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Abstract

We study the performance of alternative methods for calculating in-sample confidence and out-

of-sample forecast bands for time-varying parameters. The in-sample bands reflect parameter

uncertainty only. The out-of-sample bands reflect both parameter uncertainty and innovation un-

certainty. The bands are applicable to a large class of observation driven models and a wide range

of estimation procedures. A Monte Carlo study is conducted for time-varying parameter models

such as generalized autoregressive conditional heteroskedasticity and autoregressive conditional

duration models. Our results show clear differences between the actual coverage provided by

the different methods. We illustrate our findings in a volatility analysis for monthly Standard &

Poor’s 500 index returns.
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1. Introduction

Over the last decades, time-varying parameter models have become increasingly pop-

ular in empirical economics and finance. The fast development of new methods for fil-

tering time-varying parameters in dynamic models with nonlinear and non-Gaussian

features has made these models more accessible, flexible and attractive. Starting from the

1960s, time-varying parameters for the mean equation in linear Gaussian models were

initially typically handled by the Kalman filter and related methods. For a given linear

Gaussian state space model, the Kalman filter can be used to calculate conditional means

and variances of unobserved time-varying parameters (or linear functions thereof) in a

computationally efficient manner; see, for example, Durbin and Koopman [2012] for a de-

tailed treatment. In this modeling framework, the construction of in-sample confidence

bands and out-of-sample forecast bands is straightforward and performed on a routine

basis as expressions for the conditional variances of the time-varying parameters are ex-

plicitly available. In case of nonlinear and/or non-Gaussian extensions of state space

models, the computation of confidence bands can be somewhat more involved. An ex-

ample is the stochastic volatility model for which analysis simulation-based methods are

typically used; see the discussions in Shephard [2005].

Since the 1980s, other model classes for time-varying parameters have been devel-

oped. Specifically, models for time-varying conditional variances have received much

attention in the empirical economics and finance literature. For example, the general-

ized autoregressive conditional heteroskedasticity (GARCH) model by Engle [1982] and

Bollerslev [1986] has led to a range of model formulations for time-varying parameters.

In the standard ARCH and GARCH models, the conditional variance is obtained from fil-

tering past observations through a volatility updating equation. The relative simplicity of

GARCH models has spurred their widespread use in both the academic and professional

world.
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In most empirical studies, the estimated volatility from the GARCH model is pre-

sented without in-sample bands that reflect parameter uncertainty in the volatility up-

dating equation. Similarly, volatility forecasts may feature bands that reflect innovation

uncertainty, but will typically ignore parameter uncertainty. Exact analytical results are

not available because the filters are highly nonlinear functions of past observations. As

a result, statistical software programs rarely provide in-sample confidence bands or out-

of-sample forecast bands for estimates of such time-varying parameters. This argument

also applies to other models related to GARCH including the autoregressive conditional

duration (ACD) model of Engle and Russell [1998], the multiplicative error model of En-

gle [2002], the observation driven Poisson count model of Davis, Dunsmuir, and Streett

[2003], and the score driven models of Creal et al. [2013]. All these models belong to the

class of observation driven models as opposed to the class of parameter driven models.

The latter also includes the state space model as briefly discussed above. See Cox [1981]

for a detailed description of parameter and observation driven models.

We review and analyze different methods for constructing in-sample and out-of-sample

bands. For our in-sample bands, we compare two analytical methods and one simulation-

based method. All these bands reflect parameter uncertainty. The approximate analytical

bands require simple computations and are not subject to random fluctuations due to

simulation error. The analytical bands can be used as long as the updating equation is

differentiable and the estimator of the static parameters is asymptotically normally dis-

tributed. For the computation of forecast bands, we compare three simulation-based

procedures. The first method only takes innovation uncertainty into account. The second

and third methods incorporate both parameter and innovation uncertainty. Although

these methods require simulations, the forecast bands are relatively fast to compute. In

particular, we argue that the necessary computations are more efficient than the boot-

strapped forecast bands proposed by for example Pascual et al. [2006] for GARCH mod-

3



els.

All methods considered can be readily implemented in software packages. We in-

vestigate in detail the coverage probabilities of each of these different approaches over a

range of different time-varying parameter models. We find that simulation based meth-

ods are the most reliable, but that the approximate analytical methods also perform well

in many settings.

To provide evidence of how effective the different methods are, we present the results

of a Monte Carlo study in which we compute in-sample confidence bands and out-of-

sample forecast bands for generated time series from GARCH, score driven, ACD and

time-varying mean (local level) models. The results reveal that the actual coverage of

our (preferred) analytical bands is close to the nominal coverage level obtained by simu-

lation. The simulation in-sample bands and forecast bands all attain accurate coverage.

An empirical application for the GARCH model applied to a time series of monthly log-

returns from the Standard & Poor’s 500 index reveals the practical importance of these

bands. We also show that the choice of method for computing in-sample bands is empir-

ically relevant, and that our analytical bands provide a good approximation to the more

computationally intensive simulation based bands.

This paper is organized as follows. Section 2 introduces the class of observation driven

models. Section 3 introduces different methods for computing in-sample bands for the

time-varying parameter. Section 4 presents different simulation-based methods for the

computation of the out-of-sample forecast bands. Section 5 analyzes the relative perfor-

mance of the bands in a Monte Carlo study. Section 6 presents our empirical findings for

the Standard & Poor’s 500 monthly returns. Section 7 concludes.
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2. Observation driven models

In observation driven models, the time-varying parameter is filtered using an updat-

ing equation that depends only on past observations. The main focus in these models is

on how to let past realizations of the variable of interest affect the current value of the

time-varying parameter. This can be achieved by means of different specifications.

