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Abstract

We study fossil fuel extraction by a monopolist who faces demand from a climate-
aware and a climate-ignorant region. A renewable, perfect substitute for fossil
energy is available at constant unit cost. The climate-aware region uses a carbon
tax and a renewables subsidy as policy instruments. Due to heterogeneity in climate
policies between regions, the fossil fuel price path possibly contains two limit-
pricing phases. Moreover, the shape of the price path depends on the presence of
arbitrators on the market. With arbitrators, the fossil price is continuous. Without
arbitrators, the price jumps upward when demand from the climate-aware region
drops to zero. A tightening of climate policies results in lower initial resource
use. The effect on medium-run extraction and on the duration of the fossil era
depends on the presence of arbitrators on the market. We numerically investigate
the welfare effects of the policies of the climate-aware region. We find that the
carbon tax lowers climate damage. The renewables subsidy, however, only lowers
climate damage if there are arbitrators on the market.
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1 Introduction

The design of climate policies requires a good understanding of the effects of these

policies on markets for fossil fuels, as 90 percent of yearly carbon emissions originates

from the combustion of oil, gas, and coal (PBL, 2015). Most of globally traded fossil

fuels, in particular oil, is exported by a small group of countries. OPEC, for example,

owns 73 percent of the world proven reserves (EIA, 2016a). It has been shown theoret-

ically that imperfect competition affects the time profile of the supply of non-renewable

resources such as fossil fuels. Typically, monopolistic supply slows down the speed of

extraction, “the monopolist is the conservationist’s best friend” (cf. Dasgupta and Heal,

1979, p. 329), and results in a final limit-pricing phase during which the monopolist

marginally undercuts the price of substitutes to prevent them from entering the market

(cf. Hoel, 1978; Salant, l979). This paper shows that the move away from the perfectly

competitive framework has even more dramatic consequences when climate policies

are in place which differ between ‘climate-aware’ regions like the European Union

and ‘climate-ignorant’ regions which have not yet introduced policies to reduce global

warming.

We demonstrate that both the fossil extraction path and the effects of (unilateral)

climate policies differ markedly from those under perfect competition. Moreover, when

taking imperfectly competitive fossil fuel markets into account, the extraction path and

the effects of climate policies become crucially dependent on the presence of arbitrators,

whereas there is no role for them under perfect competition. Our framework of a

monopolist owning a finite resource stock and exporting fossil fuels to different regions

with unilateral climate policies in place enables us to characterize the deviations from

the perfectly competitive equilibrium, to explore the role of arbitrators, and to investi-

gate the effects of different types of unilateral climate policies on welfare and climate

damage.

Most of the existing literature on combating climate change assumes perfectly com-

petitive markets for fossil fuels. This is true for Integrated Assessment Models that

aim at characterizing optimal climate policies (cf. Nordhaus, 2013; Golosov et al.,

2014), but also for the literature on the effects of suboptimal climate policies, such

as Sinn (2008, 2012) who investigates the so-called ‘Green Paradox’ in a single-region

framework, and papers studying unilateral measures to fight global warming in multi-

region models (cf. Copeland and Taylor, 2005; Eichner and Pethig, 2011; Hoel, 2011;

Fischer and Salant, 2014; Ryszka and Withagen, 2014; Aichele and Felbermayr, 2015).

There are only a few studies in the field of climate change economics which move
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away from perfect competition. Strand (2013) and Karp et al. (2016) employ a game

theoretical setting in which a resource importer bloc and a resource importing fringe

face a group of resource exporters. Strand (2013) compares a carbon tax and a cap-

and-trade scheme in order to identify the optimal policy strategies of both players in a

static environment, whereas Karp et al. (2016) study a dynamic game where the players

use either taxes or quotas to exercise market power in the presence of a group of non-

strategic developing countries. Kagan et al. (2015) investigate oil extraction and carbon

accumulation for various production function specifications for both open- and closed-

loop Nash equilibria, and compare these with the efficient and competitive outcomes.

Their model is based on Liski and Tahvonen (2004) who characterize Markov perfect

strategies for coalitions of resource importing and exporting countries.

These papers, however, do not account for the existence of a backstop technol-

ogy, and therefore are not able to study limit-pricing strategies that fossil suppliers

might pursue to prevent producers of renewable energy from entering the market.

The seminal early literature investigating behaviour by monopolistic non-renewable

resource suppliers (cf. Hoel, 1978; Gilbert and Goldman, 1978; Salant, l979; Stiglitz

and Dasgupta, 1981; Hoel, 1983) does not pay attention to climate policies. Hassler

et al. (2010) study monopolistic fossil supply in the presence of a backstop technology

and climate damage caused by carbon emissions. They, however, assume that the

backstop technology makes oil ‘superfluous’ once it arrives, implying that limit pricing

does not occur. Literature on the effects of climate policy in a limit pricing framework

is scarce. Jaakkola (2015) studies equilibrium climate policies in a differential game

between a resource monopolist and a producer of a backstop which becomes cheaper

over time due to investments, giving rise to a regime of limit-pricing behaviour with

a declining price over time. In a recent paper, Andrade de Sá and Daubanes (2016)

argue that demand for oil is inelastic, implying that the monopolist will choose for limit

pricing throughout. As a result, carbon taxes are ineffective and backstop subsidies

increase resource extraction. Our analysis is complementary to theirs. We show that,

also in the case of elastic demand, limit pricing may be more important than suggested

by conventional analyses of climate policy effects. Moreover, our analysis stresses

the importance of arbitrators on the market for the fossil extraction path and for the

effectiveness of climate policies.

We consider a monopolist that owns a finite stock of fossil fuels and faces constant

unit extraction costs and the presence of a renewable perfect substitute with constant

marginal production costs. Resource demand comes from a climate-aware region,

which employs both a carbon tax and a backstop subsidy, and from a climate-ignorant
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region, which does not have any climate policies in place. To illustrate the role of

arbitrators, we investigate two extreme cases: one with arbitrators on the market who

can store fossil fuels without costs, implying that the monopolist is constrained to set a

continuous price, and one without arbitrators, where the monopolist is free to choose

a discontinuous price path.

The situation in reality lies somewhere in between these two extremes. Many

nations have built strategic oil reserves and private actors have created stockpiles.

It is difficult, however, to find reliable estimates of global oil inventories, as some

countries, such as Russia and China, do not report their inventory levels and figures

for many other countries, such as Angola, Nigeria or Brazil, are not trustworthy.1

Furthermore, much oil is stashed in tankers, waiting off-coast for higher prices. Global

crude inventories are estimated to be around 17 billion barrels in non-OECD countries

and around 12 billion barrels in OECD countries (Strumpf and Friedman, 2016). With

a world liquid fuel consumption at around 96.26 million barrels per day this means

that there is enough crude oil to satisfy global consumption for 176 days (EIA, 2016c).

The inventory of the U.S.’s ‘Strategic Petroleum Reserves’ (SPR) amounted to 695.1

million barrels in September 2016, corresponding to around 36 days of oil at the

average US daily consumption level of 19.4 million barrels in 2015 (SPR, 2016; EIA,

2016d). Whereas the purpose of the strategic petroleum reserves in the U.S. and other

countries is to stabilize supplies, there are calls for supply releases to moderate price

increases (Regnier, 2007). There is a disagreement in the literature on whether the

use of the reserves is an effective tool to stabilize the oil markets and on whether

the existing inventory is sufficient.2 Yet, these stockpiles might facilitate speculation:

Kesicki (2010) notes that “the only way speculation can persistently influence the oil

price is due to accumulation of the physical commodity.” He puts forward a historical

analysis which reveals that price surges are accompanied by an accumulation of crude

oil in inventories. Kaufmann (2011) attributes a role to speculation in the price spike

and collapse of 2007-2008 on the grounds of, amongst others, a significant increase in

private US crude oil inventories since 2004. Hamilton (2009) points out that due to

the price inelasticity of oil demand small increases in inventory could greatly affect the

1See ‘The Wall Street Journal’, July 2016: http://www.wsj.com/articles/
how-much-oil-is-in-storage-globally-take-a-guess-1469380040.

2For a short discussion see Demirer and Kutan (2010). In their paper, they examine the informational
efficiency of crude oil spot and futures markets with respect to SPR announcements. Their results
suggest that the SPR program is effective in stabilizing the oil market. Following the announcements,
the market adjusts prices upward (downward) after notification of inventory release (purchase of more
inventories), lasting about a week following the announcement date. Yet, there are no statistically
significant cumulative abnormal returns.
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price. Inventories are also present in natural gas markets: working gas in storage in the

U.S. amounted to 3,600 billion cubic feet in September 2016, whereas the U.S. natural

gas consumption was 2,204 billion cubic feet in July 2016 (EIA, 2016b,e). Accordingly,

there is enough gas in storage to ensure consumption in the U.S. for around 1.5 months.

