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Abstract

Interconnections between Eurozone and United States booms and busts and among

major Eurozone economies are analyzed using a Panel Markov-Switching VAR model.

The model accommodates changes in low and high data frequencies and incorporates

endogenous time-varying transition matrices of country-specific Markov chains. These

country-specific Markov chains depend on their own past history and the history of

other chains, thus allowing for interconnections between cycles, and an endogenous

common Eurozone cycle is derived by aggregating the country-specific cycles. The model

is estimated using a simulation based Bayesian approach in which an efficient multi-

move sampling algorithm is defined to draw time-varying Markov-switching chains.

Using industrial production growth and credit spread data for all countries, several

empirical results have emerged. Recession, slow growth and expansion are empirically

identified as three regimes with slow growth becoming persistent in the Eurozone in

recent years different from the US. The Eurozone and the US regimes appear not fully

synchronized, with evidence of more recessions in the Eurozone. Second, turning point

analysis indicates larger synchronization at the beginning of the Great Financial Crisis:

this shock affects the US first, leading the Eurozone cycle, and spreads then rapidly

among these economies. Third, amplification effects influence recession probabilities for

Eurozone countries when shocks occur. The evidence is different for the US where this

reinforcement does not exist. In recent years there are more imbalances among regimes

in Eurozone countries. Fourth, a credit shock results in substantial negative industrial

production growth for several months in Germany, Spain and the US. Our empirical

results point towards the existence of a group of core countries: Germany, France and
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1



Netherlands with Italy sometimes belonging in the core and sometimes not and a group

of peripheral countries Spain and sometimes Italy. Belgium taking a special position

probably due to the de-industrialization in the nineties. US recessionary shocks affect

Germany and Spain first in the Eurozone.The empirical results may serve as important

information for the specification of a coordinated fiscal and monetary policy between

the Eurozone and the US economies and also within the Eurozone economies, aimed

at more adequate dynamic intervention with respect to shocks and reducing european

imbalances.

JEL codes: C11, C15, C53, E37.

Keywords: Bayesian Modelling, Panel VAR, Markov-switching, International Business

Cycles, Interaction mechanisms.

1 Introduction

According to the Economist, October 25-31, 2014, ”the Eurozone region is marching

towards stagnation and deflation.” Interconnections between the economies of the aggregate

Eurozone, individual countries and the US are important pieces of information for an

empirical analysis of these issues. In this paper we investigate interconnections between

booms and busts in the Eurozone and the US economies, where the Eurozone is represented

by its six largest countries, with a particular focus on the number, persistence and

synchronization of regimes, leads and lags in turning points and transmission mechanisms.

Our modeling approach allows for shock transmission among different sectors: in particular

we investigate the transmission from the financial sector, modeled with the credit spread,

to the real sector, modeled with the industrial production index. The shock transmission

among countries depends further on endogenous aggregate Eurozone and US business cycle

factors.

The analysis is based on a Panel Markov-Switching VAR (PMS-VAR) model that

describes cyclical behavior of the Eurozone economy at a country specific level and at

an aggregate level and compares these with the US economy. We build on Canova and

Ciccarelli (2004) and Canova and Ciccarelli (2009) and extend their panel VAR model in

order to model asymmetry and turning points in the business cycles of different countries.

See also Bassetti et al. (2014) for a Bayesian nonparametric specification of a multi-

country panel VAR model. Our paper also extends Kaufmann (2010), where a panel

of univariate Markov-switching (MS) regression models is considered, by constructing a

multivariate panel MSVAR structure for the country-specific time series. We build on basic
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model structures of Hamilton (1989) and Krolzig (2000) and consider Markov-switching

dynamics for low and high frequency components that are specified as conditional means

and covariance matrices of country-specific equations (see also Billio et al. (2012), Basturk

et al. (2014) and Billio et al. (2013b)). We further build on Kaufmann (2015) and use

an endogenous time-varying transition mechanism to model the transition matrix of the

country-specific Markov-chains. In our model the transition of such chains depends not

only on their past history but endogenously also on the past history of the other chains of

the panel. Since only the transition probability matrix connects the different chains, the

specification forces spill-over effects to enter nonlinearly in the model.

Our inference is Bayesian and we develop an efficient multi-move Gibbs sampling

algorithm, based on forwarding-filtering backward sampling (e.g., see Frühwirth-Schnatter

(2006)), to approximate the posterior distribution of the time-varying Markov-switching

chains. To avoid potential overfitting problems due to the large number of parameters in

the model, we follow the hierarchical prior specification strategy proposed by Canova and

Ciccarelli (2009). Our paper relates also to Amisano and Tristani (2013), who propose

a panel Markov-switching model to investigate transmission mechanisms in European

sovereign bond markets, but our modeling and inference differ since we follow a hierarchical

specification of the VAR and Markov-switching parameters. We make use of an endogenous

transition that is based on alternative weighting rules with time-varying weights that

account for differences in size and importance of the countries and our regime transition

also accounts for Harding and Pagan (2002) constraints on minimum phases in order to

obtain well defined business cycles.

Our main empirical results can be summarized as follows. We provide substantial

empirical evidence on the existence of three regimes in all countries: recession, slow growth

and expansion, with slow growth becoming persistent in the Eurozone in recent years,

different from the US. The Eurozone and the US regimes appear not fully synchronized, with

evidence of more recessions in the Eurozone, in particular during the 90’s when the monetary

union was planned. Second, turning point analysis indicates larger synchronization at the

beginning of the Great Financial Crisis: this shock affects the US first, leading the Eurozone

cycle, and spreads then very rapidly among Eurozone economies. Third, amplification

effects influence recession probabilities for Eurozone countries when shocks occur, which is

different for the US where this reinforcement does not exist. In recent years there are more
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imbalances among regimes in Eurozone countries. Fourth, a credit shock, increasing the

credit spreads and therefore deteriorating credit conditions, results in substantial negative

industrial production growth for several months in Germany, Spain and the US.

The majority of our empirical results point towards the existence of two groups of

countries in the Eurozone: a group of core countries: Germany, France and Netherlands

with Italy sometimes belonging in the core and sometimes not; and a group of peripheral

countries: Spain and sometimes Italy. Belgium taking a special position probably due to

the de-industrialization in the nineties. Credit and other recessionary shocks in the US

affect Germany and Spain first.

Our empirical results may serve as important information for the specification of a

coordinated fiscal and monetary policy between the Eurozone and the US economies and also

within the Eurozone economies that should be aimed at more adequate dynamic intervention

with respect to shocks and reducing european imbalances.

The contents of this paper is as follows. Section 2 introduces the Panel MS-VAR model.

Section 3 discusses the prior choice and the Bayesian inference framework. Section 4 presents

empirical evidence within the Eurozone and between the Eurozone and the US economies.

Section 5 concludes. The online Appendix contains details on related literature, data,

simulation method, extra empirical results and several references.

2 A Panel Markov-Switching VAR model

We introduce a general Panel Markov-Switching VAR (PMS-VAR) model with endogenous

transitions and interconnections. The transitions of unit specific Markov-chains are assumed

to be dependent on their own past history and on the history of other chains in order

to capture typical features of interconnections. Mechanisms such as different weighting

schemes for countries and duration of regimes are also suggested. Stochastic parameter

restrictions and hierarchical priors, see further Section 3, are used to avoid overfitting.

2.1 Panel VAR specification

Let yit ∈ RM be a sequence of t = 1, . . . , T time observations on an M -dimensional vector

of economic variables for i = 1, . . . , N countries. A general specification of a PMS-VAR
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model reads

yit = ai(si t) +
N∑
j=1

P∑
p=1

Aijp(si t)yjt−p + εit, εit ∼ NM (0,Σi(si t)) (1)

where NM (., .) denotes an M -variate normal distribution function, and ai(si t), Aijp(si t)

and Σi(si t)) are parameters depending on Markov chains. The {si t} are unit-specific and

independent K-states Markov-chain processes with values in {1, . . . ,K} and with time-

varying transition probabilities P(si t = k|si t−1 = l, Vt,α
kl
i ) = pit,kl with k, l ∈ {1, . . . ,K},

where Vt is a set of Gv common endogenous covariates to all chains and αkli is a unit-specific

vector of parameters.

The generality of this statistical model stems from the possibility that the coefficients

may vary both across units and across time. Moreover interdependencies between units are

allowed whenever Aijp(si t) 6= 0 for i 6= j.

To clearly define parameter shifts and to simplify the exposition of the inference

procedure, we introduce the indicator variable ξikt = I(si t = k), where

I(si t = k) =

 1 if si t = k

0 otherwise

for k = 1, . . . ,K, i = 1, . . . , N , and t = 1, . . . , T . The vector of indicators ξit =

(ξi1t, . . . , ξiKt)
′ collects information about the realizations of the i-th unit-specific Markov

chain over the sample period. Using these indicator variables, parameter shifts can be

written as

ai(si t) =
K∑
k=1

ai,kξikt, Aijp(si t) =
K∑
k=1

Aijp,kξikt, Σi(si t) =
K∑
k=1

Σikξikt.

where ai,k = (ai1,k, . . . , aiM,k)
′ ∈ RM are M dimensional column vectors representing

the country- and regime-specific VAR intercepts, Aijp,k ∈ RM × RM are M -dimensional

matrices of unit- and regime-specific autoregressive coefficients and Σik ∈ RM × RM are

M -dimensional unit- and regime-specific covariance matrices.

The large number of parameters makes our PMS-VAR very flexible. However,

overparameterization may lead to overfitting, especially in macroeconomic applications,

where time series are characterized by a low number of observations, slowly changing
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means and time-varying variances (see, e.g., Basturk et al. (2014)). These issues call for

the use of a Bayesian approach to modeling and estimation, since it allows for inclusion

of parameter restrictions with different degrees of prior belief. These restrictions should

clearly be motivated by the specific application. In our application, using monthly data

on the growth of the US Industrial Production Index (IPI) and on credit spread, we allow

for different regimes in the intercepts and variances, whereas the autoregressive parameters

are assumed to be constant across regimes. Also, prior restrictions on blocks of parameters

are introduced. More specifically, we assume: E(εitε
′
jt) = OM×M with On×m the (n×m)-

dimensional null matrix, and there are no interdependencies among the same variable across

units, that is Aijp,k = Aip,kI(i = j) + OM×M (1 − I(i = j)), when conditioning on the

parameters. The dependence across units will be modeled through a hierarchical prior

specification discussed in section 3.1.

