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Abstract

A common assumption in the analysis of symmetric auctions is that the bidders’

value estimates exhibit positive informational externalities (PIE). This assumption

implies upward drifting price sequences at sequential auctions, which is challenged

by an empirical regularity, known as the “declining price anomaly,” that observed

price sequences at real sequential auctions tend to be downward-drifting. This pa-

per extends the existing analysis to a generalized interdependent values environment,

in which the bidders’values can exhibit both PIE and NIE (negative informational

externalities). The case of NIE can arise naturally when competing bidders are also

competitors in the same product market. If a bidder’s type is related to his or his

firm’s ensuing competitive advantage, then an increase of a bidder’s type increases his

own but may decrease other bidders’expected values.

We consider a general sequential auction mechanism that sells m identical ob-

jects through K (≤ m) consecutive rounds, each round involving possibly a different

number of objects for sale and a different payment rule. For risk neutral bidders

having unit demand and independent types, we obtain two major results. First, the

direct sequentially incentive compatible auction mechanisms, which implement the

performance of essentially all standard auctions, are feasible under both PIE and

NIE. Second, while the total expected revenue is invariant to sequencing and pay-

ment rules, the expected selling prices from different rounds of the auction are not the

same. In a PIE environment the expected price sequence tends to be upward drifting,

whereas in an NIE environment the expected price sequence is strongly downward

drifting: the expected lowest price in round k exceeds the expected highest price in

round k + 1. The declining price “anomaly”could, therefore, be evidence of bidders’

values featuring NIE or post-auction competition.

Key words. Sequential auction, generalized interdependent values, declining

price anomaly, informational externalities, revenue equivalence

JEL classification. D44, D82
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1 Introduction

One of the most interesting questions to ask about a sequential auction is: Does the

equilibrium price sequence of selling multiple, identical objects entails any predictable

trend? A good number of empirical studies have reported downward drifting patterns

of the realized prices.1 This empirical regularity, known as the “declining price anom-

aly,”poses a serious challenge to the standard auction theory which predicts, instead,

flat (martingale) or increasing (submartingale) price trends at sequential auctions

(e.g., Weber, 1983; Milgrom and Weber, 2000). While risk aversion provides a plau-

sible explanation for declining prices, this conclusion has been derived only for the

private values case (e.g., McAfee and Vincent, 1993; Mezzetti, 2011; Hu and Zou,

2015).2 Risk aversion does not necessarily imply declining prices under positive infor-

mational externalities (PIE) such that all bidders’values are nondecreasing functions

of every other bidder’s type or signal (e.g., Mezzetti, 2011).

In this paper, we present a sequential auction model with generalized interde-

pendent values. The model allows for negative informational externalities (NIE) such

that an increase of any bidder’s type increases his own but decreases other bidders’

values.3 Casual observations suggest that competing bidders at a sequential auction

are, typically, businesspersons or firms that are also competitors in the same prod-

uct/service market. Apart from systematic factors or news that affect bidders’values

1For example, see Ashenfelter (1989), Ashenfelter and Genesove (1992); Beggs and Graddy (1997);

McAfee and Vincent (1993); Milgrom and Weber (2000); Van den Berg, van Ours and Pradhan

(2001); among others.
2There is also a voluminous literature seeking various institutional details that may rationalize

the declining price phenomenon. E.g., Black and De Meza (1992); McAfee and Vincent (1993, 1997);

Bernhardt and Scoones (1994); Engelbrecht-Wiggans (1994); Gale and Hausch (1994); Menezes and

Monteiro (2003); Von der Fehr (1994); Jeitschko (1999); Gale and Stegeman (2001); Pitchick and

Schotter (1988); Beggs and Graddy (1997); Ginsburgh (1998); Eyster (2002); Kittsteiner et al.

(2004); and Rosato (2014), among others.
3The case with NIE has been considered in the more general asymmetric single-unit auction

models, e.g., Krishna (2003) and Hu, Matthews, and Zou (2015).
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in common, a bidder’s willingness-to-pay can also be related to the private informa-

tion about his (firm’s) perceived profitability upon winning an auctioned object. The

information could, therefore, indicate a certain (anticipated) advantage in the ensu-

ing product market competition.4 For instance, bidders at sequential flower auctions

are mostly wholesalers or exporters.5 When a bidder shows an exceptionally high

willingness-to-pay for, say, roses on a certain day, it could be because he has received

an unusually large buying order, or depleted his inventory sooner than usual, or ac-

quired favorable information about his future market share. In any of these situations,

it is not inconceivable that other bidders may interpret a competing bidder’s strength

as “bad news”and, as a result, reduce their own forecast profitability from buying

the same roses. Of course, we view NIE as complementary to PIE, as both situations

are possible.

Our model extends the existing literature also regarding the sequencing rules and

payment rules of sequential auctions. Given m (≥ 1) identical objects and n (> m)

bidders with unit demand, we allow the auctioneer to freely choose any sequencing

rule, defined by the number of rounds K (≤ m) and the number of objects `k to

be auctioned in a round k = 1, ..., K such that
∑K

k=1 `k = m.6 We also allow the

auctioneer to freely choose any payment rule for each round of the auction so long

as the rule is feasible. Thus, different rounds can involve different payment rules.

We take a general approach of modelling sequential auctions as a sequence of direct

mechanisms in which the strategy of every bidder is simply a sequence of reports of his

4See, e.g., Goeree (2003) for an analysis of auctions with aftermarket competitions, where bidders

attempt to signal at the auction via the winning bid. We do not consider strategic signalling in this

paper.
5See, e.g., van den Berg, van Ours, and Pradhan (2001) for an excellent empirical analysis of the

Dutch flower auctions.
6This kind of general sequencing rules have been considered in Mezzetti, Pekeč and Tsetlin (2008)

for the case of a two-round uniform sequential auction with affi liated types. Most of the sequential

auction models consider selling a single unit of the objects in a round, and many restrict attention

to the case with two rounds.
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type. A feasible sequential auction is one that has the property of sequential incentive

compatibility (SIC) by which all active bidders report their types truthfully in every

round. In order to obtain clear results, we focus on the case with risk neutral bidders

and independent types.7

Under very mild conditions that the auctioned objects are valuable to all bid-

ders, and that each bidder’s valuation function increases in his own type, we show in

Proposition 1 the existence and characterization of a general class of SIC auctions. A

rather profound insight from this proposition is that essentially all standard auction

policies can be implemented via a simple bidding rule that requires active bidders to

report (or bid) their expected payment in each round. The formula that character-

izes the SIC auctions allows us to provide an instructive proof of Corollary 1, which

states that the total expected revenue is the same under any sequencing and payment

rules. Corollaries 2-3 illustrate how the characterization of the SIC auctions implies

straightforwardly the characterizations of symmetric equilibria of the sequential all-

pay, discriminatory, and uniform auctions.

