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Abstract 
 

The recent and rapidly growing interest in biofuel as a green energy source has raised 

concerns about its impact on the prices, returns and volatility of related agricultural 

commodities. Analyzing the spillover effects on agricultural commodities and biofuel 

helps commodity suppliers hedge their portfolios, and manage the risk and co-risk of 

their biofuel and agricultural commodities. There have been many papers concerned 

with analyzing crude oil and agricultural commodities separately. The purpose of this 

paper is to examine the volatility spillovers for spot and futures returns on bio-ethanol 

and related agricultural commodities, specifically corn and sugarcane. The diagonal 

BEKK model is used as it is the only multivariate conditional volatility model with 

well-established regularity conditions and known asymptotic properties. The daily data 

used are from 31 October 2005 to 14 January 2015. The empirical results show that, in 

2 of 6 cases for the spot market, there were significant negative co-volatility spillover 

effects: specifically, corn on subsequent sugarcane co-volatility with corn, and 

sugarcane on subsequent corn co-volatility with sugarcane. In the other 4 cases, there 

are no significant co-volatility spillover effects. There are significant positive 

co-volatility spillover effects in all 6 cases, namely between corn and sugarcane, corn 

and ethanol, and sugarcane and ethanol, and vice-versa, for each of the three pairs of 

commodities. It is clear that the futures prices of bio-ethanol and the two agricultural 

commodities, corn and sugarcane, have stronger co-volatility spillovers than their spot 

price counterparts. These empirical results suggest that the bio-ethanol and agricultural 

commodities should be considered as viable futures products in financial portfolios for 

risk management. 

 

Keywords: Biofuel, spot prices, futures prices, returns, volatility, risk, co-risk, 

bio-ethanol, corn, sugarcane, diagonal BEKK model, co-volatility spillover effects, 

hedging, risk management. 

 

JEL: C32, C58, G13, G15, Q14, Q42. 
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1. Introduction 
 

1.1 Discussion 
 

Following the Industrial Revolution, as industries rapidly developed all over the 

world, energy resources began to be used in increasingly large amounts, and oil stocks 

gradually declined. As the usage and exploitation of the world’s oil accelerated, the U.S. 

Energy Information Administration (EIA) (2014) (“Biofuels Production Drives Growth 

in Overall Biomass Energy Use over Past Decade,” Washington, DC) stated that the 

supply of oil was insufficient to meet demand, and because of speculation and the need 

to tap into oil reserves, the price of oil became increasingly unstable. 

During the First World War, due to the shortage of oil, motor vehicles began to use 

a mixture of ethanol and gasoline as fuel. As the world subsequently experienced a 

succession of oil crises, there were dramatic fluctuations in oil prices. For example, in 

1973 due to the war in the Middle East, the Organization of the Petroleum Exporting 

Countries (OPEC) imposed an embargo on exports of oil which led to the First Oil 

Crisis, during which time the price of crude oil rose from less than US$3 per barrel to 

nearly US$12. In addition, following the outbreak of the Iran-Iraq war in 1979, there 

was a significant decline in the amount of oil produced, which resulted in the Second 

Oil Crisis, during which oil prices rose from US$15 a barrel to nearly US$39.  

Furthermore, excessive use of fossil energy also contributed to global warming and 

greenhouse gas emissions, with the result that a meeting of the United Nations 

Framework Convention on Climate Change was convened in Kyoto, Japan in December 

1997, at which member countries unanimously agreed to draw up the “Kyoto Protocol” 
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(United Nations Framework Convention on Climate Change (2015)  

(http://unfccc.int/kyoto_protocol/items/2830.php). Each country was invited to sign the 

Protocol between 16 March 1998 and 15 March 1999 in order that, through the 

implementation of this Agreement, each country’s emissions of greenhouse gases would 

be reduced. Many countries began to implement policies in response, with the use of 

biomass energy being an important development.  

During the first commitment period, 37 industrialized countries and the European 

Community committed to reduce GHG emissions to an average of five percent against 

1990 levels. The second period, as the report from United Nations Framework 

Convention on Climate Change (UNFCCC) in 2015, the Paris Agreement committed to 

reduce GHG emissions by at least 18 percent below 1990 levels in the eight-year period 

from 2013 to 2020.  

According to EIA data, between 2002 and 2013, biomass energy production grew 

by more than 60% in the USA, with the main source of this growth being the production 

of ethanol. Some 60% of the biomass energy crops grown were able to be converted 

from the original raw materials into biomass fuels. Total energy production in the USA 

shows that, from 2000 to 2015, there were increases in natural gas, crude oil, 

renewables, and natural gas plant liquids, decreases in coal, and little change in nuclear 

(upper figure in Figure 1). Currently most of this biomass energy is blended with 

gasoline or diesel and used as fuel in motor vehicles, with substantial increases in inputs 

to ethanol from 2002 to 2013 (lower figure in Figure 1). 
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[Insert Figure 1 here] 

 

This paper broadly divides biomass energy according to how it is used after 

production into two categories, namely bio-ethanol and bio-diesel. Bio-ethanol can be 

blended with gasoline to be used as fuel, and its main sources are corn, cane sugar and 

sugar beet. Switchgrass is an expanding source of green fuel as an alternative to 

gasoline, but its financial characteristics have yet to be analysed empirically, primarily 

through lack of financial data. 

Co-products are supposed to be credited with the area of cropland required to 

produce the amount of feed they substitute. If co-products are taken into account, the net 

use of feed stocks declines. By adding co-products substituted for grains and oilseeds, the 

land required for cultivation of feed stocks declines from about 2% to 1.5% net land 

requirement of the global crop area. Moreover, it is important to include the co-products 

in GHG assessment, because of their potential impact on overall emissions (for further 

details, see [1] Popp et al. (2014), [2] Popp et al. (2016)). 

Bio-diesel can be blended with diesel fuel, and its main sources are soybeans, palm 

oil and rapeseed. The USA mainly produces corn and soybeans, while Brazil mainly 

produces sugar cane, corn and soybeans. The rapeseed used in the manufacture of 

bio-diesel is mostly grown in Europe, while South-East Asia mainly produces palm oil. 

From the countries in which these crops are produced, we can see the countries in which 

the major bio-fuels are manufactured. The USA and Brazil mainly manufacture 

bio-ethanol, while Europe and South-East Asia concentrate on bio-diesel.  
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In addition to the agricultural products used in the past to manufacture bio-fuels, in 

recent years many scholars have begun to study the use of algae as a biomass energy 

raw material. Different kinds of algae can be used for different purposes. The 

polysaccharides found in large seaweeds, such as asparagus, ulva and sargassum, can be 

used to refine ethanol, and micro-algae, such as green algae and diatoms, which are 

higher in fats than other energy crops, can also be used as raw materials for bio-diesel 

(see Figure 2). 

 

[Insert Figure 2 here] 

 

Corn production plays a major role in the economy of the USA, which is one of the 

world’s corn leaders with 96,000,000 acres (39,000,000 ha) of land reserved for corn 

production. Corn growth is dominated by west-north central Iowa and east-central 

Illinois. The USA is ranked first in the world in corn production, and approximately 

13% of its annual yield is exported (http://www.grains.org/buyingselling/corn). The 

total production of corn in the USA for 2013-14 is reported to be 13.016 billion bushels, 

of which the major use is for manufacture of ethanol and its co-product (Distillers’ 

Dried Grains with Solubles), accounting for 37% (27% + 10%), or 4,845 million 

bushels (3,552 + 1,293) (“Production and Use”, Iowa Corn organization, retrieved 6 

March 2014). 

On the basis of the sourced evidence above, although the USA is the major 

producer of corn worldwide, about 50% of the corn produced is used as feed, with less 

http://www.grains.org/buyingselling/corn


7 

than 10% being used as food for human consumption. For this reason, rising corn prices 

have caused the cost of feeding livestock to increase, with the result that budgets for the 

costs of technology have been impacted (the Renewable Fuels Association (RFA) (2014) 

(“Ethanol Facts: Agriculture,” Washington, DC), the ethanol industry’s lobby group, 

claims that ethanol production increases the price of corn by increasing demand). 

 

 In addition, impacted by the increased production of corn alcohol, many regions 

have begun to plant bean crops used as biofuels, hence the yield and price volatility of 

corn have caused the prices of other crops to become increasingly unstable ([3] Wisner, 

2008; [4] Texas Comptroller of Public Accounts (2008)).  

Almost all US production of ethanol uses corn as a feedstock. Even with the 

decline in US ethanol production, demand for corn to produce ethanol continues to have 

a strong presence in the sector, and is expected to account for over one-third of total US 

corn use throughout 2015-2025. By 2025, 22% of global sugarcane and 10-11% of 

global coarse grains production is expected to be used to produce ethanol (see 

OECD/FAO (2016): OECD-FAO Agricultural Outlook 2016-2025, OECD Publishing, 

Paris,  http://dx.doi.org/10.1787/agr_outlook-2016-en).  

