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Abstract

A Bayesian semi-parametric dynamic model combination is proposed

in order to deal with a large set of predictive densities. It extends the
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mixture of experts and the smoothly mixing regression models by allowing

combination weight dependence between models as well as over time. It

introduces an information reduction step by using a clustering mechanism

that allocates the large set of predictive densities into a smaller number

of mutually exclusive subsets. The complexity of the approach is further

reduced by making use of the class-preserving property of the logistic-

normal distribution that is specified in the compositional dynamic factor

model for the weight dynamics with latent factors defined on a reduced

dimension simplex. The whole model is represented as a nonlinear state

space model that allows groups of predictive models with corresponding

combination weights to be updated with parallel clustering and sequential

Monte Carlo filters. The approach is applied to predict Standard &

Poor’s 500 index using more than 7000 predictive densities based on

US individual stocks and finds substantial forecast and economic gains.

Similar forecast gains are obtained in point and density multivariate

combined forecasts of US real GDP, Inflation, Treasury Bill yield and

employment using a large data set. The dynamic patterns in the cluster-

based weights provide valuable signals for improved economic modeling

and forecasting.

JEL codes: C11, C15, C53, E37.

Keywords: Density Combination, Large Set of Predictive Densities,

Compositional Factor Models, Nonlinear State Space, Bayesian Inference, GPU

Computing.

1 Introduction

Forecasting with large sets of data is a topic of substantial interest to academic

researchers as well as to professional and applied forecasters. It has been studied

in several papers (e.g., see Stock and Watson, 1999, 2002, 2005, 2014, and

Bańbura et al., 2010). The recent fast growth in (real-time) big data allows

researchers to predict variables of interest more accurately (e.g., see Choi and
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Varian, 2012; Varian, 2014; Varian and Scott, 2014; Einav and Levin, 2014).

Stock and Watson (2005, 2014), Bańbura et al. (2010) and Koop and

Korobilis (2013) suggest, for instance, that there are potential gains from

forecasting using a large set of predictors instead of a single predictor from

a univariate time series. However, forecasting with many predictors and high-

dimensional models requires new modeling strategies (to keep the number of

parameters and latent variables relatively small), efficient inference methods and

extra computing power like parallel computing. We refer to Granger (1998) for

an early discussion of these issues.

We propose a Bayesian semi-parametric dynamic model combination in order

to deal with a large set of predictive densities. Our model extends the mixture

of the experts and the smoothly mixing regression models (Jacobs et al., 1991,

Jordan and Jacobs, 1994, Jordan and Xu, 1995, Peng et al., 1996, Wood et al.,

2002, Geweke and Keane, 2007, Villani et al., 2009, Norets, 2010) by allowing the

combination weights to be dependent between models as well as over time and to

further allow for model incompleteness. We introduce an information reduction

step by using a clustering mechanism that allocates the large set of predictive

densities into a smaller number of mutually exclusive subsets. The complexity of

the approach is further reduced by making use of the class-preserving property

of the logistic-normal distribution that is specified in a compositional dynamic

factor model for the weight dynamics where the latent factors are defined on a

reduced dimension simplex. Here the class-preserving property of the logistic-

normal distribution (see Aitchinson and Shen, 1980, Aitchinson, 1982) is used.

The whole model is represented as a nonlinear state space model that allows

groups of predictive models with corresponding combination weights to be
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updated with parallel clustering and sequential Monte Carlo filters. We also

show that, given that the space of the weight measures is equipped with suitable

operations and norms, this nonlinear state space model may be interpreted as

a generalized linear model with a local level component. In this respect, our

approach contributes to the literature on time series on a bounded domain (see,

e.g., Aitchinson, 1982, Aitchinson, 1986 and Billheimer et al., 2001) and on state

space models for compositional data analysis (see, e.g., Grunwald et al., 1993).

In that literature the compositional data are usually observed, while in our model

the weights are latent probabilities.

Finally, we propose a Bayesian diagnostic analysis to indicate particular types

of missing information and use De Finetti’s graphs to indicate the important

evolution patterns in the model weights, see also Ehm et al. (2016) for the use of

graphical analysis for forecast evaluation. The parallelized sequential prediction

and filtering methods to efficiently update the dynamic clustered weights of the

combination model are made operational by following the recent trend of using

graphics processing units (GPU) for general, non-graphics, applications, the so-

called general-purpose computing on GPU (GPGPU).

The proposed method is applied to two well-known problems in economics

and finance. In the first macro-finance example, we find substantial gains in

point and density multivariate forecasts of US real GDP, GDP deflator inflation,

Treasury Bill yield and employment over the last 25 years for all horizons from

one-quarter ahead to five-quarter ahead. The highest accuracy is achieved when

the four series are predicted simultaneously using our combination schemes

within and across cluster weights based on log score learning. A dominant set

of variables does not exist but we note that the cluster that includes Exports,
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Imports and GDP deflator receives a large weight. In the second example we use

more than 7000 predictive densities based on 3712 US individual stock return

series to replicate the daily aggregate S&P 500 returns over the sample 2007-2009

and predict the economic value of tail events like Value-at-Risk. The method

allows for time-varying composition of the clusters letting individual stocks to

switch across them or eventually exit the model set, for example after a default,

as in the Lehman Brothers case. We find large accuracy gains in all distribution

and also in the tail analysis with respect to the no-predictability benchmark

and predictions from individual models estimated on the aggregate index that

result in violations of the Value-at-Risk very similar to the nominal value. The

observed dynamic patterns in the cluster-based weights provide valuable signals

for improved economic/financial modeling and forecasting.

The contents of this paper is structured as follows. Sections 2 and 3 provide

details of the contributions of our approach. Section 4 applies our model to Stock

and Watson (2005) macroeconomic data set and a large set of US stocks. Section

5 contains conclusions and suggestions for further research. The Supplementary

Material contains more details on data, derivations and results.

2 Mixtures, information reduction and

sequential clustering using large data sets

There exists an increasing interest in the recent literature about combinations

of predictive densities with possibly time-varying weights, see, e.g., Billio

et al. (2013) and Casarin et al. (2015). In this context Waggoner and Zha
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(2012) and Del Negro et al. (2015) propose time-varying weights in the linear

opinion framework and Fawcett et al. (2015) introduce a similar concept in the

generalized linear pool. Conflitti et al. (2015) propose optimal combinations of

large sets of point and density survey forecasts; their weights are, however, not

modeled with time-varying patterns, while Raftery et al. (2010) develop dynamic

model averaging that allows the “correct” model to vary over time.

Our contributions are summarized as follows. We extend the standard

density combination approach, which consists of a model combination density, a

weight density and a density of the predictors of many models, to a large finite

mixture of convolutions of densities where the mixture weights are dependent

over time and between models. The dependence between models seems quite

important in this framework considering the large correlations of point and

density forecasts, but it has not been formally treated in density forecasting. A

second contribution is to reduce the complexity of our approach by introducing

an information reduction step that uses a clustering mechanism that allocates

the large set of predictive densities in much smaller mutually exclusive subsets.

In the information reduction step the class-preserving property of the logistic-

normal distribution is used. This extension allows to combine several gigabyte of

data with a reasonable computational effort. A third contribution is the dynamic

specification of the latent cluster specific weights in a compositional factor model

which evolves over time and allows for learning. Here we contribute to the

literature of time series on a bounded domain. The contributions listed so far

allow us to represent the complete model as a nonlinear state space model where

the measurement equation refers to the combination model and the nonlinear

transition function of the latent weights is a dynamic compositional factor model
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with a noise process that follows a multivariate logistic-normal distribution.

2.1 A large dynamic mixture of convolutions of densities

as expert system

Let yt = (y1t, . . . , yKt)
′ be the K-dimensional vector of variables of interest,

and ỹt = (ỹ1t, . . . , ỹnt)
′ be a vector of a large set of n random predictors for

the variables of interest with densities fit(ỹit), from i = 1, . . . , n economic

and/or financial models, with each prediction conditional on the information set

available at time t − 1. Let wkt = (w1,kt, . . . , wn,kt)
′ be a set of random weights.

In the next subsection a process for these random weights is specified, which

refers to a learning function based on past predictive performance of models.

At time t − 1, we assume a sequence of Gaussian conditional predictive

densities is available

f(ykt|ỹit, σ2
kt) (1)

k = 1, . . . , K. Then we can specify a large finite Gaussian mixture combination

model

f(ykt|wkt, ỹt, σ2
kt) ∼

n
∑

i=1

wi,ktf(ykt|ỹit, σ2
kt) (2)

k = 1, . . . , K, t = 1, . . . , T , where σ2
kt, t = 1, . . . , T , is defined to follow the

stochastic volatility process

log σ2
kt ∼ f(log σ2

kt| log σ2
k,t−1, σ2

ηk
) (3)
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The process σ2
kt controls the overall uncertainty level about the prediction models

used in the combination. We emphasize that in our approach this overall level

of uncertainty is a major indicator of incompleteness of the set of predictive

models. Indeed, when the value of σ2
kt is large, the overall uncertainty and the

misspecification of each predictors are significant. On the contrary, when the

uncertainty level tends to zero then we recover as a limiting case the mixture of

experts or the smoothly mixing regressions models.

Given these specifications, one can derive the following proposition.

Proposition 2.1 (Mixture representation). Under standard regularity

conditions and given the conditional information sets of all individual models, the

marginal predictive density of ykt has the following discrete/continuous mixture

representation

f(ykt|wkt, σ2
kt) =

n
∑

i=1

wi,kt

∫

R

f(ykt|ỹit, σ2
kt)fit(ỹit)dỹit, k = 1, . . . , K (4)

If the overall uncertainty level, controlled by σ2
kt, tends to zero, then

fkt(ykt|wkt) −→
n
∑

i=1

wi,ktfit(ykt), k = 1, . . . , K (5)

Proof, see Supplementary Material.

We started this section by stating that the analysis is conditional upon the

information specified in the different models. Our method allows to study for

which model or cluster of models, incompleteness will be larger over time and also

to study the overall level of incompleteness. The importance of this measuring

is shown in our empirical analyses.
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All the proposed extensions to the basic density combination model permit

a proper Bayesian inference based on prior and posterior distributions of

the large density combination scheme, including information reduction, time-

varying weights over time, dependence across models, and model incompleteness.

The next two subsections discuss specific parameters for these topics. The

following section describes another contribution of this paper related to parallel

computing. We make use of parallelized sequential prediction and filtering

methods in order to update efficiently the dynamic clustered weights of the

combination model.

2.2 Information reduction and time varying weight

specification

In the specification of the combination model given in the previous section, the

number of latent processes to estimate is nK at every time period t which can

be computationally heavy, even when a small number of variables of interest,

e.g. 4, and a moderate number of models, e.g. n = 100, are considered. A

contribution of this paper is to diminish the complexity of the combination

exercise by reducing the dimension of the latent space by preserving crucial

aspects such as time-varying weights and model dependence.

As a first step, the n predictors are clustered into m different groups, with

m < n, following some (time-varying) features ψit, i = 1, . . . , n, of the predictive

densities. This allows to deal with model dependence, a feature well documented

on data but often ignored in density forecasting. We introduce ξj,it as an

allocation variable, which takes the value 1 if the i-th predictor is assigned to
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the j-th group of densities and 0 otherwise. We assume each predictor belongs

to only one group, that is
∑m

j=1 ξj,it = 1 for all i. Therefore, models and/or

predictions with similar level of dependence can be grouped together. Also, the

grouping of the predictors can change over time, following a learning mechanism

which is defined by a sequential clustering rule. In such a way, even if the number

of clusters is kept constant over time, clustering varies. The number of clusters

could also be considered to vary over time, but their interpretation would be very

difficult and possible not valid. Details of the learning mechanism are presented

later in this section and the sequential clustering rule is given in the following

section.