In Proposition 2, we investigate how information externalities affect the price

trends in an SIC sequential auction. We find that, while the expected price sequences

in the PIE environment tend to be upward drifting (extending, e.g., Milgrom and

Weber, 2000; Mezzetti, 2011), in the NIE environment the price sequences are neces-

sarily downward drifting. An interesting observation is that when multiple units of

objects are sold in each round, the predictions of expected price trends are asymmet-

ric. Under PIE, the expected highest price in round k is predictably lower than that

in round k+ 1; under NIE, the expected lowest price in round k exceeds the expected

highest price in round k+1. Thus, the downward price trends in the NIE environment

7The analysis presented in this paper can be further generalized to the case where bidders are

risk averse, in a setting similar to Hu and Zou (2015). The analysis of sequential auctions with

affi liated signals, however, remains a challenge (see Milgrom and Weber, 2000). While focusing on a

two-stage uniform auction, Mezzetti, Pekeč and Tsetlin (2008) obtain the equilibrium existence and

some important insights where bidders’signals are affi liated.
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are much more pronounced. These theoretical predictions suggest that the declining

prices at real sequential auctions may be indeed associated with the fact that bidders

at these auctions are competitors in the same product or service market.

The rest of the paper is organized as follows. In Section 2, we introduce the

general environment with a formal definition of what we mean by PIE and NIE in this

environment. We also describe the general sequential auction as a sequence of direct

mechanisms, and characterize the conditions of sequential incentive compatibility.

Section 3 presents the main results of the paper, including a numerical example in

the end. Section 5 concludes the paper with remarks on possible extensions of the

present study. Appendix A provides the proof of Proposition 1. Appendix B discusses

the revenue equivalence result in Corollary 1 in more detail, including an instructive

proof of the result that does not take the standard envelope theorem approach.

2 Environment

There are m (≥ 1) identical objects for sale and n (> m) competing bidders with

unit demand. The reserve prices are zero. The sales are conducted using a general

sequential auction involving a triplet of rules: a sequencing rule, an allocation rule,

and a payment rule. The sequencing rule is defined by the number of rounds K

(1 ≤ K ≤ m) and the number `k (≥ 1) of the objects to be simultaneously auctioned

in round k such that
∑K

k=1 `k = m. In each round k ∈ {1, ..., K}, every active bidder

i submits a sealed “bid” bki ∈ R+ and the allocation rule is such that the highest `k
bidders win. The winning bidders leave the auction upon paying according to the

payment rule, while losing bidders remain active until all m objects are sold.

The payment rule is defined, in general, by a function pk : Rn+ → R+ for k =

1, ..., K as follows. At the start of round k, let mk−1 =
∑k−1

j=1 `j denote the total

objects sold (m0 := 0), b̄mk−1 the vector of previous winning bids, and nk = n−mk−1

the number of active bidders. When bidder i bids bki , his payment in round k will be

pk(bki ; b
k
−i, b̄mk−1), where b

k
−i := (bk1, ...b

k
i−1, b

k
i+1, ..., b

k
nk

). The function pk is symmetric
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in its last n− 1 arguments, and satisfies pk(0; bk−i, b̄mk−1) ≡ 0. It is possible that both

winners and losers pay (or receive) in each round.

Notice that pk(bki ; b
k
−i, b̄mk−1) can be also written as p

k(bk(i); b
k
−(i), b̄mk−1), where

(bk(i), b
k
−(i)) are obtained by rearranging (bki , b

k
−i) in decreasing order so that b

k
(1) ≥

bk(2) ≥ ... ≥ bk(nk). If several bidders are tied in any round k with the same smallest

winning bid bk(mk)
, then all of them will buy the remaining objects for the same price

pk(bk(mk)
; bk−(mk)

, b̄mk−1). If the remaining number of objects falls short of the number of

the winning bids in any round, then the allocation to the tied bidders will be resolved

randomly, and the auction concludes.

The sequencing rule described above is completely general; as special cases, of

course, are the most studied cases of the single-round simultaneous auction (K = 1)

and the m-round sequential unit-sale auction (K = m). The payment rule is also very

general; apart from its flexibility for each round the functional form of pk can also

differ from round to round. The following are three special cases of pk:

Sequential all-pay auction. All active bidders pay their own bids regardless

of winning or losing in each round k:

pk(bki , b
k
−i, b̄mk−1) = bki . (1)

Sequential uniform auction. All winners in round k pay the “market-

clearing”price:8

pk(bki , b
k
−i, b̄mk−1) =

 bk(mk+1)
if bki ≥ bk(mk)

0 if bki < bk(mk)

(2)

Sequential discriminatory auction. All winners in round k pay their own

bids:

pk(bki , b
k
−i, b̄mk−1) =

 bki if bki ≥ bk(mk)

0 if bki < bk(mk)

. (3)

8The market-clearing price is defined by the highest losing bid in this example. It can be defined

more generally by any specific rule that determines a price between the highest losing bid and the

lowest winning bid.
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Turning to bidders’preferences, we assume that every bidder i ∈ N = {1, ..., n}

has a private type xi ∈ [0, 1]. The type vector (x1, ..., xn) is the realization of n

i.i.d. random variables (X1, ..., Xn) ∈ [0, 1]n. We let f and F denote the density

and cumulative distribution of Xi and assume that f is positive and continuous on

[0, 1]. Given (x1, ..., xn), the (expected) value of the auctioned object to buyer i is

vi(x1, ..., xn).We assume there is a continuously differentiable function v : [0, 1]n → R+
such that vi(x1, ..., xn) ≡ v(xi, x−i), and v is invariant to permutations of its last n−1

arguments (e.g., Milgrom and Weber, 1982, 2000; Eso and White, 2004; Mezzetti,

2011). The function v further satisfies the following condition.9

A1. For all (x1, ..., xn) ∈ [0, 1]n, 0 ≤ v(xi, x−i) <∞ and v1(xi, x−i) > 0.