Consider a time series model for an observed time series y1, . . . , yT given by

yt ∼ py(yt| ft;θ), t = 1, . . . , T, (1)

where density py( · ) is implied by a model equation for yt and is a function of the time-

varying parameter ft and the static parameter θ, for example, yt = ft + εt for a time-

varying mean, or yt = µ + f 1/2
t εt for a fixed mean and time-varying variance, with for

instance εt ∼ N(0, 1). The time-varying parameter is formally defined as a function

ft := ft(y1:t−1, f1;θ) that depends on the past observations y1:t−1 := {y1, y2, . . . , yt−1}, on

some initial value f1, and on a static parameter vector θ. The updating function for the

time-varying parameter can be expressed in many different ways. For example, we can

consider a linear updating equation consisting of lagged values of yt and ft. When only

considering single lags, we obtain

ft+1 = ω + β ft + αs(yt, ft;θ), (2)

with initialization f1 and where s(yt, ft;θ) is some (possibly nonlinear) function of yt, ft,

and θ. The function s( · ) can be chosen in a flexible way and is often just a transformation

of yt as we will show in the examples below. The coefficients ω, α and β are part of

the parameter vector θ. The recursive nature of the formulation implies that ft+1 is a

(nonlinear) function of yt, . . . , y1, f1 and θ. Hence, the updating equation (2) is consistent
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with the definition of ft, that is ft := ft(y1:t−1, f1;θ). We can also write the updating

equation (2) in the general form of a stochastic recurrence equation,

ft+1 = φ
(
yt, ft;θ

)
, (3)

with initialization f1 and recurrence function φ( · ). The choice of the function s( · ) in (2)

thus defines the type of updating used for ft.

Example 1. The generalized autoregressive conditional heteroskedasticity model of En-

gle [1982] and Bollerslev [1986], known as the GARCH model, for a mean-adjusted finan-

cial return series y1, . . . , yT is a special case of equations (1) and (2) with

yt = f 1/2
t εt, εt ∼ NID(0, 1), s(yt, ft;θ) = y2

t ,

for t = 1, . . . , T, where NID(0, 1) refers to a standard normally independently distributed

sequence. The GARCH-t model of Bollerslev [1986] is obtained when we replace the

normal by the Student’s t distribution.

Example 2. The autoregressive conditional duration model of Engle and Russell [1998],

known as the ACD model, for irregularly spaced data is also a special case of equations

(1) and (2) with

yt = ftεt, εt ∼ Exp(1), s(yt, ft;θ) = yt,

for t = 1, . . . , T, where Exp(1) is the standard Exponential distribution. Different specifi-

cations of this modeling framework for durations and intensities are discussed in Gram-

mig and Maurer [2000].

The score driven models of Creal et al. [2013] and Harvey [2013] also belong to the

model class represented by equations (1) and (2) where py(yt| ft;θ) can be any density
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with ft as the time-varying parameter. The specific choice of function s( · ) distinguishes

the score driven model from other models, namely

s(yt, ft;θ) = St
∂ log py(yt| ft, y1:t−1;θ)

∂ ft
,

for some scaling function St := St( ft;θ). In many models of practical interest, the predic-

tive density py(yt| ft, y1:t−1;θ) reduces to the conditional observation density py(yt| ft;θ)

since ft is also a function of y1:t−1. The scaling St can be simply set to unity or alterna-

tively be set to reflect the local curvature in the log conditional density function at time

t.

When we consider the observation densities of Examples 1 and 2 and apply the score

driven framework, we obtain equivalent updating functions if we scale the score by the

inverse conditional Fisher information matrix; see Creal et al. [2013]. Indeed the score

driven models include many well-known and popular dynamic models. However, in the

case of a Student’s t distribution for py(yt| ft;θ) in equation (1), we obtain the model as

discussed in Creal et al. [2011, 2013] and Harvey [2013].1

Example 3. The univariate Student’s t score driven volatility model is given by

s(yt, ft;θ) = (1 + 3λ−1)
( (1− λ−1)y2

t
1 + λ−1y2

t / ft
− ft

)
,

where λ is the degrees of freedom of the Student’s t distribution. This expression uses

a scaling function based on the inverse Fisher information matrix; see Creal et al. [2011,

2013] for more details.

The parameter vector θ is unknown and needs to be estimated to obtain estimates of

1More literature on score driven models with theoretical and empirical developments is provided via
the website http://www.gasmodel.com.
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the time-varying parameter ft. The estimation of θ can be based on the principle of max-

imum likelihood as we can evaluate the loglikelihood function `(θ; f1) via the prediction

error representation. We have

`(θ; f1) =
T

∑
t=1

log py(yt| ft, y1:t−1;θ),

where values for ft are evaluated via equation (2) with a specific initial value f1. When

it is difficult to find a “natural” value for f1, it can be included in the parameter vector

θ and estimated simultaneously with the other parameters in θ. We notice that in many,

if not most, cases of empirical interest we have py(yt| ft, y1:t−1;θ) = py(yt| ft;θ) such that

we can rely simply on the model density when computing the loglikelihood function.

Hence maximum likelihood estimation reduces to the basic task of numerically maxi-

mizing `(θ; f1) with respect to θ. This is the standard practice for GARCH and related

models.

We write the maximum likelihood estimator of θ as θ̂T. The values of ft obtained from

equation (2) under θ = θ̂T are denoted by f̂t for t = 1, . . . , T. The f̂t’s can be regarded as

a weighted function of f1 and y1:t−1 with the weights determined by θ̂T, for t = 2, . . . , T.

We can summarize the sources of uncertainty for f̂t as follows:

• Parameter uncertainty: we do not know the true parameter vector θ but we replace

it by its maximum likelihood estimate θ̂T to compute f̂t;

• Filtering uncertainty: we consider the updating equation (2) for ft but we do not

know the underlying time-varying parameter process;

• Model uncertainty: we consider py( · ) in equation (1) but we do not know the true

data generation process for yt.

In this paper we concentrate on developing bands that reflect the parameter uncer-
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tainty for f̂t, t = 1, . . . , T while taking the other two sources of uncertainty as given. This

is an important step forward in the current literature, where in-sample uncertainty bands

around the time-varying parameter are almost never shown. The next section presents

several ways to construct the approximate bands. Section 5 investigates the coverage

properties of these bands by conducting a Monte Carlo study.

3. In-Sample Bands

Conditional on past information and the initial value f1, and based on the maximum

likelihood estimate θ̂T of θ, we develop confidence bands for f̂t that reflect parameter

uncertainty about the true value of θ. The bands are based as usual on the variance of

f̂t, which we denote as Vt := Var( f̂t). The bands thus reflect the randomness of the

estimator θ̂T. We propose three different methods to obtain approximations for these

bands:

1. simple non-cumulative bands;

2. cumulative delta-method bands;

3. simulation based bands.

