use a multivariate conditional volatility model to 

estimate and test volatility spillovers between energy and agricultural commodities and markets. 

Further applications of the estimated volatility spillovers on hedging strategies will be 

discussed. The result will be used to provide some hedging advice between the energy and 

agricultural industries, especially between bio-ethanol and bio-ethanol-related agricultural 

commodities.  

 

2. Literature Review 

 

Numerous papers have studied the interactions of commodities in agricultural and agriculture-

related markets, such as the transmission or spillover effects of prices and risk. Chang et al. 

(2012) used the M-TAR (Momentum-Threshold) model and VECM (Vector Error Correction 

Model) to analyze the price transmission effects for bio-energy and energy crops, namely, corn, 

soybeans and sugar. Bio-ethanol were found to be useful as a hedging instrument against prices 

in agricultural and food markets. Serra and Zilberman (2013) review the literature on the price 

transmission in the biofuel and agricultural industries. They conclude that energy prices drive 

long-run agricultural price levels, and the instability in energy markets is subsequently 

transferred to food markets. 

 

For spillover effects on the volatility or risk between different assets, which is the primary issue 

in the paper, multivariate conditional volatility models are needed, which can be divided into 

two types. The first approach uses conditional covariances, such as the Vech and BEKK models 

of Engle and Kroner (1995), while the second approach uses conditional correlations, such as 

the CCC model of Bollerslev (1990) and DCC model of Engle (2002). Trujillo-Barrera et al. 
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(2012) use the Full BEKK model to analyze and measure the risk or volatility spillovers for 

US crude oil, bio-ethanol and corn futures. The empirical results indicate that corn has a 

significant volatility spillover effect on bio-ethanol.  

 

Du and McPhail (2012) explain the corn-ethanol relation, specifically, ethanol shocks have the 

largest impact on corn prices, and vice-versa, by using the scalar DCC model to test volatility 

spillovers in the corn and bio-ethanol industries. However, Chang et al. (2015) give a critical 

review and appraisal of the extant literature, and suggest that the literature is incorrect in the 

use of the Full BEKK and DCC models to test for volatility spillover effects. 

 

The next part of the paper on model specifications will follow closely the presentation in Chang 

et al. (2015), in which they discuss previous research that has tested for volatility spillovers 

between the bio-ethanol and agricultural markets. These so-called tests have been based on 

estimating alternative multivariate conditional volatility models, specifically variations of the 

BEKK and DCC models. Chang et al. (2015) develop three novel definitions of volatility and 

covolatility spillovers, which will be used in the paper. The empirical applications of different 

models are evaluated in terms of the new definitions and appropriate statistical criteria.  

 

With the curse of dimensionality and without regularity conditions, the full BEKK model has 

serious technical deficiencies and limitations, so valid statistical tests of volatility spillovers 

are not possible. In contrast, the regularity conditions of the diagonal BEKK can be verified, 

and valid statistical tests of volatility spillovers can be established. The DCC model, which has 

no regularity conditions or asymptotic properties, cannot test for volatility spillovers 

statistically by using the associated conditional covariances as it has no regularity conditions 

or statistical properties. 
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For their theoretical and practical appraisal, Chang et al. (2015) choose 11 published empirical 

papers that have used the multivariate BEKK model, and two papers that estimated both the 

full BEKK and scalar DCC models. Of these empirical papers, only Algieri (2014) used the 

diagonal BEKK model, and much of the published research used the full BEKK model. Based 

on the theoretical result that the full BEKK model is not valid for testing volatility spillovers, 

there has not been much research on volatility spillovers that has used the appropriate model 

and techniques. Therefore, the paper will use the diagonal or scalar BEKK models, but not the 

full BEKK or scalar DCC models. 

  

This paper will also refer to the earlier research on volatility spillovers using conditional 

correlations, such as Manera et al. (2006) and Chang et al. (2009). Both papers are concerned 

with modelling conditional correlations, and Chang et al. (2010) is concerned with forecasting 

volatility spillovers. Given the recent novel definitions of covolatility spillovers and the 

discussion in Chang et al. (2015), the literature is not strictly correct. However, the published 

papers provide a train of thought and concepts about modelling and estimating volatility 

spillovers that might prove useful in comparative empirical analysis. 

 

Chang, McAleer and Wang (2016) analyze the empirical results by using the new definitions 

of volatility spillovers and appropriate models, namely diagonal BEKK. They calculate 

covolatility spillover effects for spot and futures prices in the bio-ethanol, sugarcane and corn 

markets. The results indicate that bio-ethanol and agricultural commodities should be 

considered together in financial portfolios for hedging purposes. The paper will basically 

follow their method, and provide further empirical research and discussion. 

 

Chang, Hsieh and McAleer (2016) also analyze the linkages between VIX and ETF returns. 

They applied the VAR and diagonal BEKK models using ETF data. Their analysis provides the 
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paper with the idea of adding ETF in the empirical analysis as ETF is a specific market indicator, 

as well as a potentially interesting hedging instrument.  

 

Regarding the analysis of spillover effects of ETF, Chen and Huang (2010) suggest that, not 

only does ETF have a better performance than does the stock index in developed countries, but 

the volatility spillover effects also have bilateral influences. It has also been shown in Chang, 

McAleer and Wang (2016) that the various commodities in the bio-ethanol and related markets 

have bilateral covolatility spillovers.  

   

Following the idea of hedging using the multivariate GARCH model in Chang et al. (2011), 

the paper will also discuss the application of estimated spillovers for hedging purposes. In 

particular, we will use the results given in Chang et al. (2015), and focus on optimal hedging 

between the biofuel and agricultural industries. 

 

3. Model Specifications 

 

The primary purpose of the paper is to test for spillover effects among several assets, namely 

spot, futures, financial index and ETF, in the agricultural and energy markets. Testing of 

spillovers requires estimation of multivariate conditional volatility models with appropriate 

regularity conditions and asymptotic properties of the Quasi Maximum Likelihood Estimators 

(QMLE) of the associated parameters underlying the conditional means and conditional 

variances (for further details, see, for example, McAleer (2005), McAleer et al. (2008)). 

 

As the first step in the estimation of multivariate conditional volatility models is the estimation 

of multiple univariate volatility models, this section is organized as follow: 
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(1) A brief discussion of the most widely-used univariate conditional volatility model; 

(2) A discussion of the most widely-used multivariate models of conditional volatility; 

(3) A definition of three novel spillovers effects. 

 

The first step in estimating multivariate models is to estimate and retain the standardized shocks 

from the conditional mean returns shocks, which are based on univariate models. The most 

widely used univariate conditional volatility model, namely GARCH, will be presented briefly, 

followed by the one of the most widely used multivariate conditional covariance models, 

namely variations of BEKK.  

 

Some of the following material can be found in, for example, McAleer (2005), McAleer at el. 

(2008), and Chang et al. (2015). Consider the conditional mean of financial returns, as follows:  

 	

௧ݕ ൌ ௧ିଵሻܫ|௧ݕሺܧ ൅	ߝ௧																																																																																																																ሺ1ሻ 

 

where the return, ݕ௧ ൌ Δ log ௧ܲ	 , represents the log-difference in financial commodity or 

agricultural prices ሺ ௧ܲሻ, ௧ିଵܫ  is the information set at time t-1, and ߝ௧  is conditionally 

heteroskedastic. In order to derive conditional volatility specifications, it is necessary to specify 

the stochastic processes underlying the returns shocks, ߝ௧.  