This mild and commonly made assumption is fairly basic. It says that the object

is valuable to every bidder if he can acquire it free of charge, and that the bidder’s

value increases in his own type. We highlight two important cases that both satisfy

A1.10

Case 1 The partial derivatives vj(xi, x−i) ≥ 0 for all j = 2, ..., n.

Case 2 The partial derivatives vj(xi, x−i) ≤ 0 for all j = 2, ..., n.

While Case 1 is the common assumption of PIE (e.g., Milgrom and Weber,

1982, 2000; Mezzetti, 2011), Case 2 involves NIE, which has been rarely studied in

the symmetric auctions literature. One of the contributions of this paper is to show

that the basic assumption A1 is, in fact, suffi cient for the existence of pure strategy

equilibria for a wide class of sequential auctions. This fact allows a researcher to

analyze properties of sequential auction equilibria in environments accommodating

Case 1, Case 2, and the full range of intermediate cases.

9Subscripts of v denote partial derivatives and, as usual, these are defined as one-sided derivatives

on the boundary of [0, 1]n.
10By symmetry, the two complementary conditions in Cases 1 and 2 can also be written as v2 ≥ 0

and v2 ≤ 0, respectively.
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We assume bidders are risk neutral, so that if bidder i with type xi wins an

object and pays price p, and if the type vector of other bidders is x−i, the bidder

has a payoff equal to v(xi, x−i) − p. Of course, the actual payoff is uncertain to the

bidder as it depends on variables not observable by him at the time of the auction. A

bidder’s “status-quo”payoff, i.e., his utility level without participating in the auction,

is assumed to be zero by normalization.

By symmetry, we focus w.l.o.g. on the decision of bidder 1 with type x. Define

Ȳ = (Yn−1, ..., Y1), where Yk is the kth highest type from among the n − 1 bidders

other than bidder 1. Let yj denote a realization of Yj. By symmetry of v(xi, x−i) in

x−i, the valuation function of bidder 1 can also be written as v(x, Ȳ ). To further ease

notation, we denote Ȳmk
= (Ymk

, ..., Y1) and ȳmk
a realization of Ȳmk

.

3 Sequential incentive compatibility

By the revelation principle, we may perceive, as we do, a sequential auction as a se-

quence of direct mechanisms under which the bidders’bids are simply their “reported

types.”Conforming to certain real situations (e.g., a sequential Dutch auction), we as-

sume that the mechanism (or auctioneer) announces the winning bids in each round k,

and does not “record”the losing bidders’bids.11 We are interested in direct sequential

auctions that are sequentially incentive compatible (SIC), under which every active

bidder finds it optimal to report his type truthfully in any round of the auction– given

that other bidders report their types truthfully (with probability 1) in all rounds, and

that he plans to bid truthfully in subsequent rounds should he lose in the current

round (see Definition 1 below). Therefore, SIC implies that all active bidders are

informed of the vector of the previous winning types ȳmk−1 at the start of every round

k, and for bidder 1 with type x, he wins the kth round if and only if Ymk
≤ x ≤ Ymk−1

(Ym0 := 1).

11The analysis of sequential auctions with affi liated values is more involved for the case without

winning bids announcement. For example, see Mezzetti, Pekeč and Tsetlin (2008).
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A complete description of bidder 1’s updated information should include the

observation of 0-probability reports. Suppose a winner in a round k reported z ≥

ymk−1 . This may happen, e.g., that the bidder, “by mistake,” overstated his type

in round k, or had understated his type in some previous rounds. In this case, we

assume that all active bidders will assess this round-k winner’s type to be ymk−1 . A

complete description of bidder 1’s strategies should also include the case where he

himself has made a “mistake” by not bidding truthfully in some previous rounds.

Then, truthful bidding in round k could become suboptimal when the bidder’s type

x exceeds ymk−1 . In this case, knowing that the highest type from among other active

bidders is less than ymk−1 , the optimal strategy of bidder 1, as will be shown in the

proof of Proposition 1, is to report ymk−1 and to win the kth round with certainty.

To ease notation, define

uk(x, y, ȳmk−1) = E
[
v(x, Ȳ )|Ȳmk−1 = ȳmk−1 , Ymk

= y
]

(4)

as the kth round conditional expected value of bidder 1 given that he is still active,

that Ȳmk−1 = ȳmk−1 , and that his “closest”competitor in round k has a type Ymk
equal

to y. Given any payment rule {pk : k = 1, ..., K}, further define the active bidder 1’s

expected payment in round k by12

ϕk(z, ȳmk−1) = E
[
pk(z, Ȳ )|Ȳmk−1 = ȳmk−1

]
(5)

when he reports z. The bidder’s kth round conditional expected payoffwhen his type

is x and he reports z thus equals13

V k(z, x|ȳmk−1) : = E
[
uk(x, Ymk

, ȳmk−1)| {Ymk
≤ z}

]
− ϕk(z, ȳmk−1)

+E
[
V k+1(x ∧ Ymk

, x|Ȳmk
)| {Ymk

> z} , Ȳmk−1 = ȳmk−1

]
(6)

12In light of Proposition 1, we suppress the notational dependence of ϕk on function pk.
13The term E(·| {Ymk

≤ z}) denotes the unconditional expectation under the “event”{Ymk
≤ z}

so that E(·| {Ymk
≤ z}) = E(·|Ymk

≤ z}Pr({Ymk
≤ z}). Note that this expectation is invariant to

the tie-breaking rules since Ymk
= z occurs with probability of zero.
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where V K+1 := 0 and x ∧ y = min{x, y}. In (6), the first term on the right-hand side

is associated with the event of bidder 1 winning the kth round, the second term his

expected payment, and the last term the event of him losing the kth round. If the

bidder loses in any round k < K, his subsequent conditional expected payoff given

an updated ȳmk
is V k+1(x ∧ Ymk

, x|ȳmk
). The term x ∧ Ymk

captures the possibility

that the bidder reported a type lower than x, losing the kth round, and learned that

x > ymk
. In this case his optimal subsequent strategy is to report ymk

instead of x in

the (k + 1)st round, as is shown in the proof of Proposition 1.

Definition 1 A direct sequential auction with sequencing rule {`k, k = 1, ..., K},

payment rule {pk, k = 1, ..., K}, and allocation rule that the highest `k bidders win in

each round k = 1, ..., K is sequentially incentive compatible (SIC) iff

V k(x, x|ȳmk−1) ≥ V k(z, x|ȳmk−1)

∀ȳmk−1 ∈ [0, 1]mk−1, ∀z, x ∈ [0, 1], ∀k ∈ {1, ..., K} .