The first two methods are analytic and very fast. They approximate the variance of the

filter Vt by linearizing the updating function φ( · ) in (3) or (2) and using the asymptotic

variance of θ̂T. These analytic methods have the advantage of easy implementation in

software packages as they are based on simple calculations. The third method provides

probably the most accurate reflection of parameter uncertainty in f̂t but comes with the

disadvantage that the computations are subject to randomness by construction. This

method also uses the asymptotic variance of θ̂T, but does not require the linearization

of the updating function φ( · ). Hence this method may be preferable when nonlinearities

play an important role in the filter.
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The simple non-cumulative bands do not take into account the accumulation of pa-

rameter uncertainty in the updating or filtering process for f̂t. They rely on simple ex-

pressions, but are also somewhat naive and therefore only deliver accurate results for a

restrictive class of observation driven models. Specifically, these bands only become in-

teresting when the autoregressive component is either not present, that is when β = 0 in

equation (2), or when it is sufficiently small. For example, the method is appropriate for

the ARCH model of Engle [1982], which is the model of Example 1 with β = 0.

The cumulative delta-method bands take the accumulation of parameter uncertainty in

the updating process into account. These bands are obtained by a simple application of

the delta-method and are relevant for all observation driven models, including GARCH,

ACD, and score driven models where the updating equation for f̂t features an autore-

gressive term, that is β 6= 0.

The simulation bands deal not only with the accumulation of the uncertainty due to

the parameter vector θ, but also treat the effects of possible nonlinear functional relations

between θ and f̂t. These bands are most appropriate for cases where we have strong

nonlinear expressions in the updating process and the linearization error produced by

the delta-method cannot be ignored. In contrast to the first two methods for computing

bands, this method is not fully analytic and requires repeated simulations of the esti-

mated time-varying parameter paths f̂t.

All methods for computing bands rely on the asymptotic normality of the estimator

θ̂T. The bands can therefore be computed for any estimator θ̂T as long as it has a normal

distribution asymptotically. The Monte Carlo study in Section 5 investigates the extent to

which this reliance on the asymptotic distribution of the estimator may be problematic in

small samples.
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3.1. Simple In-Sample Non-Cumulative Bands

Our simple non-cumulative bands can generally be obtained by linearizing the func-

tion φ(yt, f̂t; θ̂T), as defined in equation (3) with ft = f̂t and θ = θ̂T, around the true

parameter vector used for generating y1, . . . , yT, that is θ0 ∈ Θ where Θ is the parameter

space. We use f̂t to denote the filter that is a function of the point estimate θ̂T. In the case

of the non-cumulative bands, we take f̂t as given in calculating the approximate variance

of f̂t+1. Our proposed simple bands then rely on the approximation

f̂t+1(y1:t, f̂1; θ̂T) ≈ φ
(
yt, f̂t;θ0

)
+

q

∑
i=1

∂φ(yt, f̂t;θ0)

∂θi
(θ̂T,i − θ0,i), (4)

for any f̂t and around some point θ, where θ0,i is the ith element of the q × 1 true pa-

rameter vector θ0 and, similarly, θ̂T,i is the ith element of the q× 1 maximum likelihood

estimate vector θ̂T, for i = 1, . . . , q.

We define the partial derivative of φ
(
yt, f̂t;θ

)
with respect to θi, the ith element of θ,

as the function

∇i,t = ∇i(yt, f̂t;θ) :=
∂φ(yt, f̂t;θ)

∂θi
, i = 1, . . . , q. (5)

Hence we can write the approximation in (4) as

f̂t+1 ≈ φ
(
yt, f̂t;θ0

)
+

q

∑
i=1
∇i,t × (θ̂T,i − θ0,i),

for t = 1, . . . , T. The approximate variance of f̂t+1 for given f̂t is then obtained by

Vt+1 = Var
(

f̂t+1
)
≈

q

∑
i=1
∇2

i,tVar(θ̂T,i) + 2 ∑
1≤i<j≤q

∇i,t∇j,tCov(θ̂T,i, θ̂T,j), (6)

where Var and Cov are the variance and covariance operators, respectively. In case the
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derivative ∇i(yt, f ;θ) is a function of θ and/or f , we evaluate the derivative at θ = θ̂T

and f = f̂t.

Let the maximum likelihood estimator θ̂T be asymptotically normally distributed as

√
T(θ̂T − θ0)

d→ N(0, W), (7)

where θ0 is the true parameter vector and N(0, W) is the multivariate normal distribu-

tion with zero mean vector and covariance matrix W. The standard notation d→ is for

convergence in distribution. We typically take W as the robust sandwich covariance matrix

estimator and evaluate it at θ = θ̂T. We then write explicitly W = Ŵ. It further follows

that

Var
[√

T
(
θ̂T − θ0

)]
≈ Ŵ ⇔ Var(θ̂T) ≈ T−1Ŵ.

From the asymptotic properties of the maximum likelihood estimator θ̂T, we can

deduct that the asymptotic variance of f̂t+1 converges asymptotically to Vt+1 where

Vt+1 ≈
q

∑
i=1

T−1wi,i∇2
i,t + 2 ∑

1≤i<j≤q
T−1wi,j∇i,t∇j,t, (8)

and with wi,j as the (i, j) element of matrix W. In a standard fashion and based on the

asymptotic normal distribution for f̂t+1, we obtain asymptotic 95% in-sample confidence

bands for f̂t+1 as [
f̂t+1 − 1.96

√
Vt+1 , f̂t+1 + 1.96

√
Vt+1

]
. (9)

Example 4. (Cont’d from Example 1) Consider the ARCH model of Engle [1982] which

is defined as the GARCH model of Example 1 with β = 0 in equation (2) and with θ =

(ω, α)′. The resulting updating function for f̂t+1 is given by f̂t+1 = ω̂T + α̂Ty2
t where

ω̂T and α̂T are respectively the first and second elements of the parameter vector θ̂T. It

12



follows immediately that

∇1,t = 1, ∇2,t = y2
t , t = 1, . . . , T.

