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Abstract

Fixed effects (FE) in panel data models overlap each other and prohibit the

identification of the impact of “constant” regressors. Think of regressors that are

constant across countries in a country-time panel with time FE. The traditional

approach is to drop some FE and constant regressors by normalizing their impact to

zero. We introduce “untangling normalization”, meaning that we orthogonalize the

FE and, if present, the constant regressors. The untangled FE are much easier to

interpret. Moreover, the impact of constant regressors can now be estimated, and

the untangled FE indicate to what extent the estimates reflect the true value. Our

untangled estimates are a linear transformation of the traditional, zero-normalized

estimates; no new estimation is needed. We apply the approach to a gravity model

for OECD countries’ exports to the US. The constant regressors US GDP, world

GDP and the US effective exchange rate explain 90% of the time FE, making the

latter redundant, so the estimated impacts indeed reflect the true value.
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1 Introduction

In a panel data model one uses fixed effects (FE) to capture unobserved heterogeneity.

In these models we have to take care of potential multicollinearity between two sets

of dummy variables corresponding to the FE or between those dummy variables and

the constant regressors, for example country FE and regressors that are constant over

time. A common method to prevent multicollinearity is to set some fixed effects and

impacts of constant regressors to zero; we call this zero normalization. All remaining

parameters can now be estimated. But estimation of the impact of constant regressors

is beyond reach.

We propose a new normalization method called untangling normalization. This

method uses orthogonality between two types of FE and between FE and constant

regressors as normalizations. These are normalizations, not restrictions as used in

random-effects types of approach, so we stay fully within the FE paradigm. Computa-

tion of the untangled estimates is simply a linear transformation of the zero-normalized

estimates without performing a second estimation. Untangling normalization has two

improvements with respect to zero normalization, one regarding interpretation, and the

other one concerning the estimation of the impact of constant regressors, which we now

illustrate.

First, untangling normalization improves the interpretation by disentangling the

combined explanatory power of the FE into separate sources, such as an overall mean

and country deviations from that overall mean. Instead, zero normalization causes

different sources to be ‘tangled’ in one FE. Our method thus simplifies interpretation

of the FE.

For clarification, consider a country-time panel data model with a constant and

country FE. The vector of ones is multicollinear with the country dummies, so we need

one normalization. Zero normalization normalizes either the constant or any of the

other country FE, say i = 1, to zero. In the first case, all country FE contain the

overall constant. In the second case, the constant contains the overall mean and the

country 1 effect, and all other FE are country deviations from country 1. The FE are

‘tangled’. Untangling normalization here sets the mean of the country FE to zero, that

is, it demeans the country dummies making them orthogonal to the vector of ones. This

ensures that the constant captures the common mean and the country FE capture the

country deviations from the mean; the effects are ‘untangled’ and assigned to a separate

FE, easing interpretation1. Now, plotting them can help to obtain ideas of potentially

1This specific example is not new. Suits (1984) already sets the mean of individual effects to zero
and uses it as a normalization to prevent multicollinearity. However, we consider a much more extensive

2



important regressors. So untangling normalization gives a unique normalization rule

and improves interpretation.

The second improvement of untangling normalization is that it allows for estimation

of the impact of constant regressors. The untangled fixed effects then contain what

is left over. If that is small enough (as in our application), those fixed effects can

safely be left out, so that the true impacts of constant regressors are identified. Such

identification is not possible under zero normalization.

We clarify this with an example using a regressor that is constant over time. This

constant regressor is multicollinear with the country dummies. Zero normalization

usually normalizes the constant regressor parameter to zero and therefore does not

exploit its explanatory power. However, untangling normalization orthogonalizes the

country FE with respect to the constant regressor and the remaining country effects are

captured by the country FE. This yields an estimate for the parameter of the constant

regressor. If the country FE are now redundant, one can leave them out and the

constant regressor captures all country-specific variation. This can lead to substantial

efficiency gains as the number of constant regressors is typically much smaller than the

number of countries.

The orthogonality condition we use is not an identifying restriction like in OLS, but

just a normalizaiton. The price we pay for this is that the parameter of the constant

regressor is not the true value but the pseudo-true value. However, the closer the

untangled country FE are to zero, the closer the pseudo-true values are to the true

values. Plotting the untangled FE with their confidence band gives a quick idea of how

small the difference is. Because the estimation of the impact of constant regressors

is a notorious problem in the literature, the untangled estimates are a worthwhile

contribution.

The literature presents alternative methods, such as random effects (RE), fixed

effects vector decomposition (FEVD) by Plümper & Troeger (2007), or the method by

Hausman & Taylor (1981). These use orthogonality conditions as restrictions (not as

normalizations like we do) to identify the parameters of constant regressors. To put it

differently, all existing methods somewhere impose a random-effects type of restriction.

In contrast, our approach does not a priori assume identification of the true values and

is a fully fixed effect approach. For each method we will now elaborate on this.

The RE method imposes additional restrictive moment conditions between the

(stochastic) effects and the it-regressors, regressors varying both over time and coun-

tries. This is not needed for untangling normalization and is typically the reason why

FE-configuration and we even use it to untangle constant regressor parameters and FE.
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FE is preferred over RE.

The FEVD is a two-step estimation method; the first step applies FE using zero

normalization, and the second step regresses the estimated fixed effects on the constant

regressor, and the error term is assumed uncorrelated with the constant regressor, so

the error term is like a RE. It uses weaker orthogonality conditions than RE, because it

does not need orthogonality conditions between the effects and the it-regressors. The

two-step nature of FEVD has three consequences. First, FEVD does not give standard

errors for the estimated effects (the residuals in the second step) because they are

considered to be random. Untangling normalization gives the standard errors of each

country FE. These are important to evaluate the difference between the pseudo-true

and the true value of the constant regressor impact. Second, the estimated covariance

matrix in the second step needs to be adjusted (e.g. Greene (2011)). Untangling

normalization gives the correct covariance matrix straight away, because it is just a

linear transformation of the zero-normalized covariance matrix. This is simpler. Finally,

in FEVD it is not obvious what to include on the left- and right-hand sides in the

second-step regression, as Pesaran & Zhou (2014) emphasize.

Hausman & Taylor (1981) propose an instrumental variables method to estimate

the impact of constant regressors. They propose three different types of instruments:

variables from outside the model, it-regressors, or constant regressors from the model.

All types of instruments are assumed to be uncorrelated with the common effects of

interest, which are treated as random variables. For example, in case country-specific

regressors are used as instrument, they are uncorrelated with the country effect, which

is the same restriction as in FEVD; see Breusch et al. (2011a) for a detailed analysis.

Our method does not rely on external instruments or such RE type of restrictions.

We apply untangling normalization in a gravity model for exports from 17 OECD

countries to the US. We show that the untangled time FE are indeed easier to interpret.

They reveal the time-specific development that is missing from the included it-regressor

and suggest the importance of three constant regressors, namely US gdp, world gdp and

US effective exchange rate. The gravity literature suggests that these three constant

regressors matter as well, but the problem is that their effects cannot be estimated

using the zero-normalized FE approach. Untangling normalization allows us to exploit

these three constant regressors and estimate their parameters, albeit that they are the

pseudo-true values. The three constant regressors explain 90% of the time deviations.

Investigating the remaining untangled time FE demonstrates that their contribution to

the model is redundant. This implies that the estimated constant regressor parameters

indeed match the true values, a result that could not have been established with zero
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normalization.