Given the clustering of the predictors, we specify how to reduce the dimension

of the latent weight space from nK to mK with m < n. To this aim, we specify

the (n × m) allocation matrix Ξt = (ξ1t, . . . , ξmt), with ξjt = (ξj,1t, . . . , ξj,nt)
′,

j = 1, . . . , m, the vector of allocation variables ξj,it ∈ {0, 1}, and a (n × m)

coefficient matrix Bkt with the i-th row and j-th column element given by

bij,kt ∈ R. The two matrices allow us to project the n-dimensional latent variable

xkt onto a reduced dimension latent space, through the following latent factor

model

xkt = (Ξt ◦ Bkt)vkt (6)

where ◦ denotes the element-by-element Hadamard’s product, and vkt =

(v1,kt, . . . , vm,kt)
′ is a m-variate normal random walk process

vkt = vk,t−1 + χkt, χkt
iid
∼ Nm(0m, Υk) (7)

The process vkt, t = 1, . . . , T , is latent and is driving the weights of the predictive
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densities which are used to forecast the k-th variable of interest. The set of all

variable-specific latent processes, is associated width a latent space of dimension

mK. The coefficients, ξj,it and bij,kt, j = 1, . . . , m, for each variable of interest

k, predictor j and time t, are crucial in order to obtain a parsimonious latent

variable model and consequently to reduce the computational complexity of the

combination procedure without sacrificing key features such as time-variation

and model dependence.

For specific values of the coefficients bij,kt, we propose two alternative

strategies. The first one is where all coefficients in the cluster have the same

weights, which corresponds to set bij,kt as:

bij,kt =















1/njt if ξj,it = 1

0 otherwise
(8)

where

njt =
n
∑

i=1

ξj,it

is the number of predictive densities in the j-th cluster at time t. Note that,

following this specification of the coefficients, the weights of the n predictors for

the k-th variable of interest are

wi,kt =
exp{vji,kt/njit}

∑m
j=1 exp{vj,kt/njt}

, i = 1, . . . , n

where ji =
∑m

j=1 jξj,it indicates the group to which the i-th predictor belongs.

The latent weights are driven by a set of m latent variables, with m < n,

thus the dimensional reduction of the latent space is achieved. Moreover, let
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Nit = {j = 1, . . . , n|ξi,jt = 1} be the set of the indexes of all models in the

cluster i, then one can see that this specifications may have the undesirable

property that the weights are constant within a group, that is for all j ∈ Nit.

For this reason, we also propose a second specification strategy where we

assume that each model contributes to the combination with a specific weight

that is driven by a model-specific forecasting performance measure. Here the

learning aspect appears. If we assume git is the log score (see definition in

(S.26)) of the model i at time t then

bij,kt =















∑t
s=1 exp{gis}/ḡit if ξj,it = 1

0 otherwise
(9)

where ḡit =
∑

l∈Nit

∑t
s=1 exp{gls}.

All the modeling assumptions discussed above allow us to reduce the

complexity of the combination exercise because the set of time-varying

combination weights to estimate is of dimension mK <<< nK.

2.3 Reduced-dimension state-space representation

The density combination model proposed in this paper can be written in

terms of a nonlinear state space model defined on a reduced-dimension latent

space. Moreover, thanks to the class-preserving property of the logistic-

normal distribution, the proposed transition density can be represented as a

compositional latent factor model. We also show that this nonlinear state space

model may be written in the form of a generalized linear model with a local level

component when the space of the random measures is equipped with suitable
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operations and norms.

2.3.1 Probabilistic information reduction

We start to introduce some useful results and definitions. Let S
n = {u ∈

R
n
+|u1 + . . .+un < 1} be the n-dimensional standard simplex, where R

n
+ denotes

the positive orthant of Rn. Proofs of results are presented in the Supplementary

Material S.1.

Definition 2.1 (Composition function). The function Cm(u) : R
m
+ → S

m−1,

u 7→ v = Cm(u) with the i-the element of v defined as vi = ui/vm, i =

1, . . . , m − 1, with vm = u′ιm.

Proposition 2.2 (Logistic-normal distribution). Let v ∼ Nm (µ, Υ), and

define u = exp(v), that is the component-wise exponential transform of v,

and z = Cm(u), that is the composition of u, then u follows a m-variate

log-normal distribution, Λm(µ, Υ), and z follows a logistic-normal distribution

Lm−1(Dmµ, DmΥD′
m) with density function

p(z|µ, Υ) = |2πDmΥD′
m|−1/2





m−1
∏

j=1

zj





−1

exp
(

−
1

2
(log(z/zm) − Dmµ)(10)

(DmΥD′
m)−1 (log(z/zm) − Dmµ)′

)

(11)

where z ∈ S
m−1, zm,kt = 1−z′ιm−1, Dm = (Im−1, −ιm−1) and ιm−1 is the (m−1)

unit vector.

Corollary 2.1. Let vkt ∼ Nm (vkt−1, Υk), and zkt = Cm(exp(vkt)), then

zkt ∈ S
m−1 follows the logistic-normal distribution Lm−1(Dmvkt−1, DmΥkD′

m).

13



The class-preserving property of the composition of the logistic-normal

vectors (see Aitchinson and Shen, 1980) will be used in the proof of the main

result of this section. We show how this property adapts to our state space

model.

Proposition 2.3 (Class-preserving property). Let A a (c × m − 1) matrix and

zkt ∼ Lm−1(Dmvkt−1, DmΥkD′
m) a logistic-normal vector. Define the following

transform w = φA(z) from S
m−1 to S

c, with in our case m < c,

wi,kt =
m−1
∏

j=1

(

zj,kt

zm,kt

)aij



1 +
c
∑

i=1

m−1
∏

j=1

(

zj,kt

zm,kt

)aij





−1

, (12)

i = 1, . . . , c, then wkt = (w1,kt, . . . , wc,kt) follows the logistic-normal

Lc(ADmvkt−1, ADmΥkD′
mA′).

2.3.2 A reduced-dimension state-space representation

Given the results in the preceding subsection, we can now state the main result.

Proposition 2.4 (State-space form). Let Akt = Ξt ◦ Bkt, k = 1, . . . , K, be a

matrix of coefficients, then the model given in equations 2-6 can be written in

the following state space form

yt ∼
K
∏

k=1

n
∑

i=1

wi,ktN
(

ỹit, σ2
kt

)

(13)

w̃kt ∼ Ln−1

(

˜̃AktDmvkt−1, ˜̃AktDmΥkD′
m

˜̃A′
kt

)

, k = 1, . . . , K (14)

w̃kt = (w1,kt, . . . , wn−1,kt)
′ and wn,kt = 1 − w̃′

ktιn−1, ⊗ denotes the Kronecker’s

product, ˜̃Akt = (Ã′
kt, O′

(n−ñt)×(m−1))
′, with ñt = Card(Ñt) and Ñt = {i =

1, . . . , n|ξm,it 6= 1} the set of indexes of the models allocated in the cluster m.

14



Figure 1: Relationships between the latent variables (left) and the latent
probability spaces (right) involved in our compositional latent factor model. The
origin of the directed edge indicates the transformed variable, the arrow indicates
the results of the transformation, and the edge label defines the transform
applied. The symbol ∗ indicates a composition of functions.

The previous proposition establishes a relationship between the set of latent

weights wkt and their projection, zkt, on the lower dimension latent space S
m−1.

The diagram on the left side of Figure 1 summarizes the relationships between the

latent variables involved in our compositional latent factor model. The symbol ∗

indicates function composition. The diagram on the right shows the relationship

between the probability latent spaces. In both diagrams, the chaining process

given by the function composition φA ∗ Cm ∗ exp indicates that the probabilistic

interpretation of the n-dimensional weight vector wkt naturally transfers to the

m-dimensional vector zkt, with m < n.

In the same diagram an alternative chaining process is given by the function

composition Cn ∗ exp ∗(Ξt ◦ Bkt), which allows for the following alternative

representation of the latent factor model as a logistic-normal factor model.

Corollary 2.2. The transition density given in Proposition 2.4 can be written

as w̃kt ∼ Ln−1 (DnAktvkt−1, DnAktDnΥkD′
nA′

kt) and wn,kt = 1 − w̃′
ktιn−1.

Distributions other than the logistic-normal can be used for weights such
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as the Dirichlet distribution, but as noted in Aitchinson and Shen (1980) this

distribution may be too simple to be realistic in the analysis of compositional

data since the components of a Dirichlet composition have a correlation structure

determined solely by the normalization operation in the composition. See,

Aitchinson and Shen (1980) for a complete discussion of the advantages of the

logistic-normal distribution compared to the Dirichlet.

We also present another result that shows how the state space model can

be written as a generalized linear model with a local level transition function

when the space of the random measures is equipped with suitable operations

and norms. Moreover, we show that the probabilistic interpretation is preserved

for the lower dimensional set of latent weights.

Define the observation real space R
K equipped with the inner product

< x, y >=
∑K

i=1 xiyi, x, y ∈ R
K and scalar product ax = (ax1, . . . , axK)′,

x ∈ R
K , a ∈ R operations. Also, define the simplex (state) space, Sn−1 equipped

with a sum operation (also called perturbation operation), u ⊕ v = C(u ◦ v),

u, v ∈ S
n−1 and a scalar product operation (also called power transform)

a ⊙ u = C((ua
1, . . . , ua

n−1)
′), u ∈ S

n−1, a ∈ R+. For details and background,

see Aitchinson (1986) and Aitchinson (1992). Billheimer et al. (2001) showed

that S
n−1 equipped with the perturbation and powering operations is a vector

space. Moreover S
n−1 is an Hilbert space, i.e. a complete, inner product vector

space, equipped with the inner product < u, v >N= u, v ∈ S
n−1 space. These

properties enable us to state the following result.

Corollary 2.3. Let st = (s
′

1t, . . . , s
′

Kt)
′ be an allocation vector, with skt ∼

Mn(1, wkt), k = 1, . . . , K, where Mn(1, wkt) denotes the multinomial

distribution, and Σt = diag{σ2
1t, . . . , σ2

Kt} a covariance matrix. Then, the state
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space model given in Proposition 2.4 can be written as

yt = (IK ⊗ ỹ′
t)st + εt, εt ∼ NK(0, Σt) (15)

si,kt =















1 with probability wi,kt

0 otherwise
(16)

wt = φ(zt) (17)

zkt = zkt−1 ⊕ ηkt, ηkt ∼ Lm−1 (0, DnΥkD′
m) (18)

where φ(zt) = (φA1t
(z1t), . . . , φAKt

(zKt)) is a function from S
m−1 to S

n−1, where

the function φA(z) has been defined in 2.3.

The representation in corollary 2.3 shows that the model is a conditionally

linear model with link function defined by φA and a linear local level factor

model on the simplex. Also, by extending the ⊙ product operation to the case

of a matrix of real numbers and exploiting the Euclidean vector space structure

of (Sn, ⊕, ⊙) allow us to write the transform φA, for special values of A, as a

linear matrix operation between simplices of different dimensions as stated in

the following remark. In the following we introduce the symbol ⊞ and define the

matrix multiplication operation.

Remark 1. Let z ∈ S
m−1 be a composition, A a (n × m) real matrix and define

the matrix multiplication A ⊞ z = Cn

(

∏m
j=1 z

a1j

j , . . . ,
∏m

j=1 z
an−1j

j

)

. If A is such

that Aιm = 0n and aim = −1, i = 1, . . . , n − 1 and an,j = 0 j = 1, . . . , m, the

transform defined in proposition 2.3 can be written as φA(z) = A ⊞ z.

A simulated example of compositional factor model is given in Fig. 2 by

using the De Finetti or ternary diagram (see Cannings and Edwards (1968)
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Figure 2: First row: De Finetti’s diagram (left) and the time series plot (right)
of the ternary (z1,t, z2,t, z3,t). Other rows: De Finetti’s diagram of the ternary
(wi,t, wj,t, w−(i,j)t), j > i. In each plot the trajectory (blue line), the starting (red)
and ending (black) points and the equal weight composition (square).

and Pawlowsky-Glahn et al. (2015), Supplementary Material S.1). The first

row presents the evolution of three driving factors (z1,t, z2,t, z3,t) by using a

De Finetti’s diagram (left) and a time series plot (right). The other rows

present the pairwise comparisons of the weight dynamics by the De Finetti’s

diagram of the trajectory (blue line) of the ternary (wi,t, wj,t, w−(i,j),t) where
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w−(i,j),t =
∑

l 6=i,j wl,t is the other model total weight. The red and black dots are

the initial and final values. Further details of this example are given in section

S.3 of the Supplementary Material. We refer to the Billheimer et al. (2001)

for further details on the algebraic structure of the simplex equipped with the

perturbation and powering composition and for a Gibbs sampling scheme for

compositional state space model. See also Egozcue et al. (2003), Egozcue and

Pawlowskky-Glahn (2005) and Fîserová and Hron (2011) for further details on

the isometric transforms from the real space to the simplex and and for further

geometric aspects and property analysis of operations on the simplex, such as the

amalgamation and subcomposition operations. See also Pawlowsky-Glahn and

Buccianti (2011) and Pawlowsky-Glahn et al. (2015) for up-to-date and complete

reviews on compositional data models.