There exists empirical evidence for these choices. Clements and Krolzig (1998) find

that most forecast errors are due to the constant terms in predictive models. They also

suggest to consider MS models with regime-dependent volatility. We follow Krolzig (2000),

Billio et al. (2012) and Basturk et al. (2014) and specifically assume that both unit-specific

intercepts, ai(si t), and covariance matrices, Σi(si t), are driven by the regime-switching

variables {si t}t but that the autoregressive coefficients Aip,k = Aip, ∀k remain constant.

The restricted model is given as:

yit = ai(si t) +
P∑
p=1

Aipyit−p + εit, εit ∼ NM (0,Σi(si t)). (2)

For the switching behaviour, we make use of an intercept-switching parameterization of

the autoregressive model, see McCulloch and Tsay (1994). After a regime change, the

mean level approaches the new value smoothly over several time periods. An alternative

parameterization of the model is one where, after a regime change, an immediate mean level

shift occurs. This parameterization has been used by Hamilton (1989) and Schotman and

van Dijk (1991) and has the advantage that parameters can be easily interpreted, but a

major drawback is that inference is more involved than for the McCulloch and Tsay (1994)

parameterizations. See also Frühwirth-Schnatter (2006), ch. 11.4 and 12.2, and Paap and

van Dijk (1998).

Following Frühwirth-Schnatter (2006), in order to simplify the exposition, we consider
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the following re-parameterization based on a partitioning of the set of regressors

(1,y′it−1, · · · ,y′it−P ) into K+1 subsets x̄i0t = (y′it−1, . . . ,y
′
it−P )′ and x̄ikt = 1, k = 1, . . . ,K,

that are an M0-dimensional vector of regressors with regime-invariant coefficients and K

vectors of MK regime-specific regressors with regime-dependent coefficients. Under our

assumptions, M0 = MP , MK = 1, ∀k and the PMS-VAR model is given as:

yit = Xi0tγi0 + ξi1tXi1tγi1 + . . .+ ξiKtXiKtγiK + εit, εit ∼ NM (0,Σi(ξit)) (3)

where Xi0t = (IM ⊗ x̄′i0t) and Xikt = IM are the regime-invariant and the regime-specific

regressor matrices, respectively, γi0 ∈ RMM0 , γik ∈ RMMK , k = 1, . . . ,K, i = 1, . . . , N ,

and Σi(ξit) = Σi(ξit ⊗ IM ) and Σi = (Σi1, · · · ,ΣiK). The relationship between the new

parameterization and the previous one is: γi0 = vec((Ai1, · · · , AiP )′)′, and γik = ai,k.

2.2 Transition mechanisms

Following Kaufmann (2015) we assume a centered parameterization of the transition

probabilities

P(si t = k|si t−1 = l, Vt,αi) = H(Vt,α
kl
i ), k, l = 1, . . . ,K (4)

with

H(Vt,α
kl
i ) =

exp
(
(Vt − ci)′αkl1i + αkl0i

)∑K
k=1 exp

(
(Vt − ci)′αkl1i + αkl0i

) , (5)

where αkli = (αkl0i,α
kl′
1i )′ and ci is a vector of threshold parameters that can be chosen to be

the average of Vt. For identification purposes, we let K be the reference state and assume

αKl1i = 0 and αKl0i = 0, for all l = 1, . . . ,K. To simplify the exposition we also denote

with αi = vec
(
(α11

i , . . . ,α
KK
i )

)
the collection of parameters of the sequence of transition

matrices for the i-th unit.

Using recent macroeconomic data there is substantial evidence of a business cycle model

with more than two regimes (see also Clements and Krolzig (1998)) and a time-varying error

variance. For example, Kim and Murray (2002) and Kim and Piger (2002) propose a three-

regime (recession, high-growth, and normal-growth) MS model while Krolzig (2000) suggests

a model with regime-dependent volatility for US GDP. We consider data on Eurozone

industrial production growth for a period of time including the 2009 recession and find that
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three regimes (recession, k = 1, slow growth, k = 2, and expansion, k = 3) are necessary

to capture some important features of the US and Eurozone cycles, see Section 4 for more

details.

As evidenced in Harding and Pagan (2011) and Harding (2010) the use of simple logit or

probit models for modeling the transition probabilities of phases of a business cycle may be

inappropriate when the goal is to describe particular features of the business cycle such as

duration of regimes. The feature of a minimum phase duration leads to impose restrictions

on the parameters of the transition model. Extending the idea of Harding and Pagan (2011)

to our PMS-VAR model and focusing on the minimum recession duration, we specify the

following transition probabilities

P(si t = k|si t−1 = l, si t−2, Vt,αi) =



H(Vt,α
kl
i ) if si t−2 = 1

1 if si t−2 6= 1, k = 1, l = 1

0 if si t−2 6= 1, k 6= 1, l = 1

H(Vt,α
kl
i ) if si t−2 6= 1,∀k and l 6= 1

(6)

and we impose the constraint of a minimum duration of two months for the recession

phase. Note that this differs from the traditional definition of recession duration as two

quarters of negative growth which is usually applied for turning point detection based on

GDP. However, we emphasize that we only impose a lower bound on the minimum duration

which is motivated by our use of monthly data.

2.3 Interaction mechanisms

We introduce dependence among Markov chains through a set of common covariates Vt. This

set contains observable variables and also the state value of the N unit-specific Markov-

chains. In order to achieve a parsimonious model, the information content of the N chains

is summarized by an auxiliary variable ηt resulting from the aggregation of past values of

the unit-specific chains.

The elements of ηt = (η1t, . . . , ηKt)
′ are defined by the weighted average

ηkt =

N∑
i=1

ωitI(sit−1 = k) (7)

The weights do not necessarily have to sum up to one. However, we assume ωit ≥ 0 and
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∑N
i=1 ωit = 1, for all t in order to have a probabilistic interpretation for the ηkt. The unit-

specific weight ωit, can be driven, for example, by the relative IPI growth rate or size of

the i-th unit at time t− 1. Distance measures based on other features of the units can also

be considered to aggregate the hidden states. When k = 1 we get a measure of the relative

economic size of the proportion of countries which are in a “recession” regime.

Aggregation weights may be included in the inference procedure. This leads to a more

complex latent variable model, both in terms of modeling and computation. Alternatively,

one can use completely unobserved combination weights (e.g., in the modeling strategies

of Billio et al. (2013a)) or weights which are partially observed and driven by one or some

of the variables mentioned above. Given the already large number of latent variables in

our model, the latter weight specification strategy is preferred in order to avoid overfitting

problems. Other aggregation rules can be easily included in our framework to account for

prevailing regimes over time and/or in the cross-section, but this is left for future research.

3 Bayesian Inference

The PMS-VAR model is estimated with a simulation based Bayesian procedure. In order

to avoid overfitting due to the large number of parameters, we use hierarchical prior

distributions. Moreover, we construct an efficient algorithm to draw latent MS chains

which uses Forwarding-Filtering Backward Sampling (FFBS) (see, e.g., Frühwirth-Schnatter

(2006)) on unit-specific auxiliary bivariate Markov chains. The auxiliary chains allow

for both interaction effects and minimum duration restrictions when sampling from the

posterior distribution of the latent MS processes.

3.1 Hierarchical prior

We follow a hierarchical prior specification strategy (see, e.g., Canova and Ciccarelli (2009)),

which allows to model dependence between panel units through common latent variables
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and to further avoid overfitting. For the parameters of the VAR regression we assume

γi0 ∼ NMM0(λ0,Σi0), i = 1, . . . , N (8)

λ0 ∼ NMM0(λ0,Σ0) (9)

γik ∼ NMMK
(λk,Σik), (10)

λk ∼ NMMK
(λk,Σk), k = 1, . . . ,K (11)

with i = 1, . . . , N . We also assume conditional independence across units, that is:

Cov(γi0,γj0|λ0) = OMM0×MM0 and Cov(γik,γjk|λk) = OMMK×MMK
, for i 6= j; and for

the inverse covariance matrix Σ−1
ik we assume independent Wishart priors

Σ−1
ik ∼ WM (νik,Υk), i = 1, . . . , N, k = 1, . . . ,K (12)

Υ−1
k ∼ WM (νk,Υk), k = 1, . . . ,K (13)

which allow to maintain the assumption of regime-specific degrees of freedom νik and

precision Υk parameters. We finally assume Cov(Σ−1
ik ,Σ

−1
ik |Υ

−1
k ) = OM2×M2 .

It is important to note that the hierarchical prior specification also allows for dependence

among units. Moreover, through the specification of the coefficients γik it is possible to have

regime-specific dependence structures.

When using Markov-switching processes, one has to deal with the identification issue

associated with label switching. See, for example, Frühwirth-Schnatter (2001) for a

discussion on the effects that the label switching and the lack of identification have on

the results of MCMC based Bayesian inference. In the literature, different routes have

been proposed for dealing with this problem (see Frühwirth-Schnatter (2006) for a review).

One efficient approach is the permutation sampler (see Frühwirth-Schnatter (2001)), which

can be applied under the assumption of exchangeability of the posterior density. This

assumption is satisfied when one assumes symmetric priors on the transition probabilities

of the switching process. As an alternative one may impose identification constraints on the

parameters. This practice is followed to a large extent in macroeconomics and it is related

to the natural interpretation of the different regimes as different phases (e.g. recession and

expansion) of the business cycle. We follow this latter approach and include inequality

constraints on the constant terms of the IPI growth rate equations of the system. For
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details we refer to Section 4.2.

Modeling dependence among the chains is another issue to deal with. To avoid overfitting

here, we use a hierarchical prior specification for the transition matrices. In particular, for

the parameters of the l-th row, pit,.l = (pit,1l, . . . , pit,Kl), l = 1, . . . ,K, of the i-th unit

transition matrix, at time t, we assume

αkli ∼ NGv+1(ψ,Υi) i = 1, . . . , N, k = 1, . . . ,K − 1 (14)

ψ ∼ NGv+1(ψ,Υ) (15)

In the empirical application, we consider the following hyper-parameter specification:

λ0 = 0, Σi0 = IMM0 , Σ0 = 10IMM0 , λk = 0, Σik = IMMK
, Σk = 10 IMMK

, k = 1, . . . ,K,

νik = 5, νk = 5, Υk = 10 IM , ψ = 0, Υi = IGv+1, Υ = 10IGv+1 where 0 is the null vector.

