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Abstract

We introduce a dynamic Skellam model that measures stochastic volatility from high-

frequency tick-by-tick discrete stock price changes. The likelihood function for our

model is analytically intractable and requires Monte Carlo integration methods for its

numerical evaluation. The proposed methodology is applied to tick-by-tick data of four

stocks traded on the New York Stock Exchange. We require fast simulation methods

for likelihood evaluation since the number of observations per series per day varies

from 1000 to 10,000. Complexities in the intraday dynamics of volatility and in the

frequency of trades without price impact require further non-trivial adjustments to the

dynamic Skellam model. In-sample residual diagnostics and goodness-of-fit statistics

show that the final model provides a good fit to the data. An extensive forecasting

study of intraday volatility shows that the dynamic modified Skellam model provides

accurate forecasts compared to alternative modeling approaches.
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1 Introduction

Stochastic volatility is typically associated with the time-varying variance in time series of

daily continuously compounded rates of financial returns; for a review of the relevant litera-

ture, see Shephard (2005). The availability of high-frequency intraday trade information has

moved the focus towards the estimation of volatility using realized measures such as realized

volatility and realized kernels; see the seminal contributions of Barndorff-Nielsen and Shep-

hard (2001, 2002), Andersen, Bollerslev, Diebold, and Labys (2001) and Hansen and Lunde

(2006). Recent research has moved beyond the use of high-frequency data for obtaining daily

observations of (realized) variances to the actual modeling of high-frequency price changes

themselves at the intraday level. For example, Barndorff-Nielsen, Pollard, and Shephard

(2012) and Shephard and Yang (2015) formulate continuous-time stochastic processes and

design econometric models based on integer-valued Lévy processes using Skellam distributed

random variables. Price changes of a stock are measured on a grid of one dollar cent and

hence the tick-by-tick price change can be treated as a Skellam distributed random variable

that takes values in Z. Also Hansen, Horel, Lunde, and Archakov (2015) study the discrete

nature of high-frequency price changes and explore their dynamic properties by formulating

a stochastic Markov-chain process.

In our current study we develop a new statistical model that is empirically relevant for

the discrete time series of tick-by-tick financial data. Such data enjoy the increasing interest

of government regulators as well as industry participants given their potential impact on the

stability of financial markets. Our new model has three important features that are needed

to capture typical intraday properties of the data. First, the model builds on a dynamic

modified Skellam distribution to make the model congruent with the realized data that

consist of discrete-valued tick-size price changes defined on the set of integers Z. Second, our

modified Skellam distribution features a doubly dynamic variance parameter. The variance

is allowed to be different over the course of a trading day due to intraday seasonal patterns,

which we capture by including a spline function over the time of day. On top of this, we also

allow for autoregressive intraday stochastic volatility dynamics to capture any remaining

volatility dynamics over the course of the trading day that cannot be attributed to seasonal

patterns. Third, our data requires a careful treatment of small price changes of the order
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of 0, 1, or -1 dollar cents. For this purpose, we modify the dynamic Skellam distribution

by allowing for a probability mass transfer between these different price change realizations.

The probability mass transfer needs to vary over time as well because the data reveal that

trades with a zero price-change are not spread evenly across the trading day. The resulting

new model with these three features embedded performs well in terms of fit, diagnostics,

and forecasting power compared to a range of alternative models.

Our model stands in a much longer tradition of dynamic models for count data. Early

contributions regarding the dynamic modeling of count data in N are reviewed in Durbin and

Koopman (2012, Ch. 9). An example is the contribution of Jorgensen, Lundbye-Christensen,

Song, and Sun (1999), who propose to model Poisson counts by a state space model driven

by a latent gamma Markov process. The Skellam distribution is a natural extension to this

literature, as it was originally introduced as the difference of two Poisson random variables;

see Irwin (1937) and Skellam (1946). However it is not immediate clear how the treatment

of Jorgensen et al. (1999) can be extended for the difference of Poisson random variables as

it requires an analytical expression of a conditional distribution for a gamma variable given

a Skellam variable. Other related initial work is presented by Rydberg and Shephard (2003)

who propose a dynamic model for data in Z by decomposing stock price movements into

activity, direction of moves, and size of the moves. A very different approach to observations

in Z is related to integer autoregressive (INAR) models. Barreto-Souza and Bourguignon

(2013), Zhang, Wang, and Zhu (2009), Freeland (2010), Kachour and Truquet (2010), Alzaid

and Omair (2014) and Andersson and Karlis (2014) all propose extensions to the INAR model

to enable the treatment of variables in Z. These models are relatively simple to analyze as

closed form expressions for the likelihood are available. However, a major drawback of these

models in our current context is their lack of flexibility to incorporate missing observations

and to allow for a time-varying variance process. Most related to our work is the contribution

of Shahtahmassebi (2011) and Shahtahmassebi and Moyeed (2014) who adopt the Skellam

distribution to analyze time series data in Z within a Bayesian framework, whereas we use

simulated maximum likelihood methods. However, their work does not treat the specific

features of intraday financial price changes such as intraday seasonality, long stretches of

missing values, and the time-varying modifications for the Skellam distribution. All these

features are key for our current analysis of the empirical data. In addition, our new dynamic
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modified Skellam distribution may also provide a useful flexible modeling framework in other

empirical settings.

Our data consist of tick-by-tick discrete price changes for 4 stocks traded on the New York

Stock Exchange (NYSE). For each second, there is either a trade or a missing value, such

that the methodology needs to be able to account for possibly many missing values efficiently.

Our state space framework for the dynamic modified Skellam model meets this requirement

and can handle long time series that consist of a mix of observations and missing values. The

number of zeros in the data does not appear to match the prediction by the standard Skellam

distribution as it fails to pass various residual diagnostic tests. We therefore introduce a

modified Skellam distribution that allows for a time-varying probability mass transfer and

obtain a zero-deflated or zero-inflated Skellam model. This appropriately modified Skellam

model passes the diagnostic tests and is successful in our forecasting exercise when compared

to alternative models.