3 Sequential inference

The analytic solution of the optimal filtering problem is generally not known,

also the clustered-based mapping of the predictor weights onto the subset of

latent variables requires the solution of an optimization problem which is not

available in closed form. Thus, we apply a sequential numerical approximation

of the two problems and use an algorithm which, at time t iterates over the

following two steps:

1. Parallel sequential clustering computation of Ξt

2. Sequential Monte Carlo approximation of combination weights and

predictive densities
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As regards the sequential clustering, we apply a parallel and sequential k-

means method with a forgetting factor for the sequential learning of the group

structure. K-means clustering is a method partitioning a set of n vectors of

parameters or features of the predictors, ψit, i = 1, . . . , n, into m disjoints

sets (clusters), in which each observation belongs to the cluster with the least

distance. Given a definition of dependence, the k-means will group predictions

based on their distance. Moreover, the sequential k-means algorithm is easy

to parallelize and it has been done on multi core CPU and GPU computing

environments. The details of the algorithm and its parallel implementation are

given in the Supplementary Material S.2.

4 Empirical applications

As a first example we consider the extended Stock and Watson (2005) dataset,

which includes 142 series sampled at a quarterly frequency from 1959Q1 to

2011Q2. Here we focus on obtaining a set of relevant clusters and studying

their patterns over time which are valuable signals that may lead to improved

macro modeling and forecasting. The second example focuses on replicating the

daily Standard & Poor 500 (S&P500) index return and predicting the economic

value of tail events like Value-at-Risk.

4.1 A large macroeconomic dataset

We consider the extended Stock and Watson (2005) dataset, which includes 142

series sampled at a quarterly frequency from 1959Q1 to 2011Q2. A graphical

description of the data is given in Figure S.2 in the Supplementary Material.
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The dataset includes only revised series and not vintages of real-time data, when

data are revised. See Aastveit et al. (2015) for a real-time application (with a

dataset that includes fewer series) of density nowcasting and on the role of model

incompleteness over vintages and time. In order to deal with stationary series, we

apply the series-specific transformation suggested in Stock and Watson (2005).

Let yit with i = 1, . . . , n and t = 1, . . . , T , be the set of transformed variables.

For each variable we estimate a Gaussian autoregressive model of the first

order, AR(1),

yit = αi + βiyit−1 + ζit, ζit ∼ N (0, σ2
i ) (19)

Then, we identify the clusters of parameters by applying our k-means clustering

algorithm on the estimated vectors, θ̂i = (α̂i, β̂i, σ̂2
i )′. Therefore, our predictions

are grouped in clusters depending on mean, persistence and volatility properties.

Moreover, following the literature on factor models we are interested in the

interpretation of the clusters over the full sample and consequently we impose

that the cluster allocation of each model is fixed over the forecasting vintages,

i.e. Ξt = Ξ, t = 1, . . . , T . See the next section for an example where such an

assumption is relaxed. We estimated the model using Bayesian inference and

use a normal-inverse-gamma prior with means for αi and the β equal to zero

and variances equal to 100. For the variance σ2
i we use an inverse-gamma with

degrees of freedom equal to the number of lags (one) and intercept, that is two.

The predictive densities are Student-t distributed and the means (which are the

same as the medians in this case) of the densities are used as point forecasts.

We assume alternatively 5 and 7 clusters. In the grouping, we identify two

clusters related to real activities; one cluster related to prices; and one cluster
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related to financial variables. The other clusters contains the remaining series.

A detailed description of the 5 and 7 clusters is provided in Tables S.1-S.2 in the

Supplementary Material.

Set-up of the experiment

We split the sample size 1959Q3-2011Q2 in two periods. The initial 102

observations from 1959Q3-1984Q1 are used as initial in-sample (IS) period;

the remaining 106 observations from 1985Q1-2011Q2 are used as an OOS

period. The AR models are estimated recursively and h−step ahead (Bayesian)

t−Student predictive densities are constructed using a direct approach extending

each vintage with the new available observation; see for example Koop (2003)

for the exact formula of the mean, standard deviation and degrees of freedom.

We predict four different series often considered core variables in monetary

policy analysis: real GDP growth, inflation measured as price deflator growth,

3-month Treasury Bill rate and total employment. We consider h = 1, · · · , 5

step-ahead horizons. For all the variables to be predicted, we apply an

AR(1) as benchmark model. Moreover, we also consider the Dynamic Factor

Model (DFM) with 5 factors described in Stock and Watson (2012) as another

benchmark. This DFM expresses each of the n time series as a component driven

by the latent factors plus an idiosyncratic disturbance. More precisely:

yt = Λft + εt, Φ(L)ft = ηt, (20)

where the yt = (y1,t, . . . , yn,t)
′ is an n × 1 vector of observed series, ft =

(f1,t, . . . , fr,t)
′ is an r vector of latent factors, Λ is a n × r matrix of factors

loadings, Φ(L) is an r×r matrix lag polynomial, εt is an n vector of idiosyncratic
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components and ηt is an r vector of innovations. In this formulation the term

Λft is the common component of yt. Bayesian estimation of the model described

in equation (20) is carried out using Gibbs Sampling given in Koop and Korobilis

(2009).

h=1 h=2 h=3 h=4 h=5

PE LS CRPS PE LS CRPS PE LS CRPS PE LS CRPS PE LS CRPS

RGDP

AR 0.647 -1.002 0.492 0.658 -1.005 0.496 0.671 -1.007 0.501 0.676 -1.009 0.503 0.682 -1.009 0.506

BDFM 0.649 -1.091 0.382∗∗ 0.651 -1.066 0.385∗∗ 0.654 -1.138 0.388∗∗ 0.652 -1.060 0.384∗∗ 0.655 -1.099 0.388∗∗

UDCEW5 0.644 -0.869 0.333∗∗ 0.655 -0.893 0.340∗∗ 0.657∗ -0.900 0.341∗∗ 0.655∗ -0.902 0.341∗∗ 0.658∗ -0.912 0.343∗∗

MDCEW5 0.630 -0.928 0.326∗∗ 0.645 -0.987 0.336∗∗ 0.638∗ -0.924 0.330∗∗ 0.637∗ -0.897 0.328∗∗ 0.636∗ -0.844 0.324∗∗

UDCLS5 0.773 -1.306 0.464 0.663 -1.275 0.433∗∗ 0.687 -1.339 0.446∗∗ 0.689 -1.327 0.448∗∗ 0.715 -1.380 0.481

MDCLS5 0.725 -1.145 0.505 0.591∗ -1.071 0.365∗∗ 0.581∗∗ -1.041 0.340∗∗ 0.591∗ -1.079 0.354∗∗ 0.557∗ -1.005 0.358∗∗

UDCEW7 0.649 -0.875 0.334∗∗ 0.652 -0.880 0.335∗∗ 0.655 -0.889 0.337∗∗ 0.654 -0.886 0.336∗∗ 0.657∗ -0.891 0.338∗∗

MDCEW7 0.642 -0.979 0.334∗∗ 0.648 -1.012 0.338∗∗ 0.652∗ -1.016 0.342∗ 0.651 -1.015 0.339∗∗ 0.654∗ -1.009 0.342∗∗

UDCLS7 0.646 -0.868∗ 0.332∗∗ 0.645 -0.905 0.338∗∗ 0.650∗ -0.918 0.341∗∗ 0.655 -0.939 0.352∗∗ 0.657∗ -0.914 0.342∗∗

MDCLS7 0.596
∗

-0.586
∗∗

0.275
∗∗

0.586
∗

-0.582
∗∗

0.275
∗∗

0.607
∗∗

-0.632
∗∗

0.288
∗∗

0.588
∗

-0.637
∗∗

0.287
∗∗

0.610
∗∗

-0.634
∗∗

0.286
∗∗

GDP deflator

AR 0.220 -0.933 0.356 0.214 -0.932 0.357 0.206 -0.932 0.358 0.207 -0.932 0.359 0.208 -0.932 0.361

BDFM 0.220 -0.584∗∗ 0.123∗ 0.215 -0.302 0.120 0.206 -0.329∗∗ 0.115 0.207 -0.346 0.115 0.208 -0.267 0.116

UDCEW5 0.230 -0.429 0.169 0.220 -0.427 0.167 0.212 -0.422 0.165 0.214 -0.425 0.166 0.213 -0.426 0.166

MDCEW5 0.204 -0.053 0.110∗ 0.205 -0.285 0.115 0.203 -0.234 0.114 0.202 -0.167 0.112 0.204 -0.194 0.113

UDCLS5 0.485 -1.085 0.354 0.313 -1.001 0.294 0.259 -0.873 0.250 0.241 -0.875 0.248 0.228 -0.892 0.252

MDCLS5 0.291 -0.280 0.309 0.161 0.003 0.143∗∗ 0.143 0.031 0.125∗∗ 0.132 0.072 0.122∗ 0.159 -0.226 0.147∗

UDCEW7 0.223 -0.425∗∗ 0.166∗∗ 0.214 -0.420 0.164∗∗ 0.207 -0.416 0.163 0.209 -0.416∗ 0.163∗ 0.210 -0.416 0.164

MDCEW7 0.208 -0.214∗∗ 0.115∗∗ 0.200∗ -0.186∗ 0.111∗∗ 0.197∗ -0.172∗∗ 0.109∗∗ 0.197 -0.175∗ 0.110∗ 0.199 -0.200 0.111

UDCLS7 0.235 -0.507∗∗ 0.179∗∗ 0.220 -0.519 0.180∗∗ 0.224 -0.514 0.179 0.221 -0.516 0.179 0.214 -0.475 0.171

MDCLS7 0.197 0.436
∗∗

0.098
∗∗

0.183 0.462
∗∗

0.092
∗∗

0.165 0.571
∗

0.083
∗

0.160 0.570
∗∗

0.082
∗∗

0.175 0.495 0.088

3-month Treasury Bills

AR 0.569 -1.058 0.363 0.605 -1.074 0.374 0.518 -1.038 0.343 0.530 -1.037 0.353 0.545 -1.041 0.358

BDFM 0.553∗ -1.190 0.359 0.541 -1.394 0.386 0.516 -1.092 0.392 0.528 -1.098 0.396 0.517 -1.089 0.401

UDCEW5 0.519 -0.778∗∗ 0.288∗∗ 0.521 -0.782∗∗ 0.288 0.509 -0.772∗∗ 0.283 0.517 -0.782∗∗ 0.288∗ 0.525 -0.791∗∗ 0.292∗

MDCEW5 0.517∗∗ -0.764∗∗ 0.285∗∗ 0.506 -0.752∗∗ 0.279∗∗ 0.502∗
-0.749

∗∗
0.276

∗∗
0.506

∗∗
-0.755

∗∗
0.278

∗∗ 0.505∗∗ -0.751∗∗ 0.278∗∗

UDCLS5 0.740 -1.254 0.448 0.678 -1.301 0.453 0.532 -1.210 0.381 0.528 -1.216 0.385 0.584 -1.286 0.424

MDCLS5 0.710 -1.322 0.491 0.688 -1.297 0.454 0.491∗∗ -1.143 0.346 0.487 -1.143 0.351 0.572∗∗ -1.196 0.378

UDCEW7 0.525 -0.783∗∗ 0.289∗ 0.526 -0.784∗∗ 0.289∗ 0.514 -0.768∗∗ 0.284∗ 0.518 -0.774∗∗ 0.286∗ 0.522 -0.786∗∗ 0.289∗

MDCEW7 0.526 -0.775∗∗ 0.289∗ 0.527 -0.777∗∗ 0.290∗ 0.515 -0.761∗∗ 0.283∗ 0.516 -0.765∗∗ 0.284∗ 0.513 -0.766∗∗ 0.283∗

UDCLS7 0.512 -0.773∗∗ 0.284∗ 0.521 -0.799∗∗ 0.291∗ 0.514 -0.770∗∗ 0.284∗ 0.519 -0.783∗∗ 0.286∗ 0.521 -0.793∗∗ 0.289∗

MDCLS7 0.488
∗∗

-0.725
∗∗

0.270
∗∗

0.484
∗∗

-0.771
∗∗

0.275
∗

0.515
∗∗ -0.755∗∗ 0.283 0.513∗∗ -0.771∗∗ 0.283 0.496

∗∗

-0.736
∗∗

0.275
∗∗

Employment

AR 0.564 -0.995 0.447 0.582 -0.999 0.454 0.597 -1.003 0.460 0.612 -1.007 0.464 0.622 -1.009 0.468

BDFM 0.573 -1.064 0.336∗∗ 0.575 -1.057 0.333 0.576 -1.192 0.333 0.580 -1.226 0.336 0.582 -1.892 0.336

UDCEW5 0.585∗∗ -0.906∗∗ 0.308∗∗ 0.582∗∗ -0.889∗∗ 0.307∗∗ 0.579 -0.955∗∗ 0.305∗∗ 0.584 -0.931∗∗ 0.308∗∗ 0.587 -0.951∗∗ 0.311∗∗