Feedstock use is related to animal feed produced from the ethanol industry, as well 

as affecting the net feedstock use for bioethanol production. One-third of each bushel of 

grain that enters the ethanol process is enhanced and is returned to the animal feed market, 

most often in the form of distillers grains, corn gluten feed, and corn gluten meal. Ethanol 

producers make both fuel and feed. Only the starch in the grain feedstock is converted 

http://dx.doi.org/10.1787/agr_outlook-2016-en
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to ethanol, while 100% of protein, fat, and fiber remain available to the feed market in 

the form of distillers grains or other co-products. By economically displacing traditional 

feed ingredients, ethanol co-products effectively reduce the livestock and poultry 

industry’s demand for maize and protein meal.  

Growth in biofuel production has been accompanied by increased output of animal 

feed co-products from common biofuel processes The output of feed co-products is 

relatively high in the USA and the EU due to the large share of grains used in ethanol 

production with high feed yields, but is low in Brazil where ethanol production is 

dominated by sugarcane, which generates no feed co-products. The return of 

co-products to the feed market also has agricultural land use implications. At least 

one-third of every hectare “dedicated” to ethanol production should actually be 

characterized as producing feed, not fuel. The ethanol industry in the USA and EU 

produces an estimated 43 million metric tonnes of feed, including distillers’ grains 

(90%), and gluten feed and gluten meal.  

Furthermore, using grain for ethanol has absolutely no impact on global protein 

supplies. In the EU, the required feedstock for bioethanol production is estimated at 10 

million metric tonnes of cereals and 11 million metric tonnes of sugar beets, accounting 

for about 3% of total EU cereal production and 9% of total sugar beet production. In 

2014, around 3.3 million tonnes of highly valuable animal feed (DDG, wheat gluten and 

yeast concentrates) was produced in the EU, which displaced nearly 10% of soybean 

and soybean meal imports by volume. Reducing imports of animal feed improves 

environmental footprint in the EU, and helps reduce land conversion and GHG 
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emissions resulting from agricultural land use outside of Europe. For further details, see 

[5] PURE (2015), [6] Wisner (2015), and [7] RFS (2016). 

According to the most recent research report prepared by the Renewable Fuels 

Association (RFA) in 2014, the increased prices of corn have compensated farm 

production costs, which has resulted in the federal government reducing its related 

subsidies. However, the report also points out that the corn used to produce ethanol and 

the sweet corn needed to supply food for human consumption are different, so that the 

production of bio-ethanol will not crowd out the quantity of food produced, and will not 

conflict with food security. Regardless of whether traditional energy crops constitute a 

threat to either food or land, with the development of biomass energy, in the future more 

diversified production methods are bound to develop, and new crops, some of which 

have been mentioned above, will be developed to produce bio-fuels. 

Economic models show that bio-fuel use can result in higher crop prices, though 

the range of estimates in the literature is wide. Projections for the effect of bio-fuels on 

corn prices in 2015 range from 5% to 53% increases ([8] Zhang et al., 2013). The 

possible impact of developed countries’ bio-fuels policies on global food prices became 

a significant concern in 2007 when global grain prices reached historic heights. Some 

experts (for example, [9] De Gorter et al. (2013a), [10] De Gorter et al. (2013b)) 

associated the unprecedented price spikes in food grain and oilseed with these countries’ 

bio-fuels policies. Most experts now agree that these policies are unlikely to have been 

the main culprit, although they may have been a factor emphasizing that bio-fuel policy 

is only responsible for part of the price increases in food grain commodities that is due 
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to bio-fuels ([11] Durham et al., 2012).  

Figure 3 shows that from 1980 to 2012, the trends in the proportion of corn used to 

produce bio-ethanol and corn prices, as the quantity of ethanol produced has increased 

steadily from 1996 to 2012, corn prices have also rapidly increased. US corn prices 

increased rapidly from 2005 to 2008, fell from 2008 to 2010, and then increased again 

until 2012, and fell through to 2015 (see Figure 4). 

Figure 4 shows that from 1991 to 2012 the prices of ethanol-related agricultural 

products, such as corn and sugar cane have, for the most part, remained highly 

correlated. Corn prices have fallen steadily since 2012 through to 2015, while sugar 

cane prices fell from 2011 to 2013, and increased slightly in 2014. Recent stock market 

data show that bio-ethanol futures have continued to rise for much of 2016 through to 

December, though corn and sugar cane futures prices have fluctuated considerably, first 

rising for much of 2016, then falling in December. 

 

[Insert Figures 3-4 here] 

 

In order to manage the environment, at a sustainable level, large numbers of 

countries around the world are actively promoting the use of biomass energy, and the 

development of biomass energy is becoming increasingly popular. The primary crops 

used to produce biomass energy crops are corn and sugarcane, which are mostly used in 

the production of ethanol, while the main crops used in the production of diesel are 

beans and rapeseed. In both the spot and futures markets, the price volatility of a target 
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crop used in the production of any kind of biomass energy is likely to increase the 

volatility in the prices of products involving other crops.  

Crop producers may, by means of the price transmission of biomass energy and 

agricultural crops, as well as the direction in which the returns spillover effects are 

transmitted, improve the risk management of their portfolios. At the same time, through 

the risk spillover effects between different agricultural products and biofuels, that is, 

through the interactions in terms of the fluctuations in risk between different target 

crops, the volatility and risk of future losses can be reduced.  

The concept of risk was proposed as early as 1895 by the American scholar John 

Haynes (1895) (“Risk as an Economic Factor,” Quarterly Journal of Economics, 9(4), 

409-449), who classified and analyzed different types of risk. Spillover risk, also called 

transmission risk, refers to a situation that occurs in the short term. When a commodity 

experiences shocks, resulting in the fluctuations in the combined returns on products 

changing in either the same or opposite direction, investors can use the positive and 

negative relationships in the observed risk spillover effects to determine the direction of 

the impact of the returns between the different commodities. Thus, they can examine the 

increases or decreases in the overall risk of their portfolio of commodities. It can then 

be decided whether the different products can serve as assets within the investment 

portfolio in order to reduce the portfolio risk. For this reason, producers and managers 

of agricultural crops need to understand the price volatility of renewable energy crop 

products and the risk spillover effects of biomass energy, and thereby pursue an 

effective risk management strategy. 
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Numerous papers in financial econometrics have proposed univariate conditional 

risk volatility models, such as the ARCH model of [12] Engle (1982), and GARCH 

model of [13] Bollerslev (1986), from which related conditional heteroskedastic models 

that capture the volatility of asset returns have been subsequently derived, such as the 

threshold TGARCH (or GJR) and EGARCH models ([14] Glosten et al, 1993; [15] 

McAleer et al, 2008; [16] McAleer, 2014; [17] McAleer and Hafner, 2014; [18] 

Martinet and McAleer, 2015; [19] Nelson, 1990; [20] Nelson, 1991; [21] Tsay, 1987). 

Using univariate conditional volatility models, [22] Lence and Hayes (2002) 

examined crude oil, bio-fuel and energy policy, [23] Jin and Frechette (2004) used long 

memory models, and [24] Egelkraut et al. (2007) examined spillovers between spot and 

derivatives returns (although this can be problematic using univariate models as 

estimation is generally not efficient). There seems to have been little or no analysis of 

asymmetry or leverage in differentiating the effects of positive and negative shocks of 

equal magnitude on subsequent volatility. 

However, individually measuring the risk for futures products in the market cannot 

clarify the interdependence between products and their related strengths in current 

international markets. Therefore, financial econometricians have developed different 

multivariate risk volatility models, such as the BEKK ([25] Engle and Kroner, 1995), 

DCC ([26] Engle, 2002), VARMA-GARCH ([27] Ling and McAleer, 2003), and 

VARMA-AGARCH ([28] McAleer et al. (2009) models, in which they discuss the risks 

transmitted between different assets, also referred to as the risk spillover effects.  

In recent years, econometricians have gone further to discuss the lack of different 
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statistical properties in multivariate risk volatility models, in the hope that they can 

more accurately capture the risk transmission effects among assets ([29] Bollerslev, 

1990; [30] Bollerslev et al., 1988; [26] Engle, 2002; [31] Hafner and McAleer, 2014; 

[32] Jeantheau, 1998; [27] Ling and McAleer, 2003; [28] McAleer et al., 2009; [33] Tse 

and Tsui, 2002). Risk transmission is crucial is selecting suitable hedging instruments, 

in which negative covariances and correlations among financial returns are essential for 

insuring large losses in one financial asset are mitigated by positive returns in the 

hedging instrument. 

Volatility spillovers using multivariate models have been considered by [34] Cesar 

and Marco (2012) and [35] Sendhil et al. (2013), while the BEKK model was used in 

[36] Trujillo-Barrera et al. (2012), the DCC model was estimated in [37] Cabrera and 

Schulz (2013), and the CCC, VARMA-GARCH, DCC and BEKK models were 

analyzed for crude oil spot and futures returns in [38] Chang et al. (2011). 

Most previous studies on biomass energy have concentrated on researching the 

markets for bio-diesel crops, or on discussing the spillover effects among the food crop 

markets. Relatively few studies have focused on discussing bio-ethanol and the risk 

transmitted among related crops. In discussing the development of biomass energy, 

bio-ethanol and bio-diesel both have very important roles to play.  