The new dynamic modified Skellam model has an intractable likelihood function. We

therefore reformulate the model in terms of a nonlinear non-Gaussian state space model and

estimate the static parameters by means of simulated maximum likelihood and importance

sampling methods. In particular, we apply the numerically accelerated importance sampling

(NAIS) methods of Koopman, Lucas, and Scharth (2014) which is an extension of the effi-

cient importance sampling (EIS) method of Liesenfeld and Richard (2003) and Richard and

Zhang (2007). The NAIS methodology obtains the parameters of the importance sampling

distribution using Gauss-Hermite quadrature rather than simulation, and is applicable for

high-dimensional state vectors. In Supplementary Appendix D we provide the details of

how the NAIS methodology can be implemented to accommodate for both a time-varying

mean and variance. Long time series can pose particular efficiency problems for importance

sampling methods; see Robert and Casella (2004, §3.3) and Cappé, Moulines, and Ryden

(2005, §6.1 and 9.1). However, we find that the dynamic Skellam model can be efficiently

treated using the NAIS methodology for time series as long as 23,400 observations. The

presented diagnostic tests show that the importance sampling weights are well-behaved in

almost all cases.

The remainder of this paper is organized as follows. We present the new dynamic modified

Skellam model in Section 2 and explain how it can be cast into a nonlinear non-Gaussian
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state space form. Section 3 applies the dynamic Skellam model to four stocks, traded on

NYSE, for all trading days in the year 2012. This section also contains information on model

fit, diagnostic checks and forecasting performance. Section 4 concludes.

2 The dynamic Skellam model

Consider a variable Yt that only takes integer values, that is Yt ∈ Z. Our aim is to analyze

a time series of realizations for Yt denoted by y1, . . . , yn where n is the length of the time

series. We consider the Skellam distribution for Yt, propose a novel modification of the

Skellam distribution, and specify dynamic processes for the mean and variance.

2.1 The Skellam distribution

The probability mass function (pmf) of a Skellam distributed random variable Yt ∈ Z with

parameters E(Yt) = µ ∈ R and Var(Yt) = σ2 ∈ R+ is defined as Pr(Yt = yt) = p(yt;µ, σ2),

with

p(yt;µ, σ
2) = exp

(
−σ2

)(σ2 + µ

σ2 − µ

)yt/2

I|yt|(
√

σ4 − µ2), (1)

where I|yt|( · ) is the modified Bessel function of order |yt|; see Abramowitz and Stegun

(1972). The Skellam distribution was originally derived from the difference of two Poisson

distributions; see Irwin (1937) and Skellam (1946). We then have µ = λ1 − λ2 and σ2 =

λ1 + λ2, where λ1 and λ2 are the intensities of the two underlying Poisson distributions; see

also Alzaid and Omair (2010). Karlis and Ntzoufras (2009) show that the underlying Poisson

assumption can be dispensed with and that the Skellam distribution can also be considered

by itself as an interesting distribution defined on integers.

The Skellam distribution is right-skewed for µ > 0, left-skewed for µ < 0, and symmetric

for µ = 0. If µ = 0, the Skellam pmf simplifies to

p(yt; 0, σ
2) = exp

(
−σ2

)
I|yt|(σ

2). (2)

In the upper panels of Figure 1 we present examples of Skellam distributions for a range

of values for µ and σ2. The excess kurtosis of the Skellam distribution is 1/σ2 and the
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Figure 1: Skellam distributions and properties

Panel 1: Skellam distribution examples with pmf (1) for several combinations of µ and σ2. Panel 2: zero-mean
(µ = 0) Skellam distribution (2) examples for several combinations of σ2. Panel 3: MSKII(−1, 1, 0;µ,σ2, γ)
distribution examples with pmf (3) for µ = 0 and several combinations of σ2 and γt. The distributions
provide discrete support: the connecting lines are drawn for clarity and do not indicate continuity. Panel 4:
unimodality bound and parameterized zero deflation bounds.

Gaussian distribution is a limiting case of the Skellam distribution; see Johnson, Kotz, and

Kemp (1992) and references therein.

2.2 The modified Skellam distribution

The upper panels of Figure 1 reveal that the Skellam distribution is highly peaked at zero

for low values of σ2. This particular feature does not match the high-frequency tick-by-

tick discrete stock price data well in our empirical application. To accommodate some more

flexible patterns, we propose a modification of the Skellam distribution to compensate for the

over- or under-representation of specific integers. For example, in our empirical application

the standard Skellam distribution over-predicts the occurrence of 0s and under-predicts the

occurrence of ±1s.
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The first obvious modification of the Skellam distribution is the zero-altered Skellam

distribution of Karlis and Ntzoufras (2006, 2009). Although they originally propose a mod-

ified Skellam distribution with a higher (zero-inflated) probability of observing Yt = 0, their

method can easily be adapted to accommodate a lower (zero-deflated) probability of observ-

ing Yt = 0. To obtain a zero-deflated Skellam distribution, we transfer probability mass from

Yt = 0 to Yt $= 0. We refer to this distribution as the modified Skellam distribution of type

I (MSKI). More details of MSKI are presented in Appendix A.