MDCEW5 0.541∗∗ -0.926∗∗ 0.277∗∗ 0.554∗∗ -0.960∗∗ 0.284∗∗ 0.558 -0.917∗∗ 0.285∗∗ 0.560∗∗ -0.740∗∗ 0.284∗∗ 0.571∗∗ -0.790∗∗ 0.294∗∗

UDCLS5 0.752 -1.301 0.456 0.548 -1.265 0.414 0.565 -1.305 0.426 0.648 -1.372 0.472 0.628 -1.335 0.438

MDCLS5 0.654 -1.180 0.568 0.416 -0.964 0.325 0.487 -1.010 0.338 0.478∗ -0.976 0.340 0.569 -1.076 0.360

UDCEW7 0.535∗∗ -0.801∗∗ 0.283∗∗ 0.555∗∗ -0.828∗ 0.290∗∗ 0.570 -0.854∗∗ 0.298∗∗ 0.577 -0.867∗∗ 0.303∗∗ 0.583∗ -0.881∗∗ 0.306∗∗

MDCEW7 0.523∗∗ -0.735∗∗ 0.266∗∗ 0.548∗∗ -0.775∗∗ 0.278∗∗ 0.565 -0.827∗∗ 0.288∗∗ 0.571 -0.855∗∗ 0.293∗∗ 0.578∗ -0.885∗∗ 0.297∗∗

UDCLS7 0.552∗∗ -0.767∗∗ 0.289∗∗ 0.535∗∗ -0.805∗∗ 0.294∗∗ 0.562 -0.849∗∗ 0.302∗∗ 0.572 -0.878∗∗ 0.320∗∗ 0.588∗ -0.895∗∗ 0.313∗∗

MDCLS7 0.516
∗∗

-0.452
∗∗

0.236
∗∗

0.440
∗∗

-0.437
∗∗

0.219
∗∗

0.507 -0.479
∗∗

0.237
∗∗

0.495
∗

-0.488
∗∗

0.241
∗∗

0.560
∗∗

-0.680
∗∗

0.275
∗∗

Table 1: Forecasting results for h steps ahead. For all the series: root mean square
prediction error (PE), logarithmic score (LS) and the continuous rank probability score
(CRPS). Bold numbers indicate the best statistic for each horizon and loss function.
One or two asterisks indicate that differences in accuracy versus the AR benchmark
are statistically different from zero at 5%, and 1%, respectively, using the Diebold-
Mariano t-statistic for equal loss. The underlying p-values are based on t-statistics
computed with a serial correlation-robust variance, using the pre-whitened quadratic
spectral estimator of Andrews and Monahan (1992).

As we described in Section 2, we consider two alternative strategies for the

specification of the parameter matrices Bkt: equal weights and score recursive
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weights, where in the second case we fix gi = LSi,h for the various horizons

h presented in the following subsection. Further, the predictive densities can

be combined with each of the four univariate series and/or with a multivariate

approach. As discussed above, we apply two clusters, k = 5 and 7. We note that

we keep the volatility of the incompleteness term constant. To sum up, we have

eight cases defined as UDCEW5 (univariate combination based on 5 clusters with

equal weights within clusters), MDCEW5 (multivariate combination based on 5

clusters with equal weights within clusters), UDCLS5 (univariate combination

based on 5 clusters with recursive log score weights within clusters), MDCLS5

(multivariate combination based on 5 clusters with recursive log score weights

within clusters), UDCEW7 (univariate combination based on 7 clusters with

equal weights within clusters), MDCEW7 (multivariate combination based on 7

clusters with equal weights within clusters), UDCLS7 (univariate combination

based on 7 clusters with recursive log score weights within clusters), MDCLS7

(multivariate combination based on 7 cluster with recursive log score weights

within clusters).

Weight patterns and forecasting results

Table 1 reports the results to predict real GDP growth, inflation measured as

the price deflator of GDP growth, 3-month Treasury Bills and total employment

for five different horizons and using three different scoring measures. For

all variables, horizons and scoring measures our methodology provides more

accurate forecasts than the AR(1) benchmark and the Bayesian DFM. The

Bayesian DFM model provides more accurate forecasts than the AR(1) for real

GDP and inflation at shorter horizons and gives mixed evidence for interest
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rates and employment, but several of our combination schemes outperform this

benchmark. The combination that provides the largest gain is the multivariate

one based on seven clusters and log score weights within clusters (MCDLS7),

resulting in the best statistics 56 times over 60. In most of the cases, the

difference is statistically credible at the 1% level. This finding extends evidence

on the scope for multi-variable forecasting such as in large Bayesian VAR, see

e.g. Bańbura et al. (2010) and Koop and Korobilis (2013). Fan charts in Figure

S.4 show that the predictions are accurate even at our longest horizon, h = 5.

The variable with low predictive gains is inflation, although our method provides

credibly more accurate scores at (at least) 5% credible level in 8 cases out of 15,

but none in terms of point forecasting. The multivariate combination based on

5 clusters and equal weights yields accurate forecasts, see clusters MCDEW5.

We conclude that combining models using multiple clusters with cluster-based

weights provides substantial forecast gains in most cases. Additional gains may

be obtained by playing with a more detailed cluster grouping and different

performance scoring rules for weights associated with models inside a cluster.

From the analysis of the weight time patterns in Figure 3 (see Figure S.7 in

the Supplementary Material for weights in the univariate combination), we notice

that the weights for the univariate combination are often less volatile than the

weights in the multivariate approach. All figures show that the sixth cluster has

a large weight, but several other clusters have also large positive weights, namely,

clusters 2, 4, and 5 while clusters 1 and 7 do not receive much weight. Apparently,

variables such as Exports, Imports and GDP deflator included in the sixth cluster

play an important role in forecasting GDP growth, inflation, interest rate and

employment, but this role may differ across variables and horizons. Furthermore,
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the De Finetti diagrams in Figure S.6 in the Supplementary Material underline

that the relative importance of each cluster at a given horizon is constant over

time and the weight composition is far from the equal weight case.

The forecast gains are similar across horizons for the four variables, that is

around 10% relative to the AR benchmark in terms of RMSPE metrics and even

larger for the log score and CRPS measures. However, despite these consistent

gains over horizons, the logistic-normal weights in Figure 3 differ across horizons.

For example, when forecasting GDP growth (panel 1) cluster 4 has a weight

around 20% at horizons 1 and 5, but half of this value at horizon 3, where clusters

2 and 5 have larger weights. The change is even larger for inflation, where cluster

2 has a 20% weight at horizon 1 and increases to 40-45% at horizon 5. The latter

case also occurs when there is substantial instability over time. Changes over

horizons are less relevant for the other two predicted variables.

Figure S.8 shows a typical output of the model weights (bk,ij) in the seven

clusters. There are large differences across clusters: for clusters 2, 4, 5 and 6, only

a few models have most of the weights; for the other clusters: 1, 3 and 7, similar

weights occur across models. This finding associated with the weights in Figure

3 for the clusters 2, 4, 5 and 6 indicates that using recursive time-varying bk,ij

weights within the clusters increases forecast accuracy for GDP growth relative

to using equal weights. Figure S.8 also indicates that the weights within clusters

are much more volatile than the cluster common component, indicating that

individual model performances change over time even if information in a given

clusters is stable.

Evidence is similar for the GDP deflator and employment, but this finding is

less clear for bond returns. For this variable, MDCEW5 also predicts accurately.
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Figure 3: In each plot the logistic-normal weights (different lines) for the multivariate
combination model are given. Rows: plot for the four series of interest (real GDP
growth rate, GDP deflator, Treasury Bills, employment). Columns: forecast horizons
(1, 3 and 5 quarters).
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Also notice that cluster 3, which includes the 3-month Treasury Bills, has the

lowest weight in Figures 3. The explanation appears to be that the returns on the

3-month Treasury Bills are modeled with an AR model, which is probably less

accurate for the series. Furthermore, the third cluster also contains stock prices

and exchange rates that are different from other series with very low persistence

and high volatility, making our combination to interpret this cluster more like a

noisy component.

We conclude that the logistic-normal weights contain relevant signals about

the importance of the forecasting performance of each of the models used in the

clusters. Some clusters have a substantial weight while others have only little

weight and such a pattern may vary over long time periods. This may lead to the

construction of alternative model combinations for more accurate out-of-sample

forecasting and it is an interesting line of research to pursue.

4.2 Predicting Standard & Poor 500 (S&P500)

In this section we report results on replicating the daily Standard & Poor 500

(S&P500) index return and predicting the economic value of tail events like

Value-at-Risk.

The econometrician interested in predicting this index (or a transformation of

it as the return) has, at least, two standard strategies. First, she can model the

index with a parametric or non-parametric specification and produce a forecast

of it. Second, she can predict the price of each stock i and then aggregate them

using an approximation of the unknown weighting scheme.

We propose an alternative strategy based on the fact that many investors,
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including mutual funds, hedge funds and exchange-traded funds, try to replicate

the performance of the index by holding a set of stocks, which are not necessarily

the exact same stocks included in the index. We collect the S&P500 index

and 3712 individual stock daily prices quoted in the NYSE and NASDAQ from

Datastream over the sample March 18, 2002 to December 31, 2009, for a total

of 2034 daily observations for each individual series. To control for liquidity we

impose that each stock has been traded a number of days corresponding to at

least 40% of the sample size. We compute log returns for all stocks. S&P500

and cross-section average statistics are reported in Table S.4 in section S.6 of the

Supplementary Material. We produce a density forecast for each of the stock

prices and then apply our density combination scheme to compute clustered

weights and a combined density forecast of the index. The output is a density

forecast of the index with clustered weights that indicate the relative forecasting

importance of these clusters. That is, a side output of our method is that it

produces a replication strategy of the index, providing evidence of which assets

track more accurately the aggregate index. We leave a detailed analysis of this

last topic for further research.

Individual model estimates

We estimate a Normal GARCH(1,1) model and a t-GARCH(1,1) model via

maximum likelihood (ML)1 using rolling samples of 1250 trading days (about

1To ease on the computational workload, we apply the ML approach, which can be seen as
approximately Bayes given our large sample
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five years) for each stock return:

yit = ci + κitζit (21)

κ2
it = θi0 + θi1ζ2

i,t−1 + θ2κ2
i,t−1 (22)

where yit is the log return of stock i at day t, ζit ∼ N (0, 1) and ζit ∼ T (νi)

for the Normal and t-Student cases, respectively. The number of degrees of

freedom νi is estimated in the latter model. We produce 784 one day ahead

density forecasts from January 1, 2007 to December 31, 2009 using the above

equations and the first day ahead forecast refers to January 1, 2007. Our out-

of-sample (OOS) period is associated with high volatility driven by the US

financial crisis and includes, among others, events such as the acquisitions of

Bern Stearns, the default of Lehman Brothers and all the following week events.

The predictive densities are formed by substituting the ML estimates for the

unknown parameters (ci, θi0, θi1, θi2, νi).