The paper is organized as follows. We start by introducing the model and discuss

the identification problem in Section 2. In Section 3 we discuss zero normalization and

how we can estimate the identified model. Section 4 introduces our new approach,

untangling normalization. In Section 5 we show how to transform zero-normalized

estimation results to any general normalization that is linear in the parameters, and

apply it to untangling normalization. We apply untangling normalization in Section 6

to a gravity model. Finally, Section 7 concludes.

2 Model specification and identification problem

In this section we introduce the model specification that we use throughout the paper.

We consider a two-dimensional balanced panel data model with dimensions i (e.g.

country) and t (e.g. time); generalization are left for future research. There are N

countries and T time periods. All vectors are column vectors unless stated otherwise.

The dependent variable yit is modeled by

yit = α+ αi + τ · t+ τi · t+ θt + v′iν + w′tω + x′itβ + εit, (1)

where εit is the error term. This model contains two main features. The first one is

the inclusion of deterministic variables, the different fixed effects (FE) types. We have

three FE-families, each targeting a specific dimension of the data. The α-family targets

the mean a cross countries. It has a homogeneous type, denoted by the parameter α,

and a heterogeneous type, denoted by αi. The τ -family targets the linear trends across

countries. It has a homogeneous type, τ , and a heterogeneous type τi. Finally, the

θ-family targets the variation over time. It only has a heterogeneous type, θt. In total

we have Kd FE.

The second feature of model (1) is that it has i-, t-, and it-regressors. The vector vi

of length Kv depicts all variables that are constant over time. The vector wt of length

Kw captures all variables constant over countries. Finally, all variables that vary over

countries and time are represented in the vector xit of length Kx.

It is sometimes convenient to use (1) in matrix-form, where the time series of the

countries are stacked. All Kd deterministic variables are contained in the deterministic

D matrix and the FE parameters in vector δ = [α, α1, . . . , αN , τ, τ1, . . . , τN , θ1, . . . , θT ]′.

Both country and time-specific variables are stacked into Z, such that row it becomes

[v′i, w
′
t], consisting of in total Kz = Kv+Kw regressors and its corresponding parameter

vector is γ = [ν ′, ω′]′. Finally, all observations of variables varying both over countries
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and time are stacked in X. We assume that all regressors in Z and X are linearly

independent from all other regressors in Z and X, that is, [Z,X] has full column rank.

Hence, the model in matrix notation becomes

y = Dδ + Zγ +Xβ + ε, (2)

where y and ε stack all yit and εit, respectively.

Not all parameters are identified due to multicollinearity. For example, increasing

α by a number and decreasing all αi by the same number yields the same value of y. So

the first 1 +N columns in D are linearly dependent. Also the presence of both vi and

country dummies and both wt and time dummies lead to multicollinearity. Therefore,

we have to introduce several normalizations to ensure all parameters are identified, and

only then we can estimate the model.

3 Traditional approach: zero normalization and estima-

tion

3.1 Zero normalization

The easiest and most common way to circumvent multicollinearity in (2) is by zero

normalization, which sets parameters to zero. The multicollinearity problem only man-

ifests itself in [D,Z], because all variables in X, varying over countries and time, are

linearly independent from D, Z and each other. We first discuss zero normalization due

to multicollinearity in D and later include Z. To denote zero-normalized parameters

we put a 0 superscript.

Consider, for example, a panel data model with α and αi. To circumvent multi-

collinearity of the variables underlying α and αi, we need one normalization. Most

software packages use zero normalization, but this does not offer us a unique normal-

ization. Typical choices are to normalize α or one specific αi to zero. If we normalize α

to zero, the country FE parameter α0
i is the overall mean plus some country effect. If

we normalize αi to zero for i = 1, say, α0 is the overall mean plus the effect of country

1, and all remaining α0
i represent the country deviations from country 1. In either

way one column in the regressor matrix can be dropped, so that zero normalization

ensures that the stripped regressor matrix has full column rank such that the rest of

the parameters of the model can be estimated.

This example reveals the first disadvantage of zero normalization. The interpre-

tation of the parameters differs over the different zero normalizations and in all cases
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interpretation is difficult because different effects are ‘tangled’ in the remaining param-

eters.

In general, the dummy matrix D has column rank Kd−md, where md is the number

of multicollinearities, i.e. dependent columns, within D. The value of md depends on

the FE-configuration. To prevent multicollinearity in D we need to perform md zero

normalizations in δ. The Kd vector containing the md zero-normalized FE parameters

and all other Kd −md FE parameters is denoted by δ0. We distinguish δ0 from δ to

highlight that it has been identified using the zero normalization.

There is not only potential multicollinearity within the D matrix, but also between

D and Z. If the model contains country FE αi and country-specific regressors vi, then

the country dummies span vi, leading to multicollinearity. The common approach is

to normalize Kv parameters to zero to ensure that after stripping the regressor matrix

has full column rank. The most common way is to normalize all Kv elements in ν to

zero. The corresponding zero-normalized parameter vector is denoted by ν0 = 0.

Similarly, time dummies and wt variables are multicollinear. If both are present in

the model, one typically normalizes all Kw elements in ω to zero and the corresponding

zero-normalized parameter vector is denoted by ω0 = 0. If ν or ω is normalized to

zero, γ0 is the encompassing zero-normalized parameter vector. The number of mul-

ticollinearities between Z and D is given by mz and depends both on the FE- and

Z-configuration in the model.

This example shows the second disadvantage of zero normalization; one does not

exploit the explanatory power of the constant regressors.

In summary, the column rank of the complete regressor matrix in (2), [D,Z,X], is

Kd+Kz+Kx−md−mz and md+mz parameters in [δ′, γ′]′ are normalized to zero. We

emphasize two properties of zero normalization, namely the interpretation differs over

different zero normalizations and is cumbersome in all cases, and it cannot exploit the

explanatory power of the constant regressors. The attractiveness of zero normalization

is that parameters are easy to estimate. We now discuss estimation that exploits this,

after which we will show how our approach improves regarding the two disadvantages.

3.2 Estimation

If we normalize a parameter to zero, we in practice just omit the corresponding variable

in the regressor matrix. This results in a compact set of Kd + Kz + Kx − md − mz

independent regressors. The corresponding stripped parameter vector has the same

length.

It does not matter with what kind of estimation method we estimate the parameters,
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as long as the FE and constant regressors enter linearly into the explanatory part of

the model. For example, if the regressors are uncorrelated with the error term, one

typically uses the least squares dummy variable (LSDV) estimator. But in the gravity

model application, we will show that our approach also works if one prefers imposing

other assumptions and using Poisson pseudo maximum likelihood for estimation, as

proposed by Santos-Silva & Tenreyro (2006).

After estimation, we place back the zero-normalized parameters such that we obtain

δ̂0 and γ̂0 of length Kd and Kz, respectively. We insert rows and columns of zeros into

the estimated covariance matrix corresponding to the zero-normalized parameters such

that we get V̂ 0. We now have zero-normalized estimates for all parameters and the

corresponding covariance matrix.

4 New approach: untangling normalization

4.1 General idea

The general idea of untangling normalization is to prevent multicollinearity between

two sets of variables by making the parameters orthogonal to each other and use this as

normalization. We can now interpret the parameters of the first set as a deviation on

the second set of parameters; we have untangled the parameter estimates. We use two

examples to get a better understanding of our approach and illustrate the improvements

of untangling normalization with respect to zero normalization. Untangled parameters

are denoted with a u superscript.