The obvious consequence of redistributing the probability mass for Yt = 0 to all remaining

integers is that the tails of the distribution inflate or deflate. The effect on the tails may be

undesirable and we may want to accommodate for it by a further modification of MSKI. Our

new proposed modified Skellam distribution of type II transfers probability mass from one

specific integer to two other integers, that is, from Yt = k to Yt = i and Yt = j, for the case

of k-deflation, and the other way around for k-inflation, with i, j, k ∈ Z. In this way, the

probability mass at the remaining integers remains unchanged. The MSKII(i, j, k;µ, σ2, γ)

distribution is defined by its pmf

pII(yt; i, j, k, µ, σ
2, γ) =






Pyt , for yt $∈ {i, j, k},

(1− γ)Pi, for yt = i,

(1− γ)Pj, for yt = j,

γPi + γPj + Pk, for yt = k,

(3)

where Pq = p(q;µ, σ2) is defined in equation (1) and q ∈ Z, and with coefficient γ ∈
(
−Pk/(Pi+Pj), 1

)
. The sign of the coefficient γ determines whether we inflate Pk (positive)

or whether we deflate this probability (negative). For γ = 0, we recover the original Skellam

distribution defined in (1). The lower bound of γ follows directly from the last equation in

(3) since γPi + γPj + Pk ≥ 0 implies γ ≥ −Pk/(Pi + Pj). The mean and variance of the

MSKII(i, j, k;µ, σ2, γ) distribution are given by

E(Yt) = µII = µ− γ(i · Pi + j · Pj) + k · γ(Pi + Pj),

Var(Yt) = σ2
II = σ2 + µ2 + γPi(k

2 − i2) + γPj(k
2 − j2)− µ2

II ,
(4)

respectively, see Appendix B for derivations. For γ = 0, we clearly have µII = µ and
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σ2
II = σ2. Given the data in our empirical application below, the MSKII(−1, 1, 0; 0, σ2, γ)

distribution will prove to be of particular interest.

If γ is sufficiently negative, the MSKII(i, j, k;µ, σ2, γ) distribution may become bimodal

which can be undesirable in specific applications and for estimation purposes. However, we

can formulate a stricter lower bound on γ to enforce unimodality. In particular, to ensure

unimodality for the MSKII(−1, 1, 0;µ, σ2, γ) distribution under zero deflation we require

P0 > P−1 and P0 > P1, such that the lower bound γ(µ, σ2) for γ is given by

γ(µ, σ2) = (min(P−1, P1)− P0)
/
(min(P−1, P1) + P1 + P−1). (5)

The probability Pq is a function of µ and σ2 for all q ∈ Z. In Panel 3 of Figure 1 we present

MSKII(−1, 1, 0;µ, σ2, γ) distributions for µ = 0 and different values of σ2 and γ. The figure

reveals the effect of γ on the peakedness of the distribution. Panel 4 of Figure 1 presents

examples of unimodal bounds γ(µ, σ2) for µ = 0 and for different values of σ2. We can select

different model specifications to enforce γ to lie in the unimodality range; see section 3.2.

2.3 The Skellam model with dynamic mean and variance

Consider an observed time series for yt ∈ Z with t = 1, . . . , n where n is the time series

length. The possible serial dependence in the time series y1, . . . , yn can be analyzed on the

basis of a Skellam model with dynamic stochastic processes for the mean µt and the variance

σ2
t . The dynamic MSKII model can be specified by

Yt|µt, σ
2
t ∼ MSKII

(
− 1, 1, 0;µt, σ

2
t , γt

)
, t = 1, . . . , n, (6)

where γt = γ(µt, σ2
t ) is the time-varying coefficient γ in (3) and is a function of µt and σ2

t .

Hence we assume that the serial dependence in Yt is accounted for by the time variation in

µt and σ2
t only. In other words, conditional on µt and σ2

t , Yt is not subject to other dynamic

processes. We model the dynamics of µt and σ2
t by a (possibly) nonlinear transformation of
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an autoregressive process,



 µt

σ2
t



 = s(θt), θt = ct +Ztαt, (7)

αt+1 = dt + T tαt + ηt, ηt ∼ NID(0,Qt), (8)

for t = 1, . . . , n, where vector s( · ) is referred to as the link function, θt ∈ Rr×1 is the signal

vector, with r = 2, αt ∈ Rm×1 is the state vector, ct ∈ Rr×1 is a scalar intercept, dt ∈ Rm×1

is a vector of intercepts, Zt ∈ Rr×m is a matrix of coefficients, T t ∈ Rm×m is a transition

matrix, and the disturbances ηt are normally and independently distributed (NID) with

mean zero and variance matrix Qt ∈ Rm×m. The vectors ct, dt and matrices Zt, T t, Qt are

typically constant but possibly time-varying in a deterministic manner. Typical examples

of link functions s( · ) are the exponential function (to ensure positivity) and the scaled

logistic function (to preserve lower and upper bounds). When the link function s( · ) directly

requires the state vector αt as an argument, we simply set r = m, ct = 0, and Zt = Im. For

an application with an observation distribution that only requires a time-varying mean or

variance, we have a univariate signal and r = 1. The initial conditions for the elements of

the state vector α1 depend on their dynamic properties. The variance matrix Qt is possibly

positive semi-definite and hence the vector ηt may contain zeros.

The model specified in equations (7)–(8) allows for a wide variety of dynamic patterns

in µt and σ2
t , including autoregressive moving average dynamics, time-varying seasonal and

cyclical patterns, deterministic and stochastic trends, and their combinations. Regression

and intervention effects can be added to the signal as well. More details of their formulations

in the form of (8) are provided in Durbin and Koopman (2012, Ch. 3). The dynamic Skellam

model as specified above falls within the class of non-Gaussian nonlinear state space models

which can be represented as

yt ∼ p(yt|θt;ψ), θt = ct +Ztαt, αt+1 ∼ pg(αt+1|αt;ψ), t = 1, . . . , n, (9)

with α1 ∼ pg(α1;ψ), where ψ is an unknown and fixed parameter vector gathering all

the parameters in ct, Zt, dt, T t, and Qt, and possibly in the signal function s( · ). The
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observation density p(yt|θt;ψ) refers to the dynamic (possibly modified) Skellam distribution

from Section 2 with signal θt representing the dynamic mean µt and/or variance σ2
t . The

updating Gaussian state density pg(αt+1|αt;ψ) refers to the linear Markov process (8), and

pg(α1;ψ) represents the initial condition for α1. We assume that for given realizations of

the signal θ′ = (θ′
1, . . . ,θ

′
n) the observations y = (y1, . . . , yn)′ are conditionally independent,

and also write θ = c+Zα with c′ = (c′1, . . . , c
′
n), α = (α′

1, . . . ,α
′
n)

′, and Z a block-diagonal

matrix with blocks Z1, . . . ,Zn on the leading diagonal. The joint conditional density for all

observations and the marginal density for all states can now be written as

p(y|θ;ψ) =
n∏

t=1

p(yt|θt;ψ), pg(α;ψ) = pg(α1;ψ)
n∏

t=2

pg(αt|αt−1;ψ), (10)

respectively. Given the linear dependence of θ on α, the density pg(θ;ψ) can be constructed

directly from pg(α;ψ).