We say that an SIC sequential auction is feasible if V k(x, x|ȳmk−1) ≥ 0 for all x

and ȳmk−1 , k = 1, ..., K. Clearly, by A1 and pk(0; ·) ≡ 0, all SIC sequential auctions

are feasible.

An important aspect of our formulation of sequential incentive compatibility is

that bidders are “forward looking”in making their bidding decisions. A losing bidder

up to round k may have well suffered certain losses already, (e.g., when the payment

rule resembles an all-pay auction), or have made certain gains (e.g., when the payment

rule resembles a “Santa Clause”auction as described in Riley and Samuelson (1981)).

We assume that these “sunk costs” or “locked-in gains” do not affect the bidders’

current and future decisions.

4 Main Results

We are now ready to investigate the major issues regarding equilibrium existence, price

trends, and expected revenue. Let Fmk
(·|ȳmk−1) denote the cumulative distribution,
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and fmk
(·|ȳmk−1) the associated density function, of Ymk

conditional on Ȳmk−1 = ȳmk−1 .

Recall that mk−1 + `k = mk and nk = n−mk−1, where `k is the number of objects to

be sold in round k. Thus,

fmk
(y|ȳmk−1) =

(nk − 1)!

(nk − `k − 1)!(`k − 1)!

F (y)nk−`k−1(F (ymk−1)− F (y))`k−1f(y)

F (ymk−1)
nk−1

(7)

As a consequence of Xi’s being i.i.d., the distribution Fmk
(·|ȳmk−1) depends only on

ymk−1 so that we will write it as Fmk
(·|ymk−1).

Our first proposition establishes the existence and characterization of the general

class of feasible sequential auctions.

Proposition 1 Suppose A1 holds. Then, under any sequencing rule {`k : k =

1, ..., K} and allocation rule such that the highest `k bidders win in each round k,

there exist feasible direct sequential auctions. The payment rule {pk, k = 1, ..., K} of

all feasible sequential auctions imply the same expected payment function ϕk(·, ȳmk−1)

characterized by

ϕK(x, ȳmK−1) =

∫ x

0

uK(y, y, ȳmK−1)dFm(y|ymK−1), (8)

and for k = 1, ..., K − 1,14

ϕk(x, ȳmk−1) =

∫ x

0

E
[
ϕk+1(y, y, Ymk−1, ..., Ymk−1+1, ȳmk−1)

]
dFmk

(y|ymk−1) (9)

Moreover, all ϕk(x, ȳmk−1) are positive and increasing in x on (0, ymk−1).

Proof. See Appendix A.

The result of this proposition is remarkably general, as it requires only the basic

assumption A1. In the characterization of the final-round bidding strategy, equa-

tion (8) resembles that of a single-round simultaneous auction except that the active

bidders have now the updated information of the previous winning bidders’ types.

Indeed, it reduces to the characterization of incentive compatible direct mechanisms

14Note that for `k = 2, the vector (Ymk−1, ..., Ymk−1+1) = Ymk−1 = Ymk−1+1. And by convention,

for `k = 1, we interpret (Ymk−1, ..., Ymk−1+1) as nonexistent.
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for the simultaneous multi-unit auction when we set K = 1 (with ym0 = 1). For the

more general case, the equations in (9) show that in each round k, an active bidder

equates his expected payment with the expected payment by his closest competitor,

the one with type Ymk
, in the subsequent round assuming that the competitor would

be tied with another bidder with the same type Ymk
.

By (8) and (9), an explicit expression of the expected round-k payment can be

deduced by working backward from the last period. For k = 1, ..., K − 1, we have

ϕk(x, ȳmk−1)

=

∫ x

0

E
[
ϕk+1(y, y, Ymk−1, ..., Ymk−1+1, ȳmk−1)

]
dFmk

(y|ymk−1)

=

∫ x

0

E
[
ϕk+1(Ymk

, Ymk
, Ymk−1, ..., Ymk−1+1, ȳmk−1)|Ymk

= y
]
dFmk

(y|ymk−1)

...

=

∫ x

0

E
[
uK(Ym, Ym, YmK−1 , ..., Ymk−1+1, ȳmk−1)|Ymk

= y
]
dFmk

(y|ymk−1)

=

∫ x

0

E
[
v(Ym, Ȳ )|Ymk

= y, Ȳmk−1 = ȳmk−1

]
dFmk

(y|ymk−1) (10)

where the last equation is due to (4). The following corollary is a direct consequence

of Proposition 1.

Corollary 1 (revenue equivalence) Under A1, (i) given any sequencing rule and

any SIC payment rule, the expected revenue from round k is the same; and (ii) any

sequencing rule of a sequential auction implies the same total expected revenue ex-ante.

Proof. (i) This is an obvious consequence of (10), since all payment rules imply the

same expected payment from a given round.

(ii) This follows from ϕk(x, ȳmk−1) being increasing in x, which implies that prior

to the auction, all bidders have the same probability of winning an object under any

sequencing and payment rules of an SIC auction. Since the bidder having type zero

pays and receives nothing, by the revenue equivalence theorem every bidder has the

same expected payoff prior to the auction. Hence the seller’s total expected revenue
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must be invariant to sequencing and payment rules. We provide an instructive proof

in Appendix B.

The general characterization of the SIC auctions in Proposition 1 provides a

simple way to derive equilibria of the more specific auction policies. A rather profound

insight from Proposition 1 is that under risk neutrality, there is no loss of generality

to restrict attention to bidding rules that require bidders to submit bids equal to what

they expect to pay in each round of a sequential auction so long as they are still active.

The winner’s actual payment can be then determined according to the pre-specified

payment rules. The sequential all-pay auction as described in (1) is an immediate

corollary of this result.

Corollary 2 (sequential all-pay auction) Suppose A1 holds in the environment

described in Section 2, and the payment rules are “all pay”or “pay-your-bid”regard-

less of winning or losing in every round as in (1). Then, given any sequencing rule

{`k : k = 1, ..., K}, there exists a continuous and increasing pure strategy symmetric

equilibrium
{
bkAP : k = 1, ..., K

}
of the sequential all-pay auction. In each round k

given previous winners’type vector ȳmk−1, the equilibrium strategy of an active bidder

with type x is to bid

bkAP (x, ȳmk−1) =

∫ x

0

E
[
v(Ym, Ȳ )|Ymk

= y, Ȳmk−1 = ȳmk−1

]
dFmk

(y|ymk−1)

Proof. Simply define the bid function bkAP as ϕ
k defined in (8)-(9), or in (10), of

Proposition 1.