Our first example focusses on multicollinearity within the deterministic D in model

(2), so we ignore Z for now. We use the simple panel data model of Section 3.1, a

model with a constant α and country FE αi. We need one normalization.

Zero-normalization causes the overall mean and the country effects to be ‘tangled’

into the estimated FE, as we have shown in Section 3.1. Untangling normalization

sets the mean of the country FE αi to zero. Now, the untangled constant αu, the

homogeneous FE-type, captures the common mean, and the untangled country FE αui ,

the heterogeneous FE-type, captures the country deviations from the mean. So both

effects do not interfere with each other and are assigned to separate parameters, easing

interpretation. This can help us to identify potentially important regressors based on

the estimated untangled αui .

Note that it is important to include a constant in the model, otherwise αi would

also capture the common mean, which would hamper interpretation.

In the second example we introduce multicollinearity between D and Z by adding
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the variables vi to our first example. This leads to multicollinearity between the country

dummy variables and vi, and to prevent this we need Kv normalizations in addition to

the one above.

Zero normalization normalizes all Kv parameters in ν to zero, so the information in

the constant regressors vi is not used. To be able exploit the constant regressors vi we

use untangling normalizations. They set all variables in vi orthogonal to the country

FE, like the OLS moment condition that sets regressors orthogonal to the error term.

In this way the untangled parameters αu and νu are identified, and the αui capture the

remaining country effects orthogonal to vi and the vector of ones2.

In general, the untangled parameter νu is not the true but the pseudo-true value of

the impact of vi. However, if the remaining country effects αui are zero, then leaving

them out does not affect the error term, so it will not cause omitted variable bias, and

νu becomes the true value. Hence, if we capture all country effects by adding vi, we

estimate the true value of ν. Because we have estimates of αui and know their estimated

variance, we can test whether it is safe to leave out the country FE and interpret the

estimated νui as true values. Dropping country FE can lead to substantial efficiency

gains if the number of countries is larger than the number of constant regressors.

In the subsequent part of this section we will discuss untangling normalization for

each FE-type and constant regressor separately. Finally, we will discuss similarities of

untangling normalization with alternative estimation methods.

4.2 Untangling fixed effects

We start by introducing all untangling normalizations for different FE-types.

Constant: α

Because the overall constant α is the most homogeneous FE-type in the FE configura-

tion, we do not normalize it. We want it to capture the overall mean of all observations.

Country-specific effects: αi

We need one normalization to prevent multicollinearity between country dummies and

the vector of ones. To untangle the country FE αi from the constant α, we normalize

2It is also possible to add Mundlak (1978) terms to vi, that is, the mean of xit over time, denoted
by x̄i.. This allows for an even more general model specification. In our application in Section 6, the
addition of Mundlak terms does not influence our results because the mean over countries of all xit
variables is already proxied by an actual economic variable in wt. For simplicity we ignore Mundlak
terms here.
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the mean of αi to zero, so that the untangled αui capture the country deviation from

the overall mean αu ∑
i

αui = 0. (3)

Common trend: τ · t

Just as α, we do not normalize the common trend parameter τ , irrespective of any

FE-configuration. We want it to capture the common trend of all observations and

there is no more homogeneous trend FE-type than τ · t.

Country-specific trends: τi · t

Similar to αi, we perform one normalization on the country trend variable because

there is a common trend variable in the model. We normalize the mean of the country

trend FE τi · t to zero, so that the untangled τui · t captures the country deviation upon

the common trend τu · t ∑
i

τui = 0. (4)

Time-specific effects: θt

Finally, we have the time FE θt. We need one normalization to prevent multicollinearity

between the time dummies and the vector of ones. We normalize the mean of θt to

zero, such that the untangled time effects θut are untangled from αu and αui , and they

can be interpret as the time deviation from the overall mean:

∑
t

θut = 0. (5)

Time FE θt also pick up trends. Because we have a common trend in our model, this

leads to multicollinearity between time dummies and the trend variable. To prevent

multicollinearity and untangle θt from τ · t and τi · t, we orthogonalize θt with respect

to the trend. This ensures that θut is trendless and can be interpreted as time deviation

from the common trend. Hence, the second untangling normalization for θt becomes

∑
t

θut · t = 0. (6)

In summary, by choosing normalizations smartly we manage to untangle all the

different FE-types from each other. In this way each FE-type has a separate function

in the model, easing interpretation.
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4.3 Exploiting constant regressors

We can also apply our untangling normalization method to estimate both the impact

of non-deterministic variables (e.g. vi) and a FE-type (e.g. αi), both varying solely

over the same dimension.

Country-specific regressors: vi

To prevent multicollinearity between vi and the country dummy variables and untangle

ν from αi we need Kv untangling normalizations. We project the country effects on the

null space of vi and use these orthogonality conditions as untangling normalizations.

Hence, we get the following Kv normalization conditions, one for each regressor k in

vi: ∑
i

αui v
k
i = 0. (7)

Time-specific regressors: wt

In a similar way, we have to prevent multicollinearity between wt and the time dummy

variables. We normalize and untangle the parameters ω from θt by projecting the time

dummies on wt resulting into Kw normalizations, one for each regressor k in wt:∑
t

θut w
k
t = 0. (8)

4.4 Differences with other methods.

Existing approaches like random effects (RE) and fixed effects vector decomposition

(FEVD) use similar orthogonality conditions as our approach. The key difference is that

in our method the orthogonality conditions are just normalizations and not restrictions.

In other words, all these other methods impose at some point types of RE restrictions,

while untangling normalization just applies FE. In the remainder of this section we

will compare our untangling normalization method with respect to existing methods in

more detail.

Zero-normalized fixed effects

Untangling normalization is based on FE. Hence, the estimates β̂ for the it-regressors

are identical whatever the normalization, the traditional zero or our untangling nor-

malization. However, untangling normalization allows us to better interpret the FE

estimates. This allows us to identify potentially important constant regressors and

exploit their explanatory power, as explained in Section 4.
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Random effects

In a RE approach, the effects, such as αi, are random variables. To estimate (2)

with RE, one typically imposes the following two moment conditions: E {xitαi} = 0

and E {viαi} = 0; similar moment conditions are needed for the other effect types.

This is where untangling normalization differs from RE. Our method does not need

orthogonality of αi and xit. Moreover, we do not impose orthogonality of vi as a

restriction, but only as a normalization. The FE nature of our approach makes it more

robust, which is why FE is often preferred over RE. Still, if all RE restrictions happen

to hold, the RE estimator will be more efficient.

Fixed effects vector decomposition

The fixed effects vector decomposition (FEVD) by Plümper & Troeger (2007) is a two-

step estimation method. First, it estimates the FE parameters using the same methods

as described in Section 3. The second step uses the vector of estimated FE (e.g. αi)

as dependent variable and explains it with constant variables (e.g. vi), treating the

remainder as a random variable, that is, a RE. The residuals are estimates of the

effects left unexplained by the constant regressor.

This two-step method differs from untangling normalization. First, unlike our ap-

proach, FEVD does not give standard errors for each remaining country effect sepa-

rately, because they are the residuals of the second estimation. These standard errors

are important to evaluate the difference between the true and pseudo-true values of the

impacts of the constant regressors.

Second, the standard errors obtained in the second regression need to be adjusted,

as argued by Breusch et al. (2011b) and Greene (2011), who also propose similar cor-

rections. Untangling normalization does not perform a second regression. Instead, the

untangled parameter estimates and standard errors just follow from a simple linear

transformation of the estimated zero-normalized estimation results. So the untangled

normalized standard errors need no correction as with FEVD.