 

3.1 Univariate Conditional Volatility Models 

 

Alternative univariate conditional volatility models are of interest in single index models to 

describe individual financial assets and markets. Univariate conditional volatilities can also be 

used to standardize the conditional covariances in alternative multivariate conditional volatility 

models to estimate conditional correlations, which are particularly useful in developing 
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dynamic hedging strategies.  

 

The three most popular univariate conditional volatility models are GARCH, GJR, and 

EGARCH. However, only GARCH is presented below as the focus of the paper is on estimating 

and testing spillover effects using multivariate conditional volatility models.  

 

3.1.1 Random Coefficient Autoregressive Process and GARCH 

 

Consider the random coefficient autoregressive process of order one: 

 

௧ߝ ൌ ߶௧ߝ௧ିଵ ൅  ሺ2ሻ																																																																																																																								௧ߟ

 

where 

 

߶௧~݅݅݀ሺ0,  ,ሻߙ

 ,௧~݅݅݀ሺ0,߱ሻߟ

and ߟ௧ ൌ   .௧/ඥ݄௧ is the standardized residualߝ

 

Tsay (1987) derived the ARCH(1) model of Engle (1982) from equation (1) as:  

 

݄௧ ൌ ௧ିଵሻܫ|௧ଶߝሺܧ ൌ ߱ ൅ ௧ିଵߝߙ
ଶ 																																																																																																ሺ3ሻ 

 

where ݄௧ is conditional volatility, and ܫ௧ିଵ is the information set available at time t-1. The 

use of an infinite lag length for the random coefficient autoregressive process in equation (2), 

with appropriate geometric restrictions (or stability conditions) on the random coefficients, 

leads to the GARCH model of Bollerslev (1986). From the specification of equation (2), it is 
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clear that both ߱ and ߙ should be positive as they are the unconditional variances of two 

different stochastic processes. 

 

In order to accommodate volatility spillover effects, alternative multivariate volatility models 

of the conditional covariances are available. Examples include the diagonal model of Bollerslev 

et al. (1988), the Vech and diagonal Vech models of Engle and Kroner (1995), the Baba, Engle, 

Kraft, and Kroner (BEKK) multivariate GARCH model of Baba et al. (1985) and Engle and 

Kroner (1995), the constant conditional correlation (CCC) (specifically, multiple univariate 

rather than multivariate) GARCH model of Bollerslev (1990), the Ling and McAleer (2003) 

vector ARMA- GARCH (VARMA-GARCH) model, the VARMA–asymmetric GARCH 

(VARMA- AGARCH) model of McAleer et al. (2009), the Engle (2002) dynamic conditional 

correlation (technically, dynamic conditional covariance rather than correlation model) (DCC), 

and the Tse and Tsui (2002) varying conditional correlation (VCC) model.   

 

The two most widely-used multivariate conditional volatility models are BEKK and DCC. 

However, only BEKK is presented below as it is the most widely-used multivariate conditional 

volatility model, with appropriate regularity conditions and asymptotic properties under 

appropriate parametric restrictions. The DCC model has no known regularity conditions, and 

hence no asymptotic properties, so that no valid statistical inference is possible. For further 

details on and properties of these multivariate models see, for example, McAleer (2005) and 

Hafner and McAleer (2014). 

 

3.2 Multivariate Conditional Volatility Models 

 

Multivariate conditional volatility GARCH models are often used to analyze the interaction 

between the second moments of returns shocks to a portfolio of assets, and can model and the 
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possible risk transmission or spillovers among different assets. The multivariate extension of 

univariate GARCH in equation (3) is given as variation of the BEKK model in Baba et al. 

(1985) and Engle and Kroner (1995).  

 

In order to establish volatility spillovers in a multivariate framework, it is useful to define the 

multivariate extension of the relationship between the returns shocks and the standardized 

residuals, that is, ߟ௧ ൌ ௧/ඥ݄௧ߝ . The multivariate extension of equation (1), namely ݕ௧ ൌ

௧ିଵሻܫ|௧ݕሺܧ ൅ ݉ ௧, can remain unchanged by assuming that the three components are nowߝ ൈ

1 vectors, where ݉  is the number of financial assets. The multivariate definition of the 

relationship between ߝ௧ and ߟ௧ is given as:  

 

௧ߝ ൌ ௧ܦ
ଵ/ଶߟ௧																																																																																																																																		ሺ4ሻ 

 

where	ܦ௧ ൌ ݀݅ܽ݃ሺ݄ଵ௧, ݄ଶ௧, … , ݄௠௧ሻ is a diagonal matrix comprising the univariate conditional 

volatilities. Define the conditional covariance matrix of ߝ௧	as	ܳ௧. As the ݉ ൈ 1 vector,	ߟ௧, is 

assumed to be iid for all ݉  elements, the conditional correlation matrix of ߝ௧ , which is 

equivalent to the conditional correlation matrix of ߟ௧ , is given by Γ௧ . Therefore, the 

conditional expectation of the process in equation (4) is defined as:  

 

ܳ௧ ൌ ௧ܦ
ଵ/ଶΓ௧ܦ௧

ଵ/ଶ																																																																																																																								ሺ5ሻ 

 

Equivalently, the conditional correlation matrix, Γ௧ can be defined as: 

 

Γ௧ ൌ ௧ܦ
ିଵ/ଶܳ௧ܦ௧

ିଵ/ଶ																																																																																																																				ሺ6ሻ 

 

Equation (5) is useful if a model of Γ௧ is available for purposes of estimating	ܳ௧, whereas (6) 



16 
 

is useful if a model of ܳ௧ is available for purposes of estimating	Γ௧.  

 

The vector random coefficient autoregressive process of order one is the multivariate extension 

of equation (2), and is given as: 

 

௧ߝ ൌ Φ௧ߝ௧ିଵ ൅  ሺ7ሻ																																																																																																																								௧ߟ

 

where 

 

݉ are		௧ߟ		and	௧ߝ ൈ 1 vectors, and Φ௧ is an ݉ ൈ݉ matrix of random coefficients, and  

 

Φ௧~݅݅݀ሺ0,  ,ሻܣ

η௧~݅݅݀ሺ0, ܳܳ′ሻ. 

 

Technically, a vectorization of a full (that is, non-diagonal or non-scalar) matrix A to vec A can 

have dimension as high as ݉ଶ ൈ ݉ଶ, whereas vectorization of a symmetric matrix A to vech 

A can have dimension as low as ݉ሺ݉ െ 1ሻ/2 ൈ ݉ሺ݉ െ 1ሻ/2. 

 

The matrix A is crucial in the interpretation of symmetric and asymmetric weights attached to 

the return shocks, as well as a subsequent analysis of spillover effects. 