The result of this corollary is new. It is perhaps surprising that the equilibrium

existence for the sequential all-pay auction, in the present model with generalized

interdependent values and sequencing rules, requires only the basic assumption A1

that bidders like the items (e.g., a price, research grant, etc.), and that every bidder’s

value increases in his own type.

As for the sequential discriminatory and uniform auctions, we invoke an addi-

tional assumption to ensure monotonicity of the bid functions in the NIE environment

(Case 2).
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A2. E
[
v(Ym, Ȳ )|Yj = x, Yj−1 = yj−1, ..., Y1 = y1

]
is an increasing function of x, for

all j ≤ m and (yj−1, ..., y1).

This assumption holds naturally in the PIE environment of Case 1 when v

is nondecreasing in all its arguments and increasing in its first argument (see, e.g.,

Milgrom and Weber, 1982, Theorem 5). In the NIE environment of Case 2, A2

restricts the extent to which the NIE affects bidders’values. Roughly, A2 requires

that increasing a bidder’s own type has a dominant effect compared to increasing

any competitor’s type (in the sense of the stated condition). The following are some

simple examples in which A2 holds under NIE.

Examples. There is no loss of generality to assume, as we do here, that every

bidder’s type Xi is uniformly distributed on [0, 1] (see, e.g., Milgrom, 2004, pp. 111).

On the basis of this assumption, it can be verified that the following value functions

satisfy A1-A2 for α < 1/n for arbitrary m < n (tighter conditions can be computed

as well):

(i) v(x1, ..., xn) = x1 (1− α(x2 + ...+ xn)) (11)

(ii) v(x1, ..., xn) = 1 + x1 − α(x2 + ...+ xn) (12)

(iii) v(x1, ..., xn) = 1 + x1 − α(x2 × ...× xn) (13)

We are ready to present two more corollaries of Proposition 1.

Corollary 3 (sequential uniform auction) Suppose in the environment described

in Section 2, the payment rules are uniform in each round k as defined in (2). Then,

under A1-A2, given any sequencing rule {`k : k = 1, ..., K}, there exists a continuous

and increasing pure strategy symmetric equilibrium
{
bkU : k = 1, ..., K

}
of the sequen-

tial uniform auction such that

bkU(x, ȳmk−1) = E
[
v(Ym, Ȳ )|Ymk

= x, Ȳmk−1 = ȳmk−1

]
(14)

Proof. By the uniform payment rule defined in (2),

ϕk(x, ȳmk−1) =

∫ x

0

bkU(y, ȳmk−1)dFmk
(y|ymk−1) (15)
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Substituting (15) into (10), and differentiating w.r.t. x and cancelling terms, yields

(14). A2 implies that bkU(x, ȳmk−1) is an increasing function of x. Hence the conclusion.

Corollary 4 (sequential discriminatory auction) Suppose in the environment de-

scribed in Section 2, the payment rules are discriminatory in each round k as defined

in (3). Then, under A1-A2, given any sequencing rule {`k : k = 1, ..., K}, there exists

a continuous and increasing pure strategy symmetric equilibrium
{
bkD : k = 1, ..., K

}
of the sequential discriminatory auction such that

bkD(x, ȳmk−1)

=
1

Fmk
(x|ymk−1)

∫ x

0

E
[
v(Ym, Ȳ )|Ymk

= y, Ȳmk−1 = ȳmk−1

]
dFmk

(y|ymk−1) (16)

= E
[
v(Ym, Ȳ )|Ymk

≤ x ≤ ymk−1 , Ȳmk−1 = ȳmk−1

]
Proof. By (3), the expected payment of an active bidder 1 with type x equals

ϕk(x, ȳmk−1) = bkD(x, ȳmk−1)Fmk
(x|ymk−1) in round k. Thus, (10) implies (16). Since

A2 implies that the integrand in (16) increases in y, and since increasing x shifts the

conditional distribution Fmk
(y|ymk−1)/Fmk

(x|ymk−1) of y to the right, b
k
D(x, ȳmk−1) is

an increasing function of x. Hence the conclusion.

Our next proposition provides clear predictions about the expected price trends

over rounds of a sequential auction. We focus on general winners-pay sequential

auctions. Other auction formats that involve losing bidders paying or receiving money

can be investigated in terms of total proceeds, but these are of less empirical interest

given the revenue equivalence result in Corollary 1.

Proposition 2 Suppose A1 holds. Let any sequencing rule {`k : k = 1, ..., K} be

given and suppose that the payment rule is such that the losing bidders in every

round pay and receive nothing. Denote by E(p̃kmin|ȳmk−1) and E(p̃kmax|ȳmk−1) the lowest

and highest expected payment in round k, and by E(p̃k+1max|ȳmk−1) the highest expected

payment in round k + 1 (under the same condition Ȳmk−1 = ȳmk−1). Then, for all

k = 1, ..., K − 1,
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(i) E(p̃kmax|ȳmk−1) ≤ E(p̃k+1max|ȳmk−1) if Case 1 holds;

(ii) E(p̃kmin|ȳmk−1) ≥ E(p̃k+1max|ȳmk−1) if Case 2 holds.

Proof. By (9) and (10), bidder 1 with type x has an expected payment in round k

that equals

ϕk(x, ȳmk−1) = E
[
ϕk+1(Ymk

, Ymk
, Ymk−1, ..., Ymk−1+1, ȳmk−1)|

{
Ymk
≤ x < ymk−1

}]
(17)

= E
[
v(Ym, Ȳ )|Ȳmk−1 = ȳmk−1 ,

{
Ymk
≤ x < ymk−1

}]
(18)

It can be readily argued, e.g., by Theorem 5 in Milgrom and Weber (1982), that the

term in (18) is nondecreasing (nonincreasing) in every component of ȳmk−1 in Case 1

(Case 2); that is,

∂

∂yj
ϕk(x, ȳmk−1)

 ≥ 0 in Case 1

≤ 0 in Case 2
, ∀k ≤ K, ∀j = 1, ...,mk−1 (19)