Third, it is not clear what to include on the right- and left-hand sides (RHS and

LHS, respectively) in the second-stage regression. On the RHS of the second-stage

regression Plümper & Troeger (2007) only include wt. Pesaran & Zhou (2014) show

that it is important to also include a constant to avoid estimation bias. Conditional

on having a trend, this raises the question whether one also has to include the overall

trend τ · t on the RHS, a question that we will explore and answer positively in the

application section.

On the LHS Plümper & Troeger (2007) include the estimated αi, but one could
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also consider including the estimated constant. In more extensive models like (1), the

number of choices becomes even larger. All these different choices for both the RHS

and LHS make it difficult for the empirical researcher, and it is easy to make mistakes.

Untangling normalization avoids such choices, because it transforms all estimated fixed

effects in a unique way.

5 Implementing a renormalization

We have discussed zero normalization, estimation, and untangling normalization. This

section will show how to transform the parameters δ0 and γ0 into another general-

normalized parameter set δg and γg (containing the untangled parameters δu and γu as a

special case) as long as the normalization is linear in the parameters3. Renormalization

is just a redistribution of the total effect Dδ0 + Zγ0 over Kd +Kz general-normalized

parameters, resulting in Dδg + Zγg; no new estimation needed. All we need is a

set of equations to solve for the unknown parameter vector [δg′, γg′]′. Note that β

does not change due to the renormalization, because the columns in X are linearly

independent from [D,Z] and therefore we do not need to (re)normalize β. We will first

show renormalization in general and next we will zoom in into untangling normalization.

5.1 General linear renormalization equations

To obtain the renormalized parameter vector [δg′, γg′]′ from the zero-normalized pa-

rameter vector
[
δ0′, γ0′

]′
, we need to have at least Kd + Kz independent equations to

solve the system of equations for [δg′, γg′]′.

We obtain the first set of equations from the fact that after renormalization the

total value explained for each observation must stay the same. Hence, we obtain

Dδg + Zγg = Dδ0 + Zγ0. (9)

These are NT equalities, but only Kd+Kz−md−mz are actually independent equations

because that is the column rank of the regressor matrix [D,Z], as derived in Section

3.1. Hence, for the system of equations to be fully identified we need at least md +mz

additional equations. For this we use the zero- and g-normalizations.

First, we introduce the zero normalization matrix N0 that selects the md + mz

zero-normalized parameters. For example, consider the simple model without Z and

only a constant and country FE, depicted in D, so we need only one normalization. If

3It is also possible to start the transformation from any other set of general-normalized parameters,
as long as these normalizations are linear in the parameters as well.
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we normalize the constant to zero, we get N0 = [1, 0, 0, .., 0], where N0 is a 1 +N row

vector. Instead, if we normalize country FE i to zero, we get N0 = [0, .., 0, 1, 0, .., 0],

where the 1 + ith element in N0 equals one. Likewise, in our general model, a row

in N0 has a 1 at the place corresponding to a zero-normalized parameter. The zero

normalization in matrix-form thus becomes

N0

[
δ0

γ0

]
= 0. (10)

Next, we setup the g-normalization matrixNg containing allmd+mz normalizations

belonging to the g-normalization. It is4

Ng

[
δg

γg

]
= 0. (11)

Combining (10) and (11) gives md + mz extra equalities. Together with (9) the

number of independent equations is now equal to the number of unknown parameters

in [δg′, γg′]′ and we can solve for the latter. The system of equations can be written as[
D Z

Ng

][
δg

γg

]
=

[
D Z

N0

][
δ0

γ0

]
. (12)

5.2 Solving for general-normalized parameters

We simplify (12) to

Rg

[
δg

γg

]
= R0

[
δ0

γ0

]
, (13)

where the definitions of Rg and R0 follow from (12). To solve for [δg′, γg′]′, we start

by pre-multiplying (13) with Rg′. The resulting matrix on the left-hand side of the

expression becomes a square matrix with full column rankKd+Kz and is thus invertible.

Hence, [
δg

γg

]
= R0g

[
δ0

γ0

]
, (14)

4We can generalize (11) by allowing the right-hand-side to be a non-zero vector cg, where all elements
can be any number. All subsequent expression can be easily changed accordingly. However, for ease of
notation we restrict the right-hand-side of (11) to be equal to 0.
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where R0g is the renormalization-matrix that converts zero into general normalization5

R0g =
(
Rg′Rg

)−1
Rg′R0. (15)

It only consists of observables.

To obtain the g-normalized covariance matrix V g
δγ corresponding to δg and γg we

use R0g to transform the zero-normalized covariance matrix V 0
δγ regarding δ0 and γ06

V g
δγ = R0gV 0

δγR
0g′. (16)

An advantage from a practical point of view is that no additional estimation or standard

error correction is needed.

5.3 Renormalization applied to untangling normalization

To solve for the untangled normalized parameters, we can just use (14) except for re-

placing Ng in R0g by the Nu matrix. We show how to construct the Nu matrix based on

the untangling normalizations in Section 4. The order of parameters in Nu is the same

as in (1). Hence, the untangling normalization matrix Nu consists of seven blocks cor-

responding to the parameters involved in the normalization [α, αi, τ, τi, θt, ν
′, ω′], where

each block has the following number of columns [1 N 1 N T Kv Kw]. Subsequently, we

suppress the length of each block for ease of notation and we use 0 and 1 to denote

blocks of zeros and ones, respectively. We assume that all FE-types and variables vi

and wt are present in the model. If not, its corresponding block must be omitted from

the Nu matrix.

For example, the first row of Nu, where we normalize the mean of αi to zero

because of the constant, is [0, 1, 0, 0, 0, 0, 0], where the 1 is a row of ones with length

N , as explained above. Indeed, if we combine this with (11), we get (3).

5The renormalization-matrix R0g depends on the matrix multiplication Rg′Rg. Multiplying Rg with
itself can lead to large or small numbers, and for numerical reasons it might be better to avoid this.
A solution is to use Gaussian elimination to select all Kd + Kz independent rows in Rg, making the
resulting R̃g a square matrix of full rank. To maintain the equalities, we select the same rows in R0 and
obtain the square matrix R̃0. We can replace Rg and R0 in (15) by R̃g and R̃0, respectively, and get

the R̃0g =
(
R̃g
)−1

R̃0, which we then use in (14) instead of R0g. So we have avoided the multiplication

of Rg with itself and this method yields the same g-normalized parameters as when we use (15) as
renormalization matrix.

6In some cases it might be important to also obtain the covariances corresponding to β and δg or
γg. Then we need to extend (13) by appending [X ′, 0′]

′
to the right of both R0 and Rg and extending

the g- and zero-normalized parameter vectors with β, such that the renormalization-matrix R0g has
dimension Kd +Kz +Kx. Now we can transform the complete zero-normalized covariance matrix V 0

to V g, similar to (16), obtaining the complete g-normalized covariance matrix.

15



We get the following untangling normalization matrix based on normalizations (3)-

(8):

α αi τ τi θt ν ′ ω′ Nu row implements

Nu =



0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 1...T 0 0

0 v1...vN 0 0 0 0 0

0 0 0 0 w1...wT 0 0


;

∑
i α

u
i = 0∑

i τ
u
i = 0∑

t θ
u
t = 0∑

t θ
u
t · t = 0∑

i α
u
i v

k
i = 0∑

t θ
u
t w

k
t = 0

.
(17)

We see that the complete two blocks corresponding to γ consists of zeros. So there

are no normalizations on γ.