Although it remains unclear whether public and private inventories of oil and gas are

sufficiently large to ensure perfect arbitrage, there is at least evidence of a certain

degree of arbitrage in the oil market and of the link between oil inventories and price

changes.

The results of this paper are as follows. First, we find that in the cases with and

without arbitrators on the market the resource extraction paths may contain two limit

pricing phases: one just before the demand from the climate-aware region vanishes due

to climate policies, and one just before the depletion of the resource. The reason is that

the monopolist may want to postpone the moment of losing demand from the climate

aware region. Accordingly, in a world with heterogeneous climate policies, it becomes

even more important to take the effects of limit pricing into account. Second, in the case

without arbitrage possibilities, it is optimal for the monopolist to let the price jump up-

wards when demand from the regulated region drops to zero. Third, we show that the

presence of arbitrators is beneficial for the climate: initial extraction is lower and the

overall resource extraction phase is longer than in the case without arbitrators, reducing

the present value of climate costs. Fourth, a tightening of climate policies does not

result in a so-called ‘Weak Green Paradox’: on the contrary, initial resource consumption

falls in both regimes. Climate costs might still rise as intermediate extraction goes up,

and in the absence of arbitrators the overall resource extraction phase is shortened

upon the introduction of a renewables subsidy. Finally, our numerical welfare analysis

shows that although a renewables subsidy increases climate damages in the equilibrium

without arbitrators, the presence of arbitrators reverses this outcome: with arbitrators

on the market, a renewables subsidy lowers climate damage, even when cumulative

fossil fuel supply remains unchanged. Furthermore, in the presence of arbitrators, the

climate-aware region is consistently worse off regarding its non-green welfare because

the monopolist sells more resources to the climate-ignorant region than in the absence

of arbitrators.

The remainder of the paper is structured as follows. Section 2 describes the model

and compares the equilibria with and without arbitrators. Section 3 examines the

effects of climate policies on the time paths of fossil fuel use. Section 4 performs

a welfare analysis and determines climate damage effects. Section 5 concludes and

discusses our results.
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2 The model

2.1 The monopolist’s problem

Energy demand originates from two regions, A and B. Energy supply comes from

renewable and fossil resources. Renewable energy is competitively produced in both

regions at a unit cost of b > 0, whereas fossil fuel is supplied by a monopolist in a

third region facing unit cost k ≥ 0. We assume that these types of energy are perfect

substitutes.3 Region A conducts an active climate change policy by imposing a unit

carbon tax τ on its consumers and gives a subsidy σ on the use of renewables. We

assume τ and σ to be constant over time.4 Let us define aggregate demand for fossil

fuel as q ≡ qA + qB, consisting of demand from region A and demand from region B.

We split up the monopolist’s problem in two stages. Stage 1 starts at time zero and lasts

until time T2. During stage 1 both regions use only fossil fuel. Stage 2 starts at time T2

and lasts until time T4. In this stage region B still relies solely on fossil fuel, whereas

region A only uses renewables. Both the switching time T2 and the final time of fossil

fuel use T4 are optimally chosen by the monopolist for given subsidy and tax rates.

There are two intermediate phases: from time zero until time T1 ≤ T2 the consumer

price is strictly below the price that would keep fossil fuel off the market in region A,

which is b − σ, whereas from time T2 until time T3 ≤ T4 the consumer price is such

that there is no fossil fuel demand from region A anymore and region B relies on fossil

fuel only, at a consumer price strictly below the renewables price. The optimality of

this sequence of regimes is formally demonstrated in the appendix. Intuition is given

in due course. We denote the producer price in the first stage, when t < T2, by p1(q),
and the producer price when t ≥ T2, by p2(q). We need p1(q(t)) ≤ b̂ ≡ b − σ − τ in the

first stage because the consumer price of fossil energy in region A, p1 + τ , should not

exceed the consumer price of renewables in that region, b− σ. In the second stage the

fossil price in region B should not exceed the renewables price in region B: p2(q) ≤ b

and the consumer price of fossil in region A, p2(q) + τ , should be prohibitively high

for the consumers in that region to demand fossil fuel: p2(q) + τ > b − σ. Demand is

illustrated in Figure 1, where we use q̂A to denote demand for fossil fuel in region A if

the consumer price is b − σ, or, equivalently, if the producer price is b̂. The variable q̂B
3It has been shown by Van der Meijden and Withagen (2016) that the equilibrium with imperfect

substitution converges tot the equilibrium with perfect substitution for high values of the elasticity of
substitution, in a model in which demand is exerted by a single region.

4Constancy of the carbon tax can be motivated by constant marginal damages from carbon emissions,
proportional to the use of fossil fuel (cf. Hoel, 2011). Constancy of the subsidy is more difficult to justify.
But in the context of the present paper we don’t wish to go into the design of a subsidy that is second-best
anyway.
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is defined in a similar way. Also q̂ ≡ q̂A+ q̂B. The variables q̃A and q̃B represent demand

in regions A and B if the consumer price is b. We assume k < b, which implies that at

some instant of time all fossil fuel will be exhausted.5

We tackle the maximization problem of the monopolist by using two-stage optimal

control theory (cf. Tomiyama, 1985; Makris, 2001; Valente, 2010). The idea is to first

solve the problems in the two stages separately for given T2, T4, and S(T2):6

Λ1(T2, S0, S(T2)) = max
q

∫ T2

0
e−rt (p1(q(t))− k) q(t)dt, (1a)

Λ2(T2, T4, S(T2)) = max
q

∫ T4

T2
e−rt (p2(q(t))− k) q(t)dt, (1b)

subject to

Ṡ(t) = − q(t), q(t) ≥ 0, S(t) ≥ 0, S(0) = S0, (2a)

p1(q(t)) ≤ b̂, (2b)

p2(q(t)) ≤ b, (2c)

p2(q(t)) ≥ b̂. (2d)

Subsequently, we determine the optimal T2 and S(T2) by solving

Λ(S0) = max
T2,T4,S(T2)

Λ1(T2, S0, S(T2)) + Λ2(T2, T4, S(T2)). (3)

To ensure that the second-order conditions are satisfied, we assume the net revenue,

(p1(q) − k)q, to be strictly concave in q for p1(q) < b̂, and (p2(q) − k)q to be strictly

concave in q for b̂ < p2(q) < b. The technical details of the derivations are provided in

Appendix A.1. But the following gives the intuition. The Hamiltonians associated with

the maximization problems (1a)-(1b) in the two stages 1 and 2 read

Hi(q, λ, t) = e−rt(pi(q)− k)q − λiq, i = 1, 2. (4)

In the absence of stock-dependent extraction costs, it follows from the Hotelling rule

that the shadow prices of the resource stocks in the two stages, λ1 and λ2, are constant.

Moreover, in each stage the corresponding Lagrangian is maximized with respect to the

5Many of the results that we derive hold for more general cost functions, where extraction costs
are not necessarily linear in extraction and may also depend on the remaining stock, in which case
cumulative fossil use is determined endogenously. See Van der Meijden and Withagen (2016), who
address this for a single market.

6Throughout, we refer to the time intervals [0, T2] and [T2, T4] as stages and to subintervals within the
stages, e.g., [T1, T2] as phases.
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Figure 1: Regional and aggregate demand
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extraction rate, subject to the relevant constraints. The necessary first-order conditions

read:

λ1e
rt = p′1(q)q + p1(q)− k − µ11p

′
1(q), (5a)

λ2e
rt = p′2(q)q + p2(q)− k − µ21p

′
2(q) + µ22p

′
2(q), (5b)

where µ11, µ21, and µ22 are the non-negative Lagrange multipliers associated with the

inequalities (2b)-(2d).

To determine the final time that solves problem (3), T4, we use the condition that

the Hamiltonian for the second-stage problem should equal zero at T4, in shorthand7

H2(T4) = 0. (6)

The optimal switching time T2 and the associated optimal stock S(T2) depend on what

is assumed regarding arbitrage. If arbitrage is ruled out, for example if it is too costly

to store fossil fuels, we know from two-stage optimal control theory that both the

Hamiltonian and the shadow price must be continuous at the transition date T2 from

serving both regions to serving just region B:8

Lemma 1 Suppose arbitrage is ruled out. Then the following conditions must hold:

H1(T−2 ) = H2(T+
2 ), (7a)

λ1 = λ2. (7b)

Proof. See Tomiyama (1985). �

To understand condition (7a), note that the Hamiltonian evaluated at the terminal

(initial) time equals (minus) the partial derivative of the optimal value function with

respect to the terminal (initial) time (cf. Theorem 3.9 in Seierstad and Sydsæter, 1987,

p. 213): ∂Λ/∂T2 = ∂Λ1/∂T2 + ∂Λ2/∂T2 = H1(T−2 )−H2(T+
2 ). Hence, if the monopolist

is free to choose T2, condition (7a) must hold in the optimum. To get the intuition

behind (7b), note that the shadow price λ1 is the present value of having one more

unit of fossil fuel in the ground at time zero, whereas λ2 is the present value of having

one more unit of fossil fuel in the ground at instant of time T2. Without arbitrage the
7This condition is obtained by noting that ∂Λ2(T2, T4, S(T2))/∂T4 = H2(T4) (cf. Theorem 3.9 in

Seierstad and Sydsæter, 1987, p. 213).
8ByH1(T−2 ) we denote the limit of the value of the Hamiltonian in the first stage for time approaching

T2 from below, and by H2(T+
2 ) the value of the Hamiltonian in the second stage for time approaching T2

from above.
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monopolist can transfer the additional stock of time zero, and extraction, to T2 without

any restriction. Hence, the values must be identical in the optimum.