3.2 Posterior simulation

We combine and extend the Gibbs sampler of Krolzig (1997) and Frühwirth-Schnatter (2006)

to our PMS-VAR model with prior densities detailed in the previous sections. Under the

hierarchical prior setting the full conditional posterior distributions of the equation-specific

blocks of parameters are conditionally independent. Thus the Gibbs sampler iterates over

different blocks of unit-specific parameters avoiding computational difficulties associated

with the inversions of large covariance matrices (see Canova and Ciccarelli (2009)). We

derive full conditional densities of the parameters in equation 3 and propose a further

blocking step. We separate the unit-specific parameters into two different blocks: the

regime-independent and the regime-specific ones.

Let yi = vec ((yi1, . . . ,yiT )) be the MT -dimensional vector of observations collected

over time for the i-th unit of the panel, y = vec ((y1, . . . ,yN )′) the MTN -dimensional

vector of observations collected over time and panel units and ξ = vec ((Ξ1, . . . ,ΞN )) the

KTN -dimensional vector of allocation variables, with Ξi = (ξi1, . . . , ξiT ). We define the

vector of regression coefficients, γ = vec ((γ1, . . . ,γN )) where γi = vec ((γi0,γi1, . . . ,γiK)),

the set of covariance matrices, Σ = (Σ1, . . . ,ΣN ), and the transition probability parameter

vector, α = vec ((α1, . . . ,αN )).

Under the conditional independence assumption, the complete data likelihood function,

associated to the PMS-VAR model, writes as
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p(y, ξ|γ,Σ,α) =
N∏
i=1

p(yi, ξ|γi,Σi,αi) (16)

where

p(yi, ξ|γi,Σi,αi) = (2π)−
TM
2

T∏
t=1

|Σi(sit)|−
1
2 exp

{
−1

2
u′itΣi(sit)

−1uit

} K∏
k,l=1

p
ξiktξilt−1

it,kl (17)

with pit,kl = P(si t = k|si t−1 = l, si t−2, Vt,αi), uit = yit − ((1, ξ′it)⊗ IM )Xitγi and

Xit =


Xi0t Xi1t . . . 0

...
...

. . .
...

Xi0t 0 . . . XiKt


Let us define γi(−k) = (γi1, . . . ,γik−1, γik+1, . . . ,γiK) and Σi(−k) = (Σi1, . . . ,Σik−1,

Σik+1, . . . , ΣiK). The Gibbs sampler is thus in six blocks. In blocks from one to three, the

Gibbs iterates over the unit index, i = 1, . . . , N , and simulates the unit-specific parameters

(i) γi0 from f(γi0|yi,Ξi,γi,Σi,λ0);

(ii) for k = 1, . . . ,K

(ii.a) γik from f(γik|yi,Ξi,γi0,γi(−k),Σ,λk), for k = 1, . . . ,K;

(ii.b) Σ−1
ik from f(Σ−1

ik |yi,Ξi,γi0,γi,Σi(−k),Υk);

(iii) α1k
i , . . . ,α

K−1 k
i from f(α1k

i , . . . ,α
K−1 k
i |yi,Ξ,γi0,γi).

The mixing of the MCMC chain can be further improved by jointly simulating the

parameters in the first and second block, while conditioning on the last iteration draws.

In blocks four to six, the Gibbs sampler simulates from the full conditionals of the common

part of the hierarchical structure and jointly from the full conditional of all the Markov-

switching processes, i.e.

(iv) For k = 0, 1, . . . ,K:

(iv.a) λk from f(λk|γk,Σk);

(iv.b) Υ−1
k from f(Υ−1

k |γk,Σk);

(v) Ξ from p(Ξ|y1:T ,γ,Σ,α)
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All full conditionals can be deduced from the joint density, that is proportional to the

product of the prior densities, given in Section 3.1, and the completed likelihood given

in equation 16. Further details on full the conditional distributions and their sampling

methods are given in Appendix A.

4 Evidence on interconnections between Eurozone and US

booms and busts

The empirical focus is on features of the interconnection between the aggregate Eurozone,

euro country specific and US business cycles. The Eurozone is considered at the country

level since the academic and economic debate is still open on whether European countries

have synchronized and whether regional shocks still play a dominant role. Our analysis

aims to contribute to this debate and to provide new evidence.

4.1 Data description

In our PMS-VAR we consider the US and the six largest economies in the Eurozone

(Belgium, France, Germany, Italy, Netherlands, and Spain). For each country, we consider

two dependent variables: growth of the Industrial Production Index (IPI), labeled as

yi1,t and the credit spread (CS), i.e. the corporate bond yield spread over the 10 years

government interest rate, yi2,t.

IPI CS
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Figure 1: Country-specific endogenous variables: industrial production growth rate (IPI)
and credit spread (CS).

All data are sampled at a monthly frequency, from July 1991 to December 2013, and
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are seasonally and working day adjusted. They are plotted in Figure 1.

One crucial assumption for our model relates to the composition of the variable Vt.

To investigate the interconnectedness between the Eurozone and the US, we specify the

set of common endogenous covariates Vt equal to a vector η1t and I(sUS,t−1 = 1). The

indicator η1t is a weighted average of the number of euro countries in the recession regime

(regime 1) at time t − 1; I(sUS,t−1 = 1) takes the value 1 when the US economy is in

recession (i.e. sUS,t−1 = 1) and 0 otherwise. These assumptions allow us to have an

endogenous interconnection mechanisms between the two economies and force spillovers

to enter nonlinearly. More precisely, we focus on the weighted interconnection indicator

given in equation (7) and use economic size unit-specific weights. We follow the Eurostat

framework for aggregation of Eurozone variables and derive weights on relative value added,

see Eurostat Regulation EC No 1165/98. Value added data are available from the UNData

database and Figure 2 displays the weights. The value added data are annual and we

transform them to a monthly frequency by using the same values for the 12 months in each

calendar year. More details on the data are provided in the online Appendix.
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Figure 2: Value added Eurozone weights.

4.2 Evidence on number, persistence and synchronization of regimes

Number of regimes. To avoid issues with possibly non-stationary series, we take the IPI in

log-changes, that is, in growth rates. We consider two possible cases of regimes, K = 2 and

K = 3 for all countries in the panel, and discriminate between them using the Bayes factor

14



based on the predictive likelihood:

BF =
p(y|K = 3)

p(y|K = 2)

where p(y|K = 3) = K!
∏T−1
t=1

∏N
i=1 p(yit+1|yit,K = 3) with p(yit+1|yit,K = 3) is the 1-

step ahead predictive density for yit+1 conditional on information up to time t and K = 3

regimes (see Frühwirth-Schnatter (2006), Chapter 5); p(y|K = 2) is a similar 1-step ahead

predictive density for K = 2 regimes. We impose the following restrictions on the intercept

of the IPI growth rate ai1,1 < 0 and ai1,1 < ai1,2 < ai1,3, i = 1, . . . , N , in order to identify

the regimes, see Section 3.1. We labeled regime 1 as recession; regime 2 as slow growth;

and regime 3 as expansion.

We find that the BF is larger than one, therefore supporting the evidence of three

regimes. Ferrara (2003), e.g., finds similar evidence for the US cycle. We also consider the

number of autoregressive lags p to vary from 1 to 4 and choose p = 4 again by comparing

BF s.

Empirical identification of regimes. Next, we present evidence of regime identification

and a description of the three regimes through a graphical analysis using posterior densities.

Figure 3 shows the approximated posterior densities of the parameters γik = (ai1,k, ai2,k)
′,

(σi 11,k, σi 22,k), k = 1, . . . ,K and i = 1, . . . , N , that represent the value of the unit-

and variable-specific time-varying intercepts and volatilities (square root of the diagonal

elements of the variance covariance Σi(sit)) of the PMS-VAR model. A comparison of such

posteriors may provide useful information on whether and how individual countries differ

over booms and busts.

The support of the posterior densities for the IPI growth intercept in regime 1, ai1,1 is

for most countries not concentrated near the zero bound. This provides evidence that there

is no overlap with the posterior densities for the IPI growth intercept in regimes 2 and 3 (see

the left column in Figure 3) for most countries, which suggests that the recession regime

is empirically well identified by the IPI growth data. The slow growth regime 2 intercept

is centered around zero and ai1,3, the expansion intercept, is positive. However, there are

differences between the European countries and the US: the posteriors are in most cases

wider for the European countries, in particular the posteriors of ai1,1 are more concentrated

on the negative part of the support set. Posteriors for the US are more concentrated
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and closer to zero. The posteriors for ai1,2 and ai1,3 overlap substantially, in particular for

Belgium, indicating that expansion periods cannot easily be identified from the slow growth

regime periods by just looking at the IPI intercepts.

The posterior densities of the credit spread intercept (see the second column in Figure

3) are centered just above zero for all countries as Figure 1 suggests, with larger dispersion

for the recession and expansion periods. The overlapping supports of the posterior densities

indicate substantial equivalence of credit spread means across regimes.

The posterior densities of the IPI volatility show that there exist large differences in

volatility behavior across regimes between the US and European countries. For the US,

volatility is higher during recession and expansion periods, and lower and more concentrated

in slow growth periods. Volatility increases in regime 1 compared to regime 3. The results

are different for the European countries. France, Germany and Italy, the most industrialized

countries, have higher volatility in regime 1; Belgium in regime 3; The Netherlands has

similar high volatilities in regimes 1 and 3. Spain has the lowest volatility in regime

1. IPI growth in the US exhibits larger switches during recession and expansion periods

which increase volatility estimates. Posterior mean estimates suggest such movements are

transitory and do not imply large changes in the intercept. On the contrary, Eurozone

estimates seem to be dominated by more switches across all regimes, both in intercepts and

the volatilities.

The residual volatilities of the credit spread for all seven economies have a posterior

σi,22,2 that is more concentrated and closer to zero than the posteriors of the volatility in

the other two regimes. In all countries, its support does not overlap with the ones of the

recession and expansion regimes, indicating that regime 2 is well identified and supported

by the data. This confirms the evidence in Gilchrist and Zakrajsek (2012) and Gilchrist

and Mojon (2014) that credit spreads provide substantial empirical content for a variety of

real activity and lending measures across different countries.