 

3.2.1 Triangular, Hadamard and Full BEKK 

 

Without actually deriving the model from an appropriate or known stochastic process, Baba et 

al. (1985) and Engle and Kroner (1995) considered the full BEKK model, as well as the special 

cases of triangular and Hadamard (element-by-element multiplication) BEKK. The 
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specification of the multivariate model is given below: 

 

ܳ௧ ൌ ܳܳᇱ ൅ ᇱܣ௧ିଵ′ߝ௧ିଵߝܣ ൅  ሺ8ሻ																																																																																		ᇱܤ௧ିଵܳܤ

 

where A and B in equation (8) can be the full, Hadamard or triangular matrices, under 

appropriate parametric restrictions.   

 

Although it is possible to examine spillover effects using each of these three models, it is not 

possible to test for or analyze the spillover effects as the QMLE for the model in equation (8) 

have no known asymptotic properties. However, estimation of the full, Hadamard and 

triangular BEKK models is available in some standard econometric and statistical software 

packages, though it is not clear how the likelihood functions might be determined. Moreover, 

the so-called “curse of dimensionality”, whereby the number of parameters to be estimated is 

excessively large, that is, m(5m+1)/2, makes convergence of any estimation algorithm 

somewhat problematic. 

 

This is in sharp contrast to a number of published papers in the literature, whereby volatility 

spillovers have been tested incorrectly based on the off-diagonal terms in the matrix A in 

equation (8) (for further details, see Chang et al. (2015)).   

 

3.2.2 Diagonal and Scalar BEKK 

 

As a special case of full BEKK, where A is either a diagonal matrix or the special case of a 

scalar matrix, ܣ ൌ ௠ܫܽ , McAleer et al. (2008) showed that the multivariate extension of 

GARCH(1,1) from equation (7), incorporating an infinite geometric lag in terms of the returns 

shocks, is given as the diagonal or scalar BEKK model, and the specification of the multivariate 
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model is the same as the specification in equation (8), namely:  

 

ܳ௧ ൌ ܳܳᇱ ൅ ᇱܣ௧ିଵ′ߝ௧ିଵߝܣ ൅  ሺ9ሻ																																																																																		ᇱܤ௧ିଵܳܤ

 

except that A and B are both either diagonal or scalar matrices, rather than full, Hadamard or 

triangular matrices, as in (8). 

 

McAleer et al. (2008) showed that the QMLE of the parameters of the diagonal or scalar BEKK 

models were consistent and asymptotically normal, so that standard statistical inference on 

testing hypotheses is valid. Moreover, as ܳ௧  in (9) can be estimated consistently, Γ௧  in 

equation (6) can also be estimated consistently.  

 

Further discussion of applying the diagonal BEKK model on testing volatility spillover effects 

will be presented in Section 3.3, together with three novel definitions of volatility spillovers. 

Another widely-used multivariate conditional volatility model, DCC, will not be presented or 

used in the paper as it has no regularity conditions and asymptotic properties (for further details, 

see Aielli (2013), Caporin and McAleer (2013), and Hafner and McAleer (2014)). 

 

3.3 Full and Partial Volatility and Covolatility Spillovers 

 

Testing for spillovers in the literature is typically both confused and confusing. Indeed, many 

so-called tests of spillovers are not, in fact, tests of spillovers. The following section presents 

three novel tests for spillovers, namely, full volatility spillovers, full covolatility spillovers, and 

partial covolatility spillovers. 

 

Volatility spillovers are defined as the delayed effect of a returns shock in one asset on ܳ௧, the 
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subsequent volatility or covolatility in another asset. Therefore, a model relating to returns 

shocks is essential, and this will be addressed in the following sub-section. Spillovers can be 

defined in terms of full volatility spillovers and full covolatility spillovers, as well as partial 

covolatility spillovers, as follows, for i,j,k = 1,…, m: 

 

1) Full volatility spillovers: ߲ܳ௜௜௧ ⁄௞௧ିଵߝ߲ , ݇ ് ݅																																																							 

2) Full covolatility spillovers: ߲ܳ௜௝௧ ⁄௞௧ିଵߝ߲ , ݅ ് ݆, ݇ ് ݅, ݆																																			 

3) Partial covolatility spillovers: ߲ܳ௜௝௧ ⁄௜௧ିଵߝ߲ , ݅ ് ݆												 

 

Full volatility spillovers occur when the return shock from financial asset k affects the volatility 

of a different financial asset i.   

 

Full covolatility spillovers occur when the return shock from financial asset k affects the 

covolatility between two different financial assets, i and j.   

 

Partial covolatility spillovers occur when the return shock from financial asset i affects the 

covolatility between two financial assets, i and j. 

   

When m = 2, only 1) and 3) are possible as full covolatility spillovers depend on the existence 

of a third financial asset.    

 

As mentioned above, spillovers require a model that relates the conditional volatility matrix, 

ܳ௧, to a matrix of delayed returns shocks. The two most frequently used models of multivariate 

conditional covariances are the BEKK and DCC models, with appropriate parametric 
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restrictions, which were discussed in the previous section. This paper follows the 

recommendation from Chang et al. (2015) that only the scalar and diagonal BEKK models be 

used for empirical analysis. 

 

In terms of volatility spillovers using diagonal BEKK, as the off-diagonal terms in the second 

term on the right-hand side of equation (9), ᇱܣ௧ିଵ′ߝ௧ିଵߝܣ	 , have typical (i,j) elements 

ܽ௜௜ ௝ܽ௝ߝ௜௧ିଵߝ௝௧ିଵ, ݅ ് ݆, ݅, ݆ ൌ 1,… ,݉, there are no full volatility or full covolatility spillovers. 

However, partial covolatility spillovers are not only possible, but they can also be tested using 

valid statistical procedures. 

 

For full volatility and covolatility spillovers, full BEKK is needed. However, the curse of 

dimension for full BEKK makes the process problematic, not to mention the lack of regularity 

conditions and asymptotic properties of the QMLE of the parameters. In short, while full 

BEKK may seem like the holy grail of multivariate GARCH models, this essentially relies on 

wishful thinking and is devoid of a statistical framework. 

 

Therefore, in the empirical analysis, the diagonal BEKK model will be used to test for partial 

covolatility effects. The diagonal BEKK model is given as equation (9), where the matrices A 

and B are given as: 

 

ܣ ൌ ൥
ܽଵଵ		 	⋯ 					0
		⋮						⋱							⋮

					0				⋯ 		ܽ௠௠

൩，ܤ ൌ ܣ ൌ ൥
ܾଵଵ		 	⋯ 					0
		⋮						⋱							⋮

					0				⋯ 		ܾ௠௠

൩ 

 

Partial covolatility spillovers are defined as the effect of a shock in commodity i at time t-1 on 

the subsequent covolatility between i and another commodity at time t, which can be presented 

as: 
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߲ܳ௜௝௧
௜௧ିଵߝ߲

ൌ 	ܽ௜௜ ൈ ௝ܽ௝ ൈ ,௝௧ିଵߝ ݅ ് ݆ 

 

where ܽ௜௜ and ௝ܽ௝ are the elements in A of diagonal BEKK, and ߝ௝௧ିଵ is the return shock of 

j at time t-1. 