The asymptotically correct bands obtained from our simple non-cumulative approach are

then given by (9) with

Vt+1 = Var(ω̂T) + y4
t Var(α̂T) + 2y2

t Cov(ω̂T, α̂T)

≈ T−1(w1,1 + y4
t w2,2 + 2y2

t w1,2).

These expressions are very simple to compute numerically once W has been replaced by

its estimate Ŵ .

In Section 5 we provide evidence that our simple non-cumulative bands are not appro-

priate for observation driven models where the filter has strong autoregressive dynamics.

This applies to the GARCH model with β 6= 0 and in particular to the case where β is far

away from zero.

3.2. In-Sample Cumulative Delta-Method Bands

The previous approximations did not account for the fact that also f̂t itself depends

on the estimator θ̂T. This is an important defect. In filters with an autoregressive compo-

nent, the parameter uncertainty accumulates as the filter evolves over time. This occurs

because f̂t+1 depends on f̂t, which already contains parameter uncertainty. This accu-

mulation of parameter uncertainty in the filtering process can be analytically tracked by

application of the delta-method. It is based on the same linearization (4) of φ( · ), but

where we also explicitly account for the dependence of f̂t on θ̂T. We redefine ∇i,t as

∇i,t = ∇i(yt, ft;θ) :=
∂φ(yt, ft;θ)

∂ ft

∂ ft

∂θi
+

∂φ(yt, ft;θ)
∂θi

. (10)
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We assume that the point estimate θ̂T is consistent and sufficiently close the true param-

eter θ0. Hence when calculating ∇i,t we take ft as the value of the filter at time t for the

point estimate of θ̂T, that is f̂t. The derivatives ∂ ft/∂θi can then be computed recursively.

For example, for the GARCH model we have

∂ ft+1

∂θi
=

(
∂ω

∂θi
+

∂α

∂θi
y2

t +
∂β

∂θi
ft

)
+ β

∂ ft

∂θi
, (11)

which can be computed in parallel to the recursion for ft itself.

The variance Vt+1 of the filtered estimate f̂t is again approximated by (8), but with∇i,t

defined as in equation (10). Also the asymptotic 95% in-sample confidence bands for f̂t+1

can be based on equation (9), but with Vt+1 computed as indicated above.

The delta-method bands are accurate when: (i) the the updating equation is suffi-

ciently well approximated by a linear function; and (ii) when the sample is sufficiently

large for the distribution of the estimator to be approximately normal. These two condi-

tions are met in many situations of empirical interest.

The following example illustrates the application of the current theory to the case of

the GARCH model.

Example 5. (Cont’d from Example 1) Consider the GARCH model of Bollerslev [1986] as

given by equation (2) and with θ = (ω, α, β)′. We have yt =
√

ftut with ut ∼ NID(0, 1)

and ft+1 = ω + αy2
t + β ft for t = 1, . . . , T. Applying equation (10) to the GARCH updat-

ing function, it follows that

∇1,t = 1 + β
∂ ft

∂ω
, ∇2,t = y2

t + β
∂ ft

∂α
, ∇3,t = ft + β

∂ ft

∂β
, t = 1, . . . , T,

where the partial derivatives on the right-hand side are defined via the recursion (11).

We evaluate ft and ft−1 by f̂t and f̂t−1, respectively, and replace the elements of θ by the
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corresponding elements of θ̂T. The resulting approximation of the variance of f̂t+1 is then

given by

Vt+1 ≈
(

1 + β̂T
∂ ft

∂ω

)2

w1,1 +

(
y2

t + β̂T
∂ ft

∂α

)2

w2,2 +

(
f̂t + β̂T

∂ ft

∂β

)2

w3,3

+ 2
(

1 + β̂T
∂ ft

∂ω

)(
y2

t + β̂T
∂ ft

∂α

)
w1,2

+ 2
(

1 + β̂T
∂ ft

∂ω

)(
f̂t + β̂T

∂ ft

∂β

)
w1,3

+ 2
(

y2
t + β̂T

∂ ft

∂α

)(
f̂t + β̂T

∂ ft

∂β

)
w2,3,

where wi,j denotes element (i, j) of the asymptotic variance matrix W of θ̂T. The necessary

computations are more involved when compared to those required for the simple non-

cumulative method used in Example 4. The bands, however, are still straightforward to

implement and fast to compute.

If the updating equation is highly nonlinear, the error in the above linearization may

become substantial, resulting in inaccurate approximations for Vt+1. The in-sample bands

obtained from using the simulation method below avoid the linearization step altogether.

The resulting bands are only subject to the error in approximating the distribution of the

estimator by its asymptotic distribution.

3.3. In-Sample Simulation-Based Bands

An alternative approach to obtain in-sample confidence bands for f̂t+1 is using simu-

lation methods. Since the bands only reflect the uncertainty in θ̂T, one can obtain exact

confidence bands by drawing parameter values θi from the distribution of θ̂T and run-

ning the filter from t = 1 to t = T for every simulated θi. However, since the finite-

sample distribution of θ̂T is unknown, we draw parameter values from the approximat-
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ing asymptotic distribution instead,

θ̂i
T ∼ N

(
θ̂T , T−1Ŵ

)
, i = 1, . . . , M, (12)

for some predefined number M. For each θi, i = 1, . . . , M, the sequence f i
1, f̂ i

2, . . . , f̂ i
T can

then be determined using equations (2) or (3) with f i
1 = f1. In particular, we consider the

filtering recursion for each i, that is

f̂ i
t+1 = φ(yt, f̂ i

t ; θ̂i
T), t = 1, . . . , T.

The simulation method is rather different from the two earlier methods. Instead of lin-

earizing the filtering recursion and working with an approximate Gaussian distribution

for f̂t, we can make use of simulations to obtain more accurate bands. The uncertainty

of θ̂T is characterized by the asymptotic distribution (7). Also note that in the simulation

method the bands need not be based on Vt+1, but can rather be obtained directly by cal-

culating the appropriate percentiles for each t over the M draws of the filtered paths f̂ i
t

for i = 1, . . . , M.

When nonlinearities play a prominent role in the updating equation φ( · ), the simu-

lation bands may become more accurate than those based on the linearization methods.