This paper focuses on bio-ethanol and the relevant agricultural products used in the 

production of bio-ethanol, and will analyze the risk spillover effects for the spot and 

futures returns on bio-ethanol, corn and sugar cane, so that the results might serve as a 

useful reference for policymakers, market investors and crop producers in the optimal 
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management of risk. 

The remainder of the paper is as follows. The literature on price transmission and 

volatility risk spillovers is reviewed in Section 2. In Section 3, we introduce the model 

specifications. A description of the sample and variables follows in Section 4, followed 

by the empirical results in Section 5. Some concluding remarks are given in Section 6. 

 

1.2 Literature on Price Transmission and Risk Spillovers 

 

Past studies on the price transmission of agricultural crops have by and large, in 

accordance with the efficient markets hypothesis, discussed price transmission and price 

discovery. [39] Revoredo-Giha and Zuppiroli (2012) discussed the price efficiency in 

the European and US wheat futures markets, the London International Financial Futures 

and Options Exchange (LIFFE), the Marché à Terme International de France (MATIF), 

and the Chicago Mercantile Exchange Group (CBOT). They also calculated wheat 

futures and their corresponding wheat spot market prices, as well as the hedge ratios for 

East Anglia (UK), Rouen (France), Bologna (Italy) and Chicago (USA). The authors 

discovered that the MATIF market was more efficient than the other two futures 

markets. At the same time, regardless of whether the European or US markets were 

considered, wheat futures and spot prices were all significantly correlated, indicating 

that hedging efficiency existed in both the US and European markets.  

[35] Sendhil et al. (2013) studied different futures contracts for wheat, chickpea, 

corn and barley in Indian markets, and examined whether price transmission and price 
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disclosure existed among spot agricultural markets, using VECM and SUM to measure 

the price transmission and disclosure effects, respectively. From the results of the 

VECM, they found that the speeds of adjustment of the spot prices of chickpea and 

wheat were more rapid than those of the corresponding futures prices, whereas the 

speed of adjustment of the futures prices for corn was more rapid than that for the 

corresponding spot prices. The results of SUM indicated that there existed a price 

disclosure effect in both the spot and futures prices of corn and wheat, and that this 

price disclosure effect was more significant than in the markets for chickpea and wheat.  

In addition to examining the price transmission relationships among agricultural 

products, [40] Chang et al. (2012) used the M-TAR (Momentum-Threshold 

Autoregressive) model and VECM to analyze the price transmission effects for 

bio-energy in different areas, as well as the speed of the price adjustment of three kinds 

of energy crops, namely corn, soybeans and sugar, and the price transmission effects 

between biomass energy and energy crops. It was found that bio-ethanol exhibited 

different speeds of price adjustment in different regions, implying that there exist 

opportunities to engage in arbitrage and price hedging. The price adjustment factor in 

relation to corn was the most significant, while the price adjustment factor in relation to 

sugar was the weakest. Bio-ethanol futures and agricultural products, due to their 

different speeds of price adjustment, could be used as a hedge against prices in food 

commodity markets.  

A number of related studies in the literature that used the VECM to measure the 

price transmission effects between energy products and agricultural crops also found 
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evidence of the existence of a price transmission relationship (see, among others, [37] 

Trujillo-Barrera et al., 2012; [37] Cabrera and Schulz, 2013; [41] Zhang et al., 2009; [42] 

Zhang et al., 2014). 

  [43] Zhao and Goodwin (2011) used [44] Black’s (1976) model to calculate the 

implied risk for corn and soybeans, and the VAR model to analyze the implied risk 

transmission relationship between corn and soybeans. Their results indicated that there 

was a risk spillover effect between corn and soybeans, but not the reverse. In addition, 

the authors used the threshold model to analyze the risk spillover effects between 

different time periods and found that, when the risk volatility of soybeans was high, 

soybeans exhibited a risk spillover effect in relation to corn; when the risk volatility of 

corn was high, soybeans exhibited a positive risk transmission relationship with corn; 

and when the risk volatility of corn was low, this risk transmission exhibited a negative 

relationship. The authors also compared the risk spillover effects estimated with the 

BEKK model. The results indicated that corn exhibited a risk spillover effect in relation 

to soybeans, and that the risk spillover effect for soybeans in relation to corn was 

significant. 

 [45] Nazlioglu et al. (2013) used the causality in variance (technically, causality 

for conditional volatility) approach proposed by [46] Hafner and Herwartz (2006) (see 

also [47] Chang and McAleer, 2016)) to analyze the spot price risk spillover effects 

between crude oil and corn, sugar, soybeans and wheat, both before and after the food 

price crisis of 2005. Their results indicated that prior to the outbreak of the food price 

crisis, only wheat exhibited a significant risk spillover effect in relation to crude oil, 
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there being no such effect for the other crops. Moreover, there was no evidence of a risk 

spillover effect for petroleum in relation to these four agricultural crops.  

However, after the food crisis occurred, apart from in the case of petroleum in 

relation to sugar, there was evidence of a significant risk transmission effect for 

petroleum in relation to all other products. As the volatility of petroleum prices became 

more pronounced, which led more countries to develop biomass energy products as 

alternatives to standard energy sources, the price volatilities of related agricultural 

products became higher than they had been in the past. Moreover, the prices of these 

products over time became more highly correlated with the price of petroleum. Previous 

studies that have discussed the risk spillover effects among markets for bio-ethanol, 

fossil fuels and agricultural products are mostly concentrated on the USA, Brazil and 

Europe (see, among others, [48] Serra, 2011; [49] Serra, 2012; [50] Serra et al., 2011; 

[51] Serra and Gil 2013).  

 Multivariate GARCH models used to measure the risk transmission or risk 

spillover effects between different commodities may be divided into two types. The first 

approach uses conditional covariances to explain the risk spillover effects between 

different commodities, such as the VECH and BEKK models. A second approach uses 

conditional correlations to analyze the correlations in the fluctuations between different 

commodities, such as the CCC ([29] Bollerslev, 1990) and DCC ([26] Engle, 2002) 

models. Regardless of whether the focus of the research is on futures and spot markets 

for agricultural products, between different agricultural products, or between energy and 

agricultural products, these models are very important when it comes to examining the 
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roles played by risk transmission effects in reducing portfolio risk. The following gives 

a brief review. 

[37] Trujillo-Barrera et al. (2012) used the Full BEKK model, that is, with no 

restrictions on the parameters in the conditional covariance matrix, to analyze the risk 

spillover effects for US crude oil, bio-ethanol and corn futures, and to measure the 

intensity of the risk transmission of crude oil futures prices on corn and bio-ethanol. The 

empirical results indicated that corn had a significant risk spillover effect on bio-ethanol, 

but not the reverse. There was a relatively high degree of intensity in terms of the 

spillover effects of crude oil on bio-ethanol.  

[41] Zhang et al. (2009) also used the Full BEKK model to analyze the risk 

spillover effects between ethanol and agricultural products (namely, corn and soybeans), 

but the analysis was divided into two different periods, namely the early ethanol 

development period (1989-1999) and the later period (2000-2007). The results indicated 

that no significant risk transmission relationship was found to exist between ethanol and 

corn and soybeans in the development period. It was only in the late ethanol 

development period that there was evidence of a risk spillover effect from soybeans to 

ethanol.  

[37] Cabrera and Schulz (2013) used the GARCH and DCC multivariate volatility 

model to analyze the risk spillover effects among crude oil, bio-diesel and rapeseed. The 

empirical results showed that there was a significant risk spillover effect between crude 

oil and rapeseed, but the risk spillover effect between bio-diesel and rapeseed was not 

significant. The authors argued that crude oil and rapeseed were globally traded 
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commodities, whereas trade in bio-diesel tended to be limited to the European region. 

Therefore, there was no clear evidence of risk spillover effects between bio-diesel and 

the other two commodities.  

[38] Chang et al. (2011) analyzed the risk transmission effects based on spot and 

futures market data for the two major crude oil markets, namely Brent and WTI. They 

compared the CCC, VARMA-GARCH, DCC, Full BEKK and Diagonal BEKK models, 

and found that, regardless of which model was used, the holding ratios for Brent crude 

oil futures always needed to be greater than the corresponding ratios in the spot market. 

However, in the WTI crude oil market, the results of the CCC and VARMA-GARCH 

models indicated that the spot market holding ratios needed to be greater than the 

corresponding ratios in the futures market.  

In contrast, when the dynamic DCC and BEKK models were used, it was found 

that the spot market holding ratios should be larger than those in the futures market. In 

addition, by using hedging effectiveness to select the best model, the results indicated 

that the Diagonal BEKK model had the best hedging effectiveness, and was the best 

model used to calculate the asset portfolio. However, the BEKK model had the lowest 

hedging effectiveness value, and was therefore the least suitable model.  

 

2. Material and Methods 

 

2.1 Model Specifications 
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Despite the empirical applications of a wide range of conditional volatility models 

in numerous papers in empirical finance, there are theoretical problems associated with 

virtually all of them. The CCC, VARMA-GARCH, and its asymmetric counterpart, 

VARMA-AGARCH, models have static conditional covariances and correlations, 

which means that accommodating volatility spillovers is not possible. Apart from the 

diagonal version, the multivariate BEKK model of conditional covariances has been 

shown to have no regularity conditions, and hence no statistical properties (see [15] 

McAleer et al. (2008) and the discussion below for further details). Therefore, spillovers 

can be considered only for the special case of diagonal BEKK. The multivariate DCC 

model of (purported) conditional correlations has been shown to have no regularity 

conditions, and hence no statistical properties (see [31] Hafner and McAleer (2014) for 

further details). 