The state space representation implied by equations (9) or (10) for the dynamic Skel-

lam model allows us to build on a well developed framework for the parameter estimation

of ψ, for the signal extraction of θ and the filtering and smoothing of α; see Durbin and

Koopman (2012) for a textbook treatment. As for all non-Gaussian nonlinear state space

models, the main complication for the dynamic Skellam model is that the likelihood func-

tion
∫
p(y|θ;ψ)pg(α;ψ) dα is analytically intractable. We therefore adopt the method of

Monte Carlo maximum likelihood for parameter estimation, but also for signal extraction.

In particular, we apply the numerically accelerated importance sampling (NAIS) method of

Koopman et al. (2014) and show that it can efficiently handle long univariate time series

(large n). If we require a time-varying µt or σ2
t , that is a univariate signal, r = 1, we can

apply the NAIS method of Koopman et al. (2014) without extensions. For handling both a

time-varying mean µt and variance σ2
t , we have developed a bivariate extension of the NAIS

methodology available in the Supplementary Appendix D. In our empirical study below we

find we can set µt = 0, such that we only consider a stochastic time-varying variance σ2
t .
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3 Analysis of high-frequency Skellam price changes

We study the dynamic properties of intraday high-frequency U.S. stock price changes listed

at the New York Stock Exchange using our new dynamic Skellam model. High-frequency

changes in stock prices evolve as positive and negative integer multiples of a fixed tick size.

The tick size of stock prices at the NYSE is $0.01, irrespective of the level of the stock price.

This contrasts with other exchanges where tick sizes may increase with the price level of the

traded instrument. For example, a sufficiently liquid stock with a price of $4.00 rarely faces

price jumps higher than 4 ticks, that is a 1% price change. On the other hand, a 4 tick price

jump for a stock priced at $100.00 represents a price change of only 0.04% and occurs much

more frequently.

Rather than aggregating the data to one-minute or five-minute intervals, we analyze stock

price changes on a second-by-second basis within a single trading day. As a consequence, all

series have the same length of n = 23,400 (6.5 hours × 3600) seconds with many missing

values. By explicitly considering missing values in our analysis we take account of the

duration between consecutive trades. Since there is more active trading at the beginning

and end of a trading day, the number of missing values also varies throughout the day. We

exploit Kalman filter and smoothing methods to handle missing values. Descriptive statistics

for the data are reported and discussed below.

We analyze the intraday prices using the dynamic Skellam model as developed above.

In accordance with other analyses of high-frequency stock returns, the sample mean in

price changes for a sufficiently large sample size is typically close to zero; see, for example,

Andersen and Bollerslev (1997). Hence we set µt = 0 and focus on the modeling of stochastic

volatility σ2
t . This yields a univariate signal (r = 1) in our state space representation of the

model as discussed in Section 2.3.

3.1 Data

We use data from the trades and quotes (TAQ) database of the New York Stock Exchange

at a one-second frequency. The data consist of the prices of four different stocks traded

over the entire year 2012. We select companies from different industries and with different

trade intensities. We analyze the tick-by-tick data without the “odd-lots” that represent
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Table 1: Descriptive statistics of the four selected stocks for all trading days in 2012 combined as one sample.
The table reports data characteristics of tick changes between 9:30am and 4:00pm. We report the “opening
price” at 9:30 am (OP) January 1, 2012, the “closing price” at 16:00 pm (OP) December 31, 2012, the total
number of trades in 2012 (#Trades), the percentage of zero price changes (%0), the percentage of −1, 1 price
changes (%±1), variance (V), skewness (S), kurtosis (K) and the largest up tick (Max) and down tick (Min).

Company OP CP #Trades %0 %± 1 V S K Max Min

Wal-Mart Stores Inc. 59.98 68.27 647,707 51.25 39.17 1.07 -0.01 13.59 19 -21
Coca-Cola Company 70.40 36.27 679,556 58.31 36.01 0.75 -0.00 15.65 19 -19
JPMorgan Chase 34.10 44.00 1,029,957 55.29 38.66 0.72 -0.01 7.96 15 -16
Caterpillar Inc. 93.43 89.57 792,829 27.13 36.32 4.82 -0.00 8.84 32 -32

trades with volumes less than 100 and are not recorded on the consolidated tape; see the

discussion in O’Hara, Yao, and Ye (2014). The data require standard pre-processing. For a

review of high-frequency data cleaning procedures; see for example Falkenberry (2002). We

apply the cleaning algorithm of Brownlees and Gallo (2006) after applying a rudimentary

filter corresponding to the cleaning steps P1, P2, P3 and T1, T2, T3 of Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008, p. 8). Descriptive statistics are presented in Table 1.

The large difference in opening price and closing price for Coca-Cola Company is due to

a 2:1 stock split on August 13, 2012. The number of trades ranges from almost 650,000 to

more than a million over 2012. At the same time, the column “%0” in Table 1 shows that

many trades do not result in a price change: the percentage of zeros ranges from 27% for

Caterpillar to 58% for Coca-Cola. We can conclude from the “%0” and “%±1” columns that

the majority of trades only induce a maximum price change of ±1. A full breakdown of the

empirical distribution of tick-size price changes is provided in the Supplementary Appendix

E. The correct handling of zero price change trades is challenging for two reasons. First,

zero price changes are not randomly distributed over the trading day. A Wald-Wolfowitz

runs test, see Bradley (1968, Ch. 12), strongly rejects the null hypothesis of zeros following

a random sequence throughout the trading day. The largest p-value of the runs test is

8.73× 10−6 out of the 1000 days under consideration (4 stocks × 250 trading days in 2012).