If arbitrage is possible, meaning fossil fuel can be bought in any amount and stored

at low cost, the market price at any time, hence also at T2, should be continuous:

p1(q(T−2 )) = p2(q(T+
2 )) = b̂. (8)

As a result, the monopolist is no longer free to choose the duration of and the cumu-

lative supply in the two stages, implying that (7a)-(7b) do not necessarily hold in the

case with arbitrators. To understand this, note that because of condition (8) the price

at T2 is fixed at b̂ which—given first-order condition (5b) and terminal condition (6)—

poses a restriction on cumulative resource supply during the second stage: the stock at

T2, S(T2), should be larger than or equal to some threshold value (S02, which we will

define later), to prevent the monopolist from choosing p(T+
2 ) > b̂, which is not possible

in equilibrium. Similarly, given first-order condition (5a) and cumulative supply during

stage 1, condition (8) effectively imposes a lower bound on the duration of the first

stage: T2 should be larger than or equal to some threshold value (T ∗2 , which is defined

in Appendix A.2). The lower bounds on S(T2) and T2 imply:9

Lemma 2 Suppose arbitrage is possible. Then the following conditions must hold:

H1(T−2 ) ≤ H2(T+
2 ), (9a)

λ1 ≥ λ2. (9b)

Proof. See Appendix A.2. �

If in an optimum T2 > T1 then (9a) turns into an equality, which is helpful to charac-

terize the optimum. If T1 = T2 then this equality by itself offers a useful condition.

In Appendix A.4 we derive the following relationship between the Hamiltonian at

time zero and discounted profits of the monopolist, provided that (9a) holds with

equality:10

H1(0)
r

= Λ(S0, b, σ, τ). (10)

9Appendix A.2 shows that this restriction on cumulative supply is always binding, implying strict
inequality in (9b): λ1 > λ2.

10Whereas (10) is well known in control theory for one-stage optimal control problems (Seierstad and
Sydsæter, 1987), we extend its validity for two-stage optimal control problems.
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So, the value of the Hamiltonian equals the rent on discounted profits. This observation

is useful in the analysis to follow.

2.2 Equilibrium with arbitrage

If arbitrage is possible, upward jumps in the resource price will be arbitraged away. The

resource price is continuous and thus equal to b̂ at the moment of the switch from stage

1 to stage 2. The optimal supply of fossil fuel from the perspective of the monopolist is

given in the following theorem.

Theorem 1 There exist 0 ≤ T1 ≤ T2 ≤ T3 < T4 such that

(i) p(t) ≤ b̂, q(t) ≥ q̂ for 0 ≤ t ≤ T1 (phase 1),

(ii) p(t) = b̂, q(t) = q̂ for T1 ≤ t ≤ T2 (phase 2),

(iii) b̂ ≤ p(t) ≤ b, qA(t) = 0, qB ≥ q̂B for T2 ≤ t ≤ T3 (phase 3),

(iv) p(t) = b, qA(t) = 0, qB(t) = q̃B for T3 ≤ t < T4 (phase 4),

(v) S(T4) = 0, q(t) = 0 for t > T4.

Furthermore, there exist S03 ≥ S02 > S01 such that

(i) 0 = T1 = T2 = T3 < T4 if S0 ≤ S01,

(ii) 0 = T1 = T2 < T3 < T4 if S01 < S0 ≤ S02,

(iii) 0 = T1 < T2 < T3 < T4 if S02 < S0 ≤ S03,

(iv) 0 < T1 ≤ T2 < T3 < T4 if S03 < S0.

Proof. See Appendix A.2. �

A typical equilibrium for a large initial stock (case (iv) in the second part of Theorem 1)

and T2 > T1 is depicted in Figure 2. To get the intuition for the theorem and the figure

let us first consider the case without policy instruments used by any government. This

is similar to a situation in which there is a single market for fossil fuel. Van der Meijden

and Withagen (2016) show (in a much more general setting) that there always exists

10



Figure 2: Price path with arbitrage
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a final interval of time where there is limit pricing. The reason for the existence of this

regime becomes clear by considering the following condition:11

e−rT3(p′(q(T3))q(T3) + p(q(T3))− k) = e−rT4(b− k). (11)

Intuitively, the monopolist could sell its last unit of fossil at T3 ≤ T4 yielding marginal

profit e−rT3(p′(q(T3))q(T3) + p(q(T3)) − k) with p(q(T3)) ≤ b (left-hand side). Alterna-

tively, the last unit of fossil could be conserved and sold right after exhaustion of the

rest of the stock, i.e. at t = T+
4 against price p = b. As q(T+

4 ) = 0, marginal profit would

then boil down to average profit and equal e−rT̂4(b − k) (right-hand side). Equalizing

marginal profits of both options requires T4 > T3, implying that there is always a final

interval of time with limit pricing. The current value of marginal profit at T4 when q = 0
is still larger than marginal profit at T3 when q > 0, but the discounted value of these

marginal profits is equalized by choosing an appropriate, strictly positive duration of

the limit-pricing regime. It might even be the case that there is limit pricing throughout.

This will occur if fossil fuel demand is inelastic (as assumed by, e.g., Andrade de Sá and

Daubanes, 2016) or if the initial resource stock is small enough.12

These results carry over to the case of two regions. The strategy of the proof in

Appendix A.2 is to construct feasible price paths for various levels of the initial resource

stock and to show that these paths, and the corresponding extraction rates, satisfy all

11As shown in Appendix A.2, this condition is obtained by combining transversality conditionH2(T4) =
0 with first-order condition (5b).

12With inelastic demand, marginal profit at the left-hand side of (11) is negative if the price is set
below the renewables cost.
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necessary conditions as well as the transversality conditions, so that the paths constitute

an optimum. Assuming elastic demand, we find that for an initial resource stock small

enough it is optimal to have limit pricing at price b from the start. This occurs for the

initial stock S0 smaller than or equal to a critical level, denoted by S01. For a larger

initial stock there is scope for an initial phase with the producer price below b. If the

stock is not too large, not larger than another critical level S02(> S01) the monopolist

will serve only the market in the region without climate policy. The critical level S02

is determined as the initial stock for which the monopolist will charge an initial price

exactly equal to b̂ and, if the initial resource stock is smaller than or equal to S02, the

monopolist just acts as if there were only region B. With a still larger initial stock, the

initial price charged in this single market would be smaller than b̂ so that also demand

from region A would be attracted. Then region A enters the picture. For initial stocks

not too large, smaller than some S03 there may be limit pricing for a while at price b̂.

For larger initial stocks the initial price will even be below b̂.

To understand the occurrence, or not, of an intermediate limit-pricing phase, we

substitute the first-order conditions (5a)-(5b) and (8) into (9a) to get13

η1(q̂)
(
q̂ − µ11(T−2 )

)
≤ η2(q̂B)q̂B, (12)

where ηi(q) ≡ −p′i(q)q/p denotes the (positively defined) inverse of the producer price

elasticity of demand. The left-hand side measures the increase in profits during stage

1 due to a marginal increase of T2 (which increases the duration of stage 1). Similarly,

the right-hand side measures the decrease in profits during stage 2 due to a marginal

increase in T2 (which lowers the duration of stage 2). If condition (12) holds with

equality, the monopolist cannot increase his profits by reallocating time between the

two stages. Consider a situation with µ11(T−2 ) = 0, which would correspond to an

equilibrium without an intermediate limit-pricing phase (see (5a)). If the left-hand

side of (12) would be higher than the right-hand side in this case, i.e., if η1(q̂)q̂ >

η2(q̂B)q̂B, the monopolist could increase his profits by introducing an intermediate

limit-pricing phase that extends the duration of the first stage. The duration of the

limit-pricing phase depends positively on µ11(T−2 ),14 which in the optimum then is

chosen to equilibrate the left- and right-hand side of (12). If, on the contrary, by

imposing µ11(T−2 ) = 0 the left-hand side of (12) is smaller than the right-hand side,

the monopolist would prefer to decrease the duration of the first stage. For given

13We have used µ21 = µ22 = 0 (see Appendix A.2) on the right-hand side of (12).
14Use first-order condition (5a) at t = T1 and t = T2 to get er(T2−T1) = p′1(q̂)q̂+b̂−k−µ11(T−2 )p′1(q̂)

p′1(q̂)q̂+b̂−k .
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cumulative extraction during stage 1, this would necessarily require a downward shift

in the price path. However, this is not allowed by restriction (8), which requires the

price to equal b̂ at T2. Therefore, the monopolist is restricted to the equilibrium without

limit pricing but with p(T2) equal to b̂, and (12) holds with strict inequality.