The analysis of univariate and multivariate conditional volatility models below is a 

summary of what has been presented in the literature (see, for example, [52] Caporin 

and McAleer (2008), [53] Caporin and McAleer (2012)), although the comprehensive 

discussion of the full and diagonal BEKK models is not available in any published 

source. The first step in estimating multivariate models is to obtain the standardized 

residuals from the conditional mean returns shocks. For this reason, the most 

widely-used univariate conditional volatility model, namely GARCH, will be presented 

briefly, followed by the two most widely estimated multivariate conditional covariance 

models, namely the diagonal and full BEKK models. 
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2.1.1 Univariate Conditional Volatility 

 

Consider the conditional mean of financial returns, as follows: 

 

       𝑦𝑡 = 𝐸(𝑦𝑡|𝐼𝑡−1) + 𝜀𝑡,     (1) 

 

where the financial returns,  𝑦𝑡 = Δ𝑙𝑙𝑙𝑃𝑡 , represent the log-difference in financial 

commodity or agricultural prices, 𝑃𝑡, 𝐼𝑡−1 is the information set at time t-1, and 𝜀𝑡 is a 

conditionally heteroskedastic error term, or returns shock. In order to derive conditional 

volatility specifications, it is necessary to specify the stochastic processes underlying 

the returns shocks, 𝜀𝑡 . The most popular univariate conditional volatility model, 

GARCH model, is discussed below. 

Now consider the random coefficient autoregressive process of order one 

underlying the return shocks, 𝜀𝑡: 

 

       𝜀𝑡 = 𝜙𝑡𝜀𝑡−1 + 𝜂𝑡     (2) 

  

where 

𝜙𝑡~𝑖𝑖𝑖(0,𝛼), 𝛼 ≥ 0, 

𝜂𝑡~𝑖𝑖𝑖(0,𝜔), 𝜔 ≥ 0, 

𝜂𝑡 = 𝜀𝑡/�ℎ𝑡 is the standardized residual, with ℎ𝑡 defined below. 
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[21] Tsay (1987) derived the ARCH (1) model of [26] Engle (1982) from equation 

(2) as:  

 

ℎ𝑡 ≡ 𝐸(𝜀𝑡2|𝐼𝑡−1) = 𝜔 + 𝛼𝜀𝑡−12      (3) 

 

where ℎ𝑡 represents conditional volatility, and 𝐼𝑡−1 is the information set available at 

time t-1. A lagged dependent variable, ℎ𝑡−1, is typically added to equation (3) to 

improve the sample fit: 

 

ℎ𝑡 ≡ 𝐸(𝜀𝑡2|𝐼𝑡−1) = 𝜔 + 𝛼𝜀𝑡−12 + 𝛽ℎ𝑡−1.   (4) 

 

 From the specification of equation (2), it is clear that both 𝜔 and 𝛼 should be 

positive as they are the unconditional variances of two different stochastic processes.  

 

Given the non-normality of the returns shocks, the Quasi-Maximum Likelihood 

Estimators (QMLE) of the parameters have been shown to be consistent and 

asymptotically normal in several papers. For example, [27] Ling and McAleer (2003) 

showed that the QMLE for a generalized ARCH(p,q) (or GARCH(p,q)) is consistent if 

the second moment is finite. A sufficient condition for the QMLE of GARCH(1,1) in 

equation (4) to be consistent and asymptotically normal is 𝛼 + 𝛽 < 1.  

In general, the proofs of the asymptotic properties follow from the fact that GARCH 

can be derived from a random coefficient autoregressive process. [15] McAleer et al. 
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(2008) give a general proof of asymptotic normality for multivariate models that are 

based on proving that the regularity conditions satisfy the conditions given in [32] 

Jeantheau (1998) for consistency, and the conditions given in Theorem 4.1.3 in [54] 

Amemiya (1985) for asymptotic normality.  

 

2.1.2 Multivariate Conditional Volatility 

 

The multivariate extension of the univariate ARCH and GARCH models is given 

in [55] Baba et al. (1985) and [25] Engle and Kroner (1995). In order to establish 

volatility spillovers in a multivariate framework, it is useful to define the multivariate 

extension of the relationship between the returns shocks and the standardized residuals, 

that is, 𝜂𝑡 = 𝜀𝑡/�ℎ𝑡 . The multivariate extension of equation (1), namely 𝑦𝑡 =

𝐸(𝑦𝑡|𝐼𝑡−1) + 𝜀𝑡, can remain unchanged by assuming that the three components are now 

𝑚 × 1 vectors, where 𝑚 is the number of financial assets. The multivariate definition 

of the relationship between 𝜀𝑡 and 𝜂𝑡 is given as:  

 

        𝜀𝑡 = 𝐷𝑡
1/2𝜂𝑡,      (5)  

 

where 𝐷𝑡 = 𝑖𝑖𝑑𝑙(ℎ1𝑡, ℎ2𝑡, … ,ℎ𝑚𝑡) is a diagonal matrix comprising the univariate 

conditional volatilities. 

Define the conditional covariance matrix of 𝜀𝑡 as 𝑄𝑡. As the 𝑚 × 1 vector, 𝜂𝑡, is 

assumed to be iid for all 𝑚 elements, the conditional correlation matrix of 𝜀𝑡, which is 
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equivalent to the conditional correlation matrix of 𝜂𝑡, is given by 𝛤𝑡. Therefore, the 

conditional expectation of (5) is defined as:   

 

        𝑄𝑡 = 𝐷𝑡
1/2𝛤𝑡𝐷𝑡

1/2.     (6) 

     

Equivalently, the conditional correlation matrix, 𝛤𝑡, can be defined as: 

 

        𝛤𝑡 = 𝐷𝑡
−1/2𝑄𝑡𝐷𝑡

−1/2.    (7) 

 

Equation (6) is useful if a model of 𝛤𝑡 is available for purposes of estimating 𝑄𝑡, 

whereas (7) is useful if a model of 𝑄𝑡 is available for purposes of estimating 𝛤𝑡.  

Equation (6) is convenient for a discussion of volatility spillover effects, while 

both equations (6) and (7) are instructive for a discussion of asymptotic properties. As 

the elements of 𝐷𝑡 are consistent and asymptotically normal, the consistency of 𝑄𝑡 in 

(6) depends on consistent estimation of 𝛤𝑡 , whereas the consistency of 𝛤𝑡  in (7) 

depends on consistent estimation of 𝑄𝑡. As both 𝑄𝑡 and 𝛤𝑡 are products of matrices, 

with inverses in (7), neither the QMLE of 𝑄𝑡 nor 𝛤𝑡 will be asymptotically normal 

based on the definitions given in equations (6) and (7). 

 

2.1.3 Diagonal BEKK 
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The diagonal BEKK model can be derived from a vector random coefficient 

autoregressive process of order one, which is the multivariate extension of the 

univariate process given in equation (2):    

 

       𝜀𝑡 = 𝛷𝑡𝜀𝑡−1 + 𝜂𝑡,    (8)  

     

where 

𝜀𝑡 and 𝜂𝑡 are 𝑚 × 1 vectors,  

𝛷𝑡 is an 𝑚 × 𝑚 matrix of random coefficients,   

𝛷𝑡~𝑖𝑖𝑖(0,𝐴), A is positive definite,  

𝜂𝑡~𝑖𝑖𝑖(0,𝐶), C is an 𝑚 × 𝑚 matrix. 

Vectorization of a full matrix A to vec A can have dimension as high as 𝑚2 × 𝑚2, 

whereas vectorization of a symmetric matrix A to vech A can have a smaller dimension 

of 𝑚(𝑚 + 1)/2 × 𝑚(𝑚 + 1)/2.  

In a case where A is a diagonal matrix, with 𝑑𝑖𝑖 > 0 for all i = 1,…,m and |𝑏𝑗𝑗| < 

1 for all j = 1,…,m, so that A has dimension 𝑚 × 𝑚, [15] McAleer et al. (2008) showed 

that the multivariate extension of GARCH(1,1) from equation (8) is given as the 

diagonal BEKK model, namely:  

 

      𝑄𝑡 = 𝐶𝐶′ + 𝐴𝜀𝑡−1𝜀𝑡−1′ 𝐴′ + 𝐵𝑄𝑡−1𝐵′,  (9) 
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where A and B are both diagonal matrices, though the last term in equation (9) need not 

come from an underlying stochastic process. The diagonality of the positive definite 

matrix A is essential for matrix multiplication as 𝜀𝑡−1𝜀𝑡−1′  is an 𝑚 × 𝑚  matrix; 

otherwise equation (9) could not be derived from the vector random coefficient 

autoregressive process in equation (8). 