6 Application: untangling the gravity model

We can apply the new untangling normalizaton method to various economic models to

obtain parameter estimates which used to be infeasible before due to the added FE.

Take for example the gravity model.

6.1 The gravity model

The general idea of the gravity model is that export between two countries depends

positively on both the exporting and the importing country’s GDP divided by world

GDP and negatively on distance, where distance can be both physical and economic

distance between countries. One proxy for economic distance is the trade costs between

two countries.

The most common gravity model is that of Anderson & Wincoop (2003). They

show that, besides bilateral trade costs, it is important to include multilateral resistance

terms for the importer and exporter to avoid estimation bias. However, the problem is

to find economic variables that can serve as a proxy for these terms.

One approach to nevertheless control for the multilateral boundaries, is to intro-

duce country-time FE. A disadvantage is that the underlying dummies are perfectly

multicollinear with country- and time-specific variables, such as exporter’s, importer’s

and world GDP, and the corresponding parameters are therefore not identified.

As an alternative, we apply our untangling normalization method. Afterwards we

can test whether the remaining FE still matter. If not, they can be left out and we

have estimated the previously unidentified parameters.
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6.2 Model specification

Typical panel data gravity models consider exports from country i to j in year t. To

keep our application simple and in line with previous sections, we only look at export

towards one country j, the US, reducing the dimensions of the data from three to two

(see Klaassen & Teulings (2015) for a three dimensional application). We add exporter,

US and world GDP, as suggested by the gravity model. Furthermore, we use the theory

from Klaassen & Teulings (2015) as a motivation to add the bilateral exchange rate

and also the exporter and US effective exchange rates, where the latter two serve as

proxy for the exporter’s and US’ multilateral boundary, respectively. All variables are

in logs and real terms.

We add the general set of FE. Given our two-dimensional approach, these are the

exporter and time FE and the exporter trend FE. The exporter effects control for

distance between the exporting country and the US, common language with the US,

and so on. Time effects capture global and US-specific developments, such as oil shocks,

the recent financial crisis, and US dollar swings. Exporter trend effects control for

the strong trends in exports and GDP, reflecting the typical approach in time series

modeling, and following Bun & Klaassen (2007) and Baier et al. (2014).

Hence, the model becomes:

expiUSt =β1gdpit + β2reriUSt + β3reerit + γ1gdpUSt + γ2gdpWt + γ3reerUSt

+ α+ αi + τ · t+ τi · t+ θt + εit,
(18)

where expiUSt represents real export from country i to the US in year t, gdpit, gdpUSt

and gdpWt are real GDP of country i, the US and the world, respectively, reriUSt is

the real exchange rate between country i and the US (the number of goods basket of

country i to be paid for one US basket) and finally reerit and reerUSt are the real

effective exchange rates (reer) of country i and the US, respectively. So we have three

it-regressors, which vary over both countries and time, and three t-regressors, which are

constant across countries but vary over time. We assume that all explanatory variables

are uncorrelated with the error term εit. We allow εit to be heteroscedastic and serially

correlated and we assume it is not cross-sectionally correlated.

Specification (18) is sufficient to illustrate our method. Our main results are robust

against different model specifications, such as adding dynamics, omitting country trend

FE, and accounting for non-stationarity and cointegration, as we will show.

In the rest of this section we compare the estimated zero-normalized time FE θ0t

with the estimated untangled time FE θut . We use the estimated θut and gravity theory

to come up with three t-regressors, US GDP, world GDP and US reer, that can explain
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the estimated θut . We investigate how much of θut can be explained by these regressors

and whether the remaining θut can safely be left out.

6.3 Data

We focus on N = 17 countries and their exports to the US, namely the EU-15 countries

except for Belgium and Luxembourg7, Canada, Japan, Norway and Switzerland. Our

data run from 1965-2011 (T = 47) resulting into 799 observations.

We use monthly nominal export data from the IMF Direction of trade statistics

(DOTS) and convert it from US dollars into home currency using the monthly nominal

exchange rate from the International Financial Statistics (IFS) of the IMF. We average

the converted nominal export to get yearly averages. To change these into real data we

use the yearly export price index from the AMECO database provided by the European

Commission.

Nominal yearly GDP data are from AMECO, where we us the exchange rate from

AMECO to denominate it in the national currency. To construct real GDP data we use

the AMECO GDP deflator. West-German GDP is used as a proxy for German GDP

before 1991. We take real world GDP from the OECD Economic Outlook.

We construct the real exchange rate with the monthly nominal exchange rate from

the IFS. First, we calculate yearly averages. Next, we multiply the nominal exchange

rate by the ratio of the US GDP deflator over the GDP deflator of country i.

Finally, we use consumer-price-based monthly reer data from the Bank for Interna-

tional Settlements (BIS) and construct yearly averages. We invert the outcome such

that an increase in reer coincides with a depreciation of the currency.

6.4 Zero normalization and estimation

Before we can estimate static model (18), we implement zero normalization to prevent

multicollinearity. We normalize the last country FE αN and trend FE τN to zero to

break the dependence between α and αi and between τ and τi. To prevent multi-

collinearity regarding the time FE and α and τ we normalize the latter two to zero.

Finally, we normalize all γ to zero.

Unless reported otherwise, we use the LSDV estimation method. We apply Newey-

West standard errors with optimal lag structure (see Newey & West (1987, 1994)) to

correct for heteroscedasticity and serial correlation in εit. The estimation method is

7Austria, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal,
Spain, Sweden, United Kingdom
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Figure 1: Two different zero normalizations and their impact on the time FE θ0t .

(a) α = τ = 0 (and αN = τN = 0). (b) θT−1 = θT = 0 (and αN = τN = 0).

Table 1: Estimation results for expiUSt based on (18).

Include θt No Yes

DL-extension No No Yes No No Yes
Model 1 2 3 4 5 6

gdpit 1.61* 1.15* 1.38* 1.23* 1.23* 1.40*
(0.17) (0.18) (0.19) (0.20) (0.20) (0.20)

reriUSt 1.05* 0.74* 0.76* 0.58* 0.58* 0.71*
(0.07) (0.15) (0.20) (0.21) (0.21) (0.22)

reerit -0.64* -0.51* -0.48* -0.34 -0.34 -0.43
(0.17) (0.20) (0.23) (0.24) (0.24) (0.25)

gdpUSt 3.02* 2.29* 2.95* 2.25*
(0.30) (0.38) (0.30) (0.39)

gdpWt -0.54 -1.38* -0.62 -1.34*
(0.40) (0.47) (0.39) (0.47)

reerUSt -0.32 -0.44 -0.50* -0.54*
(0.20) (0.24) (0.24) (0.27)

F-test θut = 0 – – – 7.85 1.78 1.26
p-value – – – 0.00 0.00 0.15

Model 3 and 6 display the long-run effects estimates in a DL model including
two lags of each regressor. Standard errors are between brackets. * indicates
significance at 5% level.
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more extensively described in Section 3. We use a 5% significance level throughout the

paper.

Figure 1a displays the estimated zero-normalized time FE θ0t and the confidence

band. The mean is highly negative, reflecting that the θ0t are disturbed by the overall

means of the dependent and explanatory variables, as we have normalized α and αN

to zero. The θ0t exhibit some variation over time but, this is hard to analyze.

Instead of the constant and common trend, we can also normalize two time FE to

zero, for example the last two, as is displayed in Figure 1b. This leads to downward

sloping and mostly insignificant θ0t estimates with a positive mean. This complete

change compared to Figure 1a exemplifies the impact different zero normalizations

have on the FE estimates.