 

If ܽ௜௜, ௝ܽ௝ 	൐ 0, there is a non-zero spillover effect from the return shock of asset i at t-1 to the 

covolatility between assets i and j. It is worth mentioning that the return shock of asset i at time 

t-1 , ߝ௜௧ିଵ,	does not affect the spillover effect of asset i at t-1 on the covolatility between assets 

i and j at time t. 

 

Furthermore, spillover effects vary for each observation at t-1. However, it seems unnecessary 

to calculate every spillover for every t-1 to highlight the spillover effects, in general. Therefore, 

the paper will use the mean return shocks to calculate the mean covolatility spillover effects in 

order to provide a general discussion for the energy and agricultural markets. 

 

4. Data and Variables 

 

The paper is concerned with the relationships, interactions, and spillovers effects between the 

agricultural and energy markets, particularly bio-ethanol and ethanol-related agricultural 

commodities, such as corn and sugar.  

 

Four different prices are used in the paper, namely spot price, futures price, ETF price, and the 

prices of the index tracked by ETF. Therefore, four prices for each of the three commodities 

from the agricultural and bio-ethanol markets, namely, twelve variables are considered. All the 
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variables use daily time series data for the empirical analysis. For each series, the sample period 

is from 25 June 2010 to 6 May 2016, for a total of 1531 observations for prices, and 1530 

observations for returns. Being a relatively new financial product, the availability of data on 

ETF limits the length of the sample period. 

 

The data on agricultural commodities, both corn and sugar, are downloaded from Datastream, 

and are originally sourced from United Stated Department of Agriculture (USDA). Corn spot 

is Corn Number 2 Yellow (cents/bushel), and the ticker symbol is CORNUS2. Sugar spot is 

Raw Sugar - International Sugar Agreement (ISA) (cents/pound), and the ticker symbol is 

WSUGDLY. There are several kinds of spot prices for ethanol that are provided by both 

Datastream and Bloomberg. However, the data typically change only once or twice each week, 

despite the fact that ethanol spot prices are presented as daily data.  

 

Therefore, a free on board (FOB) spot price, Bloomberg Ethanol Prompt mth fob spot 

price/Chicago (cents/gallon), is used for ethanol. Compared with the original ethanol spot price 

series, the FOB ethanol spot price has greater movement and higher correlations with ethanol 

futures. The FOB price of ethanol is regarded as the ethanol spot price in the paper, and its 

ticker symbol is ETHNCHIC index, as sourced from Bloomberg. 

 

Corn futures, Corn Continuous (ticker symbol: CC.CS00), is traded on the electronic trading 

platform of the Chicago Board of Trade (CBOT), and is expressed in US cents per bushel. 

Sugar futures, Sugar # 11 (ticker symbol: NSBCS00), is expressed in US cents per pound, and 

is traded at the Coffee, Sugar & Cocoa Exchange (CSCE). Ethanol futures, Ethanol Continuous 

(ticker symbol: CZEC00), is traded on eCBOT, and is expressed in US dollars per gallon. All 

the data on futures are obtained from Datastream. 
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As the ETF tracks an index, commodity, or a basket of assets, starting from the introduction of 

the index will be more convenient. However, the existence of ETF is the reason these indices 

are chosen, as we are interested in the volatility spillovers and hedging discussion of ETFs. The 

three indices and their ticker symbols are Teucrium Corn Fund Benchmark Index (TCORN 

Index), Bloomberg Sugar Subindex Total Return (BCOMSBTR Index), and BofA Merrill 

Lynch Commodity index eXtra Biofuels Total Return Index (MLCXBXTR Index). 

 

The corn index, TCORN, represents a fund that invests in corn futures traded on CBOT, and is 

designed to reflect the daily changes in the percentage of a weighted average for three corn 

futures, namely, the second-to-expire contract, third-to-expire contract, and the contract 

expiring in December following the expiration of the third-to-expire contract. These three 

futures contracts are all weighted about 30-35 percent, so the TCORN index will not roll all of 

its holdings every month, potentially reducing the impact of contango on price. 

 

The sugar index was formerly known as the Dow Jones – UBS Sugar Subindex, which is 

composed of futures contracts on sugar. It reflects the return of the underlying commodity 

futures price movements. 

 

As the bio-ethanol market is a young and relative small market, bio-ethanol and bio-diesel are 

widely regarded as a single “bio-mass” or “bio-fuel” market. The MLCXBXTR index is a 

benchmark for the bio-energy sector, and contains seven types of commodities, namely, sugar, 

corn, barley, soy bean, soy bean oil, canola and rapeseed. The index is heavily weighted by 

soybeans (32.7%), corn (21.1%), soybean oil (19.5%), and sugar (15.7%), while the 

proportions of the sources of bio-ethanol, namely corn and sugar, are around 36%. The index 

is considered in the paper, as the focus is on spillover effects, that is, on the interactions between 

assets, and not the value of ethanol. Therefore, with a large proportion of ethanol, this index is 
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taken to represent the bio-ethanol market for purposes of the empirical analysis.   

 

For the paper, there are limited choices of data on ETFs in these industries, especially biofuel 

ETF, as it is a relatively young product of a young market. Corn ETF is the Teucrium Corn 

Fund (ticker symbol: CORN US equity), which tracks the performance of Teucrium Corn Fund 

Benchmark Index. Sugar ETF is the iPath Bloomberg Sugar Subindex Total Return ETN (SGG 

US equity), which replicates the performance of the Bloomberg Sugar Subindex Total Return.  

 

For bio-ethanol, as there is not a separate bio-ethanol ETF, biofuel ETF is taken into account. 

Biofuel ETF is the ELEMENTS Linked to the MLCX Biofuels Index (Exchange Series) - Total 

Return ETN (FUE US equity), which tracks the performance of the MLCX Biofuel Index, but 

lacks data. However, the index ELEMENTS Linked to the MLCX Biofuels Index Total Return 

IOPV, gives the calculated implied value of biofuel ETF, which will be used in the paper. All 

the data on the three ETFs are downloaded from Bloomberg, where ETF is listed under the 

category of equity in Bloomberg, Therefore, the ticker symbol will contain “equity”.  

 

Without the ethanol ETF, recent news articles have suggested that interest in the continuing 

ethanol boom should pay attention to corn and biofuel ETFs. As a large proportion of corn 

produced in the USA is converted to ethanol, corn ETF is definitely an alternative option of 

analyzing bio-ethanol, as does biofuel ETF, which contains a high proportion of ethanol-related 

crops. Therefore, these two ETFs not only have a close relationship with the bio-ethanol market, 

but might also be suitable for estimating spillovers effects. Consequently, corn ETF and biofuel 

ETF are considered in the estimation and testing of spillover effects. 

 

The endogenous variables used in the empirical analysis are the daily return rates, where the 

rate of return is obtained as the natural logarithm first difference in two consecutive daily price 
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data, multiplied by 100. Corns, Sugars, and Ethanols represents the returns on spot prices of 

corn, sugar, and bio-ethanol, respectively. Cornf, Sugarf, and Ethanolf represents the returns on 

futures prices of corn, sugar, and bio-ethanol, respectively. Furthermore, for Corni, Sugari, 

Ethanoli, Corne, Sugare, Ethanole, the subscripts “i” and “e” denote returns on the index and 

ETF, respectively.  