Regime probabilities: persistence and synchronization. The PMS-VAR model produces

both country-specific smoothed probabilities for each regime and, further, Eurozone and

US aggregate smoothed probabilities. Specifically, the number of Eurozone countries in

recession and a similar measure for the US, used in the vector Vt, are reported in the Figure

4. Figure C.1 in the Online Appendix reports the associated recession probabilities of the

Eurozone and the US. These figures provide several interesting results and generally shows
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Figure 3: The figures show the kernel densitiy estimate of the posterior densities of the
Markov-switching intercepts (left panel), labeled (ai1,k, ai2,k) in the Figure, and volatilities
(right panel), (σi 11,k, σi 22,k), for the different i = 1, . . . , N countries and k = 1, . . . , 3
regimes (in red the first regime, in green the second regime and in blue the third regime)
for industrial production growth rate (IPI) and credit spread (CS). The labels “BE”, “FR”,
“GE”, “IT”, “NE”, “SP”, “US” indicate, respectively, Belgium, France, Germany, Italy,
the Netherlands, Spain and the US.
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Figure 4: The light grey line shows the fraction of Eurozone countries in the recession
regime standardized between 0 and 1 and the black line shows the US state probability for
regime one.

that the Eurozone and US economies are not fully aligned.

In the first decade of our sample, the recession probability in the Eurozone is more

volatile than in the US, see also Figure C.2 in the Online Appendix, and this may be

related to the European Exchange Rate Mechanism (ERM) crisis and the construction of

the European Monetary Union. A noticeable exception occurs at beginning of 1999 with

the internet bubble in US. In the second decade, the US apparently leads the Eurozone

cycle, especially during the Financial Crisis in 2007-2008. Also, the internet bubble started

in the USA and spread to the Eurozone only in the final months of 2001 and generates

further increases in recession probabilities up to 2003 but all lasting a few months. A new

call for recession in the US is found at the end of 2005 and in 2006, possibly related to the

rise of interest rates after a long period of low rates and at the beginning of the burst of

the real estate bubble. The largest recession probabilities are during the Financial Crisis,

with both economies having probabilities close to 1. The US enters the recession phase in

December 2007, while the Eurozone recession starts in September 2008. Both economies

enter in the second quarter 2009 in the slow growth regime (see also the low probability

levels in Figure C.2 and C.4 and the high probability level in Figure C.3 in the Online

Appendix). Furthermore, the Eurozone has evidence of a new recession regime at the third

quarter in 2011. This recession can be associated to sovereign debt problems for some

European countries, in particular Italy and Spain. The role of the credit spread volatility is

quite important for detecting the recession because credit conditions deteriorate and become

more volatile from 2010 onward in Europe, but also improved after the European Central

Bank (ECB) interventions in December 2011 and during 2012 resulting in a recovering phase

after 2012.
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Looking at the seven country specific smoothed probabilities (reported in Figure C.2-C.4

in the Online Appendix) we observe that the regimes are often highly persistent. Regime 2 is

most probable as one may anticipate since its definition fits slow growth as well as moderate

expansion periods which are appropriate definitions for most of our sample period. The

global Financial Crisis in 2008-2009 and its impact are evident, with most of the countries

in recession. There is some evidence of a recession in 1999 in US and in 2001 in Germany and

The Netherlands, but all short-lived. Larger differences exist during the European sovereign

debt crisis, with US being the only country where the probability of regime 1 does not

increase. The third regime has the lowest probabilities, but it shows an interesting increase

in some European countries, e.g. Spain, at the end of the sample when the large liquidity

provided by the ECB and bailout programs for Spanish banks result in better economic

conditions. Finally, probabilities for Belgium seem the least related to US probabilities in

the first decade of our sample, but converging in the second part of the sample. The large

decline of mining in the 80’s is a possible explanation.

The heterogeneity in the cycle patterns of the Eurozone countries is not only evident from

regime probabilities, but it is also shown in posterior densities. The dynamic features of the

cycle, in terms of posterior densities for the VAR time-varying intercept and for the VAR

time-varying variance, are given for each country in Figure D.1-D.4 in the Online Appendix.

We provide a short summary of this evidence in this subsection. The Financial Crisis is

evident with regime 1 dominant in all the four parameters. The level of the conditional IPI

intercept is more negative in Europe than in the US during the crisis. France, Germany,

Italy and The Netherlands have a large part of the posterior below -1.5, compared to the

90% interval [0,−1] for the US. The difference is even larger during the European sovereign

debt crisis.1 The intercept of the credit spread is the highest in US, but some Eurozone

countries, e.g. Spain, have similar values. High volatilities for the IPI growth in recession

are evident, with the US being one of the smallest. Volatilities of the credit spread across

regions are, however, more comparable.

The graphical analysis of Figure 3 suggests also a classification of the countries in three

major groups: the US alone since its posterior estimates are rather precisely estimated;

1We note that the US IPI is more persistent with a larger value for the sum of AR coefficients. Therefore,
the difference between the US IPI conditional growth and the European one is smaller than comparing only
the intercepts. Across European countries, the persistence for the Netherlands is the lowest and this suggests
a lower conditional mean for the Dutch IPI. Persistence for credit spreads is high and very similar across
countries.
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France, Germany, Italy and the Netherlands, the most industrialized European countries,

have higher IPI volatility in regime 1; Spain and Belgium have higher IPI volatility in regime

2. Posteriors for the credit spread are more similar across countries and identify the second

regime as a low credit risk regime compared to the first and third more volatile regimes.

Therefore, our finding is that credit risk across countries is lower in a period of slow growth

in our model compared to a recession and expansion regime. A country grouping based

on features and synchronization of regime probabilities produces similar results: the US;

France, Germany, Italy and the Netherlands; Spain and Belgium as three separate groups.

4.3 Leads and lags in turning points and clustering

To further investigate how countries relate to the aggregate cycle and possible synchronize

with it, we study how each member country cycle shows turning points compared to the

aggregate European business cycle. The contribution of each country is not necessarily

equal to the value added scheme used to aggregate country-specific cycles in Vt because

the link from individual countries to the aggregate depends on how the turning points are

defined and on which statistics are used to measure the relationships across countries. We

note again that the dating of the turning points is based on monthly IPI growth and not

on GDP. The estimated turning point dates may, therefore, differ from the official ones

published by the NBER.

As a first step in the analysis, we follow Billio et al. (2012) and date the Eurozone

business cycle turning points by applying the Bry and Boschan (1971) (BB) rule, that

identifies a downward turn (or peak) at time t for the variable of interest yt, i.e. the log

industrial production index, if ∆κyt > 0, . . . ,∆1yt > 0 and ∆1yt+1 < 0, . . . ,∆κyt+κ < 0 and

a upward turn (or trough) at time t if ∆κyt < 0, . . . ,∆1yt < 0 and ∆1yt+1 > 0, . . . ,∆κyt+κ >

0, where ∆κ denotes the κ-difference operator (see Harding and Pagan (2011)). Larger

values of the parameter κ reduce the number of false signals. These definitions are standard

in business cycle analysis (see for example Chauvet and Piger (2008)) and are also used

(with some adjustments) by the NBER institute for building the reference cycle for the US.

We apply an approximation of the BB rule and use only downward, Dt(κ), and upward,
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Figure 5: Cumulative concordance statistics of individual countries to predict the Eurozone
cycle. The labels “BE”, “FR”, “GE”, “IT”, “NE”, “SP” indicate, respectively, Belgium,
France, Germany, Italy, the Netherlands and Spain.

Ut(κ), turn signals, that are given as

Dt(κ) =

κ∏
k=1

I(∆kyt > 0)I(∆kyt+k < 0) (18)

Ut(κ) =

κ∏
k=1

I(∆kyt < 0)I(∆kyt+k > 0) (19)

respectively (see Harding and Pagan (2011)). Our analysis can be extended to include

modifications of the BB rule, see for example Mönch and Uhlig (2005), in order to account

for asymmetries and time-varying duration across business cycle phases. Censoring rules

preventing the algorithm from the detection of false signals may also be used.

Set yt equal to the aggregate Eurozone IPI growth. The following indicator variable can

be computed:

zt = zt−1(1−Dt(κ)) + (1− zt−1)Ut(κ)

that is equal to 1 in the expansion phases and 0 in the recession phases. We assume z0 is

given. We evaluate synchronization of the different country-specific cycles (or regimes) by

the concordance statistics (CS):

CSi =
1

t+ 1− κ

t+1−κ∑
r=1

(
I(ŝi,r = 1)(1− zr) + (1− I(ŝi,r = 1))zr

)
(20)
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where we define a downward turn when switching to regime 1, i.e. I(ŝi,r = 1), and

upward turn otherwise, i.e. (1 − I(ŝi,r = 1)). This means that an upward turn can be

a switch to regime 2 or 3 in our three-regime models. The hidden state estimate ŝi,r is

obtained by applying the maximum a posteriori probability (MAP) of the state posterior

probabilities. The CS statistic is a nonparametric measure of the proportion of time during

which two series, in our case the country-specific cycle and the Eurozone cycle, are in the

same regime. This measure ranges between 0 and 1, with 0 representing perfectly counter-

cyclical switches, and 1 perfectly synchronous shifts. Figure 5 shows the CSi cumulated

over time and it ranges between 0 and the sample size, that is 261 in our application. The

countries with the highest CS have a business cycle which conserves over time a strong

similarity to the Eurozone cycle. We identify graphically three clear patterns. Belgium

deviates from other countries, but it is the most synchronized with the aggregate cycle from

the mid nineties to the beginning of 2000. There is a period of large synchronization for

all countries from 2001 to the beginning of 2006. The unfolding from this crisis and the

beginning of the European sovereign debt crisis finishes such synchronization with large

differences across CSi. In particular, Italy, Spain and, a bit less, The Netherlands statistics

deviate from those of the other countries.

As a second analysis, we apply a k-means clustering algorithm to the posterior mean

regime probabilities of the six euro countries, p̂it,kl. The benefit of this exercise is that it

does not require a definition of an aggregate index and it compares countries over the three

regimes and not just the recession one as in the previous paragraphs. The drawback is that

results are not standardized to a reference cycle. The k-means algorithm maximizes the

difference between clusters and minimizes the difference within a cluster.