[15] McAleer et al. (2008) showed that the QMLE of the parameters of the 

diagonal BEKK model were consistent and asymptotically normal, so that standard 

statistical inference on testing hypotheses is valid. Moreover, as 𝑄𝑡 in (9) can be 

estimated consistently, 𝛤𝑡 in equation (7) can also be estimated consistently. 

 

2.1.4 Full, Triangular and Hadamard BEKK 

 

The full BEKK model in [55] Baba et al. (1985) and [25] Engle and Kroner (1995), 

who do not derive the model from an underlying stochastic process, is presented as: 

 

      𝑄𝑡 = 𝐶𝐶′ + 𝐴𝜀𝑡−1𝜀𝑡−1′ 𝐴′ + 𝐵𝑄𝑡−1𝐵′,   (10) 

 

except that A and B in equation (10) are now both full matrices, rather than the diagonal 

matrices that were derived in equation (9) using the stochastic process in equation (8). 

The full BEKK model can be replaced by the triangular or Hadamard 

(element-by-element multiplication) BEKK models, with similar problems of 

identification and (lack of) existence. The full, triangular and Hadamard BEKK models 
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cannot be derived from any known underlying stochastic processes, which means there 

are no regularity conditions (except by assumption) for checking the internal 

consistency of the alternative models, and consequently no valid asymptotic properties 

of the QMLE of the associated parameters (except by assumption).  

Moreover, as the number of parameters in a full BEKK model can be as much as 

3m(m+1)/2, the “curse of dimensionality” will be likely to arise, which means that 

convergence of the estimation algorithm can become problematic and less reliable when 

there is a large number of parameters to be estimated. As a matter of fact, estimation of 

the full BEKK can be problematic even when m is as low as 5 financial assets. Such 

computational difficulties do not arise for the diagonal BEKK model. Convergence of 

the estimation algorithm is more likely when the number of commodities is less than 4, 

though this is nevertheless problematic in terms of interpretation. Therefore, in the 

empirical analysis, in order to investigate volatility spillover effects, the diagonal BEKK 

model will be estimated.  

The Diagonal BEKK model is given as equation (9), where the matrices A and B 

are given as: 

 

𝐴 = �
𝑑11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑑𝑚𝑚

�， 𝐵 = �
𝑏11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑏𝑚𝑚

�   (11) 

 

The Diagonal BEKK model permits a test of Co-volatility Spillover effects, which is the 

effect of a shock in commodity j at t-1 on the subsequent co-volatility between j and 

another commodity at t. Given the Diagonal BEKK model, as expressed in equations (9) 
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and (11), the subsequent co-volatility must be between commodities j and i at time t.  

This leads to the definition of a Co-volatility Spillover Effect as: 

 

Definition:  
𝜕𝐻𝑖𝑖,𝑡

𝜕𝜀𝑖,𝑡−1
=  𝑑𝑖𝑖 × 𝑑𝑗𝑗 × 𝜀𝑖,𝑡−1, i≠j. 

 

As 𝑑𝑖𝑖 > 0 for all 𝑖,  a test of the co-volatility spillover effect is given as a test of the 

null hypothesis:  

 

𝐻0:𝑑𝑖𝑖𝑑𝑗𝑗  = 0,  

 

which is a test of the significance of the estimate of 𝑑𝑖𝑖𝑑𝑗𝑗  in the following 

co-volatility spillover effect, as 𝜀𝑖,𝑡−1 ≠ 0:  

 
𝜕𝐻𝑖𝑖,𝑡

𝜕𝜀𝑖,𝑡−1
=  𝑑𝑖𝑖𝑑𝑗𝑗𝜀𝑖,𝑡−1, i≠j.  

 

If 𝐻0 is rejected against the alternative hypothesis, 𝐻1:𝑑𝑖𝑖𝑑𝑗𝑗  ≠ 0, there is a spillover 

from the returns shock of commodity j at t-1 to the co-volatility between commodities i 

and j at t that depends only on the returns shock of commodity i at t-1. It should be 

emphasized that the returns shock of commodity j at t-1 does not affect the co-volatility 

spillover of commodity j on the co-volatility between commodities i and j at t. 

Moreover, spillovers can and do vary for each observation t-1, so that the empirical 

results average co-volatility spillovers will be presented, based on the average (or mean) 

return shocks over the sample period. 

   This leads to a summary of the inputs, outputs and estimation algorithms to be 
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conducted for the empirical analysis. 

 

 

 

 

 

 

 

 

 

 

Summary of Inputs and Outputs 
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2.2 Data and Variables 

 

This paper uses daily time series data for the USA on the spot prices and closing 

futures prices of bio-ethanol and two agricultural commodities, namely corn and 

sugarcane, in the empirical analysis. The sample covers the period 31 October 2005 to 

14 January 2015. The choice of country for the empirical analysis and the length of the 

sample period was dictated by the availability of data on ethanol spot and futures 

trading in the USA, which provides the richest source of data to connect the three 

commodities simultaneously for both spot and futures prices. The USA is the leader in 

developing a wide range of financial derivatives, such as futures prices, for financial, 

energy and agricultural commodities. Other agricultural commodities which might be 

considered as green replacements of gasoline, such as switchgrass, do not have spot and 

futures data to compare with corn, sugarcane and ethanol. 

The data on corn and sugarcane spots are sourced from the United States 

Department of Agriculture (USDA). The corn spot is corn number 2 yellow (class 

CORNUS2), and is expressed in US cents per bushel. The sugar spot is raw cane sugar, 

world (class SUGCNRW), and is expressed in US cents per pound. The bio-ethanol spot 

is sourced from Thomson Reuters, and is expressed in US dollars per gallon. Data on 

corn closing futures prices are sourced from Datastream for the US market.  

The corn futures class is CC, traded at the Chicago Board of Trade (CBOT), and is 

expressed in US cents per bushel. Sugar futures is given as sugar # 11 (class NSB), is 
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expressed in US cents per pound, traded at the Coffee, Sugar & Cocoa Exchange Inc 

(CSCE). The bio-ethanol futures price is sourced from Thompson Reuters and is 

expressed in US dollars per gallon. Its class is CZE, and is expressed in US dollars per 

gallon, traded on eCBOT.  

The endogenous variables used in the paper is the daily return rate, where the rate 

of return is obtained as the natural logarithm of the daily price data, and subtracting the 

natural logarithms of the daily price data for two consecutive days from each other, and 

multiplying by 100. Cornsr , Sugarsr , and Ethanolsr represent the spot returns for 

corn, sugarcane, and bio-ethanol, and Cornfr, Sugarfr, Ethanolfr represent the futures 

returns of corn, sugarcane, and bio-ethanol, respectively. The variable definitions are 

given in Table 1, according to the spot and futures returns of the three commodities, as 

well as their transactions markets. The sources of data for the spot and futures prices 

and returns differ for each of the three commodities. The United States Department of 

Agriculture (USDA) is the source of data for corn and sugar spot prices, while the 

Chicago Board of Trade (CBOT) is the source for corn and ethanol futures. 

 

[Insert Table 1 here] 

 

The descriptive statistics for the endogenous returns of the spot and futures for 

bio-ethanol and the two agricultural commodities, corn and sugarcane, are given in 

Table 2. The highest standard deviation for the futures market over the sample period is 

for bio-ethanol, followed by sugarcane, while the highest standard deviation for the spot 
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market over the sample period is for corn.  

The returns have different degrees of skewness. Interestingly, virtually all the 

returns are skewed to the left, indicating that these futures series have longer left tails 

(extreme losses) than right tails (extreme gains), except for bio-ethanol spot and sugar 

futures returns, which are skewed to the right. This stylized fact should be of interest to 

participants in commodity markets. All of the price distributions have kurtosis that is 

significantly higher than 3, implying that higher probabilities of extreme market 

movements in either direction (gains or losses) occur in these futures markets, with 

greater frequency in practice than would be predicted by the normal distribution. In the 

spot market, the highest kurtosis is for ethanol spot, followed by sugarcane and corn, 

while in the futures market, the highest is for sugarcane, followed by bio-ethanol and 

corn. The Jarque-Bera Lagrange multiplier statistics confirm non-normal distributions 

in all the return series. 

As shown in Figure 5, the volatility of returns for spot and futures of bio-ethanol 

and the two agricultural commodities display the phenomenon of volatility clustering. 

Corn and sugar spot returns, and sugar futures returns, display what would be regarded 

as standard financial returns variations, whereas corn futures returns show an extreme 

value in 2013. The spot returns for ethanol and highly variable, while ethanol futures 

returns show substantial variability in 2013-2014. However, the impact of the Global 

Financial Crisis (GFC) in 2008-09 does not seem to have had a noticeable impact on the 

volatility of spot and futures returns in the three commodities. 
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[Insert Figure 5 and Table 2 here] 

 

 The unit root tests for both endogenous and exogenous variables are summarized in 

Table 3. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests were used 

to test for unit roots in the individual returns series. The ADF test accommodates serial 

correlation by specifying explicitly the structure of serial correlation in the errors. The 

non-parametric PP test allows fairly mild assumptions that do not assume a specific type 

of serial correlation and heteroskedasticity in the disturbances, and can have higher 

power than the ADF test under a wide range of circumstances. The null hypothesis of 

the ADF and PP tests is that the series have a unit root (for further details, see [56] 

Dickey and Fuller, 1979; [57] Said and Dickey (1984); [58] Phillips and Perron, 1988). 