As first step, we apply a sequential cluster analysis to our forecasts. We

compute two clusters for the Normal GARCH(1,1) model class and two clusters

for the t-GARCH(1,1) model class. The first two are characterized by low and

high volatility density predictions from Normal GARCH(1,1) models; the third

and the fourth ones are characterized by thick or no thick tail density predictions

from t-GARCH(1,1) models.2 The cluster analysis is repeated at every time a

new forecast is produced and therefore the cluster composition varies over time.

A detailed description of the cluster dynamics is given in section S.6 of the

supplementary material.

2Low degrees of freedom occur jointly with a large scale and high degrees of freedom occur
jointly with a low scale.
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Weight patterns, model incompleteness and signals of instability

For convenience, we specified the parameter matrices Bkt in equation (8) as

equal weights.3 We also allow for model incompleteness to be modeled as a time-

varying process and estimate σ2
kt in (2). We label it DCEW-SV and compare it

with a combination scheme where σ2
kt = σ2

k is time-invariant and label that as

DCEW.

Plots of the estimated weights zk,t defined in Corollary 2.1 are shown in Figure

4. The same figure shows the De Finetti’s diagrams for a pairwise comparison of

the weight dynamics. In the diagrams the blue line represents the trajectory of

the ternary (zi,t, zj,t, z−(i,j),t) where z−(i,j),t =
∑

l 6=i,j zl,t is the other model total

weight. The red and black dots are the initial and final values.

One can distinguish three different subperiods. In the subperiod before the

crisis, the Normal GARCH cluster with high volatility, cluster 2, and the t-

GARCH cluster with low degrees of freedom, cluster 3, have almost equal high

weights while clusters 1 and 4 play a much less important role. In the crisis period

of 2008, cluster 3 receives almost all the weight with clusters 1 and 2 almost none.

Some of the assets lead the large market decrease in that period. This results

in very fat tail densities and our combination scheme takes advantage of this

information and assigns to cluster 3 more weight. In the period after the Lehman

Brothers collapse cluster 3 receives again a substantial weight while the normal

cluster 2, with large variance, is getting gradually more weight. Summarizing, it

is seen that the t-GARCH(1,1) cluster with small degrees of freedom has most of

the period the largest weight. What implications this may have for constructing

model combinations that forecast more accurately is a topic for further research.

3See the macroeconomic case for a comparison with a different scoring rule.
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Figure 4: Top left: the mean logistic-normal weights for the two normal GARCH
clusters, labeled in the graph “Norm1” and “Norm2”, and for the two t-GARCH
clusters, labeled in the graph “t3” and “t4”. Top right: posterior mean estimate for
σkt in the scheme DCEW-SV. Other rows: De Finetti’s diagram for the pairwise
subcomposition comparison between model weights over time. In each plot the
trajectory of the ternary (zit, zjt, z−(i,j)t), j > i (blue line), the starting point (red
dot), the ending point (black dot) and the equal weight composition (square).
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Signals of model incompleteness and instability are shown in the top right

panel of Figure 4 where plots of the posterior mean estimate for σ2
kt in

the DCEW-SV scheme are presented. The estimates have a 7% increase in

September 2008, which is due to the default of Lehman Brothers and related

following events. Interestingly, the volatility does not reduce in 2009, a year

with large positive returns opposite the large negative returns in 2008.

From the results so far, we conclude that the combination of several time-

varying volatility models with time-varying cluster weights copes with instability

in our set of data. There is a clear signal of increased model incompleteness after

the 2008 crisis.

Forecast accuracy and economic value

We compare the performance of our approach to four different benchmarks

applied to the S&P500 log returns: a white noise model (or a random walk for

prices), often used as tha main benchmark in equity premium predictability; the

Normal GARCH(1,1) and the t-GARCH(1,1) models described above; and the

GJR-GARCH(1,1) model in Glosten et al. (1993) that includes leverage effects.

The GJR-GARCH is a richer model than the standard GARCH and should fit

the data better. In fact, leverage effect is considered among the stylized facts of

financial returns. So the added feature seems relevant in our analysis.

Out-of-sample forecasting result are presented in Table 2. Our combination

schemes produce the lowest RMSPE and CRPS and the highest LS. The

results indicate that the combination schemes are statistically superior to the no

predictability benchmark. The Normal GARCH(1,1) model, the t-GARCH(1,1)

model and the GJR-GARCH(1,1) model fitted on the index also provide more
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accurate density forecasts than the WN, but not on point forecasting. For all

three score criteria, the statistics given by the three individual models are inferior

to our combination schemes. Therefore, our strategy that produces forecasts

from a large set of assets, clusters them in groups and combines them to predict

the S&P500, produces very accurate point and density forecasts that are superior

to no predictability benchmark and classical strategies of modeling directly the

index.

Apart from forecasting accuracy, we investigate whether the results

documented in the previous paragraphs also possess some economic value. Given

that our approach produces complete predictive densities for the variable of

interest, it is particularly suitable to compute tail events. We consider two

statistics and an economic measure for tail events. We compute weighted

averages of Gneiting and Raftery (2007) quantile scores that are based on

quantile forecasts that correspond to the predictive densities from the different

models, i.e.,

QS(α, i, t) =
(

I{yt+1 ≦ F −1(α, i)} − α
) (

F −1(α, i) − yt+1

)

(23)

with F −1(α, i) is the 1-step ahead quantile forecast using prediction i for level

α ∈ (0, 1). It can be shown that integrating (23) over α ∈ (0, 1) will result in the

CRPS measure (S.25), see Gneiting and Ranjan (2011). Gneiting and Ranjan

(2011), Groen et al. (2013) and Lerch et al. (2016) propose to integrate weighted

versions of (23) over α, with these weights being fixed functions of α chosen such

to emphasize in the forecast evaluation a certain area of the underlying forecast

density. We use a discrete approximation to this integration and use weights
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that emphasize both tail and the left tail of the predictive density:

avQS-Ti =
1

T − t0 − 1

T −1
∑

s=t0−1





1

99

99
∑

j=1

(2αj − 1)2QS(αj , i, s + 1)





avQS-Li,h =
1

T − t0 − 1

T −1
∑

s=t0−1





1

99

99
∑

j=1

(1 − αj)
2QS(αj , i, s + 1)





(24)

where αj = j/100 and QS(αj, i, s + 1) is defined in (23) for a quantile j. In (24),

avQS-T emphasizes both tails and avQS-L the left tail of the predictive density

relative to the realization 1-step ahead.

As economic measure, we apply a Value-at-Risk (VaR) based measure, see

Jorion (2006). We compare the accuracy of our models in terms of violations,

that is the number of times that negative returns exceed the VaR forecast at

time t, with the implication that actual losses on a portfolio are worse than

had been predicted. Higher accuracy results in numbers of violation close to

nominal value of 1%. Moreover, to have a gauge of the severity of the violations

we compute the total losses by summing the returns over the days of violation

for each model.

The last three columns of Table 2 show results for tail evaluation. Our

schemes provides the lowest avQS-T and avQS-L statistics, confirming the

accuracy of the method in all parts of the distribution. When looking to

violations, the number for all individual models is high and above 1%, with

the WN higher than 3%. The dramatic events in our sample, including the

Lehman default and all the other features of the US financial crisis, can provide

an explanation for the result. However, the two combination schemes provide

the best statistics, with violations very close to the 1% theoretical value. The
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property of our combination schemes to assign higher weights to the fat tail

cluster 3 helps to model more accurately the lower tail of the index returns and

covers more adequately risks.

Finally, Table S.5 in the supplementary material S.7 compares the execution

time of the GPU parallel implementation of our density combination strategy

and the CPU multi-core implementation and show large gains from GPU

parallelization.

RMSPE LS CRPS avQS-T avQS-L Violation
WN 1.852 -9.045 1.017 0.429 0.425 3.57%
Normal GARCH 1.852 -4.164∗∗ 0.956∗∗ 0.139∗∗ 0.195∗∗ 2.93%
t-GARCH 1.852 -2.738∗∗ 0.937∗∗ 0.118∗∗ 0.154∗∗ 2.55%
GJR-GARCH 1.852 -4.068∗∗ 0.955∗∗ 0.125∗∗ 0.158∗∗ 2.75%
DCEW 1.812∗∗ 2.249∗∗ 0.911∗∗ 0.114∗∗ 0.149∗∗ 0.90%
DCEW-SV 1.816∗∗ 2.206∗∗ 0.913∗∗ 0.114∗∗ 0.149∗∗ 1.02%

Table 2: Forecasting results for next day S&P500 log returns. For all the series are
reported the: root mean square prediction error (RMSPE), logarithmic score (LS), the
continuous rank probability score (CRPS), tail weighted averages of quantile scores
(avQS-T) and left-tail weighted averages of quantile scores (avQS-L). Bold numbers
indicate the best statistic for each loss function. One or two asterisks indicate that
differences in accuracy from the white noise (WN) benchmark are statistically different
from zero at 5%, and 1%, respectively, using the Diebold-Mariano t-statistic for
equal loss. The underlying p-values are based on t-statistics computed with a serial
correlation-robust variance, using the pre-whitened quadratic spectral estimator of
Andrews and Monahan (1992). The column “Violation” shows the number of times the
realized value exceeds the 1% Value-at-Risk (VaR) predicted by the different models
over the sample.

5 Conclusions

We proposed in this paper a Bayesian semi-parametric model to construct a

time-varying weighted combination of many predictive densities that can deal
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with large data sets in economics and finance. The model is based on clustering

the set of predictive densities in mutually exclusive subsets and on a hierarchical

specification of the combination weights. This modeling strategy reduces the

dimension of the parameter and latent spaces and leads to a more parsimonious

combination model. We provide several theoretical properties of the weights and

propose the implementation of efficient and fast parallel clustering and sequential

combination algorithms.

We applied the methodology to large financial and macro data sets and

find substantial gains in point and density forecasting for stock returns and

four key macro variables. In the financial applications, we show how 7000

predictive densities based on US individual stocks can be combined to replicate

the daily Standard & Poor 500 (S&P500) index return and predict the economic

value of tail events like Value-at-Risk. In the macroeconomic exercise, we

show that combining models for multiple series with cluster-based weights

increases forecast accuracy substantially; weights across clusters are very stable

over time and horizons, with an important exception for inflation at longer

horizons. Furthermore, weights within clusters are very volatile, indicating

that individual model performances are very unstable, strengthening the use

of density combinations.

The line of research presented in this paper can be extended in several

directions. For example, the cluster-based weights contain relevant signals about

the importance of the forecasting performance of each of the models used in the

these clusters. Some clusters have a substantial weight while others have only

little weight and such a pattern may vary over long time periods. This may lead

to the construction of alternative model combinations for more accurate out-
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of-sample forecasting and improved policy analysis. We notice also a potential

fruitful connection between our approach and research in the field of dynamic

portfolio allocation.
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Raftery, A. E., Kárńy, M., and Ettler, P. (2010). Online prediction under model

uncertainty via Dynamic Model Averaging: Application to a cold rolling mill.

Technometrics, 52:52–66.

Stock, J. H. and Watson, W. M. (1999). Forecasting inflation. Journal of

Monetary Economics, 44:293–335.

Stock, J. H. and Watson, W. M. (2002). Forecasting using principal components

from a large number of predictors. Journal of American Statistical Association,

97:1167–1179.

Stock, J. H. and Watson, W. M. (2005). Implications of dynamic factor models

for VAR analysis. Technical report, NBER Working Paper No. 11467.

Stock, J. H. and Watson, W. M. (2012). Disentangling the channels of the 2007-

09 recession. Brookings Papers on Economic Activity, pages 81–156, Spring.

41



Stock, J. H. and Watson, W. M. (2014). Estimating turning points using large

data sets. Journal of Econometris, 178:368–381.

Varian, H. (2014). Machine learning: New tricks for econometrics. Journal of

Economics Perspectives, 28:3–28.

Varian, H. and Scott, S. (2014). Predicting the present with bayesian structural

time series. International Journal of Mathematical Modelling and Numerical

Optimisation, 5:4–23.

Villani, M., Kohn, R., and Giordani, P. (2009). Regression density estimation

using smooth adaptive Gaussian mixtures. Journal of Econometrics, 153:155–

173.

Waggoner, D. F. and Zha, T. (2012). Confronting model misspecification in

macroeconomics. Journal of Econometrics, 171:167–184.