2.3 Equilibrium without arbitrage

Without arbitrage, the monopolist will choose a discontinuous price path if there are

policy differentials. The reason is simple and intuitive. With equal shadow prices in

the two stages (according to condition (7b)) the continuity of the Hamiltonians at T̃2
15

with continuous prices requires H2(T̃+
2 ) = 0. Moreover, the Hamiltonian at time T̃+

2 is

proportional (with factor of proportionality 1/r) to total profits from T̃2 onwards,

0 <
∫ T̃4

T̃2
e−rt (p2(q(t))− k) q(t)dt = H(T̃2)−H(T̃4)

r
= H(T̃2)

r
.

Since profits are definitely positive, the Hamiltonian at T̃2 cannot be zero. Hence there

is a price discontinuity. To provide further intuition for this result, consider Figure

3, which is an extended version of Figure 2 in Hoel (1984). The figure shows a

discontinuous line for the marginal revenue π′(q) = p′(q)q + p(q), corresponding to

the aggregate demand function in panel (c) of Figure 1, and a flat line for the marginal

cost, consisting of the sum of the current value of the scarcity rent at t = T̃2, λerT̃2, and

the marginal extraction cost, k.16 If p(q) < b̂ or b̂ < p(q) < b, marginal revenue at time

t equals the marginal cost λert + k.

Consider first panel (a), which additionally contains a line for the inverse aggre-

gate demand function p(q) (solid flat parts, dotted downward sloping parts) and the

marginal cost at t = 0, λ + k. We have assumed here that the initial resource stock is

large enough to get marginal cost at t = 0 below point G in the figure. Initially, the

economy is at an equilibrium where resource extraction is given by q(0) and the re-

source price by p(0). The Hamiltonian associated with the profit maximization problem

has a unique maximum at q(0). Over time, the scarcity rent λert gradually increases

and resource extraction goes down, giving rise to an increasing resource price. At

point G, there is a discontinuity in the marginal revenue function. When the marginal

cost reaches a level corresponding to this point, extraction and the resource price will

continue to equal q̂A + q̂B and b̂, respectively, for a while: limit pricing. However,

15To distinguish the switching times from the case with arbitrators, we use tildes above the T s.
16We have used (7b) to write λ ≡ λ1 = λ2. Note that λ is still to be determined.
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whenever the marginal cost is at a level in between points B and D, there exists a

second intersection point of the marginal revenue and marginal cost lines, e.g. at point

A, implying that the Hamiltonian has another local maximum. The change in profits

when the monopolist would move from point A to point F in the figure is given by

rectangle CDEF (where marginal revenue is above marginal cost), minus triangle ABC

(where marginal revenue is below marginal cost). Hence, as long as the surface given

by the triangle ABC is smaller than the surface within the rectangle CDEF, the global

maximum is still located at q̂A+q̂B. At time t = T̃2 both areas have exactly the same size.

Given that the scarcity rent keeps on rising, the optimal point will jump from F to A at

T̃2: extraction jumps down and the resource price jumps up. After the switch, resource

extraction will gradually decline while the flat marginal cost line increases until point

H is reached, when another limit-pricing phase starts until the stock is exhausted.

In panel (b), the global maximum is still located at q̂A + q̂B when the marginal cost

reaches the level corresponding with point A. At t = T̃2, the area ABCH equals CDEF,

implying that the price jumps immediately from one limit-pricing regime with p = b̂ to

the other limit-pricing regime with p = b, which will last until the stock is exhausted.

In panel (c), the regime switch will take place when area ABC equals CDEFG, which

occurs before point F is reached. Hence, there will be no intermediate phase of limit

pricing: the price jumps from p < b̂ towards p ∈ (b̂, b). Finally, in panel (d) there is

again no intermediate limit-pricing phase: the price will jump from p < b̂ towards p = b

at t = T̃2, when area ABCH equals CDEFG.

The figure has shown all the possible stage switch scenarios. All of them feature

an upward jump in the resource price. The upper two panels are characterized by an

intermediate limit-pricing regime with p = b̂. Moreover, the two left panels feature

an increasing resource price after the stage switch, whereas the two right panels show

situations in which the economy jumps to a limit-pricing regime with p = b.

The optimal program for the monopolist is summarized in Theorem 2.

Theorem 2 There exist 0 ≤ T̃1 ≤ T̃2 ≤ T̃3 < T̃4 such that

(i) p(t) ≤ b̂, q(t) ≥ q̂ for 0 ≤ t ≤ T̃1 (phase 1),

(ii) p(t) = b̂, q(t) = q̂ for T̃1 ≤ t ≤ T̃2 (phase 2),

(iii) b̂ ≤ p(t) ≤ b, qA(t) = 0, qB ≥ q̂B for T̃2 ≤ t ≤ T̃3 (phase 3),

(iv) p(t) = b, qA(t) = 0, qB(t) = q̃B for T̃3 ≤ t < T̃4 (phase 4),

(v) S(T̃4) = 0, q(t) = 0 for t > T̃4.
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Furthermore, there exist S03 ≥ S02 > S01 such that

(i) 0 = T̃1 = T̃2 = T̃3 < T̃4 if S̃0 ≤ S̃01,

(ii) 0 = T̃1 = T̃2 < T̃3 < T̃4 or 0 = T̃1 < T̃2 = T̃3 < T̃4 if S̃01 < S̃0 ≤ S̃02,

(iii) 0 = T̃1 < T̃2 ≤ T̃3 < T̃4 if S̃02 < S̃0 ≤ S̃03,

(iv) 0 < T̃1 ≤ T̃2 ≤ T̃3 < T̃4 if S̃03 < S̃0.

Proof. The proof can be found in Appendix A.3. �

Figure 4: Price path without arbitrage

3 4( ) ( )p T p T b 

time

2( )p T 

1 2
ˆ( ) ( )p T p T b 

1T 2T 3T 4T

Panel (a) of Figure 3 shows the scenario in which all phases exist: 0 < T̃1 < T̃2 < T̃3 <

T̃4. The corresponding time profile is depicted in Figure 4. In panel (b) of Figure 3,

phase 3 is degenerate: T̃2 = T̃3 < T̃4. The monopolist switches from the first limit-

pricing phase immediately to the second limit-pricing phase, without an intermediate

phase of price increase. Panel (c) shows the case in which phase 2 is degenerate:

T̃1 = T̃2 < T̃3 < T̃4. The first limit-pricing phase drops out and the price increases from

p < b̂ to a price above the limit price, p > b̂. A larger jump from p < b̂ to the second

limit price is also possible, as in panel (d), where both the second and the third phase

are degenerate: T̃1 = T̃2 = T̃3 < T̃4. The occurrence of these ‘degenerate’ equilibria

depends on the functional form of the marginal profit functions and therefore on the

aggregate demand functions. Hence, even large initial resource stocks do not guarantee

a ‘non-degenerate’ equilibrium comparable to the one depicted in Figure 4 and in panel

(a) of Figure 3.
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2.4 Comparison of equilibria

The presence of arbitrators affects the resource extraction path considerably. Proposi-

tion 1 deals with the effect on initial extraction and on the length of the period of time

over which extraction of fossil fuel takes place.

Proposition 1 Suppose S0 > max{S03, S̃03} (implying that p(0) < b̂ in the equilibria with

and without arbitrage).

(i) Initial resource extraction is lower in the presence of arbitrators.

(ii) It takes longer to deplete the non-renewable resource in the presence of arbitrators,

i.e., T4 > T̃4.