Consider part (ii) first, assuming Case 2 holds. The “event” that bidder 1

wins the kth round corresponds to the event
{
Ymk

< x < Ymk−1

}
. (We ignore the

zero-probability events of x = Ymk
and x = Ymk−1 .) In round k + 1 and under

event
{
Ymk

< x < Ymk−1

}
, the bidder with type Ymk

will be the winner with the

highest expected payment in that round, which, conditional on the realization of

(Ymk−1, ..., x, ..., Ymk−1+1, ȳmk−1), equals

E(p̃k+1max|ȳmk−1 ,
{
Ymk

< x < Ymk−1

}
)

= E
[
ϕk+1(Ymk

, x, Ymk−1, ..., Ymk−1+1, ȳmk−1)|
{
Ymk

< x < Ymk−1

}]
(20)

≤ E
[
ϕk+1(Ymk

, Ymk
, Ymk−1, ..., Ymk−1+1, ȳmk−1)|

{
Ymk

< x < Ymk−1

}]
(21)

= ϕk(x, ȳmk−1) for all x such that Ymk
< x < Ymk−1 , (22)

where (20) uses the fact that ϕk(x, ·) is symmetric, (21) follows from (19), and (22)

is (18). Since ϕk(x, ȳmk−1) increases in x, in the event that bidder 1 has x = Ymk−1,

ϕk(x, ȳmk−1) = E(p̃kmin|ȳmk−1). Hence the conclusion of (ii).
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Now consider part (i) of Case 1. Using similar arguments the inequality in (21)

is reversed, so that

E(p̃k+1max|ȳmk−1 ,
{
Ymk

< x < Ymk−1

}
) ≥ ϕk(x, ȳmk−1)

for all x such that Ymk
< x < Ymk−1 . In the event that bidder 1 has x = Ymk−1+1, his

expected payment ϕk(x, ȳmk−1) = E(p̃kmax|ȳmk−1). Hence the conclusion of (i).

It is interesting to observe that this proposition provides asymmetric predictions

of expected price trends. For Case 1, the maximum expected payments can be com-

pared over rounds, whereas for Case 2 the prediction of downward sloping price trend

is much more pronounced: the minimum expected payment in round k exceeds the

maximum expected payment in round k + 1. The reason for this asymmetry is due

to equation (9), where the kth round expected payment by all types of active bidders

are related to the highest expected payment in the (k+ 1)st round. Of course, for the

special sequencing rule of K = m where each round sells exactly one unit, we have

the symmetric prediction that the expected price trend increases (decreases) under

PIE (NIE).

An implication of Proposition 2 is that when there are multiple sellers, unless

they agree to share the total proceeds from the sales, their expected payoffs can be

sensitive to the rounds in which their items are allotted to, as well as to the nature

of interdependence of bidders’values.

A Numerical Example. Consider the case of (11), where F (x) = x on [0, 1]

and v(x1, ..., xn) = x1 (1− α(x2 + ...+ xn)) with a < 1/8. Suppose n = 8, m = 4, and

the seller chooses to sell one unit in a round, so that K = 4. Suppose the seller chooses

the Dutch auction format (which corresponds to a first-price sealed-bid auction with

the winning bid announcement).

Let bkD denote the equilibrium bid function in round k. By (10), these are given

by
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b1D(x; a) = − 1

36
x (67ax− 18)

b2D(x, y1; a) = − 1

28
x (16ay1 + 51ax− 16)

b3D(x, y2, y1; a) = − 1

21
x (14ay1 + 14ay2 + 37ax− 14)

b4D(x, y3, y2, y1; a) = − 1

15
x (12ay1 + 12ay2 + 12ay3 + 25ax− 12)

It is easy to verify that for a < 1/8, all bkD(x, ·) are increasing functions of x.

Note also that bkD are nonincreasing functions of y1, y2, y3 if and only if a ≥ 0. From

the seller’s viewpoint, the expected revenue from different rounds are given by

E (b1D) E (b2D) E (b3D) E (b4D) Total

4
9
− 67

45
a 4

9
− 23

15
a 4

9
− 71

45
a 4

9
− 73

45
a 16

9
− 56

9
a

The table shows that the expected price trend increases for a < 0 (PIE) and

decreases for a > 0 (NIE). If the seller conducts the sale using a simultaneous dis-

criminatory auction, the total expected revenue can be computed as 16/9 − 56a/9,

confirming revenue equivalence.

5 Concluding Remarks

This paper extends the existing analysis of sequential auctions in three aspects. First,

bidders can exhibit generalized interdependent values including as polar cases posi-

tive informational externalities (PIE) and negative informational externalities (NIE).

Second, the sequencing rule to sell m identical objects is completely general: the

seller/auctioneer has the discretion to decide the number of rounds K (≤ m) and the

number of objects to be sold in each round k = 1, ..., K. And third, the payment rule

for each round k is arbitrary, which can differ from round to round so long as the

bidder with type zero pays and receives nothing.

We take the general approach of analyzing sequential auctions as a sequence

of direct mechanisms (i.e., the Myersonian approach; see Pavan, Segal, and Toikka,
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2014). We formulate the sequentially incentive compatible (SIC) constraints that

necessarily limit the seller’s choice of sequencing and payment rules, and show that

all SIC sequential auctions that allocate the objects to the highest bidders have the

same characterization regarding an active bidder’s expected payment in each round.

The formula characterizing the general SIC auctions lends itself to the derivation of

pure strategy equilibria of the more standard sequential auctions. We show how the

formula implies straightforwardly the equilibrium existence of sequential all-pay auc-

tions and, under appropriate additional conditions, equilibrium existence of sequential

discriminatory and uniform auctions. We use the general formula to show that the

expected payoff/revenue is invariant to different payment rules in a given round and,

less obviously, that the total expected payoff/revenue is invariant also to different

sequencing rules as well.

In answering our motivating question concerning the price trends at a sequential

auction, we obtain a surprisingly strong declining price result. We show that, in an

NIE environment, all SIC sequential auctions imply that the expected lowest price

in round k exceeds the expected highest price in round k + 1 given any sequencing

rule. Thus, the “declining price anomaly” is not an anomaly; rather, it is a natural

consequence of a bidding environment in which increasing a bidder’s type increases the

bidder’s own value but decreases other bidders’values. As to the environment with

PIE, we confirm the existing theoretical prediction that the price trends at sequential

auctions should be upward drifting in that the maximum expected price in round k

is lower than the maximum expected price in round k + 1. Since the PIE and NIE

environments can be created easily in a laboratory, the predictions of this paper are

highly amenable to experimental testing.