Wood, S. A., Jiang, W., and Tanner, M. (2002). Bayesian mixture of splines for

spatially adaptive nonparametric regression. Biometrika, 89:513–528.

42



Supplementary Material for
“Dynamic Predictive Density Combinations for
Large Data Sets in Economics and Finance”
by Roberto Casarin, Stefano Grassi, Francesco
Ravazzolo and Herman van Dijk

S.1 Proofs of the results in sections 2 and 3

Proof of Proposition 2.1 The marginal predictive density is obtained by

integrating out the predictors with respect to their distributions. Under

regularity condition it is possible to exchange the order of integration and obtain

f(ykt|wkt, σ2
kt)

def
=
∫

Rn
f(ykt|wkt, ỹt, σ2

kt)
n
∏

j=1

fjt(ỹjt)dỹjt (S.1)

=
n
∑

i=1

wi,kt

∫

Rn
f(ykt|ỹit, σ2

kt)
n
∏

j=1

fjt(ỹjt)dỹjt (S.2)

=
n
∑

i=1

wi,kt

∫

R

f(ykt|ỹit, σ2
kt)fit(ỹit)dỹit (S.3)

where f(y|µ, σ2) is the pdf of the normal distribution N (µ, σ2). Now, by letting

σ2
kt → 0 for all k, one has that f(ykt|wkt, σ2

kt) converges to

n
∑

i=1

wk,it

∫

R

δỹit
(ykt)fit(ỹit)dỹit =

n
∑

i=1

wi,ktfit(ykt) (S.4)

k = 1, . . . , K.

Proof of Proposition 2.2 See Aitchinson and Shen (1980), Section 2.

Proof of Corollary 2.1 It follows from 2.2 by taking v = vkt and z = zkt.

Proof of Proposition 2.3 It follows from a direct application of the results in

Aitchinson and Shen (1980), Section 2.

Proof of Proposition 2.4 From equations 2-6 it is easy to show that the

measurement density for each variable of interest is ykt ∼ N (ỹ′
tskt, σ2

kt) with

1



skt ∼ Mn(1, wkt), k = 1, . . . , K, where Mn(1, wkt) denotes a multinomial

distribution, and due to the conditional independence assumption one gets the

joint measurement density as the product of the variable specific densities.

As regards the transition density, first observe that, thanks to proposition

2.2, zkt = Cm(exp(vkt)) follows Lm−1(Dmvkt−1, DmΥkD′
m). Then note that the

multivariate transform xi,kt =
∑m

j=1 ξij,ktbij,ktvj,kt, j = 1, . . . , m, i = 1, . . . , n

implies that xkt = Aktvkt, xkt ∼ Nn(Aktvkt−1, AktΥkA′
kt), with Akt = (Ξt ◦ Bkt)

and that, from Proposition 2.2, Cn(Aktvkt) follows Ln−1(DnAktvkt−1, DnΥkD′
n).

Without loss of generality, we assume that Bkt = ιnι
′
n and that the n − ñt

elements in the cluster m correspond to the last n−ñt element of ỹt. This implies

the following partition of Ξ′
t = ((Ξ̃t, Oñt×1)

′, (O(n−ñt)×(m−1), ιn−ñt
)′) and of

A′
kt = ((Ãkt, Oñt×1)

′, (O(n−ñt)×(m−1), ιn−ñt
)′), where (Ξ̃t, Oñt×1) and (Ãkt, Oñt×1)

are a (ñt × m) matrices. Note that

DnAkt = (In−1, −ιn−1)((Ãkt, (Oñt×1)′, (O(n−ñt)×(m−1), ιn−ñt
)′)′

= ((Ãkt, −ιñt
)′, O′

(n−ñt−1)×m)′

= (Ã′
kt, O′

(n−ñt−1)×(m−1))
′Dm

The result then follows by applying Proposition 2.3 to the set of weights zj,kt,

j = 1, . . . , m − 1, with transform coefficients A = (Ã′
kt, O′

(n−ñt)×(m−1))
′.

Proof of Corollary 2.2 The representation follows directly from the application

of Proposition 2.2 to xkt ∼ Nn(Aktvkt−1, AktΥkA′
kt).

S.2 Sequential approximation of combination weights

and predictive densities

As regards the sequential filtering we apply sequential Monte Carlo as in Billio

et al. (2013).

Let θt ∈ Θ be the parameter vector of the combination model, that is

θt = (log σ2
1t, . . . , log σ2

Kt, vecd(Υ1t), . . . , vecd(ΥKt)). Let w′
t = (w′

1t, . . . , wkt)

the vector of weights, and u1:t = (u1, . . . , ut) the collection of vectors ut from

time 1 to time t. Following Kitagawa (1998), Kitagawa and Sato (2001), and

2



Liu and West (2001), we define the augmented state vector wθ
t = (wt, θt) ∈ Z,

and the augmented state space W = S
n−1 × Θ. Our combination model writes

in the state space form

yt ∼ p(yt|w
θ
t , ỹt) (measurement density) (S.5)

wθ
t ∼ p(wθ

t |w
θ
t−1, y1:t−1, ỹ1:t−1) (transition density) (S.6)

wθ
0 ∼ p(wθ

0) (initial density) (S.7)

where the measurement density is

p(yt|w
θ
t , ỹt) ∝

K
∏

k=1

n
∑

i=1

wi,ktN (ỹit, σ2
kt) (S.8)

and the transition density is the probability density function of the distribution

given in equation (14), that is

p(wt|θt, wθ
t−1, y1:t−1, ỹ1:t−1) ∝ (S.9)

∝
K
∏

k=1

δ1−ιn−1w̃kt
(wn,kt)





n−1
∏

j=1

wj,kt





−1
n−1
∏

j=1

exp
(

−
1

2

(

log(wj,kt/wn,kt)

− ˜̃AktDmνkt−1

)

( ˜̃AktDmΥtD
′
m

˜̃A′
kt)

−1
(

log(wj,kt/wn,kt) − ˜̃AktDmνkt−1

)′
)

(S.10)

The state predictive and filtering densities are

p(wθ
t+1|y1:t, ỹ1:t) =

∫

W
p(wθ

t+1|wθ
t , y1:t, ỹ1:t)p(wθ

t |y1:t, ỹ1:t)dwθ
t (S.11)

p(wθ
t+1|y1:t+1, ỹ1:t+1) =

p(yt+1|wθ
t+1, ỹt+1)p(wθ

t+1|y1:t, ỹ1:t)

p(yt+1|y1:t, ỹ1:t)
(S.12)

The marginal predictive density of the observable variables is

p(yt+1|y1:t) =
∫

Y
p(yt+1|y1:t, ỹt+1)p(ỹt+1|y1:t)dỹt+1

where p(yt+1|y1:t, ỹt+1) is defined as

∫

W×Yt
p(yt+1|wθ

t+1, ỹt+1)p(wθ
t+1|y1:t, ỹ1:t)p(ỹ1:t|y1:t−1)dwθ

t+1dỹ1:t

3



and represents the conditional predictive density of the observable given the past

values of the observable and of the predictors.

S.2.1 Nonlinear sequential filtering

Each particle set Φj
t = {wθ ij

t , γ̃ij
t }N

i=1, j = 1, . . . , M , is updated through the

following steps.

1. Conditional combination weights. The approximated state predictive density

is

pN,j(w
θ
t+1|y1:t, ỹj

1:t) =
N
∑

i=1

p(wθ
t+1|w

θ
t , y1:t, ỹj

1:t)γ̃
ij
t δ

w
θ ij
t

(wθ
t ) (S.13)

2. Conditional prediction. The predictive density allows us to obtain the weight

predictive density

pN,j(zt+1|y1:t+1, ỹj
1:t+1) =

N
∑

i=1

γij
t+1δ

w
θ ij
t+1

(wθ
t+1) (S.14)

where γij
t+1 ∝ γ̃ij

t p(yt+1|w
θ ij
t+1, ỹj

t+1) is a set of normalized weights, and the

observable predictive density

pN,j(yt+1|y1:t, ỹj
1:t+1) =

N
∑

i=1

γij
t+1δyij

t+1

(yt+1) (S.15)

where yij
t+1 has been simulated from the combination model p(yt+1|w

θ ij
t+1, ỹj

t+1)

independently for i = 1, . . . , N .

3. Resampling. Since the systematic resampling of the particles introduces extra

Monte Carlo variations and reduces the efficiency of the importance sampling

algorithm, we do resampling only when the effective sample size (ESS) is below a

given threshold. See Casarin and Marin (2009) for ESS calculation. At the t+1-

th iteration if ESSj
t+1 < κ, simulate Φj

t+1 = {wθ kij
t+1 , γ̃ij

t+1}
N
i=1 from {wθ ij

t+1, γij
t+1}N

i=1

(e.g., multinomial resampling) and set γ̃ij
t+1 = 1/N . We denote with ki the

index of the i-th re-sampled particle in the original set Φj
t+1. If ESSj

t+1 ≥ κ set

Φj
t+1 = {wθ ij

t+1, γ̃ij
t+1}

N
i=1.
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S.2.2 Parallel sequential filtering

With regard to the filtering part, we use M parallel conditional SMC filters,

where each filter is conditioned on the predictor vector sequence ỹs, s = 1, . . . , t.

We initialise independently the M particle sets: Φj
0 = {wθ ij

0 , γ̃ij
0 }N

i=1, j =

1, . . . , M . Each particle set Φj
0 contains N i.i.d. random variables wθ ij

0 with

random weights γ̃ij
0 . We initialise the set of predictors, by generating i.i.d.

samples ỹj
1, j = 1, . . . , M , from p(ỹ1|y0) where y0 is an initial set of observations

for the variable of interest.

Then, at the iteration t + 1 of the combination algorithm, we approximate

the predictive density p(ỹt+1|y1:t) as follows

pM(ỹt+1|y1:t) =
1

M

M
∑

j=1

δ
ỹ

j
t+1

(ỹt+1)

where ỹj
t+1, j = 1, . . . , M , are i.i.d. samples from the predictive densities and

δx(y) denotes the Dirac mass at x.

We assume an independent sequence of particle sets Φj
t = {wθ ij

1:t , γ̃ij
t }N

i=1,

j = 1, . . . , M , is available at time t + 1 and that each particle set provides the

approximation

pN,j(w
θ
t |y1:t, ỹj

1:t) =
N
∑

i=1

γ̃ij
t δwθ ij (wθ

t ) (S.16)

of the filtering density, p(wθ
t |y1:t, ỹj

1:t), conditional on the j-th predictor

realisation, ỹj
1:t. Then M independent conditional SMC algorithms are used to

find a new sequence of M particle sets, which include the information available

from the new observation and the new predictors. Each SMC algorithm iterates,

for j = 1, . . . , M , the steps given in section S.2.1.

After collecting the results from the different particle sets, it is possible to

obtain the following empirical predictive density

pM,N(yt+1|y1:t) =
1

MN

M
∑

j=1

N
∑

i=1

δ
y

ij
t+1

(yt+1) (S.17)

For horizons h > 1, we apply a direct forecasting approach (see Marcellino
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et al., 2006) and compute predictive densities pM,N(yt+h|y1:t) following the steps

previously described.

S.2.3 Sequential Clusering

The sequential clustering algorithm is summarized as follows. Let cj0, j =

1, . . . , m, an initial set of random points and let cjt, j = 1, . . . , m be the centroids,

defined as

cjt =
1

njt

∑

i∈Njt

ψit

where njt and Njt have been define in the previous sections. At time t + 1 a

new set of observations ψit+1 ∈ R
d, i = 1, . . . , n is assigned to the different m

groups of observations based on the minimum distance, such as the Euclidean

distance, ||·||, between the observations and the centroids cjt ∈ R
d, j = 1, . . . , m.

Assume ji = arg min{j = 1, . . . , m| ||ψit −cjt||}, i = 1, . . . , n, then the allocation

variable ξij,t is equal to 1 if j = ji and 0 otherwise and the centroids are updated

as follows

cjt+1 = cjt + λt(mjt+1 − cjt) (S.18)

where

mjt+1 =
1

njt+1

∑

i∈Njt+1

ψit (S.19)

and λt ∈ [0, 1]. Note that the choice λt = njt+1/(nc
jt+njt+1), with nc

jt =
∑t

s=1 njs,

implies a sequential clustering with forgetting driven by the processing of the

blocks of observations. In the application we fix λ = 0.99.