In Table 3, based on the ADF and PP test results, the large negative values in all cases 

indicate rejection of the null hypothesis of unit roots at the 1% level of significance, 

Therefore, all the returns series are stationary. 

 

[Insert Table 3 here] 

 
3. Results  

 

3.1 Testing Co-volatility Spillover Effects 

 

It is possible to check directly the Co-volatility Spillover effects through testing the 

significance of the estimates of the matrix A in the Diagonal BEKK model. If 
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the null hypothesis 𝐻0 is rejected, there will be spillovers from the returns shock of 

commodity j at t-1 to the co-volatility between commodities i and j at t that depends 

only on the returns shock of commodity i at t-1.  

Tables 4 - 6 show the empirical results of spot markets for the VAR(1,1) - 

multivariate diagonal BEKK(1,1) model, and the results of testing the Co-volatility 

Spillover effects from the significance of the estimates of the matrix A in the Diagonal 

BEKK model. Estimation of the model in equations (1) and (2) by QMLE are 

undertaken using both the EViews and RATS econometric software packages for 

comparison. Table 4 reports the estimates for corn and bio-ethanol, Table 5 reports the 

results for sugarcane and bio-ethanol, and Table 6 repots the estimates for corn, 

sugarcane, and ethanol. 

 

[Insert Tables 4-6 here] 

 

 From the estimates of matrix A of the Diagonal BEKK model in Table 4, both 

coefficients are statistical significant at the 1% level, which shows spillovers from corn 

on subsequent bio-ethanol co-volatility with corn, and bio-ethanol on subsequent corn 

co-volatility with bio-ethanol.   

However, Table 5 shows that that not all the estimates in A are significantly 

different from zero: there is a spillover effect from the returns shock of sugar at t-1 to 

the co-volatility between sugar and ethanol, but no significant effect from the returns 

shock of ethanol at t-1 to the co-volatility between sugar and ethanol.  
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If we add three commodities to the Diagonal BEKK model, we can see the 

empirical results more clearly. As shown in the estimates of the matrix A in Table 6, 

there are a significant co-volatility spillover effects, particularly corn on subsequent 

sugarcane co-volatility with corn, and sugarcane on subsequent corn co-volatility with 

sugarcane. 

Tables 7 - 9 show the results of the futures markets for VAR(1,1) - Diagonal BEKK 

(1,1) model, and the results of testing the co-volatility spillover effects from the 

significance of the estimates of A in the Diagonal BEKK model. Table 7 reports the 

estimates for corn and bio-ethanol, Table 8 reports the results for sugarcane and 

bio-ethanol, and Table 9 repots the estimates for corn, sugar, and ethanol. 

 

 

[Insert Tables 7-9 here] 

In Table 7, both coefficients in A are statistically significant at the 1% level, which 

indicates corn on subsequent bio-ethanol co-volatility with corn, and bio-ethanol on 

subsequent corn co-volatility with bio-ethanol. We also found spillover effects in the 

futures market of sugarcane and bio-ethanol as the estimates of A in Table 8 show 

significant effects of sugarcane on subsequent bio-ethanol co-volatility with sugarcane, 

and bio-ethanol on subsequent sugarcane co-volatility with bio-ethanol.  

In Table 9, as we add three commodities into the Diagonal BEKK system, we can 

see clearly that there are significant co-volatility spillover effects in all 6 cases, namely 

between corn and sugarcane, corn and ethanol, and sugarcane and ethanol, and the 
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reverse. 

 

3.2 Calculating Co-volatility Spillover Effects 

 

We use the definition of Co-volatility Spillover Effects in Section 3 to calculate the 

average Co-volatility Spillover Effects for the three commodities in the spot and futures 

markets. Table 10 shows the average of the return shocks for three commodities in the 

spot and futures market, while Table 11 shows the results of average Co-volatility 

Spillover Effects. From the second row of Table 11, it was found in 2 of 6 cases that 

there were significant negative co-volatility spillover effects, specifically corn on 

subsequent sugarcane co-volatility with corn, and sugarcane on subsequent corn 

co-volatility with sugarcane. In Tables 4-6, for the other 4 cases, no significant 

co-volatility spillover effects were evident.  

 

[Insert Tables 10-11 here] 

 

Unlike the case of spot prices, as shown in the third row in Table 11, there are 

significant positive co-volatility spillover effects in all 6 cases, namely between corn 

and sugarcane, corn and ethanol, and sugarcane and ethanol, and the reverse. It is clear 

that the futures prices of bio-ethanol and the two agricultural commodities, corn and 

sugarcane, have stronger co-volatility spillovers than their spot price counterparts.  
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4. Discussion 

 

These estimates are reflected in Figures 6-8, which show the unconditional 

variances of corn, sugarcane and ethanol spot and futures returns, the conditional 

volatility for corn, sugarcane and ethanol spot and futures returns, and the conditional 

co-volatility for the pairs corn and sugarcane, corn and ethanol, and sugarcane and 

ethanol, spot and futures returns. The unconditional variances in Figure 6 are not 

predicted as they capture the behavior of the data for the whole sample. There are 

numerous extreme values throughout the sample, especially for corn futures returns, and 

ethanol spot and futures returns. The conditional volatilities in Figure 7 show 

persistence and some extreme values, especially for corn futures returns, and ethanol 

spot and futures returns.  

The conditional co-volatilities in Figure 8 are predominantly positive, except for 

the estimates between corn and ethanol futures returns, and sugarcane and ethanol 

futures returns. This means that corn and ethanol futures, and sugarcane and ethanol 

futures, are more useful as suitable hedging instruments, in which negative covariances 

and correlations are essential for insuring large losses in one financial asset are 

mitigated by positive returns in the hedging instrument, than are their spot counterparts. 

 

[Insert Figures 6-8 here] 

 

The Global Financial Crisis (GFC) in 2008-09 does not seem to have had a 
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noticeable impact on the unconditional variances of spot and futures returns in the three 

commodities, except for corn spot returns (Figure 6). Corn spot returns and sugar 

futures returns show marked peaks during the GFC, but the other four returns do not 

seem to have been affected by the GFC (Figure 7).  

On the other hand, Figure 8 shows that the conditional co-volatilities between corn 

and sugarcane spot returns and futures are significantly affected by the GFC. This is not 

of serious concern as these two sets of prices are not likely to be used for hedging 

purposes. Interestingly, the conditional covariances between corn and ethanol spot 

returns, and between sugarcane and ethanol spot returns, are not markedly affected by 

the GFC.  

What is of particular interest is that the conditional covariances between corn and 

ethanol futures returns, and between sugarcane and ethanol futures returns, are 

significantly affected by the GFC, with high and persistent volatility during this period 

(Figure 8). This is of some concern as hedging is desirable during serious crises such as 

the GFC, but it is clear that hedging is difficult during such periods. 

One of the primary purposes of the paper was to examine the volatility spillovers 

for spot and futures returns on bio-ethanol and two related agricultural commodities, 

namely corn and sugarcane, using the multivariate Diagonal BEKK multivariate 

conditional volatility model. The daily data used in the empirical analysis were from 31 

October 2005 to 14 January 2015, which included the Global Financial Crisis (GFC). 

The appropriate specification of multivariate conditional volatility models was also 

discussed, otherwise the empirical results would border on the meaningless, with no 



39 

regularity conditions to sustain the internal consistency of the model, and subsequently 

no asymptotic properties to enable valid statistical inferences to be made. 

For the spot market, it was found that in 2 of 6 cases for the spot and futures 

returns of the three commodities, there were significant negative co-volatility spillover 

effects, specifically corn on subsequent sugarcane co-volatility with corn, and sugarcane 

on subsequent corn co-volatility with sugarcane. These empirical results are indicative 

of useful hedging strategies. In the other 4 cases for the spot market, there were no 

significant co-volatility spillover effects.  

For futures markets, unlike the case of the spot markets, there were significant 

positive co-volatility spillover effects in all 6 cases, namely between corn and sugarcane, 

corn and ethanol, and sugarcane and ethanol, and the reverse pairings. This should be 

juxtaposed against the estimated negative co-volatilities between corn and ethanol 

futures returns, and sugarcane and ethanol futures returns (Figure 8). 

It is clear that the futures prices and returns of bio-ethanol and the two agricultural 

commodities, namely corn and sugarcane, have stronger co-volatility spillovers than 

their spot price counterparts. These results strongly suggest that bio-ethanol and 

agricultural commodities such as corn and sugarcane should be considered as viable 

futures products in green energy financial portfolios for optimal risk management and in 

calculating appropriate hedge ratios. 