Proof. Part (i) follows from the fact that arbitrage has a negative impact on the

monopolist’s profits, which are proportional to the Hamiltonian at time zero, according

to (10). If p(0) < b̂ we have H1(0) = −p′1(q(0))q2(0) from (4) and (5a). Hence, the

decline in profits causes a fall in q(0).
Part (ii) follows by noting that a lower q(0) implies a higher p(0) in the case with

arbitrage. Given that the duration of the final limit-pricing regime in the case without

arbitrage is smaller than or equal to the duration of the final limit-pricing regime in the

case with arbitrage (see Appendices A.2-A.3), a longer overall extraction period in the

case without arbitrage would imply that p would be lower (and thus demand higher)

throughout, while it takes longer to deplete the initial stock. This violates the resource

constraint. �

To demonstrate the effect of the presence of arbitrators on the entire price and extrac-

tion paths, we provide an example with the following HARA utility function:

U i
(
qi + xi
ni

)
= 1− ϕ

ϕ

ψ
(
qi+xi

ni

)
1− ϕ + χ

ϕ − χϕ
 , i = A,B, (13)

where xi denotes consumption of renewables and ni the population size in region i,

which we use as a pivotal parameter. Accordingly, demand for fossil fuels in region A

and B is given by, respectively

qA =

 nA
1−ϕ
ψ

[(
p+τ
ψ

) 1
ϕ−1 − χ

]
if p ≤ b̂

0 if p > b̂
, (14a)
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qB =

 nB
1−ϕ
ψ

[(
p
ψ

) 1
ϕ−1 − χ

]
if p ≤ b

0 if p > b
. (14b)

Our benchmark parametrization is shown in Table 1. Figure 5 shows the equilibria

with (dashed gray lines) and without (solid black lines) arbitrators. Panel (a) contains

time profiles for the price, and panel (b) for extraction. Both panels also depict the

equilibrium under perfect competition (dotted gray lines). In our numerical example,

the difference in initial extraction between the cases with and without arbitrators is

small, but depletion occurs about a decade later in the presence of arbitrators. The

intermediate limit-pricing phase of the first stage in the equilibrium with arbitrators is

relatively short, and the switch to the second stage during which the monopolist only

supplies to region B occurs sooner. The reason is that arbitrators effectively force the

monopolist to sell a larger share of its stock to region B, because it is not possible to let

the price jump upwards at the time of the switch. In the perfectly competitive equilib-

rium, initial extraction is larger and depletion occurs sooner than in both monopolistic

equilibria, as shown by the dotted gray line. The perfectly competitive equilibrium does

not feature limit-pricing phases.

HARA parameter ϕ 2
HARA parameter ψ 0.91
HARA parameter χ 9.1
Backstop production cost b 8
Extraction cost k 1
Discount rate r 0.01
Initial resource stock S0 40
Size region A nA 0.5
Size region B nB 0.5
Climate damage parameter δ 0.01144

Table 1: Benchmark parametrization

3 Policy analysis

In the present framework several policy relevant issues can be addressed. In this section

we consider the question how the introduction or tightening of climate change policies

in one region, whereas the other region stays inactive, affects supply of fossil fuel.

The next section studies the welfare effects in this context. We first investigate what

happens with initial fossil supply, q(0), and with the time it takes to deplete the entire

fossil fuel stock, T4, starting from arbitrary initial carbon tax and renewable subsidy
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Figure 5: Comparison of equilibria

Panel (a) Price Panel (b) Extraction

Notes: The solid black (dashed gray) lines correspond to the equilibrium without (with) arbitrage. The
dotted gray lines correspond to the equilibrium under perfect competition. Parameter values are ϕ = 2,
ψ = 0.91, χ = 9.1, b = 8, k = 1; r = 0.01, S0 = 40, σ = 0.5, τ = 0.5, and nA = nB = 0.5.

rates in region A.

Proposition 2 Suppose S0 > max{S03, S̃03} (implying that p(0) < b̂ in the equilibria

with and without arbitrage) and that the Hamiltonian is continuous (i.e., (9a) holds with

equality).

(i) An increase in the backstop subsidy or an increase in the carbon tax lowers initial

resource extraction in both equilibria.

(ii) An increase in the backstop subsidy lowers the time of exhaustion T4 in the equilib-

rium without arbitrators.

Proof. Part (i). An increase in σ or τ makes the constraints that the monopolist faces

more stringent. Hence dΛ(S0, b, σ, τ)/dσ < 0 and dΛ(S0, b, σ, τ)/dτ < 0, which from

(10) gives dH1(0)/dσ < 0 and dH1(0)/dτ < 0. Moreover, from the strict concavity of

(p1(q) − k)q in q, H1(0) = −p′1(q(0))q2(0) implies dH1(0)/dq(0) > 0. Therefore, we get

dq(0)/dσ < 0 and dq(0)/dτ < 0.

Part (ii). First-order condition (5a) with λ = λ1 = λ2 and µ11(0) = 0 gives

λ(0) = p′1(q(0))q(0)+p1(q(0); τ)−k, which implies dλ/dq(0) = [2p′1(q(0))+q(0)p′′1(q(0))]−
dτ/dq(0), the first term of which is negative due to strict concavity of (p1(q)− k)q in q.

Using this result together with the end condition λ = (b − k)e−rT4, and dq(0)/dσ < 0
from part (i), while keeping dτ = 0, we find dT4/db > 0 and dT4/dσ < 0. �
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In the remainder of this section, we interpret these findings and show how the introduc-

tion of a climate change policy in one region, whereas the other region stays inactive,

affects fossil fuel supply. So, we now suppose that initially regions A and B are identical

in policy terms, or τ = σ = 0, and that region A introduces a subsidy on renewables,

σ > 0, or a carbon tax, τ > 0. Because an intermediate limit-pricing regime may appear

once climate policies are in place, and because the monopolist responds differently to

climate policies depending on the presence of arbitrators, it is interesting to show how

the entire price and extraction paths are affected by the carbon tax and the renewables

subsidy in the situations with and without arbitrators on the market. Figure 6 compares

the equilibrium without climate policies (solid black line) to a regime with a carbon tax

(dashed line) and a renewables subsidy (dotted line) in our numerical example with

HARA utility. Panel (a) depicts the case with and panel (b) without arbitrators. The

superscripts τ and σ attached to the different regime switching times refer to the cases

with a carbon tax and a renewables subsidy, respectively.

In line with Proposition 2, Figure 6 shows that initial extraction goes down upon

the introduction of the carbon tax and the renewables subsidy in both equilibria. In

the equilibrium without arbitrators, the subsidy speeds up depletion (cf. panel (b) of

Figure 6, in line with Proposition 2 (ii)), whereas it postpones depletion in the presence

of arbitrators (cf. panel (a)). The reason is that in the equilibrium with arbitrators, a

subsidy lowers b̂ and thus forces the monopolist to sell a larger share of its fossil reserves

during the second stage, when demand from the climate-aware region has vanished.

In the equilibrium without arbitrators, however, the monopolist can let the price jump

upward at the moment of the switch, which lowers cumulative fossil extraction during

the second stage.17 In our numerical example, the carbon tax postpones depletion in

both equilibria. Moreover, it induces the monopolist to only perform an intermediate

limit-pricing strategy when there are no arbitrators on the market, from T̃ τ1 until T̃ τ2 in

panel (b).

Intuitively, in the presence of arbitrators the carbon tax forces the monopolist to

sell more during the second stage. Furthermore, the tax lowers the profitability of

fossil extraction during the first stage relative to the second stage. The monopolist

responds by by reducing the duration of the intermediate limit-pricing phase to shorten

the first stage. If the tax becomes large enough, the intermediate limit-pricing phase

disappears altogether. In case of a renewables subsidy, however, both equilibria feature

17Technically, in the equilibrium without arbitrators we have λ1 = λ2 and λ1 increases due to the
subsidy. It then follows from λ1e

rT4 = b − k that T4 must go down. In the equilibrium with arbitrators,
however, λ1 > λ2, implying that this reasoning does not hold.
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an intermediate limit-pricing phase.18

Figure 6: Effect of climate policies on extraction paths

Panel (a) Arbitrators Panel (b) No arbitrators

Notes: The solid black lines correspond to the equilibrium with σ = τ = 0. The dashed line represents the
case with σ = 0.75 and τ = 0. The dotted line represents the case with σ = 0 and τ = 0.75. Parameter
values are ϕ = 2, ψ = 0.91, χ = 9.1, b = 8, k = 1; r = 0.01, S0 = 40, and nA = nB = 0.5. Superscripts τ
and σ refer to the cases with a carbon tax and a renewables subsidy, respectively.

4 Welfare analysis

The asymmetric effects of climate policies on the extraction path across the two equi-

libria have consequences for welfare as well. In this section, we perform a numerical

welfare analysis in our example with HARA utility. For the damage function we take

D(E) = δE. We choose the damage parameter δ such that climate damages in region

A correspond to 50 US$ per ton carbon. The associated Pigouvian tax rate is 0.572.19

Furthermore, we assume quasi-linear preferences so that total welfare in region A is

18Technically, the carbon tax increases the term η2(q̂B)q̂B on the right-hand side of condition (12)
by more than the term η1(q̂)q̂ on the left-hand side, as final demand in the climate-aware region, q̂A,
remains unaffected, whereas q̂B goes up. Therefore, µ11(T−2 ) must fall. If the tax is large enough, the
limit-pricing phase might disappear (i.e., µ11 = 0), as in our numerical example. The subsidy, however,
both increases q̂A and q̂B , which attenuates the effect on the duration of the intermediate limit-pricing
phase.

19Take OPEC reserves equal to 150 billion ton carbon (Heede and Oreskes, 2016) and an oil price
equal to 606.5 US$ per ton carbon (Golosov et al., 2014). In our benchmark equilibrium with S0 = 40,
ρ = 0.01, and τ = σ = 0 we get p(0) = 6.9407. Together, these numbers imply that 50 US$ per ton carbon
correspond to nAδ/ρ = 0.572 units of the numeraire per unit of the resource, yielding δ = 0.01144 for
nA = 0.5.
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defined by

WA =
∞∫

0

e−rt
(
nAU

A

(
qA(t) + xA(t)

nA

)
− bxA(t)− p(qA(t))qA(t)

)
dt−

∞∫
0

e−rtnAD(E(t))dt,

(15)

where E(t) = E0 +
t∫

0
(qA(s)+qB(s))ds. Fossil fuel demand is given by (14a) and demand

for renewables follows from dUA(xA)/dxA = b− σ if xA > 0.