 

As mentioned previously, the ethanol index and ETF do not comprise only ethanol, but are 

actually a biofuel index which contains a high proportion of bio-ethanol and ETF, which tracks 

the performance of the biofuel index. Although they are not precise, Ethanoli and Ethanole are 

used to denote these two variables in the following discussion for convenience. The variables 

are defined in Table 1. 

 

[Insert Table 1 here] 

 

The descriptive statistics for these variables are shown in Table 2. The means are rather small, 

and most are negative, especially for the sugar industry. However, the corn industry is mainly 

positive. It is possible that poor weather conditions and the continually increasing demand for 

corn in the past few years are the primary reasons. Recently, stockpiles have been increasing, 

and corn prices are still rising, according to recent reports in the Wall Street Journal. The 

relatively low crude oil prices in the previous year might have affected the price of ethanol, so 

the spot and futures returns are negative. For the biofuel index and ETF, it might have been the 

effect of bio-diesel, which is not a direct substitute for gasoline.  

 

The highest standard deviations for both the spot and futures market are for ethanol, while the 

highest standard deviations for the financial index and ETF are for sugar. The returns have 

different degrees of skewness, with most of the returns being negatively skewed, which means 
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more extreme losses occurred than extreme gains. All of the returns have kurtosis that is higher 

than 3, indicating that they have higher probabilities of extreme market movements. The 

Jarque-Bera test suggests that none of the data series exhibits a normal distribution. 

 

[Insert Table 2 here] 

 

As shown in Figure 5, the volatility of the returns of spot, futures, financial index and ETF in 

the corn, sugar and bio-ethanol markets display the phenomenon of volatility clustering. The 

unit root tests for all variables are also given in Table 3, which show that all the returns series 

are stationary. 

 

[Insert Table 3 and Figure 4 here] 

 

The correlations of both returns and prices are given in Tables 4 and 5. In the same industry, 

the correlations of prices are higher, which is not surprising. This holds widely, except for the 

ethanol market, which makes sense as the financial index and ETF are means of bio-diesel and 

bio-ethanol. Across the industries, the correlations of prices between the corn and ethanol 

markets are all higher than the correlations between the sugar and ethanol markets, especially 

for the financial index and ETF. This result would seem to confirm recommendations from the 

news media that investors who are interested in the continuing ethanol boom should pay 

attention to the corn ETF in the absence of ethanol ETF.  

 

Moreover, the correlations of returns basically follow the same pattern of correlations as prices, 

but there is no distinct correlation that is particularly high or low. The correlations between the 

financial index and ETF are a lot higher than others for each industry as the ETF virtually 

replicates the performance of the financial index.  
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[Insert Tables 4 and 5 here] 

    

5. Empirical Results  

    

5.1 Testing Partial Covolatility Spillovers 

 

Much of the previous and questionable research in the testing of volatility spillovers has been 

concerned with testing the significance of the estimates of the weighting matrix A in the BEKK 

model. The off-diagonal terms in the matrix A in the Full BEKK model have widely been 

regarded as capturing spillover effects. Indeed, the matrix A seems to be an indispensable 

concept in the literature. However, the matrix A only represents the weights or multipliers, and 

do not actually capture the spillover effects.  

 

The existing literature has missed a crucial issue, namely, the strict definition of volatility 

spillovers, namely the “delayed effect of a returns shock in one asset on the subsequent 

volatility or covolatility in another asset” (see Chang et al. (2015)). The numerous published 

papers have not bothered to differentiate the conditional covariance matrix, ܳ௜௝,௧ with respect 

to the return shock, ε௞,௧ିଵ, so the effect of ε௞,௧ିଵ on volatility has not been tested. What the 

published papers are actually testing is the multiplier for the return shock in calculating 

volatility spillovers. In short, the published empirical results are not directly concerned with 

the return shock, and hence are also not directly concerned with testing volatility and 

covolatility spillovers. 

 

As mentioned in Section 3, it is possible to test partial covolatility spillover effects through 

testing the significance of the matrix A in the diagonal BEKK model, as the partial covolatility 
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spillover effects are only affected by the matrix A after differentiating the covariance matrix 

with respect to the return shocks.  

 

Following Chang, McAleer and Wang (2016), the empirical analysis uses the VAR(1) – 

multivariate diagonal BEKK model to test partial covolatility spillovers for the purpose of 

calculating optimal dynamic hedging ratios. Twelve variables in the bio-ethanol and 

agricultural industries are used, including the new ETFs and the financial indices that are 

tracked by ETFs. The empirical analysis of Chang, McAleer and Wang (2016) is separated by 

different type of assets, such as the volatility spillovers of the corn spot price on ethanol spot 

price. Therefore, we are interested in testing the spillover effects between different types of 

agricultural and energy commodities, with an emphasis on optimal dynamic hedging of 

alternative spot prices using futures prices.  

 

A 12 x 12 matrix that includes all the variables is estimated for the diagonal BEKK model, and 

the results are given in Table 6. The matrix A is a diagonal matrix which contains 12 diagonal 

terms, namely A(i,i), where i = 1, 2, …, 12. All the coefficients are statistical significant at the 

1% level. For example, A(1,1) (or ܽଵଵ in Section 3) is the weight or multiplier of the corn spot 

price return, A(2,2) is the weight or multiplier of the corn futures price return, and so on. The 

largest value of the weights is for ethanol futures, and the smallest is for ethanol ETF. 

Notwithstanding these estimates, they do not necessarily represent the magnitude of the 

volatility spillovers effects as they have not been multiplied by a return shock and by a weight 

of another agricultural or energy commodity. 

 

For the corn market, all the multipliers are in the range 0.21 to 0.25, while the multipliers of 

the other two markets vary considerably. However, examination of the multipliers of the 

financial indices and ETFs shows that in all three markets they are fairly similar as ETF is a 
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derivative that underlies the financial index, and hence replicates its performance. 

Consequently, the spot and futures prices might also be compared as futures prices are 

derivative of spot prices. For the corn and sugar markets, they are similar, but this does not 

hold for the ethanol market. The reason is probably because the data on the ethanol spot price 

is not as accurate as the corn and sugar spot prices, such as the lack of daily price movements, 

although they are daily prices. The correlation of ethanol prices and returns with futures prices 

are both lower than for the corresponding correlations of corn and sugar spot prices with their 

respective futures prices.   

 

[Insert Table 6 here] 

 

The mean return shocks are also estimated and reported in Table 6. Most of the mean estimated 

return shocks are positive, except for corn futures and ETF, and most of the ethanol industries. 

The larger return shock regardless of sign is corn ETF, while the smallest is the financial index 

of biofuel. 

 

With the significance of all estimated elements in the Matrix A, the partial covolatility spillover 

effects can be calculated by using the general formula, ܽ௜௜ ൈ ௝ܽ௝ ൈ ௝,௧ିଵߝ . The ܽ௜௜  of any 

assets times ௝ܽ௝  of a different asset, multiplied by the return shocks, means that any 

combination pairs of the twelve variables could be used to test partial covolatility spillover 

effects. If we are interested in a particular pair, for example, the spillover effect of the sugar 

index return on the corn index is 0.227946 ൈ 0.227925 ൈ 0.0079 = 0.00041132, and so on. 