S.2.4 Parallel sequential clustering

The parallel implementation of the k-means algorithm can be described as

follows, see also Favirar et al. (2008) and the reference therein. Assume, for

simplicity, the n data points can be split in P subsets, Np = {(p − 1)np +

1, . . . , pnp}, p = 1 . . . , P , with the equal number of elements nP . P is chosen

according to the number of available cores.

1. Assign P sets of nP data points to different cores.
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2. For each core p, p = 1, . . . , P

2a. find ji = arg min{j = 1, . . . , m| ||ψit − cjt||}, for each observation

i ∈ Np assigned to the core p.

2.b find the local centroid updates mp,jt+1, j = 1, . . . , m

3. Find the global centroid updates mjt+1 = 1/P
∑P

p=1 mp,jt+1, j = 1, . . . , m

4. Update the centroids as in Eq. (S.18).

The k-means algorithm is parallel in point 2) and 3) and this can be used in the

GPU context as we do in this paper.

S.3 Simulation example

To provide a graphical illustration of our compositional factor model, a simulated

example is presented. Let there be only one variable of interest y1t = yt, with

values given by the combination of five predictors (i.e. K = 1 and n = 5)

yt =
5
∑

i=1

ỹitsit + εt, εt ∼ N (0, 0.2) (S.20)

t = 1, . . . , T , where ỹit ∼ N (i, 0.1i) i.i.d. i = 1, . . . , 5 are the predictive

distributions, (s1t, . . . , s5t)
′

∼ Mn (1, (s1t, . . . , s5t)), and
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(S.21)

with (ς1t, ς2t, ς3t, ς4t)
′ ∼ L4(04, 0.1D5D

′
5) i.i.d. and ς5t = 1 − ς1t − . . . − ς4t.

For expository purposes, in order to show graphically the relationship

between the components of wt, which are on the 4-dimension simplex, we assume

wt is a transform of zt with some noise. The dynamics of the latent factors on
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the simplex of dimension 2 are given by
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(S.22)

with (η1t, η2t) ∼ L2(02, 0.2D3D
′
3) i.i.d. and η3t = 1 − η1t − η2t. We generate

a trajectory of T = 500 points from the latent factor process (blue line in the

top-left chart of Fig. S.1) starting at z0 = ι3/3 (black dot). The top-right

chart of the same figure shows the scatter plot of wkt, k = 2, 3, 4 against the

first weight w1t. One can easily see that w2t moves along the same direction

of w1t, that is it lies on the 45-degree line, whereas w3t and w4t move together

and their relationship with w1t reflects the relationship between z1 and z2t. The

bottom-left chart shows the trajectory of yt which exhibits a change in mean

and variance following the features of the largest combination weight at time t

(see bottom-right chart).

S.4 Forecast evaluation

To shed light on the predictive ability of our methodology, we consider several

evaluation statistics for point and density forecasts previously proposed in the

literature. Suppose we have i = 1, . . . , n different approaches to predict the

variable y. We compare point forecasts in terms of Root Mean Square Prediction

Errors (RMSPE)

RMSP Ei,h =

√

√

√

√

√

1

t∗

t
∑

t=t

ei,t+h

where t∗ = t − t + h, t and t denote the beginning and end of the evaluation

period, and ei,t+h is the h-step ahead square prediction error of model i.

The complete predictive densities are evaluated using the Kullback Leibler

Information Criterion (KLIC)-based measure, utilising the expected difference

in the Logarithmic Scores of the candidate forecast densities; see, for example,

Mitchell and Hall (2005), Hall and Mitchell (2007), Amisano and Giacomini

(2007), Kascha and Ravazzolo (2010), Billio et al. (2013), and Aastveit et al.
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Figure S.1: Simplicial random walk trajectory zt (top-left), scatter plot of elements
of the latent weight vector wt (top-right), observable process yt (bottom-left) and the
largest weight indicator w∗

t = max{wkt, k = 1, . . . , 5} (bottom-right).

(2014).

The KLIC is the distance between the true density p(yt+h|y1:t) of a

random variable yt+h and some candidate density pi(yt+h|y1:t) obtained from the

approach i and chooses the model that on average gives the higher probability to

events that actually occurred. An estimate of it can be obtained from the average

of the sample information, yt+1, . . . , yt+1, on p(yt+h|y1:t) and pi(yt+h|y1:t):

KLICi,h =
1

t∗

t
∑

t=t

[ln p(yt+h|y1:t) − ln pi(yt+h|y1:t)] (S.23)

Although we do not know the true density, we can still compare different

densities, pi(yt+h|y1:t), i = 1, . . . , n. For the comparison of two competing

models, it is sufficient to consider the Logarithmic Score (LS), which corresponds
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to the latter term in the above sum,

LSi,h = −
1

t∗

t
∑

t=t

ln pi(yt+h|y1:t) (S.24)

for all i and to choose the model for which it is minimal, or, as we report in our

tables and use in the learning strategies, its opposite is maximal.

Secondly, we also evaluate density forecasts based on the continuous rank

probability score (CRPS); see, for example, Gneiting and Raftery (2007),

Gneiting and Ranjan (2013), Groen et al. (2013) and Ravazzolo and Vahey

(2014). The CRPS for the model i measures the average absolute distance

between the empirical cumulative distribution function (CDF) of yt+h, which is

simply a step function in yt+h, and the empirical CDF that is associated with

model i’s predictive density:

CRPSi,t+h =
∫ +∞

−∞

(

F (z) − I[yt+h,+∞)(z)
)2

dz (S.25)

= Et|ỹi,t+h − yt+h| −
1

2
Et|ỹ

∗
i,t+h − ỹ′

i,t+h|

where F is the CDF from the predictive density pi(yt+h|y1:t) of model i and ỹ∗
i,t+h

and ỹ′
i,t+h are independent random variables with common sampling density

equal to the posterior predictive density pi(yt+h|y1:t). We report the sample

average CRPS:

CRPSi,h = −
1

t∗

t
∑

t=t

CRPSi,t+h (S.26)

Smaller CRPS values imply higher precisions and, as for the log score, we report

the average CRPSi,h for each model i in all tables.

Finally, following Clark and Ravazzolo (2015), we apply the Diebold and

Mariano (1995) t-tests for equality of the average loss (with loss defined as

squared error, log score, or CRPS). In our tables presented below, differences

in accuracy that are statistically different from zero are denoted by one, two,

or three asterisks, corresponding to significance levels of 10%, 5%, and 1%,

respectively. The underlying p-values are based on t-statistics computed with

10



a serial correlation-robust variance, using the pre-whitened quadratic spectral

estimator of Andrews and Monahan (1992). Monte Carlo evidence in Clark and

McCracken (2015) and Clark and McCracken (2011) indicates that, with nested

models, the Diebold-Mariano test compared against normal critical values can be

viewed as a somewhat conservative (conservative in the sense of tending to have

size modestly below nominal size) test for equal accuracy in the finite sample.

Since the AR benchmark is always one of the model in the combination schemes,

we treat each combination as nesting the baseline, and we report p-values based

on one-sided tests, taking the AR as the null and the combination scheme in

question as the alternative.

S.5 Additional details on the macroeconomic dataset

We consider the extended Stock and Watson (2005) dataset, which includes 142

series sampled at a quarterly frequency from 1959Q1 to 2011Q2. A graphical

description of the data is given in Figure S.2.

For each variable we estimate a Gaussian autoregressive model of the first

order, AR(1),

yit = αi + βiyit−1 + ζit, ζit ∼ N (0, σ2
i ) (S.27)

using the first 60 observations from each series. Then we identify the clusters

of parameters by applying our k-means clustering algorithm on the vectors,

θ̂i = (α̂i, β̂i, σ̂2
i )′, of least square estimates of the AR(1) parameters. A detailed

description of the 5 and 7 clusters is provided in Tables S.1-S.2.

The left and right columns in Fig. S.3 show the clusters of series in the

parameter space. The results show substantial evidence of different time series

characteristics in several groups of series. The groups are not well separated when

looking at the intercept values (see Fig. S.3, first and second row). However,

the groups are well separated along two directions of the parameter space, which

are the one associated with the variance and the one associated with persistence

parameters (Fig. S.3, last row). The differences in terms of persistence, in the

different groups, is also evident from the heat maps given in Fig. S.5. Different

gray levels in the two graphs show the value of the variables (horizontal axis)

over time (vertical axis). The vertical red lines indicate the different clusters.
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Table S.1: Predictors classification in 5 clusters (columns).

1 2 3 4 5
NAPMprodn Exports RGDP Cons-Dur Cons-Serv
CapacityUtil PGDP Cons Imports FixedInv
Emptotal PCED Cons-NonDur GovFed NonResInv
Empgdsprod CPI-ALL GPDInv IPfuels NonResInv-Struct
Empdblegds PCED-Core Gov Ul5wks NonResInv-Bequip
Empservices CPI-Core GovStateLoc U5-14wks Res.Inv
EmpTTU PCED-DUR-HHEQ IPconsgds Orders(NDCapGoods) IPtotal
Empwholesale PCED-DUR-OTH IPconsdble PCED-DUR IPproducts
EmpFIRE PCED-NDUR IP:consnondble PCED-DUR-MOTOR IPfinalprod
Avghrs PCED-NDUR-FOOD Empmining PCED-NDUR-OTH IP:buseqpt
HStartsTotal PCED-NDUR-CLTH EmpCPStotal PFI-NRES IPmatls
BuildPermits PCED-NDUR-ENERGY Overtimemfg PFI-NRES-EQP IPdblemats
HStartsNE PCED-SERV Umeanduration Pimp IP:nondblemats
HStartsMW PCED-SERV-HOUS U15-26wks LaborProd IPmfg
HStartsSouth PCED-SERV-HOUSOP Orders(ConsGoods) RealCompHour Empconst
HStartsWest PCED-SERV-H0-ELGAS Comspotprice(real) 3moT-bill Empmfg
PMI PCED-SERV-HO-OTH OilPrice(Real) 6moT-bill Empnondbles
NAPMnewordrs PCED-SERV-TRAN RealAHEgoods 5yrT-bond Empretail
NAPMvendordel PCED-SERV-MED RealAHEmfg 10yrT-bond EmpGovt
NAPMInvent PCED-SERV-REC UnitLaborCost Reservesnonbor Helpwantedindx
NAPMcomprice PCED-SERV-OTH Aaabond ExrateSwitz Helpwantedemp
Consumerexpect PGPDI Baabond ExrateJapan EmpCPSnonag
fygm10-fygm3 PFI Exrateavg DJIA EmpHours
Fyaaac-fygt10 PFI-NRES-STRPrInd ExrateUK Uall
Fyaaac-fygt10 PFI-RES EXrateCanada U15pwks

Pexp S&P500 U27pwks
Pgov S&Pindust RealAHEconst
PgovFed S&Pdivyield Conscredit
Pgovstatloc S&PPEratio fygm1-fygm3
FedFunds fygm6-fygm3
1yrT-bond
M1
MZM
M2
MB
Reservestot
BUSLOANS
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Table S.2: Predictors classification in 7 clusters (columns).