In order to obtain clear results, we have limited attention to situations where

bidders are risk neutral, having unit demand and independent types. The analysis

can be extended to situations where bidders are risk averse under conditions in Hu

and Zou (2015). Risk aversion will further strengthen the downward trend of prices at

sequential auctions under NIE, while blurring the price patterns under PIE (Mezzetti,
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2011). Extensions to multi-unit demand or affi liated types in the present setting with

generalized interdependent values remain important open problems.

Appendix A. Proof of Proposition 1

Proof. Rewrite the expected payoff in (6) as

V k(z, x|ȳmk−1) =

∫ z

0

uk(x, y, ȳmk−1)dFmk
(y|ȳmk−1)− ϕk(z, ȳmk−1)

+

∫ ymk−1

z

E
[
V k+1(x ∧ y, x|Ȳmk

)|Ymk
= y, Ȳmk−1 = ȳmk−1

]
dFmk

(y|ȳmk−1) (23)

where Fmk
(·|ȳmk−1) is given in (7). We analyze by backward induction bidder 1’s

optimal response, assuming that all others report truthfully their types in all rounds.

Round K. Suppose bidder 1 with type x is active in the final round K, with

updated information that ȲmK−1 = ȳmK−1 . By (23), reporting a type z leads to an

expected payoff

V K(z, x|ȳmK−1) =

∫ z

0

uK(x, y, ȳmK−1)dFm(y|ȳmK−1)− ϕK(z, ȳmK−1)

Differentiating w.r.t. z gives

V K
1 (z, x|ȳmK−1) = uK(x, z, ȳmK−1)fm(z|ȳmK−1)−

∂

∂z
ϕK(z, ȳmK−1) (24)

Since v1 > 0, uK(x, z, ȳmK−1) increases in x and so does V K
1 (z, x|ȳmK−1). There-

fore, V K(z, x|ȳmK−1) satisfies the single-crossing condition of Milgrom and Shannon

(1994) (see also Athey, 2001). This implies that V K
1 (x, x|ym−1) = 0 is both necessary

and suffi cient for SIC to hold in round K provided x ≤ ymk−1 . By (24), integrating

V K
1 (y, y|ȳmK−1) = 0 over y ∈ [0, x] gives

ϕK(x, ȳmK−1) =

∫ x

0

uK(y, y, ȳmK−1)dFm(y|ȳmK−1) (25)

The existence and uniqueness of ϕK(x, ȳmK−1) follows from the fact that the

right-hand side of (25) is a well defined function of (x, ȳmK−1). This function is positive

and increasing in x because uK(y, y, ȳmK−1) is positive by A1.
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As we do not assume that bidder 1 has followed the equilibrium strategies pre-

viously, there is also a possibility that x > ymK−1 . This case is only possible if in the

preceding round the bidder has deviated from the equilibrium strategy and bid as

though his type were lower than x, for else he would have won the previous round.

Given ym ≤ ymK−1 < x, it does not make sense to bid above ymK−1 ; it is optimal for

the bidder to bid z = ymK−1 < x and win the Kth round with probability 1. Thus, the

complete bidding strategy in the final round is to bid x ∧ ymK−1 (= min{x, ymK−1}).

This, of course, will not be the case when the bidder has followed the equilibrium

strategy from the start.

Round k. Now consider k < K. Our induction hypothesis is that given any

ȳmk
, the expected payment function ϕk+1(x, ȳmK

) is well defined, positive for x > 0,

increasing in x, and its associated payoff function

V k+1(x ∧ ymk
, x|ȳmk

) = max
z
V k+1(z, x|ȳmk

) (26)

for all the subsequent rounds k + 1 ≤ K. Consequently, if the bidder loses the kth

round and observes Ȳmk
= ȳmk

, sequential rationality calls on him to bid x ∧ ymk
in

round k + 1 and so on.

We focus on the case x ≤ ymk−1 . (The case with x > ymk−1 will result in the

bidder bidding ymk−1 and win the kth round with certainty.) Suppose the type-x

bidder 1 is active in the kth round and bid as though his type was z (≤ ymk−1). Then

his expected payoff is given by (23). Differentiating V k(z, x|ȳmk−1) w.r.t. z yields

V k
1 (z, x|ȳmk−1)

=
[
uk(x, z, ȳmk−1)− E

[
V k+1(x ∧ z, x|Ȳmk

)|Ymk
= z, Ȳmk−1 = ȳmk−1

]]
fmk

(z|ȳmk−1)

− ∂

∂z
ϕk(z, ȳmk−1) (27)

Notice first from (23) that if bidder 1 lost in round k and bid as though his type

were equal to the realized Ymk
= z in the (k+ 1)st round, he will win with probability
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1. In this case his expected payoff from the (k + 1)st round equals

E
[
V k+1(z, x|Ȳmk

)|Ymk
= z, Ȳmk−1 = ȳmk−1

]
=

∫ z

0

E
[
uk+1(x, y, Ȳmk

)|Ymk
= z
]
dFk+1(y|z)− E

[
ϕk+1(z, Ȳmk

, ȳmk−1)|Ymk
= z
]

(28)

By (4), the first term on the right-hand side of (28)∫ z

0

E
[
uk+1(x, y, Ȳmk

)|Ymk
= z
]
dFk+1(y|z) = uk(x, z, ȳmk−1) (29)

Therefore, (27)-(28) imply that the necessary condition for bidding truthfully, V k
1 (z, z|ȳmk−1) =

0, is
∂

∂z
ϕk(z, ȳmk−1) = E

[
ϕk+1(z, Ȳmk

, ȳmk−1)|Ymk
= z
]
fmk

(z|ȳmk−1) (30)

Now we argue that this condition is also suffi cient. If bidder 1 bids z ≥ x, then

E
[
V k+1(x ∧ z, x|Ȳmk

)|Ymk
= z, Ȳmk−1 = ȳmk−1

]
= E

[
V k+1(x, x|Ȳmk

)|Ymk
= z, Ȳmk−1 = ȳmk−1

]
≥ E

[
V k+1(z, x|Ȳmk

)|Ymk
= z, Ȳmk−1 = ȳmk−1

]
by (26)

But then by the assumption that other bidders bid truthfully, (28)-(30) imply

V k
1 (z, x|ȳmk−1)

≤ E
[
ϕk+1(z, Ȳmk

, ȳmk−1)|Ymk
= z
]
fmk

(z|ȳmk−1)−
∂

∂z
ϕk(z, ȳmk−1) = 0 for z > x

Hence, the bidder has no incentive to bid higher than x. Now for z ≤ x,

E
[
V k+1(x ∧ z, x|Ȳmk

)|Ymk
= z, Ȳmk−1 = ȳmk−1

]
= E

[
V k+1(z, x|Ȳmk

)|Ymk
= z, Ȳmk−1 = ȳmk−1

]
and thus by (30) V k

1 (z, x|ȳmk−1) = 0 for all z ≤ x. So, again, the bidder has no incentive

to deviate from bidding x. Consequently, integrating (30) yields the characterization

of SIC payment rules (9). Note that our induction hypotheses and (30) imply that

ϕk(x, ȳmk−1) is positive and increasing in x.