Table 1 presents the estimation results. The estimates of Model 4 underly the

figures just discussed. The sign of the parameter of each it-regressor is consistent

with the economic intuition of the gravity model, though the estimate for reerit is not

significant. If exporter’s GDP increases, the exporting country produces more goods

reducing its good prices and therefore increasing export to the US. If the exchange rate

increases, the exporter’s currency depreciates vis-a-vis the dollar and its goods become

cheaper, so export to the US increases. Finally, an increase in the reer of country

i means a depreciation of its currency against all currencies in the rest of the world

(RoW) as a whole. Therefore, country i becomes cheaper for RoW and the demand for

the products of country i increases leading to rising prices. Because country i is now

more expensive for the US, its export to the US becomes smaller.

6.5 Untangling normalization

Now we apply untangling normalization to the zero-normalized time FE θ0t in Figure

1. In Section 6.5.1 we look at a model without t-regressors and show the improved

interpretation of the untangled time FE θut . Next, we introduce t-regressors in Section

6.5.2 and show they explain a large part of time-specific development. Finally, in

Section 6.5.3 we introduce distributed lags (DL) into the model leading to our baseline

specification.

6.5.1 Static model without t-regressors

Figure 2a illustrates the first main contribution of untangling normalization: the esti-

mated FE are more informative and can be easily interpreted compared to the zero-

normalized θ0t in Figure 1. Figure 2a presents the estimated untangled time FE θut

from Model 4 after we untangle the time FE from the constant and the common trend
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Figure 2: Untangled time FE θut : without and with t-regressors.

(a) Static Model 4, without t-regressors.

(b) Static Model 5, with t-regressors.

(c) DL Model 6, with t-regressors.
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by normalizing its mean and trend to zero. We recognize a business cycle. Notice

the first and the second oil crises, the dot-com bubble and, clearly visible, the financial

crisis. We also see dollar exchange rate effects, such as the dollar bubble in the eighties,

stimulating and then hampering exports to the US.

We perform an F-test to test the null hypothesis that all estimated θut equal zero

in Model 48. The null hypothesis is clearly rejected, as displayed in Table 1. The it-

regressor estimates are sensitive to leaving out the time FE due to an omitted variable

bias, as the comparison between Model 1 and 4 indicates.

6.5.2 Static model with t-regressors

The untangled θut in Figure 2a suggest the relevance of GDP, explaining the business

cycle effect, and external value of the dollar. The theoretical gravity model suggests

that US GDP, world GDP and US reer matter for export to the US. So we add these

three t-regressors to the model. The traditional zero normalization does not exploit

these potentially powerful regressors because it normalizes γ = 0.

Figure 2b shows the second main contribution of untangling normalization: it is

capable of exploiting t-regressors. After all, it displays the untangled time FE if we

include US GDP, world GDP and US reer, and the difference with 2a is striking. These

three t-regressors explain most of the variation in the untangled time FE, quantified by

R2 = 84%. This high explanatory power is supported by the small difference between

the parameter estimates of Model 5 and Model 2 in Table 1, where in the latter model

we omitted the time FE. This indicates that all estimates hardly suffer from an omitted

variable bias if we omit the time FE. Hence, we can explain most of the T = 47 time

FE by just three variables. Still, for some periods the time FE differ from zero. This

is supported by the F-test in Table 1 rejecting the null hypothesis that all θut = 0.

So far we have only looked at the joint contribution of the three t-regressors in

explaining the estimated θut . We now evaluate their individual contributions. To ex-

amine the relevance of US GDP, we re-estimate Model 5 while leaving US GDP out as

regressor. The resulting estimated θut are represented by the solid black line in Figure

3a. To make US GDP comparable with the estimated θut , we demean and detrend US

GDP, and to improve visibility we rescale transformed US GDP by multiplying it with

the ratio of the standard deviation of the estimated θut over the standard deviation of

transformed US GDP. This gives the dashed line in Figure 3c. We see a striking re-

8The degrees of freedom (df) of the F-test are given by (T −mθ −Kw, NT −Kd−Kx +md), where
mθ is the number of untangling normalizations in θt. For example, for the last column in Table 1 the
df are (34,679).
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Figure 3: Untangled time FE θut : the explanatory contribution of each t-regressor.

(a) Model with gdpWt and reerUSt. Dotted line:
gdpUSt.

(b) Model with gdpUSt and reerUSt. Dotted
line: gdpWt.

(c) Model with gdpUSt and gdpWt. Dotted line:
reerUSt.

The subcaption shows which two t-regressors are included to estimate θut (solid line). The other t-variable is
plotted (dotted line) after detrending and demeaning the t-variable and scaling it with a scaling factor, i.e. the
ratio of the standard deviations of θut over that of the transformed t-variable. We multiplied world GDP and US
reer with minus one (Figure 3b and 3c respectively).
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semblance. The estimated θut almost exactly mimics the US business cycle. Hence, US

GDP is important in explaining θut , which is supported by the high partial R2 = 79%.

In a similar way we study the relevance of world GDP and US reer, except that we

multiply both by minus one for ease of comparison. Figure 3b reveals that resemblance

between the estimated θut and world GDP is weak. This is supported by the low partial

R2 = 8%.

Finally, in Figure 3c we look at the relevance of US reer. The estimated θut and US

reer clearly exhibit the dollar swing in the eighties. The resemblance between US reer

and the estimated θut is visible but not as striking as with US GDP, and the partial

R2 = 49% is therefore also lower.

6.5.3 Dynamic model with t-regressors

Until now, we have not exploited the explanatory power of lagged it- and t-regressors

and the dependent variable itself. Including it-regressors may take some noise out of

the estimated θut , and including t-regressors may help to explain the θut . Hence, we

introduce dynamics in (18).

There is economic motivation for adding dynamics to an empirical gravity model.

Often traders write down contracts in the previous period to export goods this period

and often also for the future. There can also be dynamics in export itself. Export in

the previous period might be important for explaining export in the current period by

for instance habit formation (see for instance Mayer (1980) and Vatan (2013)).

One can capture dynamics with an autoregressive distributed lag (ADL) model or

with a DL model with autoregressive errors. Both models are very similar. We use a

DL model, because in an ADL framework part of the dynamics in the time FE will

be taken over by lagged export terms, even though this dynamics might actually be

driven by time-specific developments. Moving such dynamics to the lagged export term

hampers the interpretation of the untangled time FE. The DL approach is better able

to separate the sources of dynamics. Finally, an ADL model does not affect our finding

that time-specific developments can be explained by US GDP, US reer and world GDP.

Again we opt for adjusting the standard errors following Newey & West (1987), instead

of modeling the serial correlation in the error term explicitly.

We add two lags in our DL model, in the form of the first difference for each

independent variable and its lag, for example ∆gdpit and ∆gdpi,t−1. In this way the

parameters of the level variables capture the long-run effects and are comparable to the

static model parameters. Including more lag terms is not necessary and leads to the

same main conclusion. We only report and discuss the DL long-run effect estimates.
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Figure 2c shows the estimated θut for the DL model with t-regressors. They are close

to zero. This is confirmed by the F-test, which cannot reject the null hypothesis that all

θut = 0. We find that the t-regressors explain the estimated θut almost completely, with

R2 = 91%. If we adjust for the large number of DL parameters we find the adjusted

R2 = 88%.