The results of the calculated spillovers are not given, as there will be a total of 66 combinations 

(12 choose 2) and 132 partial covolatility spillovers. An alternative table, which is also a new 

way to interpret spillover effects, will be provided in the following discussion.  
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5.2 Comparison of the Patterns of Spillovers 

 

With the overall picture for every pairs of spillover effects between any two assets, a new 

question arises, as follows: Will the spillover effects be the same when using only a 2 x 2 weight 

matrix in the diagonal BEKK model, as compared with every possible combination? In short, 

will the spillovers between two assets remain the same in other alternative combinations, such 

as 3 x 3 or 4 x 4 combinations of the diagonal BEKK model?  

 

In order to check whether the covolatility spillovers of the same two assets, but in different 

combinations, will remain similar using casual empiricism, we estimated the extreme 

combinations, namely, the largest and the smallest matrices, 2 x 2 and 12 x 12, respectively. 

Consequently, for comparison, we calculated all the combinations pairs of the twelve variables. 

 

Moreover, the large differences in the sizes of these two weight matrices A are likely to cause 

the actual numbers of spillover effects to be different. In addition, spillover effects vary for 

each observation at t-1, it is more important to compare the general patterns of the spillovers 

rather than the actual numbers of mean partial covolatility spillovers. Therefore, the patterns 

of every combination pair are summarized, and the interactions of the spillover effects of asset 

i on asset j and of asset j on i, are shown in Table 7.  

 

[Insert Table 7 here] 

 

For purposes of comparison, we use the following notation to describe the patterns of spillover 

effects. “Diagonal” and “scalar” describe the similarity of the multipliers, regardless of the 

return shocks. The terms are not a comparison of the spillovers effects as spillovers vary for 

each observation of return shocks at t-1, so it is possible that the spillovers of i on j may 
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occasionally be larger or smaller. A comparison of the multiplier may be more reasonable than 

a comparison of the magnitude of the spillover effects. If the A(i,i) of two assets are similar, 

this will be referred to as a “scalar” effect. However, this should not be interpreted as having 

been estimated by the scalar BEKK, as it represents the elements of the weight matrix A 

estimated by the diagonal BEKK model. On the contrary, “diagonal” denotes that the elements 

of the weight matrix A are not similar, and the weights have also been estimated by the diagonal 

BEKK model.  

 

Another important pattern is the sign of the mean spillover effects. Although the sign is either 

positive or negative, there can be different combinations, such as one weight being positive and 

another negative, or both being either positive or negative. “Symmetry” and “asymmetry” are 

used to describe these possible combinations. If one sign is positive and another is negative, 

either i positive and j negative, or the reverse, it is referred to as “asymmetry”. On the other 

hand, “symmetry” indicates that the signs are either both negative or both positive for the 

spillover effects from i and j. The signs of the spillover effects are determined by the return 

shock in the previous period, so the spillover signs can vary considerably. A broad overall 

pattern between the assets can be shown by calculating the mean spillover effects.   

 

Table 7 shows the patterns of the estimated partial covolatility spillover effects by using the 

VAR(1) – diagonal BEKK(1,1) model using twelve variables. When there is a return shock of 

asset i in the first column, the spillovers on j can be compared with the reverse spillovers of j 

on i. Most of the partial covolatility spillover pairs are diagonal and symmetric, represented as 

{D,Sym} in Table 7, which means their multipliers are different and the mean covolatility 

spillover effects have the same signs.  

 

Only the spillovers between the corn and sugar indices, corn ETF and ethanol spot, sugar ETF 
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and ethanol index are scalar, which means the multipliers are quite similar for the other pairs. 

The rest of the blocks represent the covolatility spillovers of pairs with asymmetric signs, which 

mean the spillovers between the two assets have opposite signs. Therefore, on average, the two 

spillovers of either i or j on the other have different directional effects. Moreover, the 

asymmetry of signs indicate that these two assets might be considered as a hedging portfolio 

as their spillover effects are moving in different directions.  

 

Table 8 shows the patterns of the partial covolatility spillovers estimated using the 2 x 2 matrix, 

and are organized in the same way for purposes of comparison with the results of the 12 x 12 

matrix. It appears that most of the patterns are also diagonal and symmetric as in the previous 

table, and very few have similar multipliers, but for different assets. The multipliers in the sugar 

index and sugar ETF is worth mentioning as the ETF is a derivative which replicates the 

financial index. In fact, the actual multipliers of ETF for corn and biofuel are also relatively 

similar compared with the wide gap of the other pairs.  

 

Moreover, the blocks with asymmetry of signs is lesser and completely different from the 

previous table for 12 x 12, and all are concentrate on the ethanol spot with the other prices. 

This is because all the mean return shocks of ethanol spot with the other assets are the same as 

in the previous table, namely, negative, while most of the mean return shocks of the other assets 

are positive. Again, the situation might be caused by the data on ethanol spot prices, as noted 

previously. It is also possibly the reason why the partial covolatility spillovers of ethanol spot 

prices on the other two spot prices are not significant in the empirical results reported by Chang, 

McAleer and Wang (2016). 

 

[Insert Table 8 here] 
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A comparison of Tables 7 and 8, namely, the two versions of patterns estimated by different 

sizes of the weight matrix A, specifically 12 x 12 and 2 x 2, respectively, is given in Table 9. 

Half of the patterns are exactly the same, whereby most are diagonal in the multipliers and 

symmetric in the signs. The rest are same in the patterns of either multipliers or signs, and only 

a few are completely different. The differences might be due to adding too many variables, 

which may also be highly correlated, and the interactions between these variables might lower 

the precision of the estimates.  

 

Although there are some differences in the patterns of these two sets of results, both show that 

there are clear and definite volatility spillover effects for spot, futures, financial index and ETF 

in the energy and related agricultural markets. 

 

[Insert Table 9 here] 

 

6. Conclusion  

 

The primary purposes of the paper were to test for volatility spillovers of spot prices, futures 

prices, financial index and ETF between bio-ethanol and related agricultural commodities, 

namely, corn and sugar, using the multivariate diagonal BEKK model, and also to examine 

some novel interpretations of volatility spillover effects, as established in Chang et al. (2015). 

 

The paper not only considers the widely-used hedging instrument, namely, futures, but also 

takes an interesting new hedging instrument, ETF, into account. ETF is regarded as index 

futures when investors manage their portfolios, the hedging method can be calculated by using 

correlations or covariances to calculate an optimal dynamic hedging ratio. This is a very useful 

and interesting application for the estimation and testing of volatility spillovers.  
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In the empirical analysis, diagonal BEKK models with different sizes of the weighting matrix 

A are considered and estimated for comparing patterns of volatility spillovers. The paper 

provided a new way of analyzing and describing the patterns of volatility spillovers, which 

should be useful for the future empirical analysis of estimating and testing volatility spillover 

effects.  

 

These results suggest that volatility spillovers exist for all four kinds of financial assets in three 

different markets, though there are some differences in the quantitative results. For example, 

there is greater asymmetry of signs in the results of the 12 x 12 matrix as there are more negative 

mean return shocks. The differences might be caused by adding too many variables in the 

weighting matrix, while most of the results for fixed i and j in the 3 x 3 and 4 x 4 matrices are 

still broadly similar, as are most of the signs of the mean return shocks.  