However, simulations can be time consuming when the sample size T is large and when

a high level of accuracy (large M) is required. Also simulation methods are inevitably

subject to simulation error. Hence the simulation bands may be less attractive for its

implementation in software packages.

Example 6. (Cont’d from Example 1) Consider the GARCH model with yt ∼ NID(0, ft)

and ft+1 = ω + αy2
t + β ft, for initial value f1. The simulation bands can be simply ob-

tained by drawing M parameter vectors from the approximate density of the estimator
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as in (12), we obtain θ̂i
T = (ω̂i

T, α̃i
T, β̃i

T) and

f̂ i
t+1 = ω̃i

T + α̃i
Ty2

t + β̃i
T f̂ i

t , for i = 1, . . . , M.

From these simulated paths we compute in-sample bands for any confidence level.

It is important to note the use of an approximate asymptotic distribution may result in

drawing values θ̂i
T that lie outside the admissable parameter space Θ that is of interest.

For example, for GARCH models it is common practice to impose restrictions on the

vector (ω, α, β) that ensure positivity of the filtered conditional variance. Avoiding draws

from outside the parameter space of interest can be achieved by re-parameterizing the

model in such a way as to ensure that Θ is unbounded for the transformed parameters.

For example, by estimating ω∗ = log(ω) we can easily ensure that ω = exp(ω∗) is strictly

positive.

4. Out-of-Sample Forecast Bands

In observation driven models, the time-varying parameter fT+1 depends by construc-

tion on the observed sample of data y1, . . . , yT. Therefore, innovation uncertainty is not

a concern for the construction of a forecast band for fT+1. In effect, the in-sample bands

discussed in the previous section are applicable to the parameter sequence f1, . . . , fT+1.

However, when considering bands for fT+n, with n ≥ 2, it is crucial to take into account

the uncertainty of future innovations. In the context of observation driven models, fu-

ture innovations play a crucial role as they determine the future values of the unknown

time-varying parameter via the realizations of yT+n−1.

We describe three different methods for the construction of out-of-sample forecast

bands. The first method only considers innovation uncertainty, while the second and

third method incorporate both parameter and innovation uncertainty.
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4.1. Simple Forecast Bands

A basic approach to the construction of a forecast band for fT+n, for some n ≥ 2, is to

first take the point estimate θ̂T and the resulting filtered value f̂T+1 as given, and then to

extrapolate the filter fT+1, . . . , fT+n multiple times by drawing multiple innovation paths

from the estimated innovation density. Bands are constructed from the multiple filtered

paths by computing the desired percentiles. This is equivalent to drawing multiple paths

yT+1, . . . , yT+n−1 from the conditional density p(yt| ft) for t = T + 1, . . . , T + n− 1, and

using these values to obtain multiple paths fT+1, . . . , fT+n. The crucial simplifying aspect

of these bands is that they take θ̂T and the resulting f̂T+1 as fixed. Hence the method

ignores parameter uncertainty. While this method only captures innovation uncertainty,

the resulting forecast bands are interesting in their own right. The basic algorithm used

to obtain the forecast bands can be summarized as follows.

1. Given θ̂T and the filtered value f̂T+1, draw S values y1
T+1, . . . , yS

T+1 from the esti-

mated conditional density for time T + 1

ys
T+1 ∼ py(yT+1| f̂T+1; gθT), s = 1, . . . , S.

2. Use y1
T+1, . . . , yS

T+1 and the updating equation (3) to obtain f̂ 1
T+2, . . . , f̂ S

T+2 condi-

tional on θ̂T and f̂T+1,

f̂ s
T+2 = φ

(
ys

T+1, f̂T+1; θ̂T
)

, s = 1, . . . , S.

3. For each f̂ s
T+2, s = 1, . . . , S, redo steps 1 and 2, for periods T + 2, . . . , T + n.

4. Use the S values of f̂ s
T+n to calculate the forecast bands at the desired percentiles.

The forecast band method described above is simple to implement. However, its does

not take the randomness of either the estimator θ̂T or the filtered value f̂T+1 into account.
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4.2. Delta-Method Forecast Bands

To incorporate parameter uncertainty into the forecast bands, we can make use of

the asymptotic distribution of the estimator of the parameter. In particular, we follow

the same approach as taken in Section 3 where we draw M parameter values θ̂i
T, for

i = 1, . . . , M, from the estimated approximate distribution (12) and use each θ̂i
T to ex-

trapolate the filter into the future. By drawing parameter values from an approximate

distribution, we are able to take into account parameter uncertainty. This method is con-

siderably more efficient than the bootstrap procedure proposed by Pascual et al. [2006]

for GARCH models, which requires the re-estimation of the parameter θ̂i
T from M se-

quences of bootstrapped innovations. To achieve further computational efficiency, we

build on the delta-method proposed in Section 3.2 to draw values for the filtered value

at time T + 1. In this way we obtain approximate values f̂ i
T+1 directly for i = 1, . . . , M,

instead of applying the filter M times for the full sample to obtain the f̂ i
T+1 implied by a

given θ̂i
T, i = 1, . . . , M.

The key feature of this method of computing forecast bands is its ability to incorporate

parameter uncertainty in an efficient way by drawing from approximate distributions for

θ̂T and f̂T+1 instead of having to re-estimate and re-filter these. The algorithm used to

obtain these bands is summarized as follows:

1. Draw M vectors (θ̂i
T, f̂ i

T+1), i = 1, . . . , M from the approximate distribution

(
θ̂i

T, f̂ i
T+1
)
∼ N

(
(θ̂T, f̂T+1) , T−1Σ̂

)
, i = 1, . . . , M, (13)

where the matrix Σ̂ consists of the estimated asymptotic variance of θ̂T and the

approximate variance of f̂T+1 derived in Section 3.2 using the delta-method, i.e.,

Σ̂ = (Iq,∇t)′Ŵ (Iq,∇t).

2. For each pair (θ̂i
T, f̂ i

T+1), i = 1, . . . , M, follow steps 1–3 of the simple forecast bands
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algorithm given in Section 4.1 to obtain M× S values of f̂ i,s
T+n.