Model 6 Table 1 displays the underlying estimation results. Almost all the signs in

Model 6 are in line with the gravity model. The β estimates in Model 6 all have the

correct sign and are comparable to Model 4, as discussed in Section 6.4. We here focus

on the γ estimates. US GDP has a positive effect on exports to the US because an

increase in US GDP means that the US has more income and is able to import more

from country i. World GDP has a negative impact because of two reasons. First, if

world GDP increases, the demand for the goods of country i by RoW increases leading

to a higher price for its goods. This reduces export to the US. Second, RoW produce

more goods making them cheaper and therefore the US substitutes their import from

country i to RoW. The final variable, US reer, has a negative effect, while the gravity

model predicts a positive sign. After all, when US reer increases, that is, a depreciation

of the dollar against all currencies in the RoW, it becomes more expensive to import

from the RoW by the US and as a consequence the US demands more products from

country i and export goes up.

If we omit time FE, the estimates for Model 3 reveal that this hardly influences the

estimates of both the it- and t-regressors, so we can safely leave out θt. This supports

the conclusion based on the F-test and Figure 2c that all θut are not significantly different

from zero.

The γ estimates are conditional on our normalization, so they reflect the pseudo-true

values of the impact of the t-regressors, not the true values. The differences becomes

smaller if the remaining time effects θut , what is left after exploiting the t-regressors, are

closer to zero; see Section 4. As we find that the remaining time FE are redundant, we

conclude that the γ estimates reflect the true values of the impact of the t-regressors.

In summary, the application has illustrated two advantages of untangling normal-

ization. First, the estimated untangled time FE θut are easier to interpret than the

estimated zero-normalized time FE θ0t and using this property we can identify poten-

tial t-regressors that might be important in explaining the time-specific developments.

Second, we can estimate the parameters of the t-regressors and time FE simultaneously

and determine how important the former are in explaining the later. We can explain the

T = 47 time FE for a large part by only three t-regressors. If we include two DL-terms

of each t-regressors we explain up to 90% of the time-specific developments making the
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remaining θut redundant. We thus obtain estimates for t-regressors that reflect their

true value, despite the fact that estimating such impacts has been a notorious problem

in the literature.

6.6 Poisson pseudo maximum likelihood

Instead of the LSDV estimation method we used so far, one could also use Poisson

pseudo maximum likelihood (PPML) estimation, as proposed by Santos-Silva & Ten-

reyro (2006), to estimate a gravity model. Using the notation of (2), LSDV is based

on the assumption that E {log(y)|D,Z,X} is a linear function of the regressors, which

include the fixed effects and constant regressors. PPML is used if one prefers assuming

that log (E {y|D,Z,X}) is a linear function of the regressors. In both cases the fixed

effects and the constant regressors enter in the linear part, and that implies that our

approach can be applied in combination with both estimation methods9.

Figure 4 displays the estimated untangled time FE θut using PPML. We can see

that they are small and in most periods insignificant. As for LSDV, we cannot reject

the null hypothesis θut = 0 for the PPML estimates.

In Model 7 Table 2 we display the estimation results for PPML. Most estimates are

in line with the LSDV estimates, except for the exchange rate estimates. Explaining

the latter goes beyond the focus of this paper.

6.7 Fixed effects vector decomposition

An alternative to the untangling approach is the fixed effects vector decomposition

(FEVD), which consist of two stages. The first stage regression is identical to the (only)

regression we have and one typically uses LSDV, as we do here. In the second stage,

FEVD uses the estimated zero-normalized time FE from the first stage as dependent

variable and regresses it on the t-regressors:

θ̂0t = α+ τ · t+ wtγ + ηt, (19)

where ηt is the error term in this second stage regression. In Section 4.4 we have com-

pared FEVD to our approach and argued why we prefer the latter. We now illustrate

9PPML uses export in levels as dependent variable, that is, exp(expiUSt). Because the latter is
expressed in real currency of country i, countries with a high nominal exchange rate (for example
Japan: about 100 yen for one dollar) will have larger absolute error terms and play a larger role in the
pseudo log-likelihood and therefore dominate the estimation results. To avoid this scale dependency, we
transform the dependent variable into US dollars using the purchasing power parity (PPP) exchange
rate of the base year. Note that this rescaling does not matter for LSDV, because there the log of the
PPP rate ends up in αi.
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Figure 4: Untangled time FE θut : Model 7 with t-regressors estimated by PPML.

Table 2: Estimation results for expiUSt using different estimators based on (18).

Estimation method LSDV PPML FEVD

2nd stage reg. incl. – – α, τ No α, τ α; no τ
Model 6 7 8 8.1 8.2

gdpit 1.40* 1.55* 1.40* ... ...
(0.20) (0.20) (0.20)

reriUSt 0.71* 2.28* 0.71* ... ...
(0.22) (0.26) (0.22)

reerit -0.43 -2.01* -0.43 ... ...
(0.25) (0.27) (0.25)

gdpUSt 2.25* 3.07* 2.25* 5.92* 2.42*
0.39 (0.77) (0.16) (0.46) (0.20)

gdpWt -1.34* -2.64* -1.34* -4.40* -1.03*
0.47 (0.57) (0.44) (0.37) (0.16)

reerUSt -0.54* 1.31* -0.54* 0.43 -0.55*
(0.27) (0.26) (0.09) (0.29) (0.10)

F-/Wald-test θut = 0 1.26 24.33 – – –
p-value 0.15 0.14 – – –

All models use a DL model with 2 lags for every regressor. Model 7 uses
a DL model with 6 lags for every regressor. In case of PPML we apply
a Wald-test with 18 df instead of an F-test, because the F-statistic is a
monotone transformation of the likelihood ratio statistic and the latter is
invalid in PPML because the information matrix equality does not hold. In
the second stage of the FEVD we use (19), where we in- or exclude α and
τ . The first stage in all displayed FEVD cases is identical as represented
by the dots. Standard errors are between brackets. * indicates significance
at 5% level.
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that using our application.

Model 8 Table 2 displays the FEVD results. If we apply the second stage regression

(19), we find γ estimates that are identical to the untangling normalization approach,

reflecting that both approaches use the same orthogonality relations (FEVD treats

them as restrictions, we only as normalizations). The residuals η̂t are thus the same

as our θ̂ut , so Figure 2c visualizes the former as well. However, the standard errors for

all three γ estimates differ substantially, because those of FEVD do not account for

two-step nature of FEVD. Untangling normalization improves on this, because it has

no second estimation step.

So far, we have taken the variables on the RHS and LHS of (19) for granted. As

discussed in Section 4.4, our choice is not obvious. We start with the RHS. It is not

immediately clear what to include besides the wt regressors, and this decision can have

a big impact on the estimated γ parameters. Plümper & Troeger (2007) only include

wt in the second stage. Pesaran & Zhou (2014) show, however, that it is important to

include a constant on the RHS to prevent biased γ estimates. Indeed, if we estimate

(19) without α and τ , see Model 8.1 in Table 2, we find severely biased estimates and

also the standard errors are affected.

We extend this finding by considering the overall trend. If we include α but omit τ

in (19), we again find altered estimates and standard errors, see Model 8.2 in Table 2.

Although the differences are smaller than for the case where also the constant α is left

out, omitting the overall trend τ can also lead to biases.

But how do we know whether to include a constant and/or overall trend in the

second stage? Plümper & Troeger (2007) apparently think that leaving out the constant

is warranted, but Pesaran & Zhou (2014) disagree. Perhaps the plot of θ̂0t helps. Figure

1 shows the plot for two different zero normalizations (strictly speaking the figure is

based on the static model, but the figure for the DL model that we need is very

similar). The θ̂0t series heavily depend on the specific zero normalization that is used.