The results of the k-means cluster analysis divide the countries in three groups: France,

Germany and the Netherlands are core euro country members; Italy and Spain are the

periphery countries unfolding differently in the recent recession. Italy was classified together

with France, Germany and the Netherlands in previous subsections and is now grouped

with Spain. Finally, Belgium differs probably due to the de-industrialization process in the

nineties.2

2When restricting the number of clusters to two, Belgium is moved to group 1.
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4.4 Amplification of recession probabilities through interconnections

Another relevant result regards the interconnection between recessions in different countries.

Posterior estimates of the loadings of Vt (see Table 1) provide information on the

interconnection between the Eurozone and the US cycles. Estimates of the coefficients

αEU,11
1i , i = 1, . . . , 6, associated with the Eurozone recession indicator, η1t, appearing in the

country-specific probability to stay in recession (see Equation 4-5), are all positive, large

and significant. This means that there is an amplification effect, that is an increase in the

probability to stay in recession at time t + 1 due to the fact that the Eurozone countries

were in a recession phase in t. The evidence is different for the US where this amplification

does not exist, probably due to the leading behavior of the US cycle. The US indicator

seems not to have a clear amplification mechanism for the recession probabilities of the euro

countries.

For the probability to exit a recession, pit,21, the reinforcement exists for the US.

Conditional on a recession of the Eurozone, the probability of recovery for the US increases.

The faster recovery of the US after the Financial Crisis and the euro sovereign debt crisis in

2011-2012 are examples supportive of this finding. Across European countries, there exist

large differences. The US recession indicator reduces the probability of regime 2 for Belgium

and The Netherlands whereas the effect is not statistically significant for Germany and Italy.

The coefficient is small, but positive and statistically significant for France and Spain. See

Figure D.5 in the Online Appendix to see the sensitivity of the recession probability pit,11

for values of η1t when the US is not in recession, i.e. s7t 6= 1, and when US is in recession,

i.e. s7t = 1.

The results indicate four groups: the US leads the euro area cycle indicated by positive

α11
1i and α12

1i coefficients. The first countries that are affected by US recessionary shocks

are (marginally) Germany and (significantly) Spain. This may suggest that US shocks are

transmitted to Europe through Germany and Spain. Then we have France and Italy, which

are not (directly) affected by US recessions. Finally, Belgium and the Netherlands respond

generally negatively to US shocks.

4.5 Credit shock effects

Our PMS-VAR allows us to investigate how exogenous shocks propagate within and across

countries. Unfortunately, the parameters in the reduced form model presented in Section 2
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Country pit,11 pit,21
i Label αEU,11

1i αUS,11
1i αEU,21

1i αUS,21
1i

1 BE 1.42 -0.20 -0.03 -0.13
(1.36, 1.48) (-0.27,-0.14) (-0.21, 0.08) (-0.19,-0.08)

2 FR 1.73 0.03 0.21 0.11
(1.55,1.86) (-0.11,0.14) (0.05,0.31) (0.02,0.20)

3 GE 1.67 0.10 0.02 0.10
(1.54,1.78) (-0.05,0.21) (-0.06,0.09) (-0.07,0.24)

4 IT 1.78 0.07 0.25 0.04
(1.58,1.98) (-0.28,0.32) (0.03,0.41) (-0.07,0.13)

5 NL 1.80 -0.10 0.04 -0.31
(1.69,1.95) (-0.21,0.03) (-0.12,0.28) (-0.48,-0.09)

6 SP 1.51 0.45 0.47 0.21
(1.40,1.75) (0.23,0.73) (0.21,0.60) (0.06,0.35)

7 US -0.02 1.69 1.17 0.04
(-0.10,0.09) (1.58,1.88) (0.88,1.32) (-0.08,0.13)

Table 1: Posterior mean and 90% credible interval (in parenthesis) for the parameters,

α1i = (α11
1i , α

21
1i )
′, with αkl1i = (αEU,kl1i , αUS,kl1i )′, which are the coefficients of the interaction

variables η1t and I(sUS,t = 1) driving the Markov-switching transition probabilities.

do not identify uniquely structural parameters and shocks across equations, implying that

it is not possible to distinguish regime shifts from one structural equation to another, see

e.g. Sims and Zha (2006) for further discussions. Therefore we transform the PMS-VAR to

the following structural model:

y′itB0,i(si t) = x
′
itB+,i(si t) + u′it, (21)

where uit ∼ NM (0, IM ); xit = (1,y′i,t−1, . . . ,y
′
i,t−P ). The parameters Ai(si t) =

(ai(si t), Ai1, . . . , AiP ) are estimated in the reduced form model and Ai(si t)
′ =

B+,i(si t)B0,i(si t)
−1; εit = B0,i(si t)

−1uit; E(εitε
′
it) = (B0,i(si t)B0,i(si t)

′
)−1 with εit

the residual of the reduced form model. When sufficient restrictions are imposed on

(B0,i(si t)B0,i(si t)
′
), the structural model is identified. Recalling the notation in Section

2, we follow the framework in Sims and Zha (2006) for Markov-Switching models and

use a Cholesky decomposition of Σi(si t) = (B0,i(si t)B0,i(si t)
′
)−1 to identify the structural

system.

We investigate the effect of a credit shock to IPI growth in the recession regime. That

is, we extend the evidence in Del Negro et al. (2014) to a Markov-switching model for

the US and the European countries. Our identification restriction scheme implies that

the credit spread responds contemporaneously to a credit shock in each country; while

IPI growth responds with one month-lag. The motivation is that financial variables move
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faster than real variables for several reasons, including publication delays for real variables.

Figure 6 plots the impulse responses (IR) for the seven countries in our panel. The IRs are

standardized by imposing that the median response of US credit spread is 1. The response

of IPI growth is plotted as a cumulative sum over horizons. The credit shocks play a relevant

role for most of the countries, but large differences exist across countries. Responses are

large and a statistical significant reduction of IPI growth over several quarters is evident

for Germany and the US and to a lesser extent for Spain. The response is, however, not

significant for Italy and the Netherlands. Moreover, IPI growth increases in the first months

after the shock for France. The large size of the government sector in the French economy

may be an explanation for this.3
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Figure 6: Median response (blue line) and 68% confidence interval to a credit shock in the
first regime (recession) for industrial production growth (IPI) and credit spread (CS) for the
different countries. IRs are standardized such as the median response of US credit spread
in the first regime is 1. The response for IPI is plotted as cumulative sum over horizons.
The labels “BE”, “FR”, “GE”, “IT”, “NE”, “SP”, “US” indicate, respectively, Belgium,
France, Germany, Italy, the Netherlands, Spain and the US.

3Given that the autoregressive coefficients are state-independent, the impulse responses for regimes 2 and
3 differ only in scale (due to state-specific volatilities) and not in shape.
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5 Conclusions

We have proposed a new Bayesian panel VAR model with unit-specific time-varying Markov-

switching latent factors and developed a suitable Gibbs sampling procedure for posterior

inference. We applied our panel MS-VAR model to the analysis of possible interconnections

between Eurozone and US business cycles.

The evidence found is summarized in four major characteristics.

Number, empirical identification and persistence of regimes

Predictive likelihood analysis finds three regimes: recession, slow growth, and expansion.

Graphical analysis using posterior densities of conditional means of IPI growth indicate that

these densities empirically identify recession regimes and that posterior densities of credit

spread volatility identify slow growth regimes. Credit spreads provide accurate predictive

content for business cycle regimes. Slow growth becomes persistent in the Eurozone in

recent years different from the US.

Lead-lag patterns in turning points

The US and Eurozone regimes are not fully synchronized over the 1991-2013 period,

with evidence of more recessions in the Eurozone, in particular during the 90’s. The larger

synchronization is at beginning of the great Financial Crisis. This shock first affects the US

economy and then it spreads among economies rapidly.

Amplification of recession probabilities through interconnections

Amplification effects in the recession probabilities and in the probabilities of exiting

recessions occurs for both Eurozone and US with substantial differences in phase transitions

within the Eurozone. Recently more imbalance within the Eurozone regimes takes place.

Shock effects

A credit shock results in a statistically significant negative industrial production growth

for several months in Germany, Spain and the US.

The majority of our empirical results point towards the existence of two groups of

countries in the Eurozone: A group of core countries: Germany, France and Netherlands

with Italy sometimes belonging in the core and sometimes not and a group of peripheral

countries Spain and sometimes Italy. Belgium taking a special position probably due to

the de-industrialization in the nineties. This result is fairly robust when one applies cluster

analysis. With respect to transmissions of shocks we found evidence that US credit and

other recessionary shocks affect Germany and Spain first and spread then more or less
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among other countries.

Our empirical results need to be investigated further using, for instance, forecasting

but they may serve already as important information for the specification of a coordinated

fiscal and monetary policy between the Eurozone and the US economies and also within

the Eurozone economies that should be aimed at more adequate dynamic intervention with

respect to shocks and reducing European imbalances.
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Online Appendix

A Literature, data and posteriors

A.1 Summary of literature

One of our aims is to provide useful information on business cycle synchronization and

heterogeneity across countries and to investigate how shocks transmit across countries and

regions. In the literature there is no consensus on the international transmission of shocks.

For example, Canova and Marrinan (1998) address the question whether international

business cycles originate from common shocks or from a common propagation mechanism.

Monfort et al. (2003) try to disentangle common shocks from spill-over effects. To this end,

they estimate a Bayesian dynamic factor model for the G7 real output growth, featuring a

global common factor and two area specific (North-American and Continental European)

common factors, which, being modelled as a VAR process, are interdependent. They

find empirical support for the presence of spill-over effects running from North-America

to Continental Europe, but not vice versa. Our approach and empirical application aim to

contribute to this debate by describing country specific cycles and their Interconnections.

We also contribute to the literature on the analysis of the business cycle of large panel

of countries. A complete description of this literature is beyond the scope of our paper

but we summarize the issue. A first attempt to model an international business cycle

is by Gregory et al. (1997), who consider output, consumption and investment for G7

countries and estimate a dynamic factor model featuring a common cycle, a country-specific

component and a series-specific one. The specification extends the Stock and Watson (1991)

single index model and allow the authors to conclude that both the common and the

country-specific factors capture a significant amount of fluctuations. Kose et al. (2003)

reach similar conclusions, using a larger data set on 60 countries and using a Bayesian

dynamic factor model. Kose et al. (2012) find, however, that the relative importance of

the common factor has been declining over time and that the cycle of emerging economies

has become decoupled from that of industrialized countries. Lumsdaine and Prasad (2003)

assess the relative importance of country specific versus common shocks, using industrial

production growth for a set of 17 countries. They estimate the common component of

international fluctuations by aggregation with time-varying weights. In the present paper
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we contribute and generalize the literature in this direction by focusing on the business cycle

of the Eurozone, represented by the cycles of its six largest economies, and US economies.