 

Adding more variables in the diagonal BEKK model means that the number of iterations for 

convergence can increase sharply and reach the default option too easily. Therefore, it might 

be more appropriate to try a smaller weighting matrix A, and focus on more specific 

combinations, such as three or four assets in each market. 

 

For a further discussion of applying the results of volatility spillovers, the optimal dynamic 

hedging ratio, which can be presented as ߚ௜௝,௧ ൌ
ொ೔ೕ,೟
ொ௜௜,௧

 , ܳ௜௝,௧ is the conditional covariance of 

i and j, and ܳ௜௜,௧  is the condtional variance of i. As the covolitility spillovers effect can 

measure the changes in the conditional covariances, not only the mean hedge ratio can be 

calculated, but it is also possible to apply the spillovers for dynamic hedging. This type of 

application could possibly be a new and useful direction for further research.  
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Table 1 

Variable Definitions 

 

Variable 

 

Definition Data Source or 

Transactions Market

Description 

Corns Corn spot 

return 

U.S. Department of 

Agriculture (USDA) 

Corn Number 2 Yellow 

Cornf Corn futures 

return 

Chicago Board of 

Trade (CBOT) 

CBOT - Corn Continuous 

Corni Corn index 

return 

NYSE Arca Teucrium Corn Fund 

Benchmark Index 

Corne Corn ETF 

return 

NYSE Arca Teucrium Corn Fund 

Sugars Sugar spot 

return 

U.S. Department of 

Agriculture (USDA) 

Raw Sugar - International 

Sugar Agreement (ISA) 

Sugarf Sugar futures 

return 

Coffee, Sugar & 

Cocoa Exchange 

(CSCE) 

CSCE - Sugar # 11 

Sugari Sugar index 

return 

NYSE Arca Bloomberg Sugar Subindex 

Total Return 

Sugare Sugar ETF 

return 

NYSE Arca iPath Bloomberg Sugar 

Subindex Total Return ETN 

Ethanols Ethanol spot 

return 

Bloomberg Bloomberg Ethanol Prompt 

mth fob spot price/Chicago 

Ethanolf Ethanol futures 

return 

Chicago Board of 

Trade (CBOT) 

eCBOT - Ethanol 

Continuous 

Ethanoli Ethanol index 

return 

NYSE Arca BofA MLCX Biofuels Total 

Return Index 

Ethanole Ethanol ETF 

return 

NYSE Arca ELEMENTS Linked to the 

MLCX Biofuels Index Total 

Return IOPV 
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Table 2 

Descriptive Statistics 

 

 Mean SD Max Min Skewness Kurtosis Jarque-Bera 

Corns 0.008 1.78 9.305 -8.692 0.0095 5.8693 524.867 

Cornf 0.007 1.843 8.618 -24.529 -1.485 25.219 32033.9 

Corni 0.007 1.503 7.463 -6.121 0.205 5.264 337.464 

Corne -0.011 1.573 13.632 -9.126 0.465 9.595 2827.868 

Sugars -0.003 1.837 9.792 -13.016 -0.423 8.565 2019.985 

Sugarf -0.006 2.046 10.457 -12.366 -0.286 7.052 1067.439 

Sugari -0.011 1.898 8.558 -12.365 -0.294 6.604 849.854 

Sugare -0.016 1.979 7.718 -13.059 -0.241 6.141 643.888 

Ethanols -0.004 2.663 20.605 -22.525 -0.731 20.255 19117.570 

Ethanolf -0.001 2.152 9.403 -21.566 -2.601 25.201 33147.840 

Ethanoli 0.011 1.102 5.481 -6.236 -0.070 5.766 488.936 

Ethanole 0.008 1.113 6.311 -6.143 0.008 6.009 577.360 

Note: The Jarque-Bera Lagrange Multiplier test is asymptotically chi-squared, and is based on 

testing skewness and kurtosis against the normal distribution. 

  



37 
 

 

Table 3 

Unit Root Tests 

 

 no trend and intercept with intercept with trend and intercept

Variables ADF test PP test ADF test PP test ADF test PP test 

Corns -38.491* -38.606* -38.479* -38.595* -38.569* -38.645* 

Cornf -38.778* -38.779* -38.766* -38.767* -38.831* -38.837* 

Corni -39.308* -39.324* -39.296* -39.312* -39.412* -39.451* 

Corne -41.394* -41.438* -41.382* -41.427* -41.501* -41.582* 

Sugars -41.358* -41.351* -41.345* -41.338* -41.343* -41.337* 

Sugarf -39.734* -39.733* -39.721* -39.721* -39.716* -39.715* 

Sugari -39.738* -39.737* -39.726* -39.725* -39.785* -39.784* 

Sugare -40.655* -40.629* -40.643* -40.618* -40.703* -40.684* 

Ethanols -36.041* -36.144* -36.029* -36.133* -36.041* -36.135* 

Ethanolf -27.726* -33.123* -27.716* -33.111* -27.746* -33.112* 

Ethanoli -37.681* -37.712* -37.672* -37.704* -37.771* -37.782* 

Ethanole -37.875* -37.917* -37.865* -37.907* -37.962* -37.976* 

Note: * denotes the null hypothesis of a unit root is rejected at the 1% level.
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Table 4 

Price Correlations  

   

 Corns Cornf Corni Corne Sugars Sugarf Sugari Sugare Ethanols Ethanolf Ethanoli Ethanole

Corns 1            

Cornf 0.9839 1           

Corni 0.9488 0.9398 1          

Corne 0.9686 0.9742 0.9705 1         

Sugars 0.6667 0.7117 0.5805 0.7270 1        

Sugarf 0.6284 0.6777 0.5294 0.6853 0.9923 1       

Sugari 0.8033 0.8260 0.7535 0.8609 0.9492 0.9254 1      

Sugare 0.8006 0.8246 0.7477 0.8592 0.9522 0.9295 0.9996 1     

Ethanols 0.7435 0.7341 0.7958 0.8088 0.6594 0.6113 0.7610 0.7580 1    

Ethanolf 0.8627 0.8565 0.8668 0.8951 0.7316 0.6828 0.8271 0.8249 0.9420 1   

Ethanoli 0.8894 0.8874 0.9498 0.9364 0.6919 0.6400 0.8347 0.8284 0.8411 0.8886 1  

Ethanole 0.8982 0.8993 0.9474 0.9474 0.7243 0.6747 0.8594 0.8541 0.8463 0.8976 0.9983 1 
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Table 5 

Return Correlations  

 

 Corns Cornf Corni Corne Sugars Sugarf Sugari Sugare Ethanols Ethanolf Ethanoli Ethanole