Second, long streaks of zeros and/or missing values occur regularly during slow trading

periods of the day. This leads to a low volatility in price changes. Although the majority of

observations within a trading day are either missing or are equal to −1, 0 and 1, large price

changes (or jumps) do occur as indicated by the “Max” and “Min” columns in Table 1. Also

the reported yearly sample variance and kurtosis for each stock reflect sufficient variation in
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the tick-by-tick stock price changes. The challenge for our statistical dynamic model is to

address all of these salient features appropriately.

3.2 Dynamic Skellam model with Intraday Stochastic Volatility

We consider the conditional observation density (6) with pmf (3). The standard Skellam

model is a special case with γt = 0. The model specification for the dynamic variance, or

the stochastic volatility, is based on the link function with r = 1 given by

σ2
t = s(θt) = exp(θt), t = 1, . . . , n, (11)

where scalar θt represents log-volatility. The dynamic signal process accommodates the

salient features of intraday volatility by the following decomposition:

θt = c+ st + αt, αt+1 = φαt + ηt, ηt ∼ NID
(
0, σ2

η,t

)
, (12)

for t = 1, . . . , n, where the constant c represents the overall daily log-volatility, st reflects

the seasonal variation in intraday volatility, and the autoregressive component αt captures

the local clustering of high and low price changes throughout the day. The constant and

seasonal effects are treated as fixed and deterministic. The dynamic component αt is assumed

stationary (|φ| < 1) and is driven by the disturbance or innovation ηt. We assume ηt is

normally and independently distributed with mean zero and a time-varying variance. The

time-varying variance is specified as a fixed function of time and reflects scheduled news

announcements that may lead to relatively large price adjustments.

The seasonality in volatility is typically due to the high trading intensity at the beginning

and end of the trading day, and the low intensity during the lunch break. A parsimonious

specification for the seasonal effect is obtained by using a spline function that can interpolate

different levels of volatility smoothly over the time-of-day. In particular, we let st be an

intraday zero-sum regression spline function that we can represent as

st = β ′ W̃ t, t = 1, . . . , n,
n∑

t=1

st = 0, (13)
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where β is a K × 1 vector of parameters associated with the location of K + 1 spline knots

and W̃ t is the t-th column of the zero sum interpolation weight matrix W̃ as constructed

in Harvey and Koopman (1993); see also Poirier (1973). The zero-sum spline implies a

restriction (K + 1 knots, K parameters) to ensure the identification of the constant c. For

our data set, a sharp decrease in volatility takes place in the first half hour (09:30-10:00) of

many trading days. Furthermore, the lunch break and close of the market are key events.

Therefore, we set K = 3 and choose the knot positions at {09:30, 10:00, 12:30, 16:00}. Many

variations around these knot locations have been considered but do not significantly affect

the results reported below.

The variance of the innovations for the stationary component αt is time-varying to ac-

count for increased volatility due to special news announcements during the trading day.

Many of such news announcements are released at pre-set time periods, such as 08:30, 10:00,

and other; see Andersen, Bollerslev, Diebold, and Vega (2003). The effect of the news an-

nouncement before the opening of the market at 09:30 is captured by the first knot of the

spline st. The possible effect of, say, a 10:00 news announcement, however, is harder to

accommodate by the spline or AR(1) process only. For this purpose we introduce a separate

parameter to model a (possible) temporary jump in volatility between 10:00 and 10:01. We

do so by defining the indicator variable τS(t) = 1 for t = 1800, . . . , 1860 (corresponding to

the first minute after 10am), and zero otherwise, thus increasing the variance of ηt from σ2
η

to σ2
η + σ2

η,S during this period, where σ2
η,S > 0. An increase of the variance for ηt allows

αt+1 to vary more than in other time periods.

We ensure unimodality of the MSKII(−1, 1, 0; 0, σ2
t , γt) distribution under zero deflation

via a parsimonious re-parameterization as follows. We introduce the coefficients −1 < γ∗ < 1

and δ > 0. Then we determine γt as γt = γ∗, when γ∗ ≥ 0, and γt = −γ∗ × γ(0, σ2
t + δ),

when γ∗ < 0, since γ(0, ·) < 0. The coefficient δ ensures a left-horizontal shift from the lower

bound of γ(0, σ2
t ) in order to avoid potential numerical issues for its limit as σ2

t → 0; see Panel

4 of Figure 1. The condition of unimodality stabilizes some numerical issues in likelihood

evaluation since the construction of an importance density for bimodal distributions is rather

challenging; see the discussion in Durbin and Koopman (2012, p. 253).
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3.3 Parameter estimation results

The parameter vector for our dynamic Skellam model is given byψ = (φ, ση, ση,S, c, δ, γ∗,β′)
′
.

The log-likelihood function is computed by the NAIS algorithm of Koopman et al. (2014);

see Appendix D for the details. The log-likelihood is maximized for each trading day and

stock using a quasi-Newton optimization method based on the numerical evaluation of the

score with respect to ψ. In NAIS, we require the evaluation of a Gauss-Hermite polynomial

and base it on M = 12 abscissae points. Higher values of M does not lead to more accurate

results. The actual likelihood evaluation in NAIS is based on S = 100 simulations with

common random numbers during the optimization. The average optimizing time for one

trading day (K = 3, 9 parameters, n = 23,400) is between 5 and 15 minutes. Computations

are performed on a i7-2600, 3.40 GHz desktop PC using four cores. Appendix C provides

some further simulation evidence of the estimation procedure and its time requirements.