We measure the cycle by using multivariate series and extract several features of the country-

specific business cycles in order to investigate the similarities and differences in booms and

busts between the Eurozone cycle at an aggregated level and the US one, and further among

the cycles of the Eurozone countries. As regards the relationship with the US cycle, note

that the dating of the turning point is based on industrial production and not on the GDP,

thus the estimated turning point dates may differ from the one officially published by the

NBER, see for the example the dates around the internet bubble.

From a methodological point of view, this paper aims to contribute to the econometric

literature on heterogeneity in cross-country panel data models. The more recent approaches

have focused on two issues: the estimation of international cycles focusing on the nature

of the co-movements using relatively large dimensional data sets; and the introduction of

country and time heterogeneity in multi-country vector autoregressive models. The first

issue has been considered by Hallin and Liska (2008), Pesaran et al. (2004), and Dees et al.

(2007) and the second by Canova and Ciccarelli (2004) and Canova and Ciccarelli (2009).

Hallin and Liska (2008) extend the generalized dynamic factor model proposed by Forni

et al. (2000, 2001) to a panel of time series with a block structure, where the blocks are

represented by countries. They show that the extension provides the means for the analysis

of the interblock relationships, allowing the identification of strongly common factors, which

are common to all the blocks (e.g. international common factors), strongly idiosyncratic

factors, which are idiosyncratic for all blocks, and weakly common/weakly idiosyncratic

factors, that are common to at least one block, but idiosyncratic to at least another one.

Multi-country VAR models provide a tool for examining shock propagation across

countries. Canova and Ciccarelli (2009) consider Bayesian multi-country VAR models with

time varying parameters, lagged interdependencies and country specific effects. They avoid

the curse of dimensionality on the number of parameters by a factorial parameterization of

the time varying VAR coefficients in terms of a number of continuous random effects that

are linear in the number of countries and series. The authors propose a Monte Carlo Markov

Chain sampling scheme for posterior approximation. In general, overparameterization

may lead to overfitting, especially in macroeconomic applications, where time series are

characterized by a low number of observations, slowly changing means and time-varying
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variances. These issues call for the use of a Bayesian approach to modeling and estimation,

since it allows for inclusion of parameter restrictions with different degrees of prior belief

(see, e.g., Litterman (1986), Sims and Zha (1998) for Bayesian VAR, Chib and Greenberg

(1995) for Bayesian Seemingly Unrelated Regression and Canova and Ciccarelli (2009) for

panel Bayesian VAR).

A.2 Data Summary

IPI growth is one of the main economic indicators that measures changes in output for

the manufacturing, mining, and utilities sectors. Although these sectors contribute to a

moderate fraction of GDP and several countries have partially shifted from being production

oriented to being service and consumer oriented, which reduces the contribution of these

sectors even more, they are rather sensitive to variations in interest rates and consumer

demand. This makes IPI growth an important variable for forecasting the future economic

performance of an economic system. We downloaded IPI data from the OECD database.

Financial shocks have been found to play an important role in economic fluctuations,

both as a transmission mechanism of other shocks to the real sector, see Claessens et al.

(2009) who link shock transmissions from the financial sector to the real one using a large

set of variables; and as a source of shocks itself, see e.g. Furlanetto et al. (2014). Del Negro

et al. (2014) discuss how a standard DSGE model extended to include financial frictions

measured by credit spread predicts the US 2008 recession reasonably well. These authors

define credit spread as the rate entrepreneurs pay in excess of a deposit yield to finance

their projects and measure it as the difference between the Baa corporate bond yield minus

the 10-Year Treasury Note Yield. We use the same variable for the US. The construction of

this variable is more difficult for the European countries. First, at the European country-

level corporate bond indices are not easily available. We collect corporate bond yields from

the Global Financial Data site (https://www.globalfinancialdata.com/index.html). Yield

indices are combination of many underlying securities and based upon long-term (10-30

year) bonds of investment grade (AAA to BBB), with average rate A or Baa. Second,

the definition of a deposit rate in the various European countries is problematic. We follow

Gilchrist and Mojon (2014) and compute the spread over the 10 year German Bund yield for

all six Eurozone countries. Government Treasure yields are downloaded from Datastream.

Unfortunately, we are obliged to ignore the exchange rate risk before the euro was introduced
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as an accounting currency on January 1, 1999.

A.3 Parameter full conditional densities

Updating γi0. Then the full conditional distribution of the regime-independent parameter

γi0 is a normal with density function

f(γi0|yi,Ξi,γi,Σi,λ0) ∝ (A.1)

∝ exp

{
−1

2
γ ′i0

(
T∑
t=1

X ′i0tΣ
−1
it Xi0t + Σ−1

i0

)
γi0 + γi0

(
T∑
t=1

X ′i0tΣ
−1
it yi0t + Σ−1

i0 λ0

)}
∝ NMM0(γ̄i0, Σ̄i0)

where yi0t = yit− (ξi1tXi1tγi1 + . . .+ ξiKtXiKtγiK), γ̄i0 = Σ̄i0(Σ−1
i0 λ0 +

∑T
t=1X

′
i0tΣ

−1
it Xi0t)

and Σ̄−1
i0 = (Σ−1

i0 +
∑T

t=1X
′
i0tΣ

−1
it Xi0t).

4

Updating γik. The full conditional distributions of the regime-dependent parameters

γik, with k = 1, . . . ,K are normal with density function

f(γik|yi,Ξi,γi0,γi(−k),Σ,λk) ∝ (A.2)

∝ exp

−1

2
γ ′i

∑
t∈Tik

X ′iktΣ
−1
it Xikt + Σ−1

ik

γi + γ ′i

∑
t∈Tik

X ′iktΣ
−1
it yikt + Σ−1

ik λk


∝ NMMK

(γ̄ik, Σ̄ik)

with γ̄ik = Σ̄−1
ik (Σ−1

ik λk +
∑

t∈Tik X
′
iktΣ

−1
it Xikt) and Σ̄−1

ik = (Σ−1
ik +

∑
t∈Tik X

′
iktΣ

−1
it Xikt),

where we defined Tik = {t|ξikt = 1, t = 1, . . . , T} and yikt = yit−Xi0tγi0. An accept/reject

method is applied to account for the set of identification constraints on the parameters γik,

k = 1, . . . ,K.5

Updating Σ−1
ik . The full conditional distributions of the regime-dependent inverse

variance-covariance matrix Σ−1
ik , k = 1, . . . ,K, are Wishart distributions with density

4Anas et al. (2008) also applies constant autoregressive coefficients and only unit-specific intercepts and
covariance matrices vary over regimes.

5See, for example, Celeux (1998) and Frühwirth-Schnatter (2001) for a discussion on the effects that label
switching and the lack of identification have on the results of a MCMC based Bayesian inference.
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f(Σ−1
ik |yi,Ξi,γi0,γi,Σi(−k),Υk) ∝ (A.3)

∝ |Σ−1
ik |

νik+Tik−M−1

2 exp

−1

2
tr

Υ−1
k +

∑
t∈Tik

uiktu
′
ikt

Σ−1
ik


∝ WM (ν̄ik, Ῡik)

where Tik =
∑T

t=1 I(ξikt = 1), uikt = yit − Xi0tγi0 − Xiktγik, ν̄ik = νik + Tik and

Ῡ−1
ik = Υ−1

k +
∑

t∈Tik uiktu
′
ikt.

Updating αi. The full conditional distribution of the parameters in the l-th row of the

transition matrix, α.li = vec((α1l
i , . . . ,α

K−1l
i )), is

f(α.li |yi,Ξ,γi0,γi) ∝
K−1∏
k=1

exp

{
−1

2
(αkli −ψ)′Υ−1(αkli −ψ)

}
T∏
t=1

K∏
k=1

(H(Vt,α
kl
i ))ξiktξil t−1 (A.4)

Note that we update the coefficients across the past state and not across the current state

as in Kaufmann (2015). As regards the sampling method, we follow Lenk and DeSarbo

(2000) and apply a Metropolis-Hastings with proposal centred at the mode of the posterior

distribution, with scale proportional to the posterior local curvature. In general, the mode

is not known, and its estimate is updated at each iteration by applying an iteration of the

Newton-Raphson algorithm.

We consider the quadratic approximation of the full conditional log-density, f̃(α.li ) =

log f(α.li |yi,Ξ,γi0,γi). The gradient or vector of partial derivatives of the log-posterior is

denoted with D1(α.li ) = ∇(1)

α.li
f̃(α.li ) = vec(∇(1)

α1l
i

f̃(α.li ), . . . ,∇(1)

α1K−1
i

f̃(α.li )). Since
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∇(1)

αkli
f̃(α.li ) =

T∑
t=1

ξil t−1

(
ξikt

1

H(Vt,αkli )
∇αkli

(H(Vt,α
kl
i ))

+
∑

k′ 6=k,K
ξik′t

1

H(Vt,αk
′l
i )
∇αkli

(H(Vt,α
k′l
i ))

+ξiKt
1

H(Vt,αKli )
∇αkli

(H(Vt,α
Kl
i ))

)
−Υ−1(αkli −ψ)

=
T∑
t=1

ξil t−1

(
ξikt(1−H(Vt,α

kl
i ))zt −

∑
k′ 6=k

ξik′tH(Vt,α
kl
i )zt

)
−Υ−1(αkli −ψ)(A.5)

we conclude that

D1(α.li ) =

T∑
t=1

ξilt−1

(
E(ξit −H(Vt,α

.l
i ))
)
⊗ zt − (IK−1 ⊗Υ−1)(α.li − ιK−1 ⊗ψ) (A.6)

where zt = (Vt, 1)′ is a (Gv +1)-dimensional vector, E = (IK−1,0K−1) is a selection matrix,

with 0n a n-dimensional null vector, and H(Vt,α
.l
i ) = (H(Vt,α

1l
i ), . . . ,H(Vt,α

Kl
i ))′.