Finally, we argue that ϕk is unique under any SIC payment rules pk such that

pk(0, ·) ≡ 0. For k = K, given any ȳmK−1 the right-hand side of (25) determines
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a unique function ϕK(·, ȳmK−1). Thus, all sequential auctions must have the same

round-K expected revenue. By induction, we see easily from (9) that the values of all

ϕk(x, ȳmK−1) are uniquely determined. Consequently, given the number of rounds K

and the number of `k objects to be sold in round k = 1, ..., K, all SIC payment rules

pk such that pk(0, ·) ≡ 0 induce the same kth round expected payment.

Appendix B. Revenue Equivalence

In this appendix, we discuss in more detail of the revenue equivalence result of Corol-

lary 1, and provide an instructive proof of the second part of this corollary concerning

the irrelevance of the sequencing rules. In this corollary, we report two revenue equiv-

alence results. The first one is a straightforward extension of the payoff equivalence

theorem for single-round auctions, which holds that given any sequencing rule and

updated information, each active bidder’s expected payment in a given round of the

sequential auction is the same under any payment rule for this round.15 Consequently,

as long as the sequencing rule is fixed, all SIC payment rules imply the same expected

revenue from each round.16 The second prediction of Corollary 1 holds that the to-

tal expected revenue is the same under any sequencing rules. In particular, revenue

equivalence holds between any sequential auction and the simultaneous multi-unit

auction.17 In light of the fact that the expected payment/revenue can, predictably,

differ across different rounds at a sequential auction, it is of interest to understand

how and why sequencing tactics do not give the seller a chance to extract more rents

from the bidders. We provide a (novel) proof of Corollary 1 here that helps make

15E.g., Vickrey (1961), Myerson (1981), Riley and Samuelson (1981) for single-unit auctions, and

Krishna and Maenner (2001) for single-period incentive compatible mechanisms, among many others.
16This result extends, e.g., Krishna (2010, Chapter 15) for the case with independent private

values, a single-unit sale per round, and first-price vs. second-price payment rules.
17Similar conclusions have been shown for the private values cases (e.g., Weber, 1983; Maskin and

Riley, 1989; Bulow and Klemperer, 1994). The fact that the sequencing rules do not matter in these

cases can also be seen as a consequence of the martingale property of the price sequences.
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out the logic behind the result: all sequencing and payment rules must satisfy the

SIC constraints, under which every bidder effectively faces the same probability of

winning an object prior to the auction. Consequently, since the lowest-type bidder

pays and receives nothing, the total expected revenue must be invariant to sequencing

and payment rules by the revenue equivalence theorem.18

Proof of Corollary 1. We focus on part (ii), since part (i) is obvious. In this alter-

native proof, we compare explicitly the expected revenues from two auction policies,

one with K = 1 so that it is a simultaneous auction of all m objects, the other with

an arbitrary sequencing rule K > 1 selling `k objects in round k = 1, ..., K. Let Φ1(x)

and ΦK(x) denote the total pre-auction expected payment, respectively, at these auc-

tions by bidder 1 with type x. We prove a stronger result of payoff equivalence that

Φ1(x) ≡ ΦK(x), which implies the irrelevance of sequencing rules to the seller’s total

expected revenue.

Under simultaneous sales, the condition (10) for K = 1 reduces to:

Φ1(x) = E
[
v(Ym, Ȳ )| {Ym < x ≤ 1}

]
(31)

Under sequential sales, (10) implies

ϕk(x, ȳmk−1) = E
[
v(Ym, Ȳ )|Ȳmk−1 = ȳmk−1 ,

{
Ymk

< x ≤ ymk−1

}]
(32)

At the start of the auction, for bidder 1 with type x, his round-k expected payment

is a random variable ϕ̃k(x). It is a function of Ȳmk−1 such that

ϕ̃k(x) =

 ϕk(x, Ȳmk−1) if x ≤ Ymk−1

0 if x > Ymk−1

Thus, prior to the auction, a bidder with type x has an expected payment in the kth

18Mezzetti (2011, Lemma 1) uses this logic to establish payoff equivalence in sequential auctions

under interdependent values (the case of PIE), where bidders are averse to price risks. Our result

extends readily to Mezzetti’s case with generalized interdependent values.
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round equal to

E
[
ϕ̃k(x)

]
= E

[
ϕk(x, Ȳmk−1)|

{
x ≤ Ymk−1

}]
= E

[
E
[
v(Ym, Ȳ )|Ȳmk−1 = ȳmk−1 ,

{
Ymk

< x ≤ ymk−1

}]
|
{
x ≤ Ymk−1

}]
by (32)

= E
[
v(Ym, Ȳ )|

{
Ymk

< x ≤ Ymk−1

}]
The sum of the expected payments in all rounds gives the bidder’s total pre-auction

expected payment:

ΦK(x) =
K∑
k=1

E
[
v(Ym, Ȳ )|

{
Ymk

< x ≤ Ymk−1

}]
(33)

Since the event {Ym < x ≤ 1} can be partitioned into K sub-events:

{Ym < x ≤ 1} =
K⋃
k=1

{
Ymk

< x ≤ Ymk−1

}
(Ym0 = 1, YmK

= Ym)

we derive from (31) and (33) that

Φ1(x) = E
[
v(Ym, Ȳ )| {Ym < x ≤ 1}

]
=

K∑
k=1

E
[
v(Ym, Ȳ )|

{
Ymk

< x ≤ Ymk−1

}]
= ΦK(x)

The seller’s total expected revenue is therefore the same from either auction.
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