1 2 3 4 5 6 7
FixedInv Cons-Serv Empmining IPfuels RGDP Exports NAPMprodn
NonResInv NonResInv-Bequip CPI-ALL PCED Cons Imports CapacityUtil
NonResInv-Struct Res.Inv PCED-NDUR CPI-Core Cons-Dur Ul5wks Empwholesale
IPproducts GovStateLoc PCED-NDUR-CLTH PCED-DUR-OTH Cons-NonDur Orders(NDCapGoods) Helpwantedindx
IP:buseqpt IPtotal PCED-NDUR-ENERGY PCED-SERV GPDInv PGDP Avghrs
IP:nondblemats IPfinalprod PCED-SERV-H0-ELGAS PCED-SERV-HOUS Gov PCED-NDUR-FOOD HStartsTotal
Emptotal IP:consnondble FedFunds PCED-SERV-HO-OTH GovFed PCED-SERV-HOUSOP BuildPermits
Empgdsprod IPmfg 3moT-bill PCED-SERV-TRAN IPconsgds PCED-SERV-MED HStartsNE
Empmfg Empdblegds 6moT-bill PCED-SERV-REC IPconsdble PGPDI HStartsMW
Empnondbles Helpwantedemp 1yrT-bond PCED-SERV-OTH IPmatls PFI HStartsSouth
Empservices Overtimemfg 5yrT-bond PFI-NRES-STRPrInd IPdblemats PFI-NRES HStartsWest
EmpTTU Orders(ConsGoods) 10yrT-bond Pimp Empconst PFI-RES PMI
Empretail PCED-Core M1 PgovFed EmpCPStotal Pexp NAPMnewordrs
EmpFIRE PFI-NRES-EQP MZM Pgovstatloc U5-14wks Pgov NAPMvendordel
EmpGovt Comspotprice(real) MB M2 U15-26wks BUSLOANS OilPrice(Real)
EmpCPSnonag RealAHEconst Reservestot U27pwks NAPMcomprice
EmpHours RealCompHour Reservesnonbor PCED-DUR Conscredit
Uall UnitLaborCost ExrateUK PCED-DUR-MOTOR Consumerexpect
Umeanduration S&P500 EXrateCanada RealAHEgoods fygm10-fygm3
U15pwks fygm6-fygm3 S&Pindust RealAHEmfg Fyaaac-fygt10
NAPMInvent DJIA LaborProd Fyaaac-fygt10
PCED-DUR-HHEQ S&Pdivyield
PCED-NDUR-OTH
Aaabond
Baabond
Exrateavg
ExrateSwitz
ExrateJapan
S&PPEratio
fygm1-fygm3
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Figure S.2: Gray area: the set of series (standardised for a better graphical
representation), at the monthly frequency, of the Stock and Watson dataset. Solid
line: growth rate of real GDP (seasonally adjusted) for the US. Dashed line: inflation
measured as the change in the GDP deflator index (seasonally adjusted). Dotted line:
yields on US government 90-day T-Bills (secondary market). Dashed-dotted: total
employment growth rate for private industries (seasonally adjusted).

One can see for example that the series in the 2nd and 4th cluster (of 5) are more

persistent then the series in the clusters 1, 3 and 5 (see also Fig. S.3, bottom

left). Series in cluster 1, 2 and 4 are less volatile than series in the cluster 3

and 5. This information is also summarised by the mean value of the parameter

estimates for the series that belong to the same cluster. See the values in Table

S.3. Looking at the composition of the predictor groups (see also Tables S.1-S.2),

we find for the five clusters that:

1. The first cluster comprises capacity utilisation, employment variables,

housing (building permits and new ownership started) and manufacturing

variables (new orders, supplier deliveries index, inventories).

2. The second cluster contains exports, a large numbers of price indexes

(e.g. prices indexes for personal consumption expenditures, and for gross

domestic product) some money market variables (e.g. M1 and M2).

3. The third cluster includes real gross domestic product, consumption and

14



5 clusters
k α β σ2

1 0.049 0.752 0.270
2 0.021 -0.074 0.390
3 0.124 0.157 1.260
4 0.054 -0.338 1.335
5 0.100 0.466 0.811

7 clusters
k α β σ2

1 0.109 0.434 0.454
2 0.185 0.263 0.862
3 0.019 -0.116 0.224
4 0.090 -0.321 0.665
5 0.137 0.091 1.250
6 0.124 -0.437 1.297
7 0.026 0.817 0.197

Table S.3: Cluster means for the 5 (top table) and 7 (bottom table) cluster
analysis. The first column, k, indicates the cluster number given in Fig. S.3 and
the remaining three columns the cluster mean along the different directions of
the parameter space.

consumption of non-durables, some industrial production indexes, and

some financial market variables (e.g., S&P industrial, corporate bonds and

USD - GBP exchange rate).

4. The fourth cluster includes imports, some price indexes and financials such

as government debt (3- and 6-months T-bills and 5- and 10-years T-bonds),

stocks and exchange rates.

5. The fifth cluster mainly includes investments, industrial production indexes

(total and many sector indexes), and employment.

Evidence is similar for the seven clusters.
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Figure S.3: Pairwise scatter plots of the series features: αi and βi (first row), αi and
σ2

i (second row) and βi and σ2
i (last row). In each plot the red dots represent the

cluster means. We assume alternatively 5 (left) and 7 (right) clusters.
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Figure S.4: 5-step ahead fan charts for demeaned GDP (top panel) and demeaned
GDP deflator (bottom panel). Estimated mean (solid blue line) and 5% and 95%
quantiles (gray area) of the marginal prediction density. (Demeaned) realizations in
red dashed line
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Figure S.5: Normal cumulative density function for the standardised series. The series
are ordered by cluster label. We assume alternatively 5 (left) and 7 (right) clusters.

Figure S.6 shows the De Finetti’s diagram of the two largest weights in the

seven clusters for each of the variables to be predicted and a selection of horizons,

h = 1, 2, 5, using multivariate combinations and assuming bk,ij equal to the

recursive log score for model i in cluster j when predicting the series k.

Figure S.8 shows a typical output of the model weights (bk,ij) in the seven

clusters. There are large differences across clusters: the clusters 2, 4, 5 and 6

have few models with most of the weights; the other clusters, 1, 3 and 7, have

more similar weights across models. This finding should be associated with the

largest weights in Figure 3 for the clusters 2, 4, 5 and 6 and indicates that using

recursive time-varying bk,ij weights within the clusters increases forecast accuracy

for GDP growth relative to using equal weights. Figure S.8 also indicates that

the weights within clusters are much more volatile than the cluster common

component, indicating that individual model performances may change much

over time even if information in a given clusters is stable.
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Figure S.6: De Finetti’s diagrams for the dynamic comparison of the two largest
weights. Rows: diagrams for the four series of interest (real GDP growth rate,
GDP deflator, Treasury Bills, employment). Columns: forecast horizons (1, 3 and
5 quarters). In each plot the trajectory (blue line), the starting (red) and ending
(black) points and the equal weight composition (square).
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Figure S.7: In each plot the mean logistic-normal weights (different lines) for the
univariate combination model are given. Rows: plot for the four series of interest (real
GDP growth rate, GDP deflator, 3-month Treasury Bills, employment). Columns:
forecast horizons (1, 3 and 5 quarters).
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S.6 Additional details on the financial application

Table S.4 reports the cross-section average statistics, together with statistics for

the S&P500. Some series have much lower average returns than the index and

volatility higher than the index up to 400 times. Heterogeneity in skewness is

also very evident with the series with lowest skewness equal to -42.5 and the one

with highest skewness equal to 27.3 compared to a value equal to -0.18 for the

index. Finally, maximum kurtosis is 200 times higher than the index value. The

inclusion in our sample of the crisis period explains such differences, with some

stocks that realized enormously negative returns in 2008 and impressive positive

returns in 2009.

Figure S.9 presents the mean values of the predicted features ψit which belong

to the j−th cluster at each of the 784 vintages, labeled as mjt+1. The clusters

for the Normal GARCH(1,1) models differ substantially in terms of predicted

variance with cluster 1 having a rather low constant variance value over the

entire period while cluster 2 has a variance more than double in size including

a shock in the latter part of 2008. For the t-GARCH(1,1) model it is seen that

cluster 3 has a relatively constant thick tail over the entire period while cluster 4

has an average value of 10 for the degrees of freedom and in the crisis period the

density collapses to a normal density with degrees of freedom higher than 30. In

summary, The Lehman Brother effect is visible in the figure, with an increase of

volatility in the normal cluster 2 and, interesting, an increase of the degrees of

freedom in the t-cluster 4.

S.7 Computing time

In this section we compare the computational speed of CPU with GPU in

the implementation of our combination algorithm for both the financial and

macro application. Whether CPU computing is standard in econometrics, GPU

approach to computing has been received large attention in economics only

recently. See, for example, Aldrich (2014) for a review, Geweke and Durham

(2012) and Lee et al. (2010) for applications to Bayesian inference and Aldrich

et al. (2011), Morozov and Mathur (2012) and Dziubinski and Grassi (2013) for

solving DSGE models.
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Figure S.8: The plots show the model weights (bk,ij) in each cluster (i = j) when
forecasting GDP growth (k = 1) at the 1-step ahead horizon. The first row refers to
clusters 1, 2, and 3; the second row to clusters 4, 5, and 6; the last row to cluster 7.
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Figure S.9: The figures present the average variance of the predictions from the two
clusters for the Normal GARCH(1,1) models based on low (cluster 1) and high (cluster
2) volatility in the left panel; and the average degree of freedom of the predictions
from the two clusters for the t-GARCH(1,1) models based on low (cluster 3) and high
(cluster 4) degrees of freedom in the right panel. The degrees of freedom are bounded
to 30.

The CPU and the GPU versions of the computer program are written in

MATLAB, as described in Casarin et al. (2015). In the CPU setting, our test

machine is a server with two Intel Xeon CPU E5-2667 v2 processors and a total

of 32 core. In the first GPU setting, our test machine is a NVIDIA Tesla K40c

GPU. The Tesla K40c card is with 12GB memory and 2880 cores and it is

installed in the CPU server. In the second GPU setting, our test machine is a

NVIDIA GeForce GTX 660 GPU card, which is a middle-level video card, with

a total of 960 cores. The test machine is a desktop Windows 8 machine, has 16

GB of Ram and only requires a MATLAB parallel toolbox license.

We compare two sets of combination experiments, the density combination

based on 4 clusters with equal weights within clusters and time-varying volatility,

DCEW-SV, see Section 4.2, and the density combination with univariate

combination based on 7 clusters with recursive log score weights within clusters,

UDCLS74, see Section S.5, for an increasing number of particles N . In both

sets of experiments we calculated, in seconds, the overall average execution time

4The case MCDCLS7 provide similar relative timing, in absolute terms a bit faster than
the univariate ones.
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Subcomponents S&P500
Lower Median Upper

Average -0.002 0.000 0.001 0.000
St dev 0.016 0.035 0.139 0.019
Skewness -1.185 0.033 1.060 -0.175
Kurtosis 8.558 16.327 65.380 9.410
Min -1.322 -0.286 -0.121 -0.095
Max 0.122 0.264 1.386 0.110

Table S.4: Average cross-section statistics for the 3712 individual stock daily log
returns in our dataset for the sample 18 March 2002 to 31 December 2009. The
columns “Lower”, “Median” and “Upper” refer to the cross-section 10% lower quantile,
median and 90% upper quantile of the 3712 statistics in rows, respectively. The
rows “Average”, “St dev”, “Skewness”, “Kurtosis”, “Min” and “Max” refers to
sample average, sample standard deviation, sample skewness, sample kurtosis, sample
minimum and sample maximum statistics, respectively. The column “S&P500” reports
the sample statistics for the aggregate S&P500 log returns.

reported in Table S.5.

As the table shows, the CPU implementation is slower then the first GPU

set-up in all cases. The NVIDIA Tesla K40c GPU provides gains in the order of

magnitude from 2 to 4 times than the CPU. Very interestingly, even the second

GPU set-up, which can be installed in a desktop machine, provides execution

times comparable to the CPU in the financial applications and large gains in

the macro applications. Therefore, the GPU environment seems the preferred

one for our density combination problems and when the number of predictive

density becomes very large a GPU server card gives the highest gains.
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DCEW-SV UDCLS7
Draws 100 500 1000 100 500 1000

CPU 1032 5047 10192 5124 25683 51108
GPU 1 521 2107 4397 1613 6307 14017
GPU 2 1077 5577 13541 2789 13895 27691
Ratio 1 1.98 2.39 2.32 3.18 4.07 3.65
Ratio 2 0.96 0.90 0.75 1.84 1.85 1.85

Table S.5: Observed total time (in seconds) and CPU/GPU ratios for the algorithm
on CPU and GPU on different machines and with different numbers of particles. The
CPU is a 32 core Intel Xeon CPU E5-2667 v2 two processors and the GPU1 is a
NVIDIA Tesla K40c GPU and the GPU2 is a NVIDIA GeForce GTX 660. “Ratio
1” refers to the CPU/GPU 1 ratio and “ratio 2” refers to the CPU/GPU 2 ratios.
Number below 1 indicates the CPU is faster, number above one indicates that the
GPU is faster.
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