3. Use the M× S values of f̂ i,s
T+n to calculate the bands at the desired percentiles.2

As we have done in Section 3.2, it is important to emphasize that the use of an ap-

proximate asymptotic distribution may result in drawing values θ̂i
T that lie outside a

parameter space Θ that is of interest. In our Monte Carlo exercise of Section 5, we found

that a re-parameterization of the GARCH model was important to ensure the positivity

of the conditional variance in our forecast bands.

4.3. Multiple Filtering Forecast Bands

In cases where the delta-method does not provide a good approximation to the distri-

bution of fT+1, the delta-method forecast bands may perform poorly as the draws f̂ i
T+1,

for i = 1, . . . , M, may not reflect accurately the underlying parameter uncertainty. This

problem is more likely to occur in observation-driven models with strongly nonlinear

parameter updates as the linearization error incurred by the delta-method becomes more

relevant. In these cases, it may be preferable to re-filter the entire path { f̂ i
t}T+1

t=1 for each

θ̂i
T, for i = 1, . . . , M. This should provide the pairs (θ̂i

T, f̂ i
T+1), for i = 1, . . . , M, that are

required for iterating the filter forwards and obtaining the bands that reflect both param-

eter uncertainty and innovation uncertainty.

When compared to the previous method, the key feature of these forecast bands is

their ability to obtain values for f̂ i
T+1 that reflect more accurately the parameter uncer-

tainty about the static parameters. This accuracy comes at an additional computation

cost because the filtered path has to be calculated multiple times. However, this method

is still more efficient than the bootstrap procedure proposed by Pascual et al. [2006] for

2Note that one can also choose to integrate the in-sample and out-of-sample simulations in the above
algorithm by setting S = 1 and simulating one out-of-sample path for every in-sample simulation of the
static parameters.
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GARCH models, as it does not require the re-estimation of θ̂T. This alternative method

for obtaining forecast bands can be summarized as follows:

1. Draw M parameter values θ̂i
T from its approximate distribution

θ̂i
T ∼ N

(
θ̂T , T−1Ŵ

)
, i = 1, . . . , M, (14)

2. For each θ̂i
T, use the observed data y1, . . . , yT and the updating equation (3) and run

the observation-driven filter for t = 1, . . . , T to obtain f̂ i
T+1, i = 1, . . . , M.

3. For each pair (θ̂i
T, f̂ i

T+1), i = 1, . . . , M, follow steps 1–3 of the simple forecast bands

algorithm given in Section 4.1 to obtain M× S values of f̂ i,s
T+n.

4. Use the M × S values of f̂ i,s
T+n to calculate the forecast bands at the desired per-

centiles.

5. Monte Carlo Study

5.1. In-Sample Confidence Bands

To verify the performances of the three methods for computing the in-sample bands

of time-varying parameters in observation driven models, we carry out a Monte Carlo

study. We consider five different models: (i) the GARCH model based on normally dis-

tributed innovations; (ii) GARCH based on Student’s t(5) innovations; (iii) the Student’s

t(5) based score driven volatility model of Creal et al. [2011, 2013] and Harvey [2013]; (iv)

the autoregressive conditional duration (ACD) model; and (v) a time-varying mean (or

local level) model with Gaussian innovations. The GARCH model is introduced in Exam-

ple 1. In case the density py(yt| ft;θ) is NID(0, ft), we obtain Model (i); in case it is Stu-

dent’s t(5) with variance ft and degrees of freedom λ, we obtain Model (ii). Model (iii)

has s(yt, ft;θ) = (1 + 3λ−1)((1 + λ)y2
t /(λ− 2 + y2

t / ft) with λ > 2 degrees of freedom.
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Table 1: Models in Monte Carlo study

We present the details of the five observation driven models in our Monte Carlo study. In all cases the
updating equation for the time-varying parameter ft is given by (2), that is ft+1 = ω + αst + β ft, with
ω = 0.05, α = 0.1 and for three different values of β = 0.2, 0.5, 0.8. The remaining details for py(yt| ft;θ)
and st = s(yt, ft;θ) are given below with a reference to the examples discussed in Section 2. Student’s
t(0, ft, λ) refers to the Student’s t density function with zero mean, variance (rather than scale parameter)
ft and degrees of freedom λ with λ = 5, Exp( ft) refers to the Exponential density with intensity parameter
ft, and for model (v) we have set σ2 = 1. In all cases, we take f1 = 1.

Model py(yt| ft;θ) s(yt, ft;θ) Example
(i) GARCH NID(0, ft) y2

t 1
(ii) GARCH-t iid Student’s t(0, ft, λ) y2

t 1

(iii) GAS-t iid Student’s t(0, ft, λ)
(1+3λ−1)(1+λ)y2

t
λ−2+y2

t / ft
3

(iv) ACD iid Exp( ft) yt 2
(v) Local Level (LL) NID( ft, σ2) yt –

Model (iv) is introduced in Example 2. The local level (LL) model (v) is a basic applica-

tion of the score driven model of Example 3. We set py(yt| ft;θ) to the Gaussian density

NID( ft, σ2) and choose St( ft;θ) = 1 and s(yt, ft;θ) = yt. For models (i) and (iv), the

parameter vector is given by θ = (ω, α, β)′, for models (ii) and (iii) it is θ = (ω, α, β, λ)′

and for model (v) it is θ = (ω, α, β, σ2)′. Further details are given in Table 1. We choose ω

and f1 such that the time-varying parameter process is started at its unconditional mean.

We consider two different sample sizes, T = 500, 1000, and we generate the time series

for three values of β = 0.2, 0.5, 0.8, with ω = 0.05, α = 0.1, λ = 5, σ2 = 1 and f1 = 1.

The aim of this Monte Carlo study is to verify how well the three methods studied in

Section 3 approximate the correct in-sample bands for f̂t+1. The in-sample bands can be

determined in a Monte Carlo setting by repeating the following steps:

1. Generate a time series y1, . . . , yT from one of the models listed in Table 1 for some

T.

2. For this generated time series, estimate θ using the method of maximum likelihood
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as discussed in Section 2.

3. Calculate the time-varying parameter sequence f̂t+1 as well as its derivative with

respect to θ using (2) and (11) for a given f1, based on the generated time series and

the estimate θ̂T.

These three steps can be repeated N times so that we obtain a set of N paths for f̂t. From

this set we can empirically determine the coverage of the in-sample bands for f̂t for nom-

inal confidence levels such as 90%, 95% and 99%.