Given the distortions due to monopolistic fossil fuel supply and the climate exter-

nality, the equilibrium without a carbon tax and a renewables subsidy is clearly second-

best. Furthermore, the policy instruments do not only affect efficiency by changing the

timing of fossil supply, but also the distribution of welfare between regions A and B

and the monopolist by changing the scarcity rent. Figure 7 shows the effect of a carbon

tax and a renewables subsidy on different welfare components: non-green welfare, WA
N

(the first integral in (15)), climate damage, Z (the second integral), and total welfare,

WA, which is the difference between the two. The black lines represent the effect of a

carbon tax, whereas the gray lines show the effect of a renewables subsidy. Panels (a),

(b), and (c) depict the case of monopolistic fossil fuel supply, where the solid (dashed)

lines correspond to the case without (with) arbitrators on the market. Panels (d), (e),

and (f) exhibit the situation under perfectly competitive fossil fuel supply.

Panel (a) shows that the renewables subsidy lowers non-green welfare in both

equilibria, whereas a not too high carbon tax is beneficial for non-green welfare. The

difference between the instruments in terms of welfare effects is largely due to the

fact that the renewables subsidy distorts energy use after depletion of the fossil stock,

because we have assumed that the subsidy remains in place forever. The dotted (dash-

dotted) lines show that the effect of a subsidy that is unexpectedly and permanently

removed after depletion of the fossil reserve in the case without (with) arbitrators is

less harmful for non-green welfare.

It can be seen from the results in panel (b) that the introduction of a carbon tax

lowers climate damage in both equilibria. In contrast, the subsidy aggravates climate

damage in the equilibrium without arbitrators due to front-loading of fossil supply, a

so called Green Paradox effect materializes (cf. Sinn, 2008, 2012). When there are

arbitrators on the market, however, the subsidy lowers climate damage. The reason

is that the presence of arbitrators forces the monopolist to sell a larger share of their

reserves in the second stage, when fossil demand from the climate-aware region A has

dropped to zero. Accordingly, the switch from supplying both regions to only supplying
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Figure 7: Welfare effects of a renewable subsidy and a carbon tax

(a) Non-green welfare, monopoly (d) Non-green welfare, perfect competition
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region B occurs sooner, which implies that fossil supply is spread out over a longer time

horizon, as shown in Figure 6.

Panel (c) shows that, on balance, the unilateral introduction of a not too high carbon

tax increases welfare, whereas a renewables subsidy is detrimental for welfare in region

A. The right column of Figure 7 exhibits the results of the welfare analysis when the

market for fossil fuels would be perfectly competitive. Qualitatively, the effects of

renewables subsidies and carbon taxes are comparable to the monopolistic case without

arbitrators. The welfare level, however, differs from the monopolistic case. Non-green

welfare is larger under perfect competition (panel (d)). Climate damage, however, is

larger as well (panel (e)). In the specific example at hand, this implies that aggregate

welfare is higher under perfect competition, as shown in panel (f).

The most outstanding result of our welfare analysis is that although a renewables

subsidy actually increases climate damages under perfect competition and monopoly

without arbitrators (due to a Green Paradox effect), the presence of arbitrators reverses

this outcome: with arbitrators on the market, a renewables subsidy lowers climate

damage, even when cumulative fossil fuel supply remains unchanged.

5 Conclusion

This paper offers a full characterization of the equilibrium in a resource extraction

framework with monopolistic supply of fossil fuel and multiple heterogeneous regions

with differential climate policies. The framework gives rise to a two-stage optimal

control problem for the monopolist. It has been shown that with differential climate

change policies two stages appear in the equilibrium: A first stage, in which both

regional markets, i.e. the markets in the regions with and without climate policies,

are served (at least if the resource stock is large enough). This initial stage is followed

by a stage in which only the region without climate policies in place is supplied with

fossil fuel. The latter stage always has a final phase with limit pricing, whereas the

former stage may not entail a limit-pricing phase. In the absence of arbitrage, there is

an upward price jump at the transition point from the first to the second stage.

Our results are complementary to those of Andrade de Sá and Daubanes (2016).

They argue that in case of inelastic demand, oil suppliers choose for limit pricing

throughout, which restrains the effectiveness of climate policies such as carbon taxation

and renewables subsidies. We show that, also in the case of elastic demand, limit pric-

ing may be more important than suggested by conventional analyses of climate policy

effects. The reason is that heterogeneous climate policies may cause an additional,
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intermediate limit pricing phase. Moreover, we have emphasized the importance of

arbitrators on the market for the fossil extraction path and for the effectiveness of

climate policies.

With the possibility of arbitrage, the monopolist is unable to let the price jump at

the transition to supplying fossil fuel only to the region without climate policies in

place. Hence, the transition takes place earlier, at the cost of a shorter first phase of

limit pricing, which also implies, however, a longer time to fully deplete the fossil fuel

stock. Our numerical welfare analysis suggests that a subsidy for renewables increases

climate damage in the case without arbitrators, due to a Green Paradox effect. In the

case with arbitrators, on the contrary, the renewables subsidy lowers climate damage,

because the monopolist is forced to sell a larger share of his fossil reserve during the

second stage, when demand from the policy active region has vanished. This result is

relevant for policy makers.

Another policy relevant issue regards the social welfare effects in regions that con-

sider to take unilateral action against climate change. Upon the introduction or tight-

ening of climate policies, the monopolist shifts its supply to the unregulated region

such that the regulated region switches earlier to backstop use. This (intertemporal)

carbon leakage effect lowers non-green welfare in the regulated region. We see that a

carbon tax policy may still increase social welfare in these regions, in particular when

arbitrage is not feasible. On the contrary, a subsidy for renewables is detrimental to

welfare in these regions. The conclusion that a carbon tax performs better than a

subsidy is maintained even if the subsidy is (unexpectedly) reduced to zero as soon as

all fossil fuel is depleted. Finally, maybe surprisingly, arbitrage has a negative but not

a major impact on total social welfare in the region that takes unilateral action. These

results are obtained for specific welfare functions but it is to be expected that at least

the superiority of taxation remains valid in more general settings.

Although we have constrained ourselves to studying the case of a pure monopoly,

which is not the most accurate representation of the real world, the occurrence of limit-

pricing in the model indicates that backstop investments (or subsidies for renewables,

as introduced formally in this model) lead to lower initial fossil fuel supply. This is

the opposite of what is found in case of perfect competition. Hence, we can exclude

the occurrence of a Weak Green Paradox as a consequence of climate policy. This

concept, however, is not of much use for judging the desirability of climate policies in

our framework. The reason is that due to the existence of the limit-pricing phases, the

resource extraction and price paths before and after the policy changes cross several

times.
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Our study exhibits some limitations. We do not derive optimal policies and assume

constancy over time of the policy instruments. Moreover, it would be interesting to al-

low for differences in climate policies between countries within the policy-active world,

which would give rise to the existence of additional limit-pricing regimes. Furthermore,

we assume that the monopolist is not able to use price discrimination. This is a valid

assumption for the oil market, for instance, since oil can be easily shipped and is traded

globally. Yet, the assumption might not hold in the case of gas, which is traded mostly

regionally or by bilateral trading agreements. Additionally, we do not consider strategic

behavior on the part of the importing and exporting regions. This is an interesting

and promising direction to extend the paper. Also, the markets for fossil fuels are

not purely monopolistic. Research should be extended so as to include oligopoly or

cartel-fringe market structures, which might answer questions related to the sequence

of fuel extraction and the conditions under which simultaneous limit-pricing will take

place (cf. Benchekroun et al., 2009, 2010). The model would also gain in value by

allowing for technological progress in the backstop technology, for R&D expenditures

on developing better backstop technologies, which would allow for decreasing fossil

prices and increasing energy use during limit-pricing phases (cf. Jaakkola, 2015) and

partial exhaustion if the marginal costs of the backstop technology rapidly fall below

the marginal extraction cost of fossil fuels (cf. Fischer and Salant, 2012). Finally, it

would be interesting to allow for set-up costs of renewables (like windmills).
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A Appendix

A.1 Two-stage optimal control

The necessary conditions for the solution of the monopolist’s problem are derived from

the theory on two-stage optimal control problem, as described in, e.g., Tomiyama

(1985). The Hamiltonians Hi associated with the first stage (i = 1) and second stage

(i = 2) of the optimal control problem for the monopolist are given by:

Hi = e−rt(pi(q)− k)q − λiq, i = 1, 2, (A.1)

where λi denotes the shadow price of the resource stock in stage i. The corresponding