 Future research would ideally incorporate alternative sources of sugar to provide 

an alternative to gasoline. These agricultural commodities are likely to include 

switchgrass and kelp. The availability of appropriate financial data in spot and futures 
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markets will assist in determining the appropriate prices of alternative agricultural 

commodities to incorporate into an optimal financial portfolio to mitigate the financial 

risks associated with renewable and sustainable energy sources, such as ethanol, 

especially during turbulent periods, such as future global financial crises. 
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Table 1  

Data Sources 

 
Variable 

name 

Definitions Transaction market Description 

𝐂𝐂𝐂𝐂𝐬𝐂 Corn spot 

return 

United States Department 

of Agriculture (USDA) 

Corn Number 2 Yellow 

(US cents per bushel) 

𝐂𝐂𝐂𝐂𝐟𝐂 Corn futures 

return 

Chicago Board of Trade 

(CBOT) 

Chicago Board of Trade 

(CBOT)-Corn 

(US cents per bushel) 

𝐒𝐒𝐒𝐒𝐂𝐬𝐂 Sugar spot 

return 

United States Department 

of Agriculture (USDA) 

Raw Cane Sugar 

(US cents per Pound) 

𝐒𝐒𝐒𝐒𝐂𝐟𝐂 Sugar futures 

return 

Coffee, Sugar & Cocoa 

Exchange Inc (CSCE) 

CSCE-Sugar #11 

(US cents per Pound) 

𝐄𝐄𝐄𝐒𝐂𝐂𝐄𝐬𝐂 Ethanol spot 

return 

Thomson Reuters Ethanol, Spot Chicago 

United States (Dollar Per 

Gallon) 

𝐄𝐄𝐄𝐒𝐂𝐂𝐄𝐟𝐂 Ethanol 

futures return 

Chicago Board of Trade 

(CBOT) 

ECBOT-Ethanol  
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Table 2  

Descriptive Statistics 
 

Returns Mean SD Max Min Skewness Kurtosis Jarque-Bera 

𝐂𝐂𝐂𝐂𝐬𝐂 0.005 1.661 10.888 -12.307 -0.287 4.704 8796.03 

𝐂𝐂𝐂𝐂𝐟𝐂 0.005 1.581 9.801 -24.528 -0.643 14.858 87105.45 

𝐒𝐒𝐒𝐒𝐂𝐬𝐂 -0.003 2.321 20.904 -20.097 -0.118 5.644 10666.35 

𝐒𝐒𝐒𝐒𝐂𝐟𝐂 0.006 2.892 81.621 -35.390 2.656 81.990 2644229.19 

𝐄𝐄𝐄𝐒𝐂𝐂𝐄𝐬𝐂 -0.014 3.637 94.039 -79.729 2.341 290.993 8480493.70 

𝐄𝐄𝐄𝐒𝐂𝐂𝐄𝐟𝐂 -0.027 2.178 9.403 -21.566 -2.115 15.951 26030.49 
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Table 3  

Unit Root Tests 

 

 
ADF test 

Variables no trend or intercept intercept trend and intercept 

𝐂𝐂𝐂𝐂𝐬𝐂 -96.112* -96.108* -96.103* 

𝐂𝐂𝐂𝐂𝐟𝐂 -93.266* -93.261* -93.257* 

𝐒𝐒𝐒𝐒𝐂𝐬𝐂 -93.491* -93.486* -66.833* 

𝐒𝐒𝐒𝐒𝐂𝐟𝐂 -74.394* -74.391* -74.387* 

𝐄𝐄𝐄𝐒𝐂𝐂𝐄𝐬𝐂 -24.679* -24.674* -24.676* 

𝐄𝐄𝐄𝐒𝐂𝐂𝐄𝐟𝐂 -43.089* -43.087* -43.081* 

  PP test  

Variables trend or intercept intercept trend and intercept 

𝐂𝐂𝐂𝐂𝐬𝐂 -96.430* -96.425* -96.420* 

𝐂𝐂𝐂𝐂𝐟𝐂 -93.243* -93.239* -93.234* 

𝐒𝐒𝐒𝐒𝐂𝐬𝐂 -93.425* -93.419* -93.175* 

𝐒𝐒𝐒𝐒𝐂𝐟𝐂 -102.251* -102.247* -102.241* 

𝐄𝐄𝐄𝐒𝐂𝐂𝐄𝐬𝐂 -49.528* -49.518* -49.517* 

𝐄𝐄𝐄𝐒𝐂𝐂𝐄𝐟𝐂 -43.108* -43.104* -43.098* 

Note: * denotes the null hypothesis of a unit root is rejected at the 1% level of significance. 
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Table 4  

Diagonal BEKK-Spot (𝑪𝑪𝑪𝑪𝒔𝑪) (𝑬𝑬𝑬𝑬𝑪𝑪𝑬𝒔𝑪)  

 

Mean equation Cornsr Ethanolsr 

Cornsr(−1) 0.002 

(0.021) 

0.059* 

(0.018) 

Ethanolsr(−1) -0.015 

(0.011) 

0.002 

 (0.116) 

C 0.049 

(0.039) 

0.011 

 (0.053) 

   

Diagonal 

BEKK 
C A B 

Cornsr 0.099* 

(0.016) 

0.002 

(0.005) 

0.222* 

(0.012) 

 0.964* 

(0.004) 

 

Ethanolsr  0.086* 

(0.004) 

 0.172* 

(0.002) 

 0.983* 

(0.000) 

Log-likelihood -10875.29 

AIC 9.066 

Notes：1. A = �𝑑11 0
0 𝑑22

�, B = �𝑏11 0
0 𝑏22

�, C = �
𝑐11 𝑐12
0 𝑐22�  

2. Standard errors are in parentheses, * denotes significance level 1%. 

3.Substituted Coefficients: 
GARCH1 = 0.099+0.049× RESID1(−1)2+0.929×GARCH1(-1) 
GARCH2 = 0.086+0.029× RESID2(−1)2+0.966×GARCH2(-1) 
COV1_2 = 0.002 + 0.0381×RESID1(-1)×RESID2(-1) + 0.947×COV1_2(-1) 
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Table 5  

Diagonal BEKK-Spot (𝑺𝑺𝑺𝑬𝑪𝒔𝑪) (𝑬𝑬𝑬𝑬𝑪𝑪𝑬𝒔𝑪) 

 

Mean equation Sugarsr Ethanolsr 

Sugersr(−1) -0.028 

(0.027) 

0.071*** 

(0.022) 

Ethanolsr(−1) -0.050*** 

(0.020) 

-0.001 

(0.362) 

C 0.071 

(0.054) 

0.013 

(0.056) 

 

Diagonal 

BEKK 

C A B 

Sugarsr 0.908*** 

(0.018) 

0.106 

(0.102) 

0.297*** 

(0.013) 

 0.862*** 

(0.004) 

 

Ethanolsr  2.120*** 

(0.009) 

 -0.001 

(0.591) 

 0.203*** 

(0.020) 

Log-likelihood -6479.229 

AIC 8.785 

Notes：1. A = �𝑑11 0
0 𝑑22

�, B = �𝑏11 0
0 𝑏22

�, C = �
𝑐11 𝑐12
0 𝑐22�  

2. Standard errors are in parentheses, * denotes significance level 1%. 

3.Substituted Coefficients: 
GARCH1 = 0.908+0.088× RESID1(−1)2+0.743×GARCH1(-1) 
GARCH2 = 2.120+0.000× RESID2(−1)2+0.041×GARCH2(-1) 
COV1_2 = 0.106+ 0.256×RESID1(-1)×RESID2(-1) -0.0002×COV1_2(-1) 
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Table 6  

Diagonal BEKK-Spot (𝑪𝑪𝑪𝑪𝒔𝑪) (𝑺𝑺𝑺𝑬𝑪𝒔𝑪) (𝑬𝑬𝑬𝑬𝑪𝑪𝑬𝒔𝑪) 

 

Mean equation Cornsr Sugarsr Ethanolsr 

Cornsr(−1) -0.003 

(0.025) 

0.081** 

(0.024) 

-0.005 

(0.026) 

Sugarsr(−1) 0.007 

(0.022) 

-0.051* 

(0.025) 

0.073* 

(0.023) 

Ethanolsr(−1) -0.027 

(0.029) 

-0.051* 

(0.021) 

-0.002 

(0.025) 

C 0.151** 

(0.053) 

0.074 

(0.053) 

0.015 

(0.055) 

 
Diagonal 
BEKK 

C A B 

Cornsr 0.422** 
(0.076) 

0.171** 
(0.045) 

0.164 
(0.162) 

0.224** 
(0.0256) 

  0.958** 
(0.011) 

  
 

Sugarsr  0.753** 
(0.029) 

0.074 
(0.110) 

 0.248** 
(0.024) 

  0.902** 
(0.008) 

 

Ethanolsr   1.999** 
(0.013) 

  -0.001 
(0.024) 

  0.377** 
(0.014) 

Log-likelihood -9736.477 

AIC 13.208 

Notes：1. A = �
𝑑11 0 0
0 𝑑22 0
0 0 𝑑33

�, B = �
𝑏11 0 0
0 𝑏22 0
0 0 𝑏33

�, C = �
𝑐11 𝑐12 𝑐13
0 𝑐22 𝑐23
0 0 𝑐33

� 

    2.Standard errors are in parentheses, * denotes significance level 5%, ** significance level 1%. 