Within this Monte Carlo framework, for each generated time series, we determine the

in-sample bands by the three methods as described in Section 3. We compute the time

series average of the number of times the true ft lies outside the in-sample band. We

subsequently take the average of this number over the N replications, and present the

results in Table 2.

As expected, the simple non-cumulative bands are not very accurate for the GARCH

model with β = 0.8, while they are somewhat more accurate for the model with β = 0.2.

However, the simple bands provide poor overall results for the three nominal coverage

levels of 90%, 95% and 99%. As we have indicated in Example 4, the simple method is

appropriate for the ARCH model (that is the GARCH model with β = 0.0). Our Monte

Carlo study reveals that the simple method produces rather inaccurate results even when

β = 0.2. These findings are confirmed by the other models and for both sample sizes

considered.

The cumulative delta-method bands are considerably more accurate. The bands are

slightly too small, resulting in lower estimated coverage compared to the nominal levels.

The differences, however, appear to be tolerable for most practical purposes. The per-

formance for different values of β remains stable, while the performance of the simple

non-cumulative bands deteriorates rapidly if the value for β is increased. The estimated
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92.7
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0.8
93.0
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93.1
96.8

99.2
94.5
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96.9
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89.2

94.3
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95.6
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0.5
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93.4

97.1
99.4
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0.8
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96.3
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96.4

99.4
92.0

96.1
99.0

89.1
94.0

98.0
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coverage levels for the cumulative delta-method bands remain close to the correspond-

ing nominal levels for β = 0.2, 0.5, 0.8. The performance slightly improves if the sample

size is increased. The overall performance is very stable across the different models.

The reported coverages for the simulation method are presented in the bottom panel

of Table 2. The in-sample bands from the simulation method are based on M = 1000

simulations. The presented coverages show that the simulation method is most accu-

rate overall. Again, the improvements in accuracy compared to the cumulative bands is

clearly noticeable, but appears to be tolerable for empirical applications. This is a relevant

finding, as the cumulative bands are easier and faster to compute than the simulation

based ones. This finding applies to all levels of persistence for the time-varying param-

eter process and to all different models considered. In our next section, we investigate

whether this conclusion also holds up for empirical data.

5.2. Out-of-Sample Forecast Bands

Next we verify the coverages of the out-of-sample forecast bands computed by the

methods proposed in Section 4. In particular, we consider the GARCH, t-GARCH, t-GAS,

ACD and LL models to assess the accuracy of the different methods to compute forecast

bands. For each of the models, we consider two sample sizes of T = 500 and T = 1000,

and report the actual coverage of the three different forecast bands with nominal coverage

of 0.95. Coverage values are reported for k-step ahead forecasts with k ∈ {1, . . . , 5, 10, 20}.

As mentioned in Sections 3 and 4, we have avoided negative forecasts of conditional vari-

ances by re-parameterizing GARCH, t-GARCH and t-GAS models to ensure that appro-

priate parameter restrictions are satisfied, for example, by estimating the logarithm of ω

rather than ω itself. This slightly alters the derivatives in ∇t in a straightforward way

by application of the chain rule. The results of a comprehensive Monte Carlo study are

reported in Table 3. Our main findings are as follows.
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First, we find that taking parameter uncertainty into account is of crucial importance

for obtaining accurate forecast bands at any horizon. In particular, it is clear that when we

do not take parameter uncertainty into account, the forecast bands are not wide enough.

This results in a low coverage compared to the nominal value of 0.95 for all considered

models and all forecast horizons. Table 3 shows that this problem is especially signifi-

cant at short forecast horizons as the parameter uncertainty at such horizons is relatively

more important than innovation uncertainty. The coverage improves for larger forecast

horizons as the innovation uncertainty becomes progressively more important. Specifi-

cally, at k = 1, the first forecast bands are degenerate and hence fail to contain the true

parameter with probability one. This is reflected by a coverage of zero.

Second, Table 3 further shows that even the two forecast bands that take parameter

uncertainty into account typically perform better at larger forecast horizons. With the

exception of the t-GAS model, the coverage of the bands improves substantially as k in-

creases. It is a reminder of the fact that parameter uncertainty is more difficult to capture

than innovation uncertainty.

Third, the out-of-sample forecast bands obtained by repetitive filtering of f̂T+1 per-

form better than those obtained using the delta-method for k = 1. However, both meth-

ods perform similarly well for k ≥ 2. As such, the extra computational effort required by

the method based on repetitive filtering f̂T+1 does not seem necessary when considering

forecast bands for k ≥ 2. We can simply conclude that the delta-method forecast bands

are the best choice for forecasting horizons where innovation uncertainty matters, that is

for k ≥ 2.

6. An empirical illustration

To illustrate the use and the appearance of the different in-sample and out-of-sample

bands in a an empirical study, we consider a monthly time series of Standard & Poor’s
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Table 3: Out-of-sample forecast band coverages

We present the forecast band coverages of f̂T+k for k ∈ {1, . . . , 5, 10, 20}. The design of this study is the
same as the one carried out for Table 2, with β = 0.8 and coverage level 95%. We consider three methods.
The method “fixed” is based on the sample estimate of θ̂ and the subsequent filtered value f̂T+1 for
computing the out-of-sample bands. The method “delta approx” is based on simulated values of θ̂ and f̂T+1
from their asymptotic normal distributions. The method “filtered” only simulates θ̂ from the asymptotic
normal approximation and applies the filter over the entire sample to obtain f̂T+1 for computing the
out-of-sample bands. All computations are based on M = 1000 simulations. The Monte Carlo study is
based on N = 1000 replications.