Lagrangians read

L1 = e−rt(p1(q)− k)q − λ1q + e−rtµ11(b̂− p1(q)), (A.2a)

L2 = e−rt(p2(q)− k)q − λ2q + e−rt[µ21(b− p2(q)) + µ22(p2(q)− b̂)], (A.2b)

where the µij ’s are Lagrange multipliers associated with the inequality constraints

(2b)-(2d). The following complementary slackness conditions hold (we omit the time

argument when there is no danger of confusion):

µ11(b̂− p1(q)) = 0, µ11 ≥ 0, (A.3a)

µ21(b− p2(q)) = 0, µ21 ≥ 0, (A.3b)

µ22(p2(q)− b̂) = 0, µ22 ≥ 0, (A.3c)

which require that the µijs equal zero as long as the corresponding restrictions on the

price are non-binding. The necessary first-order conditions with respect to resource

extraction read:

λ1e
rt = p′1(q)q + p1(q)− k − µ11p

′
1(q), (A.4a)

λ2e
rt = p′2(q)q + p2(q)− k − µ21p

′
2(q) + µ22p

′
2(q). (A.4b)

The first-order conditions with respect to the resource stock requires the shadow price

of the resource to be constant over time:

λ̇i = −∂Hi

∂S
= 0. (A.5)
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The optimality conditions can be used to find the solution to the monopolist’s problem

for given T2, T4, and S(T2). The following transversality condition holds since the

optimal stopping time T4 is endogenous (cf. Seierstad and Sydsæter, 1987, p. 213):

H2(T4) = 0, (A.6)

where H2(T4) is shorthand for the Hamiltonian evaluated at the instant of time T4. So

e−rT4(p2(q(T4))− k)q(T4)− λ2q(T4) = 0. (A.7)

By combining (A.4b) and (A.7) we find µ21(T4) − µ22(T4) = q(T4) > 0, which gives

µ21(T4) > 0 and thus µ22(T4) = 0 and p(T4) = b. Hence, there always exists a final

non-degenerate interval of time with limit pricing at b. As a result, (A.6) implies

e−rT4(b− k) = λ2. (A.8)

More necessary conditions are needed to characterize the optimum. These depend on

what is assumed with regard to arbitrage. We will analyze the two cases separately and

prove Theorems 1 and 2.

A.2 Equilibrium with arbitrators

If arbitrage is possible at negligible cost the price path must be continuous over the

entire program, in particular at the transition, if any, from stage 1 to stage 2, as required

by condition (8). Our strategy to prove Theorem 1 is to define critical initial fossil

fuel stocks that warrant a specific optimal extraction path. If a program satisfies the

necessary conditions and the transversality conditions, it is the unique optimum due to

our assumption of strict concavity of the profit function.

We have shown already that there is a final stage with limit pricing at b. We suppose

that climate policies are in place: σ > 0 and/or τ > 0. Consider the final phase, with

T3 ≤ t ≤ T4, and define T4 − T3 and S0 by

erT4−rT3 = b− k
p′2(q̃B)q̃B + b− k

, and S01 = (T4 − T3)q̃B. (A.9)

The claim is that if S0 ≤ S01, it is optimal to have limit pricing at a price b from the

start, until full exhaustion. To prove this, we check all the necessary conditions for

this program. Set T1 = T2 = T3 = 0. Define T̂4 by T̂4 = S0/q̃B. For 0 ≤ t ≤ T̂4 take

32



µ22(t) = 0, q(t) = q̃B. Moreover, using (A.9),

p′2(q̃B)q̃B + b− k = (b− k)e−rT4 ≤ (b− k)e−rT̂4 .

since T̂4 ≤ T4 defined above because S0 ≤ S01 by assumption. Note that p2(q̃B) = b and

use first-order condition (A.4b) and transversality condition (A.6) to get

ertµ21(t)p′2(q̃B) = p′2(q̃B)q̃B + b− k − (b− k)er(t−T̂4) < 0,

for all t > 0. Hence µ21(t) > 0 for 0 < t ≤ T̂4. Therefore, all necessary conditions and

the transversality condition are satisfied so that the program proposed is optimal.

Now consider the phase with T2 ≤ t ≤ T3. Define T3 − T2 and S02 by

erT3−rT2 = p′2(q̃B)q̃B + b− k
p′2(q̂B)q̂B + b̂− k

and S02 =
∫ T3

T2
g2(λ2e

rt)dt+ S01, (A.10)

with λ2e
rT2 = p′2(q̂B)q̂B + b̂ − k and where g2(λ2e

rt) is the solution for q(t) from (A.4b)

with µ12(t) = µ22(t) = 0 (T2 ≤ t ≤ T3). The claim is that if S0 = S02 > S01 it is

optimal to set the initial price equal to b̂, let the price increase up to b and have limit

pricing at price b thereafter, hence serving region B′s market only. We show that this

program satisfies all the necessary conditions as well as the transversality condition

and is therefore optimal. Set T2 = 0. Time T3 follows from (A.10) with T2 = 0. For

0 ≤ t ≤ T3 use first-order condition (A.4b) with µ12(t) = µ22(t) = 0 (T2 ≤ t ≤ T3) to get

(p′2(q̂B)q̂B + b̂− k)ert = p′2(q(t))q(t) + p2(q(t))− k. (A.11)

Hence, q is decreasing along the interval, from the assumption that (p2(q)−k)q is strictly

concave, and therefore p is increasing, so that b̂ < p(t) < b in the interior of the interval

and the assumption µ12(t) = µ22(t) = 0 is warranted. Once the price b is reached at T3

the resource stock equals S01. From then on it is optimal to have limit pricing, as in the

previous case. This proves the claim. If S02 > S0 > S01 then it is clearly optimal to set

T2 = 0 and q(0) < q̂B.

For the phase with T1 ≤ t ≤ T2 we distinguish between two different cases: T2 > T1

and T2 = T1. From Lemma 2 and the surrounding discussion, we have the following

optimality condition:

H1(T−2 ) ≤ H2(T+
2 ),

(
H1(T−2 )−H2(T+

2 )
)

(T2 − T1) = 0, (A.12)
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which requires the Hamiltonian to be continuous at t = T2 if T2 > T1.

First, consider the case with p′2(q̂B)(q̂B)2 − p′1(q̂)(q̂)2 > 0, which implies

p′2(q̂B)q̂2
B + (b̂− k)q̂

p′1(q̂)q̂2 + (b̂− k)q̂
> 1. (A.13)

Define T2 − T1 and S03 by

erT2−rT1 = p′2(q̂B)q̂2
B + (b̂− k)q̂

p′1(q̂)q̂2 + (b̂− k)q̂
, and S03 = (T2 − T1)q̂ + S02. (A.14)

The claim is that if S03 = S0 it is optimal to start from time zero on with limit pricing

at b̂ until the stock has reached S02, from where on the previously derived optimal path

is followed. To prove the claim we construct a path that satisfies all the necessary

conditions and the transversality condition. Take T1 = 0. Time T2 follows from (A.14).

Take qA(t) = q̂A and qB(t) = q̂B for 0 ≤ t ≤ T2. At T2 the stock has reached S02 and the

path derived previously is optimal from then on. Moreover, the price is continuous at

T2. Take λ1 and λ2 such that

e−rT2(b̂− k)q̂− λ1q̂ = e−rT2(b̂− k)q̂B − λ2q̂B, and λ2e
rT2 = p′2(q̂B)q̂B + b̂− k. (A.15)

Then (A.12) is satisfied. It follows from (A.14) that λ1 = p′1(q̂)q̂+(b̂−k). Hence, (A.4a)

is satisfied with µ11(0) = 0. We still need to check the non-negativity of the multiplier

µ11 for 0 < t ≤ T2. From (A.4a), we have

ertµ11(t)p′1(q̂) = (p′1(q̂)q̂ + b̂− k)(1− ert) < 0 for t > 0. (A.16)

Hence µ11(t) ≥ 0 for 0 < t ≤ T2. If S03 > S0 > S02 then it is clearly optimal to start with

limit pricing at price b̂ from the outset.

Second, consider the case with p′2(q̂B)(q̂B)2 − p′1(q̂)(q̂)2 ≤ 0. Define T1 = T2, which

implies that (A.12) is satisfied.20 With T1 = T2 there is no intermediate limit-pricing,

i.e., S03 = S02, so that with S0 = S02 = S03 it is optimal to set the initial price equal to b̂,

let the price increase up to b and have limit pricing at price b thereafter, hence serving

region B′s market only, as shown before.

Note that in both cases, (A.12) implies ((b̂−k)e−rT2−λ2)(q̂− q̂B) ≤ (λ1−λ2)q̂, which

from q̂ > q̂B and (A.2b) with µ21(T2) = µ22(T2) imposed yields λ1 > λ2.