If we normalize α = τ = 0, it is tempting to conclude from the confidence band in

Figure 1a that including a constant matters, but that one can safely leave out a trend.

If we instead normalize θT−1 = θT = 0, then Figure 1b suggests that both a constant

and trend may be left out or, if one stresses the significant value at the end of the

sample, both may matter. We have shown that including both is the right choice, but

the point is that it is easy to choose incorrect specifications in the second stage of the

FEVD.

Also on the LHS we have to make choices which variables to include. Should

we include α̂0
i and τ̂0i · t, knowing that they interfere with θ̂0t ? The similarity of the
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estimates between Model 6 and 8 in Table 2 suggest that the answer is negative, as

long as one is not interested in the estimates of α and τ . However, this again shows

that FEVD demands a number of choices from the empirical researcher. Untangling

normalization avoids such choices, because it transforms all estimated fixed effects and

constant regressors in a unique way.

6.8 Sensitivity analysis

We have performed several sensitivity checks to confirm that our results are robust for

different model specifications.

6.8.1 No country-specific trends

Table 3: Sensitivity regarding trends and cointegration, based on DL version of (18).

No τi · t DOLS
Model 6 9 10

gdpit 1.40* 1.94* 1.58*
(0.20) (0.24) (0.21)

reriUSt 0.71* 0.39 0.82*
(0.22) (0.28) (0.29)

reerit -0.43 0.12 -0.69*
(0.25) (0.28) (0.33)

gdpUSt 2.25* 1.59* 2.09*
(0.39) (0.54) (0.33)

gdpWt -1.34* -1.97* -1.43*
(0.47) (0.69) (0.43)

reerUSt -0.54* -0.84* -0.46*
(0.27) (0.34) (0.09)

F-test θut = 0 1.26 0.60 1.29
p-value 0.15 0.96 0.13

Model 10 explicitly accounts for cointegration between expiUSt,
gdpit, reriUSt and reerit and uses DOLS estimation with two
leads and lags for all non-stationary regressors. Standard errors
are between brackets. * indicates significance at 5% level.

The number of papers that include trend FE into a gravity type of model is growing,

for exampleBun & Klaassen (2007) and Baier et al. (2014). We show that the inclusion

of τi · t is not driving our main results, but that it matters for the estimates.

In Model 9 Table 3 we display the estimation results for a model without τi · t. The

parameters of the t-regressors still have a similar size compared to Model 6 and are

able to capture most of the time effects. This is supported by the F-test, which does

not reject the null hypothesis θut = 0 for all t. This confirms that τi · t is not driving

our main result, that we can explain the time FE by three variables US GDP, world
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GDP, and US reer.

We see that in Model 9 the gdpit parameter is substantially larger than its coun-

terpart in Model 6. The intuition is that, if we omit τi · t, we do not allow for country

trends, and because the gdpit variable is the only it-regressor with a clear trend, it

will try to fit the uncaptured country trends in export. This leads to a bias of the

estimated gdpit parameter. At the same time, the country trends show up in the unex-

plained part, so that the exchange rate impact becomes more difficult to find. Finally,

the null hypothesis τi = 0 for all i is clearly rejected, with a p-value of 0.00. So it is

advisable to include τi · t in the model.

6.8.2 Non-stationarity and cointegration

In previous sections we have pretended that all variables in (18) are stationary. How-

ever, the variables expiUSt and gdpit are most likely non-stationary, and reriUSt and

reerit may also be (close to) non-stationary. We show that, even if one accounts for

non-stationarity issues, our results remain valid.

We first test the null hypothesis that the variables under consideration have a unit

root for all countries, using the four Fisher (1932) type test statistics proposed by

Choi (2001) and available in STATA. We account for lags, time effects, parameter

heterogeneity, and for all series we add a drift term to the test equation, and for export

and gpd we also add a trend. Not surprisingly, we conclude that all four variables have

a unit root.

Next, we apply the panel cointegration test of Pedroni (1999). We allow for time

effects, country trends, and parameter heterogeneity in the test equation. There is

strong evidence for a cointegration relation between expiUSt and gdpit, but at first we

find no evidence for cointegration if we add reriUSt and reerit. This may be due to the

small N in our data. If we include all bilateral combinations between the 17 countries

and the US, increasing N from 17 to 306, we find some evidence for cointegration

between the four variables. We thus assume that there exists such a cointegration

relation.

Although the LSDV estimates used earlier remain consistent in the presence of

cointegration, the standard errors require adjustment. We thus perform dynamic OLS

(DOLS), as proposed by Mark & Sul (2003). First, we estimate the cointegrating

regression of expiUSt on gdpit, reriUSt and reerit, adding two leads and lags of the first

differences of the regressors (combinations of 0-3 leads and lags yield similar results),

allowing its coefficients to be heterogeneous for all countries, and including the full

set of fixed effects. Second, we substitute the estimated β1, β2 and β3 into (18) with
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DL terms and estimate the remaining parameters using LSDV and apply untangling

normalization.

Model 10 in Table 3 displays the result. They do not differ much from the baseline

results in Model 6. The estimated θut are close to zero, comparable to Figure 2c. We

again cannot reject the null hypothesis θut = 0.10 Hence, we conclude that accounting

for non-stationarity and cointegration does not alter our main conclusion.

7 Conclusion

We have developed a new normalization method: untangling normalization. It can

be used to disentangle different FE-types from each other, easing their interpretation

substantially. We can also apply it to untangle constant regressors from FE spanning

the same dimensions by orthogonalizing the latter with respect to the former, enabling

us to simultaneously estimate both the parameters of the constant regressors and the

FE, thus exploiting the explanatory power of the constant regressors. This is not

possible in standard normalization methods like zero normalization. The untangled

parameter estimates and standard errors are just linear transformations from its zero-

normalized counterparts and can be obtained without the need for a new estimation.

We have applied untangling normalization to a simple gravity-based trade model,

where we model export of 17 OECD countries to the US. This illustrates the two

advantages of untangling normalization. First, the estimated untangled time FE are

much easier to interpret than the estimated zero-normalized time FE. The estimated

untangled time FE clearly show a business cycle pattern together with a dollar ex-

change rate effect. Using these insights together with gravity theory, we obtain three

t-regressors, US GDP, world GDP and US reer, that might be important in explaining

the time-specific developments. Second, we can estimate the impact of the t-regressors

and time FE and determine how important the t-regressors are. We can explain the 47

time FE for 90% by only three t-regressors making the remaining estimated untangled

time FE redundant. Hence, we have estimates of the true values of the impacts of the

t-regressors, even though that is typically considered to be beyond reach. All these

results could not have been obtained using zero normalization.

The current paper is about two dimensional panels, which have dimension it. One

10The t-variables gdpUSt, gdpWt and reerUSt are non-stationary. Although the time dummies them-
selves are deterministic, the estimated series of time effects need not be stationary. Figure 2c suggests
that the series of estimated time effects and the t-regressors are cointegrated. Hence, the impacts γ
of the t-regressors are consistently estimated and only the standard errors might be invalid. But the
standard errors will probably be good approximations given the small changes in the standard errors
of the it-regressors between LSDV and DOLS. Hence, we use standard inference for the estimated γ.
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idea for future work is to extend our untangling normalization method to a three

dimensional panel setting. Untangling normalization can then be applied to bilateral

trade flows.
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