Corns 1            

Cornf 0.8655 1           

Corni 0.8766 0.8855 1          

Corne 0.8223 0.8439 0.9559 1         

Sugars 0.1663 0.1651 0.1825 0.1842 1        

Sugarf 0.1992 0.2051 0.2360 0.2310 0.7109 1       

Sugari 0.2212 0.2398 0.2574 0.2574 0.7060 0.9308 1      

Sugare 0.2302 0.2508 0.2653 0.2716 0.6899 0.8987 0.9630 1     

Ethanols 0.2548 0.2270 0.2434 0.2297 0.0429 0.0612 0.0635 0.0595 1    

Ethanolf 0.5020 0.4926 0.5137 0.5077 0.1215 0.1320 0.1685 0.1685 0.5398 1   

Ethanoli 0.7286 0.7353 0.8092 0.7829 0.4085 0.5326 0.5805 0.5725 0.2190 0.4523 1  

Ethanole 0.7080 0.7119 0.7835 0.7337 0.4093 0.5143 0.5633 0.5621 0.2125 0.4318 0.9644 1 
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Table 6 

Diagonal BEKK and Mean Return Shocks for Stocks and Agricultural Commodities  

(12 x 12 Portfolio) 

 

 A(i,i) ߝప̂ഥ  

Corns 0.216967 0.008851 

Cornf 0.238958 -0.003618 

Corni 0.227925 0.007917 

Corne 0.258604 -0.048105 

Sugars 0.317321 0.017184 

Sugarf 0.290613 0.046445 

Sugari 0.227946 0.030713 

Sugare 0.219313 0.028441 

Ethanols 0.259134 -0.032301 

Ethanolf 0.339403 -0.03359 

Ethanoli 0.219893 -0.000463 

Ethanole 0.209927 0.013406 
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Table 7 

 Scalar and Diagonal BEKK and Signs of Return Shocks (12 x 12 Portfolio)  

 

Asset 

ప̂ഥߝ  

C
orn

s  

C
orn

f  

C
orn

i  

C
orn

e  

S
u

gar
s  

S
u

gar
f  

S
u

gar
i  

S
u

gar
e  

E
th

an
ols  

E
th

an
olf  

E
th

an
oli  

E
th

an
ole  

Corns             

Cornf {D,Asym}            

Corni {D,Sym} {D,Asym}           

Corne {D,Asym} {D,Sym} {D,Asym}          

Sugars {D,Sym} {D,Asym} {D,Sym} {D,Asym}         

Sugarf {D,Sym} {D,Asym} {D,Sym} {D,Asym} {D,Sym}        

Sugari {D,Sym} {D,Asym} {S,Sym} {D,Asym} {D,Sym} {D,Sym}       

Sugare {D,Sym} {D,Asym} {D,Sym} {D,Asym} {D,Sym} {D,Sym} {D,Sym}      

Ethanols {D,Asym} {D,Sym} {D,Asym} {S,Sym} {D,Asym} {D,Asym} {D,Asym} {D,Asym}     

Ethanolf {D,Asym} {D,Sym} {D,Asym} {D,Sym} {D,Asym} {D,Asym} {D,Asym} {D,Asym} {D,Sym}    

Ethanoli {D,Asym} {D,Sym} {D,Asym} {D,Sym} {D,Asym} {D,Asym} {D,Asym} {S,Asym} {D,Sym} {D,Sym}   

Ethanole {D,Sym} {D,Asym} {D,Sym} {D,Asym} {D,Sym} {D,Sym} {D,Sym} {D,Sym} {D,Asym} {D,Asym} {D,Asym}  

Note: On the left side of each entry, S (D) denotes scalar (diagonal) multipliers. On the right side of each entry, Sym (Asym) denotes symmetry 

(asymmetry) in sign.
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Table 8  

Scalar and Diagonal BEKK and Signs of Return Shocks (2 x 2 Pairs) 

 

  Asset 

ప̂ഥߝ     

C
orn

s  

C
orn

f  

C
orn

i  

C
orn

e  

S
u

gar
s  

S
u

gar
f  

S
u

gar
i  

S
u

gar
e  

E
th

an
ols  

E
th

an
olf  

E
th

an
oli  

E
th

an
ole  

Corns             

Cornf {D,Sym}            

Corni {S,Asym} {S,Sym}           

Corne {D,Sym}  {D,Sym}  {D,Sym}           

Sugars {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}          

Sugarf {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}         

Sugari {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}        

Sugare {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {S,Sym}      

Ethanols {D,Asym}  {D,Asym}  {D,Asym} {D,Asym} {D,Asym} {D,Asym} {D,Asym}  {D,Asym}     

Ethanolf {D,Sym}  {D,Sym}  {D,Sym} {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {S,Asym}    

Ethanoli {D,Sym}  {D,Sym}  {S,Sym} {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Asym} {D,Sym}   

Ethanole {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Sym}  {D,Asym} {D,Sym}  {D,Sym}   

Note: On the left side of each entry, S (D) denotes scalar (diagonal) multipliers. On the right side of each entry, Sym (Asym) denotes symmetry 

(asymmetry) in sign.
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Table 9 

Patterns of Spillovers for 2 x 2 Pairs and 12 x 12 Portfolio 

 

 Corns Cornf Corni Corne Sugars Sugarf Sugari Sugare Ethanols Ethanolf Ethanoli Ethanole

Corns             

Cornf {Y,N}            

Corni {N,Y} {N,N}           

Corne {Y,N} {Y,N} {Y,N}          

Sugars {Y,Y} {Y,N} {Y,Y} {Y,N}         

Sugarf {Y,Y} {Y,N} {Y,Y} {Y,N} {Y,Y}        

Sugari {Y,Y} {Y,N} {N,Y} {Y,N} {Y,Y} {N,Y}       

Sugare {Y,Y} {Y,N} {Y,Y} {Y,N} {Y,Y} {Y,Y} {Y,Y}      

Ethanols {Y,Y} {Y,N} {Y,Y} {N,N} {Y,N} {Y,N} {Y,N} {N,N}     

Ethanolf {Y,N} {Y,Y} {Y,N} {Y,Y} {Y,N} {Y,N} {N,N} {Y,N} {N,N}    

Ethanoli {Y,N} {Y,Y} {N,N} {Y,Y} {Y,Y} {Y,Y} {Y,Y} {Y,Y} {Y,N} {Y,Y}   

Ethanole {Y,Y} {Y,N} {Y,Y} {Y,N} {Y,Y} {N,Y} {Y,Y} {N,N} {Y,Y} {Y,N} {Y,N}  

Note: On the left side of each entry, Y (N) denotes there is (not) a similarity of patterns in multipliers. On the right side of each entry, entry, Y 

(N) denotes there is (not) a similarity of patterns in signs. 
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Figure 1 

Corn Production and Corn Used for Fuel Ethanol Production in USA 

 

 

Source: U.S. Department of Energy 
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Figure 2 

Biomass Energy Sources and Places of Production 

 

Source: Authors calculations based on T. Searchinger et al. (2013). Creating a Sustainable 

food Future: A menu of solutions to sustainably feed more than 9 million people by 2050. 

World Resources Report 2013-14: Interim Findings. Washington, D.C. World Resources 

Institute, World Bank, UNEP and UNDP.
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Figure 3 

US Biomass Energy Production 

 

 

Source: Statista collected from U.S. Energy Information Administration
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Figure 4 

Corn, Sugar, and Ethanol for Spot, Futures, Index, and ETF Returns 
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Figure 4 (cont.) 

Corn, Sugar, and Ethanol for Spot, Futures, Index, and ETF Returns 
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