20If p′2(q̂B)(q̂B)2 − p′1(q̂)(q̂)2 < 0, restriction p(q(T−2 ) = b̂ implies that the monopolist is forced to
choose T2 equal to the T2 it would choose if p′2(q̂B)(q̂B)2− p′1(q̂)(q̂)2 = 0, say T ∗2 . Hence, the monopolist
effectively faces the constraint T2 ≥ T ∗2 , implying H1(T−2 ) ≤ H2(T+

2 ).
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Finally, consider the phase with 0 ≤ t ≤ T1. Define T1 and S0 by

erT1 = p′1(q̃)q̃ + p1(q)− k
λ1

and S0 =
∫ T1

0
g1(λ1e

−rt)dt+ S03, (A.17)

where g1(λ1e
rt) is the solution for q(t) from (A.4a) with µ11(t) = 0 (t ≤ T1).

The claim is that if S0 > S03 it is optimal to set the initial price below b̂ and let the

price increase up to b̂. Time T1 follows from (A.17). For 0 ≤ t ≤ T1 use first-order

condition (A.4a) with µ11(t) = 0 (t ≤ T1) to get

(p′1(q̂)q̂ + b̂− k)ert = p′1(q(t))q(t) + p1(q(t))− k. (A.18)

Hence, q is decreasing along the interval, from the assumption that (p1(q)−k)q is strictly

concave, and therefore p is increasing, so that p(t) < b̂ in the interior of the interval and

the assumption µ11(t) = 0 is warranted. Once the price b̂ is reached at T1 the resource

stock equals S03 From then on it is optimal to have either limit pricing for a while at

price b̂ or to let the price increase over time up to b, as shown before.

This proves Theorem 1.

A.3 Equilibrium without arbitrators

If arbitrage is not possible, the monopolist is free to choose S(T̃2) and T̃2, implying that

the Hamiltonians and the shadow prices in the two stages coincide in the optimum,

as stated in Lemma 1. Theorem 2 can be proved along the same lines as Theorem 1.

Here we will focus on the main differences: a jump in the price of fossil fuel at T̃2

(if T̃2 > 0) and a potential shorter maximum duration of the final limit-pricing phase,

because µ21(T̃+
2 ) is no longer necessarily equal to zero.

Lemma A.1 Provided that T̃2 > 0, the resource price jumps up at T̃2.

Proof. Suppose, on the contrary, that the price is continuous at T̃2. Then p(T̃−2 ) =
p(T̃+

2 ) = b̂. Since q(T̃−2 ) = q̂A + q̂B and q(T̃+
2 ) = q̂B > 0, it follows from (A.6) and (7b)

in (7a) that H1(T̃2) = H2(T̃2) = 0. However, substitution of (A.4b) into (A.1) gives

H2(T̃2) = −
{
p′2(q(T̃+

2 ))q(T̃+
2 ) + µ22(T̃+

2 )p′2(q(T̃+
2 ))

}
q(T̃+

2 ) > 0,

where we have used p2(q(T̃+
2 )) = b̂ < b, implying that µ21(T̃+

2 ) = 0. So, we have reached

a contradiction. Hence, the price must jump up at t = T̃2. �
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The size of the jump and the conditions under which an intermediate limit-pricing

phase before the jump takes place can also be determined analytically by combining

the first-order conditions (A.4a)-(A.4b) with the two matching conditions (7a) and

(7b), yielding the result in the following lemma.

Lemma A.2 Provided that T̃2 > 0, the jumps in resource extraction and the resource price,

and the values of the Lagrange multipliers at the stage switch satisfy:21

p1[q(T̃−2 )]− p2[q(T̃+
2 )] = p′2[q(T̃+

2 )]
[
q(T̃−2 )− q(T̃+

2 )
] q(T̃+

2 )− µ21(T̃+
2 )

q(T̃−2 )
, (A.19a)

µ11(T̃−2 )p′1[q(T̃−2 )] = p1[q(T̃−2 )] + p′1[q(T̃−2 )]q(T̃−2 )

−
(
p2[q(T̃+

2 )] + p′2[q(T̃+
2 )]q(T̃+

2 )
)

+ µ21(T̃+
2 )p′2[q(T̃+

2 )].
(A.19b)

Proof. First, note that µ22(T̃+
2 ) = 0 due to the result in Lemma A.1. Second, substitution

of (A.4b) into (A.1) and subsequently using (7a) gives (A.19a). Third, combining

(A.4a)-(A.4b) gives (A.19b). �

Condition (A.19a) relates the jump in the resource price to the jump in demand,

whereas condition (A.19b) determines the value of the Lagrange multiplier µ11 at the

end of the first stage. The existence of a limit-pricing phase before T̃2 requires a positive

µ11(T̃−2 ) (from the complementary slackness condition (A.3a)) and therefore a negative

right-hand side. Although the second row of (A.19b) is always negative, the marginal

revenue showing up in the first row should not be too high in order for the right-hand

side to be negative on balance. In terms of panels (a) and (b) of Figure 3 in the main

text, point G should not be located too high (like points F are in panels (c) and (d)).

Considering the duration of the final limit-pricing phase (T̃3 ≤ t ≤ T̃4), define T̃4−T̃3

and S̃0 by

erT̃4−rT̃3 = b− k
p′2(q̃B)q̃B + b− k − µ21(T̃3)p′2q̂B

, and S̃01 = (T̃4 − T̃3)q̃B. (A.20)

The claim is that if S̃0 ≤ S̃01, it is optimal to have limit pricing at a price b from the

start, until full exhaustion. To prove this, we check all the necessary conditions for

this program. Set T̃1 = T̃2 = T̃3 = 0. Define T̂4 by T̂4 = S̃0/q̃B. For 0 ≤ t ≤ T̂4 take

21Together with the complementary slackness conditions (A.3a) and (A.3b), equations (A.19a)-(A.19b)
can be used to solve for, q(T̃−2 ), µ11(T̃−2 ), q(T̃+

2 ), and µ21(T̃+
2 ).
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µ22(t) = 0, q(t) = q̃B. Moreover, using (A.20),

p′2(q̃B)q̃B + b− k − µ21(0)p′2q̂B = (b− k)e−rT̃4 ≤ (b− k)e−rT̂4 .

since T̂4 ≤ T̃4 defined above because S̃0 ≤ S̃01 by assumption. Note that p2(q̃B) = b and

use first-order condition (A.4b) and transversality condition (A.6) to get

ertµ21(t)p′2(q̃B) = p′2(q̃B)q̃B + b− k − (b− k)er(t−T̂4) < 0,

for all t > 0. Hence µ21(t) ≥ 0 for 0 < t ≤ T̂4. Therefore, all necessary conditions and

the transversality condition are satisfied so that the program proposed is optimal.

Note that if µ21(T̃3) > 0, we get T̃4 − T̃3 < T4 − T3 (see (A.9) and (A.20)), imply-

ing that the duration of the final limit-pricing phase is shorter than in the case with

arbitrators. Furthermore, µ21(T̃3) > 0 also gives T̃3 = T̃2, which is not possible in the

equilibrium with arbitrators (provided that T2 > 0).

The remaining critical initial fossil fuel stocks S̃02 and S̃03 that warrant a specific

optimal extraction path can be defined along the lines of the proof of Theorem 1. If

a program satisfies the necessary conditions and the transversality conditions, it is the

unique optimum due to our assumption of strict concavity of the profit function.

A.4 Discounted profits

The results so far can be used to derive equation (10) in the main text:

Lemma A.3 Suppose the Hamiltonian is continuous, then the relationship between the

Hamiltonian at time zero and discounted profits of the monopolist is given by:

H1(0)
r

= Λ(S0, b, σ, τ). (A.21)

Proof. The time derivative of the Hamiltonian H1 in (A.1) is given by

Ḣ1 = ∂H1

∂S
Ṡ + ∂H1

∂λ1
λ̇1 + ∂H1

∂q
q̇ + ∂H1

∂t
= µ11(t)p′1(q(t))q̇ + ∂H1

∂t
= ∂H1

∂t
, (A.22a)

where the second equality is obtained by substituting ∂H1/∂S = −λ̇1 and ∂H1/∂λ1 = Ṡ,

and the third equality uses (A.3a) and (A.4a) (with either q̇ = 0 or µ11 = 0). Similarly,

by using ∂H2/∂S = −λ̇2 and ∂H2/∂λ2 = Ṡ, (A.4b), and (A.3b)-(A.3c) we obtain

Ḣ2 = (µ22(t)− µ21(t)) p′2(q(t))q̇ + ∂H2

∂t
= ∂H2

∂t
. (A.22b)
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Integration of (A.22a)-(A.22b) over t gives

∫ T2

0
e−rt(p1(q)− k)qdt = H1(0)−H1(T2)

r
, (A.23a)∫ T4

T2
e−rt(p2(q)− k)qdt = H2(T2)−H2(T4)

r
. (A.23b)

Combining (A.23a)-(A.23b) while using (A.6) and continuity of the Hamiltonian gives

(A.21). �
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