The Hessian or matrix of second derivatives is denoted with D2(α.li ) = ∇(2)

α.li
f̃(α.li ). The

k′-th row of the Hessian is (∇(2)

αk
′l
i α1l

i

, . . . ,∇(2)

αk
′l
i αK−1l

i

) where

∇(2)

αk
′l
i αkli

=

T∑
t=1

ξil t−1

(
H(Vt,α

k′l
i )H(Vt,α

kl
i )

−H(Vt,α
kl
i )I(k = k′)

)
ztz
′
t − I(k = k′)Υ−1 (A.7)

thus the Hessian is

D2(α.li ) =
T∑
t=1

ξilt−1

(
(EH(Vt,α

.l
i )(EH(Vt,α

.l
i ))′−diag(EH(Vt,α

.l
i ))
)
⊗ (ztz

′
t)−IK−1⊗Υ−1

(A.8)

Then the mode of the log full conditional is updated at each iteration of the M.-H. with

the Newton-Raphson’s rule

α̂(n+1) = α̂(n) −D2(α̂(n))−1D1(α̂(n)) (A.9)

The proposal distribution is adapting over the iterations and at the iteration n the
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proposal α∗ for the parameter α.li is drawn from the normal

α∗ ∼ N(K−1)(Gv+1)(α̂
(n+1), V (n)) (A.10)

where V (n) = −D2(α̂(n)). After an initial, transitory period the adaptation of the proposal

stops and α̂(n) and V (n) are not updated. Let (α.li )(n−1) be the current value of the chain,

then at the iteration n, the proposal is accepted with log-probability

%
(

(α.li )(n−1),α∗
)

= min

{
0,
(
f̃(α∗i )− f̃((α.li )(n−1))− 1

2
((α.li )(n−1) − α̂(n+1)

i )′(V (n))−1

((α.li )(n−1) − α̂(n+1)
i )− 1

2
(α∗i − α̂

(n+1)
i )′(V (n))−1(α∗i − α̂

(n+1)
i )

)}
(A.11)

Updating λ0. The full conditional distribution of the parameter λ0, of the third stage

of the hierarchical structure, is a normal distributions with density function

f(λ0|γ0,Σ0) ∝ (A.12)

∝ exp

{
−1

2

[
λ′0

(
N∑
i=1

Σ−1
i0 + Σ−1

0

)
λ0 − 2λ′0

(
N∑
i=1

Σ−1
i0 γi0 + Σ−1

0 λ0

)]}
∝ NMM0(λ̄0, Σ̄0)

where Σ̄−1
0 =

∑N
i=1 Σ−1

i0 + Σ−1
0 and λ̄0 = Σ̄0

(∑N
i=1 Σ−1

i0 γi0 + Σ−1
0 λ0

)
.

Updating λk. The full conditional distributions of the parameters λk, k = 1, . . . ,K, of

the third stage of the hierarchical structure, are normal distributions with density functions

f(λk|γk,Σk) ∝ (A.13)

∝ exp

{
−1

2

[
λ′k

(
N∑
i=1

Σ−1
ik + Σ−1

k

)
λk − 2λ′k

(
N∑
i=1

Σ−1
ik γik + Σ−1

k λk

)]}
∝ NMMK

(λ̄k, Σ̄k)

where Σ̄−1
k =

∑N
i=1 Σ−1

ik + Σ−1
k and λ̄k = Σ̄k

(∑N
i=1 Σ−1

ik γik + Σ−1
k λk

)
.

Updating Υ−1
k . The full conditional distributions of the Υk, k = 1, . . . ,K, are Wishart
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distributions with density

f(Υ−1
k |γk,Σk) ∝ (A.14)

∝ |Υ−1
k |

νk−M−1

2 exp

{
−1

2
tr
(
Υ−1
k Υ−1

k

)} N∏
i=1

|Υ−1
k |

νik/2 exp

{
−1

2
tr

(
N∑
i=1

Υ−1
k Σ−1

ik

)}
∝ WM (ν̄k, Ῡk)

where ν̄k =
∑N

i=1 νik + νk and Ῡ−1
k = Υ−1

k +
∑N

i=1 Σ−1
ik .

A.4 Allocation variable full conditional distributions

To sample the hidden states we propose a multi-move strategy. In Krolzig (1997) a multi-

move Gibbs sampler (see Carter and Kohn (1994) and Shephard (1994)) is presented for

Markov-switching vector autoregressive models as an alternative to the single-move Gibbs

sampler introduced, for example, in Albert and Chib (1993). The multi-move procedure,

also known as forward-filtering backward sampling (FFBS) algorithm, is particularly useful

in highly parameterized model, because it can improve the mixing of the MCMC chain

over a large parameter space, thus leading to a more efficient posterior approximation.

Unfortunately, the FFBS does not apply easily to our model due to the presence of the

chain interaction mechanism. In fact, the FFBS should be iterated jointly for all the

Markov-switching processes of the panel implying large matrix operations and, therefore,

a high computational cost. We follow a different route and apply here the FFBS to the

unit-specific chains, conditioning on the sampled value of other chains in the panel.

Let us define ξ−i,1:T = (ξ1:i−1,1:T , ξi+1:N,1:T ), with ξi:j,1:T = (ξi 1:T , . . . , ξj 1:T ), i ≤ j,

and p(ξit = ιk|ξit−1 = ιl, ξit−2, Vt,αi) = pit,kl, with ιk the k-th column of the identity

matrix. The full conditional distribution of the allocation variables ξi 1:T is

p(ξi 1:T |y1:T , ξ−i,1:T ,γ,Σ,α) ∝ (A.15)

∝
N∏
i=1

T∏
t=1

p(yit|yit−P−1:t−1, ξit,γi,Σi)

K∏
k,l=1

p
ξiltξikt−1

it,kl


∝

T∏
t=1

p(yit|yit−P−1:t−1, ξit,γi,Σi)

K∏
k,l=1

p
ξiktξilt−1

it,kl git(ξi,t−1|ξ−i,t−1)


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where

git(ξit−1|ξ−i,t−1) =
N∏
j=1
j 6=i

K∏
k,l=1

P(ξjt = ιk|ξjt−1 = ιl, ξjt−2, Vt,αj)
ξjktξjlt−1

is a multiplicative factor that depends on the values ξit−1, through some or all of the

covariates ηt = (η1t, . . . , ηKt)
′ appearing in Vt. For example, in our application we

considered, Vt = (1, η1t, I(s7t = 1))′.

Conditionally on the other unit state variables, the full conditional distribution

of the i-th unit allocation variable at time t results from the product of the time-

varying transition probability P(ξjt|ξjt−1, ξjt−2, Vt,αj) and the augmented likelihood

p(yit|yit−P−1:t−1, ξit, ξit−1,γi,Σi) = p(yit|yit−P−1:t−1, ξit,γi,Σi)git(ξit−1|ξ−i,t−1), where

p(yit|yit−P−1:t−1, ξit,γi,Σi) is the conditional distribution of the variable yit from our

panel VAR model. These terms can be written as functions of the Markov chain s̃it =

(sit−1 − 1)K + sit with values in the space {1, 2, . . . ,K2}. This representation of the chain

sit allows us to easily impose the duration constraint when simulating the hidden states.

Thus, we introduce a new allocation variable ξ̃it = (ξ̃i1t, . . . , ξ̃iK2t)
′, where ξ̃ikt = I(s̃it = k).

The transition probability of the process ξ̃it, for the case K = 3 and a minimum duration

constrain of two periods is introduced (see equation 6) is:

P(ξ̃it|ξ̃it−1, Vt,αi) =



hit,11 hit,21 hit,31 0 0 0 0 0 0

0 0 0 hit,12 hit,22 hit,32 0 0 0

0 0 0 0 0 0 hit,13 hit,23 hit,33

1 0 0 0 0 0 0 0 0

0 0 0 hit,12 hit,22 hit,32 0 0 0

0 0 0 0 0 0 hit,13 hit,23 hit,33

1 0 0 0 0 0 0 0 0

0 0 0 hit,12 hit,22 hit,32 0 0 0

0 0 0 0 0 0 hit,13 hit,23 hit,33



(A.16)

with hit,kl = H(Vt,α
kl
i ), where in the l-th row the matrix the probability P(s̃it = k|s̃it−1 =

l, Vt,αi) is given for k = 1, . . . ,K2.

In the simulation from the full conditional distribution of the hidden states, we exploit
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the following factorization

p(ξ̃i 1:T |yi 1:T , ξ−i,1:T ,γ,Σ,α) ∝
(
p(ξ̃iT |yi 1:T , ξ−i,1:T ,γi,Σi) (A.17)

T−1∏
t=1

p(ξ̃it+1|ξ̃it, Vt,αi)p(ξ̃it|yi 1:t, ξ−i,1:T ,γi,Σi)
)

This factorization suggests that a Forward-Filtering Backward-Sampling (FFBS)

algorithm can be used for the hidden states of the i-th bivariate chain s̃it of the panel. At the

iteration n-th of the Gibbs sampler, since the country specific state variables are updated

sequentially over the unit index, a new trajectory ξ
(n)
i,1:T for the country i is generated from

the FFBS algorithm, conditioning on the updated values of the hidden states ξ
(n)
j,1:T , j < i,

and the previous-iteration values of the hidden states ξ
(n−1)
j,1:T , j > i. The steps of the FFBS

algorithm is described in Frühwirth-Schnatter (2006), ch. 11.

Note that in the updating step of the FFBS, the filtered probability, p(ξ̃it |yi 1:t, ξ−i,1:T ,

γi,Σi,α) is proportional to the product of two terms: p(yit|yit−P−1:t−1, ξit,γi,Σi) and

git(ξit−1|ξ−i,t−1) which are evaluated at the different values of allocation variable. This

requires the evaluation of Vt and ηt as a function of ξ
(n)
j,1:T , j < i, ξ

(n−1)
j,1:T , j > i and

ξit−1 = ιk, k = 1, . . . ,K. The elements of ηt are

ηkt = ωitξikt−1 +
∑
j<i

ωjtξ
(n)
jkt−1 +

∑
j>i

ωjtξ
(n−1)
jkt−1

The relationship ξikt =
∑Kk

l=K(k−1)+1 ξ̃ilt, k = 1, . . . ,K, is used to find the value of the

allocation variable in the single-chain representation. In order to obtain the draws of the

hidden state variables from the draw of the allocation variables, the following transform

sit =
∑K

k=1 kξikt is used.