Model T fT+1 k
1 2 3 4 5 10 20

GARCH 500 fixed 0.0 65.6 73.8 78.5 80.3 84.4 83.5
delta approx. 81.2 91.1 92.1 92.6 92.4 93.5 91.9

filtered 86.4 91.5 92.4 92.5 92.2 92.7 91.1

1000 fixed 0.0 68.8 77.6 83.6 84.2 88.9 89.8
delta approx. 77.1 87.5 90.0 91.7 91.8 93.7 93.9

filtered 81.0 88.2 89.6 92.0 92.0 93.7 93.8

t-GARCH 500 fixed 0.0 58.9 68.7 74.1 75.5 77.8 81.0
delta approx. 87.4 93.4 93.9 95.6 95.2 93.4 94.4

filtered 92.4 95.3 95.7 95.2 95.1 93.3 94.5

1000 fixed 0.0 64.7 75.8 79.3 82.4 86.0 86.1
delta approx. 83.3 92.6 94.2 93.6 93.4 94.3 92.5

filtered 87.2 93.7 94.1 94.0 93.5 93.9 91.4

t-GAS 500 fixed 0.0 71.0 77.8 80.7 80.8 80.4 80.1
delta approx. 90.0 95.8 95.8 96.1 95.5 94.5 94.8

filtered 93.0 94.9 95.5 95.1 95.0 94.3 94.7

1000 fixed 0.0 74.6 83.2 86.8 87.7 88.0 88.2
delta approx. 94.0 95.8 95.5 95.8 95.8 95.0 94.8

filtered 94.7 96.1 95.6 95.4 95.4 94.5 94.8

ACD 500 fixed 0.0 72.5 83.0 86.6 88.7 91.7 91.5
delta approx. 70.5 91.0 93.7 94.5 95.0 94.8 95.3

filtered 82.2 91.7 93.3 94.2 94.8 94.6 94.7

1000 fixed 0.0 75.7 84.3 87.3 89.4 92.0 91.5
delta approx. 67.5 88.3 92.0 92.7 94.0 93.9 93.5

filtered 80.0 88.4 91.7 91.7 93.0 93.9 93.4

LL 500 fixed 0.0 78.9 84.7 85.5 87.5 87.7 88.0
delta approx. 74.4 91.1 93.0 92.7 94.1 94.7 94.5

filtered 87.3 93.8 95.2 94.4 95.1 95.9 95.4

1000 fixed 0.0 84.7 86.4 86.9 89.3 89.7 90.7
delta approx. 64.7 91.3 91.6 91.8 92.5 92.7 93.4

filtered 75.9 92.7 92.7 92.9 93.1 93.5 94.2
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Figure 1: We present the S&P500 monthly returns from January 1990 until January 2015 (top panel) and the
conditional volatility estimates obtained from the standard GARCH model (bottom panel).

(S&P) 500 index returns. Our sample covers the period January 1990 until January 2015.

We consider the standard GARCH model of Example 1 for illustrative purposes with

non-zero conditional mean µ. The returns for our sample are displayed in Figure 1.

The maximum likelihood estimates for the coefficients are given by µ̂T = 0.145 (0.195),

ω̂T = 0.583 (0.346), α̂T = 0.171 (0.053), and β̂T = 0.805 (0.054), with the corresponding

standard errors in parentheses, where we set f1 equal to the sample variance. The filtered

conditional variances f̂t are presented in the second panel of Figure 1.

The standard errors of the filtered f̂ts are computed by our three methods. We present

the results over the last 8 years of the sample in Figure 2. We clearly corroborate that the

simple non-cumulative bands are unrealistically small compared to the other two bands.
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Figure 2: We present conditional volatility estimates and their corresponding in-sample error bands from
the GARCH model applied to the S&P500 index monthly returns from January 1990 until January 2015; we
only present these for the last 8 years (96 months), from January 2007. The in-sample bands are obtained
from the non-cumulative simple method (light dotted line), the cumulative delta-method (dashed line) and
the simulated method (dark dotted line).

It is interesting to see that the simulation bands and the cumulative delta bands can be

hardly distinguished from each other in the presented sample. The largest difference

can be noted at the height of the financial crisis, where the lower band of the simulation

approach lies substantially below the cumulative lower band. In all other parts of the

sample, the analytic cumulative bands appear to be highly successful in approximating

the bands of uncertainty around f̂t, i.e., in terms of accuracy, computational simplicity

and speed.

Figure 3 presents the conditional volatility estimates from the GARCH model applied

to the S&P500 monthly returns and their corresponding out-of-sample forecast bands
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Figure 3: We present conditional volatility estimates from the GARCH model applied to the S&P500
monthly returns and their corresponding out-of-sample conditional expectations and 95% forecast bands.

with 95% nominal coverage. The three different forecast bands produced by the methods

studied in Section 5 are similar in many respects. First, at the upper end they all have

similar magnitude and increase sharply over the first years of the total forecast horizon.

Second, at the lower end they decay to low volatility levels over the forecast horizon. The

main visible difference is that the band that does not incorporate parameter uncertainty

(i) has a degenerate band at T + 1, (ii) predicts a higher median volatility over the forecast

horizon, and (iii) produces a forecast band that stabilizes at a low-volatility level that is

permanently higher than its two competitors. According to our Monte Carlo result, this

may result in poorer coverage.

7. Conclusions

We have reviewed three different methods for the computation of in-sample con-

fidence bands and three different methods for out-of-sample forecast bands for time-

varying parameters in a general class of observation driven time series models. The in-
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sample bands reflect the uncertainty due to parameter estimation. The forecast bands in

addition reflect the uncertainty due to future innovations of the time-varying parameter.

In a Monte Carlo study we showed that the simulation-based methods are most accu-

rate for obtaining the correct nominal coverage levels. Analytical non-cumulative simple

bands are not sufficiently accurate and should not be used in practice if the time-varying

parameter possesses persistent autoregressive dynamics. Interestingly, our analytic ap-

proximate bands based on a simple recursive delta-method approximation appear to re-

flect parameter uncertainty quite well, both in a controlled Monte Carlo study and in our

empirical illustration. The delta-method is straightforward and fast. Therefore it can eas-

ily be implemented in standard software packages. This would provide useful additional

information in empirical analyses, where confidence bands around the time-varying pa-

rameters are usually not presented. The out-of-sample forecast bands can be computed

by efficient simulation methods that account for uncertainty due to future innovations

and parameters. Although we have illustrated the methods for well-known models, the

different approaches for computing in-sample and out-of-sample bands can also be used

for other observation driven models from the literature, such as the skewed Student’s t

distribution with time-varying parameters as in Lucas, Schwaab, and Zhang [2014] and

for dynamic discrete data models as in Rydberg and Shephard [2003].
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