The parameter vector is estimated for each stock and each trading day in 2012. Given the

large number of estimates, we provide a graphical presentation in Figure 2. In particular, we

present the parameter estimates of φ, ση, c, and γ∗. The estimates vary from day to day and

characterize the intraday dynamics of price changes for that specific day. We have between

2500 and 4000 observations available for the estimation of ψ on daily basis; see Table 1. It

also allows us to carry out a meaningful forecasting study in Section 3.7.

The top row in Figure 2 shows the estimates of φ. Overall, the estimates indicate a high

degree of persistence of the autoregressive process αt. The average estimate of φ over all

trading days of 2012 exceeds 0.94 for each stock. Some individual days exhibit a φ estimate

that is clearly below the average. It indicates that the cubic spline c + st already captures

most of the information for that specific day. We investigate the individual contribution of

the spline versus the autoregressive component in Section 3.6 in more detail.

The second row reveals how the daily estimate of the volatility of the autoregressive

component varies over time. Volatility levels appear to be somewhat higher in February

and/or August for most stocks.

The third row shows the daily estimates of the constant c. For Walmart, the time series

of c estimates shows a steady increase of the overall average daily volatility level during

the year. For Coca-Cola, the structural break in the daily estimates of c in Augustus 13,

15



Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
0.7

0.8

0.9

1

φ

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
0.7

0.8

0.9

1

φ

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
0.2

0.4

0.6

0.8

1

φ

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3

0.7

0.8

0.9

1

φ

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
0

0.2

0.4

0.6

0.8

σ
η
  

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
0

0.2

0.4

0.6

0.8

σ
η
  

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
0

0.2

0.4

0.6

0.8

σ
η
  

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
0

0.2

0.4

0.6

0.8

σ
η
  

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
−3

−2

−1

0

1

c

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
−3

−2

−1

0

1

c

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
−3

−2

−1

0

c

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
0

1

2

3

c

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
−1

−0.5

0

0.5

γ*

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
−1

−0.5

0

γ*

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
−1

−0.8

−0.6

−0.4

−0.2

γ*

Feb1 Apr2 Jun1 Aug1 Oct1 Dec3
−1

−0.5

0

0.5

γ*

Figure 2: Maximum likelihood estimates of ψ

The figure shows the maximum likelihood estimates of the first four elements of ψ where each column
correspond to one of the four stocks in the order WMT, KO, JPM and CAT and the rows represent the
parameter estimates in the order (φ,ση, c, γ∗).

2012, clearly coincides with the 2:1 stock split on that day. The constants c naturally play

a dominant role in the overall level of daily log-volatility. As such, they may be compared

to alternative estimates of integrated volatility based on high-frequency data. Interestingly,

the time series correlations over all trading days in 2012 of our estimates of c with the logged

realized volatility (RV) measure as estimated using the algorithm of Aı̈t-Sahalia, Mykland,

and Zhang (2011), based on 5-minute intervals, are high. The correlations are 0.90, 0.88,

0.67, and 0.93 for Walmart, Coca-Cola, JPMorgan, and Caterpillar, respectively.

The bottom panels in Figure 2 show the parameter estimates of γ∗. The estimates of

γ∗ are typically highly statistically significant, which indicates that our modification of the

standard Skellam distribution is empirically relevant. For all stocks the 0-deflated model

(γ∗ < 0) is clearly preferred. Only for CAT we have that some periods are subject to 0-

inflation. CAT has the largest stock price compared to the others stocks, resulting in a larger
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Figure 3: Average spline path

The figure shows the time series average of the zero sum spline st and a 95% confidence band based on all
trading days of 2012. For Aug 1, 2012, it also shows the value of st + αt.

value of σ2
t on average. A larger value of σ2

t comes with a lower predicted probability of 0s,

such that zero inflation rather than deflation becomes more relevant for CAT compared to

the other stocks. Our type II modified Skellam model also outperforms the standard zero-

deflation type I modification of the Skellam model of Karlis and Ntzoufras (2006, 2009),

which is why we do not report the latter here.

3.4 Signal extraction

Figure 3 presents the time series average of our estimated zero sum cubic spline st, with

corresponding 95% confidence bands. Instead of the commonly found volatility U-shape, we

only find increased levels of volatility at the start, but not at the end of the average trading

day in 2012.

To highlight the possible departures of the the fitted signal from the average spline

level across all days, we also present the estimates of the spline plus the autoregressive
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component (st + αt) for one specific day (August 1, 2012) in Figure 3. We find that for

each of the four stocks the intraday volatility pattern is close to the overall average spline

pattern. At the same time, we observe that particularly the autoregressive component picks

up substantial temporary departures from the average level within the day. The size and

patterns of the departures vary per stock and per day. For some stocks, departures appear

relatively short-lived; see, for example, Caterpillar and JPMorgan. For other stocks, such

as Walmart and Coca-Cola, departures are much more persistent. These patterns reveal

why the autoregressive component αt contributes to the model specification and why it

is statistically significant. In Section 3.7 we also verify whether αt leads to more precise

forecasts of the magnitude of price changes for the next day.

3.5 Goodness-of-fit

To assess the model fit and the statistical contribution of the autoregressive component αt,

we consider three different model specifications. All three sprecifications are based on the

modified type II Skellam distribution but differ in the composition of the log-volatility signal:

(i) Model A: the static type II modified Skellam model with µt = 0 and static σ2
t = exp(c).

The parameter vector is given by ψ = (c, δ, γ∗)′.

(ii) Model B: the spline-based model with µt = 0 and time-varying σ2
t = exp(c+st), where

st is the zero sum cubic spline specified in (13). The parameter vector is given by

ψ = (c, δ, γ∗,β′)
′
.

(iii) Model C: the complete model with µt = 0 and σ2
t = exp(c + st + αt) as in (12). The

parameter vector is given in Section 3.3.