3.Substituted Coefficients: 
GARCH1 =0.422+0.050× RESID1(−1)2+0.918×GARCH1(-1) 
GARCH2 =0.753+0.062× RESID2(−1)2+0.814×GARCH2(-1) 
GARCH3 =1.999+0.000× RESID3(−1)2+0.142×GARCH3(-1) 
COV1_2 =0.171+0.056×RESID1(-1) ×RESID2(-1) + 0.864×COV1_2(-1) 
COV1_3 =0.164 +0.001×RESID1(-1) ×RESID3(-1) +0.361×COV1_3(-1) 
COV2_3 =0.074 +0.001×RESID2(-1) ×RESID3(-1) +0.340×COV2_3(-1) 
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Table 7  
Diagonal BEKK-Futures (𝑪𝑪𝑪𝑪𝒇𝑪) (𝑬𝑬𝑬𝑬𝑪𝑪𝑬𝒇𝑪) 

 

Mean equation Cornfr Ethanolfr 

Cornfr(−1)   0.006 

(0.023) 

0.022 

(0.018) 

Ethanolfr(−1) 0.048* 

(0.019) 

0.049* 

(0.022) 

C 0.013 

(0.039) 

-0.037 

(0.029) 

 

 C A B 

Cornfr 0.082** 

(0.010) 

0.044** 

(0.005) 

0.205** 

(0.009) 

 0.972** 

(0.002) 

 

Ethanolfr  0.038** 

(0.007) 

 0.327** 

(0.007) 

 0.951** 

(0.002) 

Log-likelihood -9189.522 

AIC 8.0266 

Notes：1. A= �𝑑11 0
0 𝑑22

�, B = �𝑏11 0
0 𝑏22

�, C = �
𝑐11 𝑐12
0 𝑐22� 

2. Standard errors are in parentheses, * denotes significance level 5%, ** significance level 1%. 

3. Substituted Coefficients: 
GARCH1 = 0.082+0.042× RESID1(−1)2+0.945×GARCH1(-1) 
GARCH2 = 0.038+0.107× RESID2(−1)2+0.904×GARCH2(-1) 
COV1_2 = 0.044 + 0.067×RESID1(-1)×RESID2(-1) + 0.924×COV1_2(-1) 
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Table 8  
Diagonal BEKK-Futures (𝑺𝑺𝑺𝑬𝑪𝒇𝑪) (𝑬𝑬𝑬𝑬𝑪𝑪𝑬𝒇𝑪)  

 

Mean equation Sugarfr Ethanolfr 

Sugarfr(−1) 0.006 

(0.020) 

0.029* 

(0.015) 

Ethanolfr(−1) 0.017 

(0.018) 

0.051** 

(0.021) 

C -0.042 

(0.038) 

-0.042 

(0.036) 

 

 C A B 

Sugarfr 0.025*** 

(0.006) 

0.004 

(0.005) 

0.199*** 

(0.009) 

 0.978*** 

(0.002) 

 

Ethanolfr  0.095*** 

(0.012) 

 0.299*** 

(0.010) 

 0.949*** 

(0.003) 

Log-likelihood -9692.554 

AIC 8.465 

Notes: 1. A = �a11 0
0 a22

�, B = �b11 0
0 b22

�, C = �
c11 c12
0 c22� 

 
2. Standard errors are in parentheses, * significance level 10%, ** significance level 5%,  

*** significance level 1%. 
3. Substituted Coefficients: 

  GARCH1 = 0.025+0.040× RESID1(−1)2+0.956×GARCH1(-1) 
  GARCH2 = 0.095+0.090× RESID2(−1)2+0.900×GARCH2(-1) 
  COV1_2 = 0.004 + 0.060×RESID1(-1)×RESID2(-1) + 0.928×COV1_2(-1) 
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Table 9  
Diagonal BEKK-Futures (𝑪𝑪𝑪𝑪𝒇𝑪) (𝑺𝑺𝑺𝑬𝑪𝒇𝑪) (𝑬𝑬𝑬𝑬𝑪𝑪𝑬𝒇𝑪)  

 

Mean equation Cornfr Sugarfr Ethanolfr 

Cornfr(−1) 0.004 

(0.023) 

-0.001 

(0.021) 

0.020 

(0.020) 

Sugarfr(−1) 0.017 

(0.017) 

0.005 

(0.019) 

0.018 

(0.014) 

Ethanolfr(−1) 0.045* 

(0.019) 

0.014 

(0.020) 

0.047* 

(0.022) 

C 0.011 

(0.039) 

-0.035 

(0.039) 

-0.035 

(0.030) 

 

 C A B 

Cornfr 0.080** 

(0.010) 

0.004 

(0.003) 

0.047** 

(0.005) 

0.187** 

(0.010) 

  0.975** 

(0.002) 

  

Sugarfr  0.022** 

(0.005) 

0.002 

(0.004) 

 0.176** 

(0.008) 

  0.982** 

(0.002) 

 

Ethanolfr   0.045*** 

(0.007) 

  0.323** 

(0.007) 

  0.951** 

(0.002) 

Log-likelihood -14052.30 

AIC 12.278 

Notes: 1. A = �
a11 0 0
0 a22 0
0 0 a33

�, B = �
b11 0 0
0 b22 0
0 0 b33

�, C = �
c11 c12 c13
0 c22 c23
0 0 c33

� 

 

   2. Standard errors are in parentheses, denotes * significance level 5%, ** significance level 1%.  

3. Substituted Coefficients: 
   GARCH1 = 0.080+0.035× RESID1(−1)2+0.951×GARCH1(-1) 
   GARCH2 = 0.022+0.031× RESID2(−1)2+0.965×GARCH2(-1) 
   GARCH3 = 0.045+0.104× RESID3(−1)2+0.904×GARCH3(-1) 
   COV1_2 = 0.004 + 0.033×RESID1(-1)×RESID2(-1) + 0.958×COV1_2(-1) 
   COV1_3 = 0.047 + 0.060×RESID1(-1)×RESID3(-1) + 0.927×COV1_3(-1) 
   COV2_3 = 0.002 + 0.057×RESID2(-1)×RESID3(-1) + 0.934×COV2_3(-1) 
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Table 10  
Average Return Shocks 

 
Market Commodities Average Return Shocks  

Spot 
Corn -0.064 

Sugarcane -0.016 
Ethanol 0.002 

Futures 
Corn 0.011 

Sugarcane 0.028 
Ethanol 0.008 
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Table 11  
Co-volatility Spillovers 

 

Market （
∂Hij,t
∂εj,t−1

） Average Co-volatility Spillovers 

Spot 

j=corn, i=sugarcane -0.0036 (0.224×0.248×(-0.064)) 
j=sugarcane, i=corn -0.0009 (0.224×0.248×(-0.016)) 

j=corn, i=ethanol 0 
j=ethanol, i=corn 0 

j=sugarcane, i=ethanol 0 
j=ethanol, i=sugarcane 0 

Futures 

j=corn, i=sugarcane 0.0009 (0.187×0.176×0.028) 
j=sugarcane, i=corn 0.0004 (0.187×0.176×0.011) 

j=corn, i=ethanol 0.0005 (0.187×0.323×0.008) 
j=ethanol, i=corn 0.0007 (0.187×0.323×0.011) 

j=sugarcane, i=ethanol 0.0005 (0.176×0.323×0.008) 
j=ethanol, i=sugarcane 0.0016 (0.176×0.323×0.028) 

Note: Co-volatility Spillover = 
∂Hij,t
∂εj,t−1

=  aii × ajj ∙ εi,t−1. 
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Figure 1  
Use of Biomass Energy in USA 

 

 
 
 

 
Source: U.S. Energy Information Administration (EIA). 
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Figure 2  
Bioethanol and Biodiesel 

 
 Bioethanol: mix with gasoline Biodiesel: mix with diesel 

 Corn Sugarcane Sugar Beet 
(Beetroot) 

Soybean Palm oil Rapeseed 

Country 
(%) 
(2014) 

      

Production 
(One 
hundred 
million) 
(2014) 

USA: 361 
China: 216 
Brazil: 80 
World: 1037 

Brazil: 739 
India: 341 
China: 126 
World: 1884 

France: 37 
Russia: 33 
USA: 28 
World: 269 

USA: 107 
Brazil: 86 
Argentina: 
54 
World: 306 

Indonesia: 
29 
Malaysia: 
20 
Nigeria: 1 
World: 57 

EU: 24 
Canada: 16 
China: 15 
World: 73 

Source: Food and Agriculture Organization of the United Nations (FAO), 2014:  
http://www.fao.org/faostat/en/#home  

 
 
  

http://www.fao.org/faostat/en/#home
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Figure 3  

 
 Source: United States Department of Agriculture（USDA）and U.S. Energy 
 Information Administration（EIA). 
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Figure 4  

Historical Prices of Corn and Sugarcane 
 

 

 

Source: FAO STAT. 
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Figure 5  

Corn, Sugarcane & Ethanol Spot and Futures Returns  
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Figure 6  

Unconditional Variance of Corn, Sugarcane & Ethanol Spot and Futures 
Returns 
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Figure 7 

Conditional Volatility for Corn, Sugarcane & Ethanol Spot and Futures Returns 
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Figure 8  

Conditional Co-Volatility for Corn & Sugarcane, Corn & Ethanol Sugarcane,  
& Ethanol Spot and Futures Returns 

 

  

  

  

 

 