As discussed in previous sections, when using data-dependent priors the generation of

the allocation variables should omit draws that yield to impropriety of the posterior. In our

prior settings, the set of non-troublesome grouping, for the i-th unit, is Si = Si,ν∩Si,σ = Si,σ.

Thus, each time the set of allocation variables ξi 1:T , does not assign at least two observations

to each component of the dynamic mixture, the entire set ξi 1:T , is rejected and a new set

is drawn until a proper set is obtained.
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B MCMC convergence issues

We apply the Gibbs sampler described in Section 3 and obtain the posterior densities of the

PMS-VAR model parameters. These posterior densities are then approximated through a

kernel density estimator applied to a sample of 4,000 random draws from the posterior. In

order to generate 4,000 i.i.d. sample from the posterior, we run the Gibbs sampler, for 50,000

iterations, discard the first 10,000 draws to avoid dependence from the initial condition, and

finally apply a thinning procedure with a factor of 10, to reduce the dependence between

consecutive Markov-chain draws. See Section B in the Online Appendix for further details

on the choice of the number of iterations and of the burn in samples.

As regards to the number of iterations, the choice of the initial sample size and the

convergence detection of the Gibbs sampler remain open issues (see Robert and Casella

(1999)). In our application we choose the sample size on the basis of both a graphical

inspection of the MCMC progressive averages and the application of the convergence

diagnostic statistics (CD) proposed in Geweke (1992). We let n be the MCMC sample

size and n1 = 0.1n, and n2 = 0.5n the sizes of two non-overlapping sub-samples. For a

parameter θ of interest, we let

θ̂1 =
1

n1

n1∑
j=1

θ(j), θ̂2 =
1

n2

n∑
j=n+1−n2

θ(j)

be the MCMC sample means and σ̂2
i their variances estimated as:

σ̂2
i

ni
= Γ̂(0) +

2ni
ni − 1

hi∑
j=1

K(j/hi)Γ̂(j), (B.1)

Γ̂(j) =
1

ni

ni∑
k=j+1

(θ(k) − θ̂i)(θ(k−j) − θ̂i)′ (B.2)

where we choose K(x) to be the Parzen kernel and h1 = n
1/4
1 and h2 = n

1/4
2 the bandwidths

(see Horvath and Rice (2015)). Then the following statistics

CD =
θ̂1 − θ̂2√

σ̂2
1/n1 + σ̂2

2/n2

(B.3)

converges in distribution to a standard normal (see Geweke (1992)), under the null

hypothesis that the MCMC chain has converged.
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C Smoothed probabilities
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Figure C.1: Smoothed probabilities of the Eurozone and US economies to be in recessions
.
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Figure C.2: First regime (recession) smoothed probabilities for the Markov-switching
processes si,t, i = 1, . . . , N and t = 1, . . . , T . The labels “BE”, “FR”, “GE”, “IT”, “NE”,
“SP”, “US” indicate, respectively, Belgium, France, Germany, Italy, the Netherlands, Spain
and the US.
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Figure C.3: Second regime (slow recovery and moderate expansion) smoothed probabilities
for the Markov-switching processes si,t, i = 1, . . . , N and t = 1, . . . , T . The labels “BE”,
“FR”, “GE”, “IT”, “NE”, “SP”, “US” indicate, respectively, Belgium, France, Germany,
Italy, the Netherlands, Spain and the US.
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Figure C.4: Third regime (expansion) smoothed probabilities for the Markov-switching
processes si,t, i = 1, . . . , N and t = 1, . . . , T . The labels “BE”, “FR”, “GE”, “IT”, “NE”,
“SP”, “US” indicate, respectively, Belgium, France, Germany, Italy, the Netherlands, Spain
and the US.
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D Cycle dynamic features

This section reports plots of the posterior mean distributions (and 5% and 95% quantiles)

for the VAR time-varying intercept and for the VAR time-varying variance in Fig. D.1-D.4,

computed as:

̂aim(sit) =
1

n̄

n̄∑
n=1

K∑
k=1

a
(n)
im,kξ

(n)
ikt (D.1)

Σ̂im(sit) =
1

n̄

n̄∑
n=1

K∑
k=1

Σ
(n)
im,kξ

(n)
ikt (D.2)

where n̄ is the number of MCMC iterations after the burn-in period. The whole set of

figures highlights the heterogeneity of the fluctuations in the Eurozone.
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Figure D.1: Posterior mean distributions (in red) and 90% posterior intervals (in grey) for
the VAR time-varying intercept for IPI growth. The labels “BE”, “FR”, “GE”, “IT”, “NE”,
“SP”, “US” indicate, respectively, Belgium, France, Germany, Italy, the Netherlands, Spain
and the US.
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Figure D.2: Posterior mean distributions (in red) and 90% posterior intervals (in grey) for
the VAR time-varying intercept for the credit spread. The labels “BE”, “FR”, “GE”, “IT”,
“NE”, “SP”, “US” indicate, respectively, Belgium, France, Germany, Italy, the Netherlands,
Spain and the US.
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Figure D.3: Posterior mean distributions (in red) and 90% posterior intervals (in grey) for
the VAR time-varying standard deviation IPI growth. The labels “BE”, “FR”, “GE”, “IT”,
“NE”, “SP”, “US” indicate, respectively, Belgium, France, Germany, Italy, the Netherlands,
Spain and the US.
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Figure D.4: Posterior mean distributions (in red) and 90% posterior intervals (in grey) for
the VAR time-varying standard deviation for the credit spread. The labels “BE”, “FR”,
“GE”, “IT”, “NE”, “SP”, “US” indicate, respectively, Belgium, France, Germany, Italy,
the Netherlands, Spain and the US.
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The US in regimes 2 or 3 (moderate or expansion) The US in regime 1 (recession)
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Figure D.5: Reaction of the transition probabilities to stay in recession pit,11 (first row) and
to exit the recession pit,21 (second row) to changes in the weighted aggregate numbers of
countries in recession η1t, when conditioning on not recession for the US, i.e. s7,t 6= 1 (left
column) and recession for the US, i.e. s7,t = 1, (right column).
.
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E Smoothed probabilities with different variables

In order to assess the performance of our PMS-VAR model, we also consider two different

endogenous variables. We keep industrial production growth and substitute the credit

spread with an alternative definition of it as first exercise and the term spread as a second

one.

In defining the credit spread, we change the deposit rate from the 10 years German

Bund yield to the domestic 10 year bond yield for Belgium, France, Italy, The Netherlands

and Spain. We compute then the credit spread as the corporate bond yield spread over the

10 years domestic government interest rate.

The term spread has often been advocated as predictor of recession periods, see e.g.

Harvey (1991). Estrella and Hardouvelis (1991) use real GNP growth in US to examine

the predictive ability of the term spread. The results show that term spread has significant

predictive power on output growth, consumption, and investment. Plosser and Rouwenhorst

(1994) find the term structure of interest rates has significant predictive for economic

growth in three industrial countries. However, there is no conclusive finding that the

term spread consistently contains information in explaining future economic activity. For

example, Plosser and Rouwenhorst (1994) find the evidence that term spread contains

useful information to forecast real economic activities in US, Canada and Germany, but

not in France and UK. Harvey (1991) and Kim and Limpaphayom (1997) examine G7

economies and conclude that the term spread does not consistently contain information

about future economic activity. Hamilton and Kim (2002) address the theoretical model

toward the nature of the term spread. They nicely present that the term spread forecasting

contribution is attributed to two effects: an expectation effect that shows a sign of the

public’s expectation on the future economic activities and a premium effect that represents

the risk of investments in alternative assets. They find that both factors are relevant

for predicting real GDP growth but respective contributions differ. The contributions are

similar at short horizons but the effect of expected future short rates is larger than the term

spread for predicting GDP more than two years ahead.

Figures E.1-E.6 in the Online Appendix show the probabilities for the three regimes when

using the the two different endogenous variables. The findings of the previous analysis are

qualitatively confirmed. The large differences refer to the final part of the sample, after the

Financial Crisis and during the ECB intervention period started in December 2011. The
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European Central Bank succeeded in reducing government and corporate yields in most

countries, in particular in Italy and Spain, resulting in lower probabilities for regime 1 and

higher probabilities for regime 2, in particular when using the alternative definition of credit

spread.
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Figure E.1: First regime (recession) smoothed probabilities for the Markov-switching
processes si,t, i = 1, . . . , N and t = 1, . . . , T using an alternative definition of credit spread.
The labels “BE”, “FR”, “GE”, “IT”, “NE”, “SP”, “US” indicate, respectively, Belgium,
France, Germany, Italy, the Netherlands, Spain and the US.
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Figure E.2: Second regime (slow recovery and moderate expansion) smoothed probabilities
for the Markov-switching processes si,t, i = 1, . . . , N and t = 1, . . . , T using an alternative
definition of credit spread. The labels “BE”, “FR”, “GE”, “IT”, “NE”, “SP”, “US” indicate,
respectively, Belgium, France, Germany, Italy, the Netherlands, Spain and the US.
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Figure E.3: Third regime (expansion) smoothed probabilities for the Markov-switching
processes si,t, i = 1, . . . , N and t = 1, . . . , T using an alternative definition of credit spread.
The labels “BE”, “FR”, “GE”, “IT”, “NE”, “SP”, “US” indicate, respectively, Belgium,
France, Germany, Italy, the Netherlands, Spain and the US.
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Figure E.4: First regime (recession) smoothed probabilities for the Markov-switching
processes si,t, i = 1, . . . , N and t = 1, . . . , T using the term spread. The labels “BE”,
“FR”, “GE”, “IT”, “NE”, “SP”, “US” indicate, respectively, Belgium, France, Germany,
Italy, the Netherlands, Spain and the US.
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Figure E.5: Second regime (slow recovery and moderate expansion) smoothed probabilities
for the Markov-switching processes si,t, i = 1, . . . , N and t = 1, . . . , T using the term spread.
The labels “BE”, “FR”, “GE”, “IT”, “NE”, “SP”, “US” indicate, respectively, Belgium,
France, Germany, Italy, the Netherlands, Spain and the US.
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Figure E.6: Third regime (expansion) smoothed probabilities for the Markov-switching
processes si,t, i = 1, . . . , N and t = 1, . . . , T using the term spread. The labels “BE”, “FR”,
“GE”, “IT”, “NE”, “SP”, “US” indicate, respectively, Belgium, France, Germany, Italy,
the Netherlands, Spain and the US.
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