For each model specification, the parameter vector is estimated by maximum likelihood using

NAIS. Figure 4 presents the log-likelihood differences (times 2) between Model B and Model

C only, because the log-likelihood differences with respect to Model A are all much larger.

For almost all stocks and days, the differences between the maximized log-likelihood values

are large and statistically significant. In most cases the differences are so large that also

in terms of model selection criteria, such as the Akaike information criterion, model C is

strongly preferred over model B.
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Figure 4: Log-likelihood ratios for Model B (with spline) and Model C (spline plus autoregressive).

Each panel is for a stock and presents the log-likelihood differences (times 2) for all days in 2012. A dot
indicates the log-likelihood ratio values for a specific day in 2012 between a model with only a constant
and a spline c+ st, Model B, and a model with spline and autoregressive component c+ st + αt, Model C.
The horizontal line indicates the 5% critical value for the χ2(2) distribution corresponding to hypothesis H0:
φ = 0,ση = 0. The differences are capped at 100 for visualization purposes.

3.6 Diagnostic checking

Variance of importance sampling weights

The estimation results from Section 3.3 rely on importance sampling methods. The log

importance sampling weights can be used for diagnostic checking purposes. When the sample

variance of the importance weights is high, likelihood calculations and signal extraction may

change substantially when a different simulation sample is used. Geweke (1989) argues that

importance sampling methods should only be used if the variance of the importance weights

is known to exist. Robert and Casella (2004) provide examples of importance samplers that

do not meet this condition and cases where this leads to biased results.

For the data at hand, we find that sample variances of the importance sampling weights

are generally low, typically smaller than 1. To verify more formally whether the variances
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of the importance weights exist, we follow Koopman, Shephard, and Creal (2009). Using

maximum likelihood, they estimate the shape parameter ξ and the scale parameter β of a

generalized Pareto distribution for the largest 1% to 50% out of 100,000 importance sampling

weights. If the null hypothesis H0 : ξ ≤ 1/2 cannot be rejected, they conclude that the

variance of the importance sampling weights is finite and that results can be trusted.

Pearson residuals

Diagnostic tests can also be based on the standardized Pearson residuals as given by

et =
yt − E(yt|y1:t−1)√

Var(yt|y1:t−1)
, t = 1, . . . , n, (14)

where y1:t−1 is the set of past Skellam returns {y1, . . . , yt−1}, and E(yt|y1:t−1) and Var(yt|y1:t−1)

are the one-step ahead observation forecast and its variance. Both of these depend on the

filtered estimate of the scale parameter E(σ2
t |y1:t−1). The importance sampling methods

used for estimation can also be used for filtering and forecasting, albeit at a substantial

computational cost given the large time series length n. However, for diagnostic checking

purposes these computations only need to be performed once. We therefore regard the extra

computation time as acceptable. An alternative is the use of nonlinear filtering methods

such as the particle filter. The Pearson residuals et, for t = 1, . . . , n, of a correctly specified

model have mean zero and unit variance, and both et and e2t should be serially uncorrelated.

These properties can be verified by a number of diagnostic tests.

Forecast distribution tests

Once the one-step-ahead predicted estimates of σ2
t , for t = 1, . . . , n, are obtained we can test

the distributional assumptions of the model. In particular, we test whether our dynamic

modified Skellam model assigns the correct probabilities to the observations. We follow

Jung, Kukuk, and Liesenfeld (2006) and draw a uniform random variable ũt on the interval

[P (xt ≤ yt − 1|y1:t−1) , P (xt ≤ yt|y1:t−1)]. For a correctly specified model, the random draws

ũt, for t = 1, . . . , n, are serially independent and uniformly distributed on the interval [0, 1].

The variable ũt can be transformed to a standard normal variable: e∗t = F−1
N (ũt), where F

−1
N

is the inverse normal distribution function. The transformed residuals e∗t are also standard
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normally distributed, and both e∗t and (e∗t )
2 are serially uncorrelated, when the model is

correctly specified.

Diagnostic testing results

We apply the above diagnostic tests to our MSKII(−1, 1, 0; 0, σ2
t , γ(σ

2
t )) model, Model C.

We benchmark the results against the two alternative specifications, Models A and B. We

select the first trading day of every even month and present the corresponding diagnostic

test results for this day in Table 2.

Table 2 shows that except for the single case of Caterpillar on Dec 03, 2012, the null

hypothesis of a finite variance of the importance sampling weights is never rejected. The

results also clearly support that allowing for intraday dynamics in σ2
t is important. The

static model A is uniformly rejected based on all versions of the Ljung-Box test statistics.

Interestingly, the results for the spline-based model B and the dynamic model C appear to be

more similar. Based on autocorrelations in the levels of et or e∗t the two models perform very

similar, with a slight advantage for model C. However, the dynamic model is much more

adequate in filtering out the serial dependence in the second order moments, as revealed

by the test results for e2t and e∗2t . Whereas model B has unacceptable diagnostics for most

stocks and days, the diagnostic tests for model C are mostly insignificant. We conclude that

the autoregressive intraday component present in our new dynamic modified Skellam model

is key to the good performance of the model. It results in a better performance than the

commonly used intraday spline-based model.

3.7 Forecasting study

To verify the performance of the new model further, we perform a forecasting study for all

21 trading days in June 2012 in which we compare our dynamic modified Skellam model

to four alternative methods. We focus on the prediction of volatility for each model by

evaluating the probability of absolute price tick changes Xt+1 = |Yt+1|, for intraday times

t = τ, . . . , n− 1, for each day. The pmf of Xt is given by

p|II|(Xt = xt; σ
2
t , γt) =





pII(Yt = 0;−1, 1, 0, 0, σ2

t , γt), for xt = 0,

2 · pII(Yt = xt;−1, 1, 0, 0, σ2
t , γt), for xt ≥ 1.

(15)
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The five considered models have in common that they all derive probabilities according to

the type II modified Skellam distribution. They differ in the way the Skellam parameters

σ2
t+1 and γt+1 are obtained. Models A,B, C are the parametric models as listed in Section

3.5. Models D and E are nonparametric benchmarks that are specified as follows.

(iv) Model D: we estimate σ2
t+1 using the sample variance using all observations in a rolling

window of the past 900 seconds. We set γt = 0, such that the model collapses to the

standard Skellam model.

(v) Model E : both σ2
t+1 and γt+1 are obtained non-parametrically from the data. Define

the empirical probability of a zero as P̂0 and σ̂2
t+1 as obtained under model D. We then

solve two equations for two unknowns, namely

σ̂2
t+1 = σ2

t+1 − 2γt+1P1, (16)

P̂0 = P0 + 2γt+1P1, (17)

where equations (16) and (17) follow from equations (4) and (3), respectively. By

the substitution of (17) into (16), we obtain σ̂2
t+1 = σ2

t+1 − P̂0 + P0 which we solve

numerically for σ2
t+1 using a binary search algorithm. The resulting σ2

t+1 is substituted

into (16) to obtain γt+1.

We emphasize that Models A, B, C use the subsequent estimated parameter vectors from

the day before. Further extensions can be obtained by considering a forecasting model

for the daily estimates of ψ; for instance, see Diebold and Li (2006). Even without these

modifications, the forecasting experiment already produces some clear advantages of the new

dynamic Skellam model, Model C. For all models and all trading days, we start our forecast

evaluation after a burn-in period of τ = 60 seconds. Models D and E subsequently extend

the burn-in window to 900 seconds, after which the forecasts are updated using a rolling

window. The results are presented in Table 3.

The performance of the models is first assessed in terms of an out-of-sample probabilistic

loss function LOGL, which can be classified as a proper scoring rule; see Winkler (1969).

LOGLh sums the log probabilities for Model h ∈ {A,B, C,D, E} using the model’s predictive

pmf and the realized absolute tick-size change xt+1. A loss of zero indicates that the absolute
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Table 3: The table presents the total log loss (LOGL) of the 21 trading days of June 2012. The losses
are based on the forecasting study presented in Section 3.7. The DM statistic represents the Diebold and
Mariano (1995) statistic which is asymptotically distributed as a standard normal random variable and hence
rejects the null hypothesis of equal predictive accuracy at the 5% level of significance in favour of Model C
if the DM test statistic is smaller than −1.65.

Model Wal Mart (WMT) Coca-Cola (KO) JPMorgan (JPM) Caterpillar (CAT)
LOGL DM LOGL DM LOGL DM LOGL DM

A −57846 −25.18 −58754 −22.24 −96479 −31.43 −128170 −40.81
B −56595 −20.03 −57283 −18.91 −94611 −26.97 −124351 −35.27
C −55221 −55993 −92943 −121218
D −55715 −7.61 −56612 −8.06 −93860 −11.40 −121325 −1.20
E −55907 −9.58 −57147 −12.21 −93729 −9.94 −121901 −6.32

tick-size change xt+1 was perfectly predicted by the model. The log loss differences can also

be compared between models using the Diebold Mariano (DM) test statistic; see Diebold

and Mariano (1995). The DM statistic is asymptotically normally distributed under the

null hypothesis of equal predictive accuracy. We take Model C as our benchmark in the

computation of the Diebold Mariano statistics.

Table 3 shows that the forecasts based on Model C have always the lowest log loss. The

new fully dynamic type II modification of the Skellam model clearly outperforms its static

(Model A) and spline-based (Model B) counterparts, as well as the non-parametric zero-

inflation model, Model E . Using a one-sided test, Model C also significantly outperforms the

nonparametric benchmark Model D for 3 out of the 4 stocks. Only for Caterpillar, the two

models cannot be distinguished in a statistically significant manner. However, the excellent

forecasting performance of Model C remains despite its use of the estimate of the constant,

spline, and autoregressive parameters of the day before. We emphasize that the parameter

estimates are not recursively updated during the day. Models D and E , by contrast, do not

rely on any parameter estimates from the previous day.

4 Conclusions

We have modeled tick-by-tick discrete price changes for U.S. stocks listed on the New York

Stock Exchange. The analysis of high-frequency data attracts ever more attention from both

government regulators and the financial industry. Hence the understanding of the dynamics

in high-frequency data has become important. We have shown that the empirical analysis of
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high-frequency tick-by-tick data can be based on modifications and dynamic extensions of the

Skellam distribution. Our type II modified Skellam distribution features a dynamic variance

parameter, and a dynamic transfer of probability mass to accommodate the non-standard

properties of the data in terms of the occurrence of zero-price-changes. These features of

our model are needed to have a stable importance sampling estimation procedure, a good

in-sample fit, an adequate diagnostic performance, and an accurate out-of-sample forecasting

performance, in comparison to a number of relevant benchmark models. We conclude that

the new dynamic modified Skellam model provides a flexible modeling framework that can be

effectively employed to capture the dynamics in high-frequency tick-by-tick data with many

missing entries. Since the model produces intraday patterns of high-frequency volatility

dynamics, it may provide an interesting and complementary perspective to the literature

on nonparametric realized volatility measures and realized kernels which are proposed by

Barndorff-Nielsen and Shephard (2001, 2002) and Andersen et al. (2001).
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Appendices

A Modified Skellam distribution of type I

The MSKI distribution in which probability mass is transferred from Yt $= 0 to Yt = 0 or

vice versa is defined by its pmf

pI(yt;µ, σ
2, γ) =

{
(1− γ)p(Yt = yt;µ, σ2), for yt $= 0,

γ + (1− γ)p(Yt = 0;µ, σ2), for yt = 0,

where Pq = p(q;µ, σ2) as defined in equation (1), q ∈ Z, and γ ∈ ( P0
P0−1 , 1). For γ = 0

we recover the Skellam distribution as defined in (1) and for γ = P0
P0−1 we have the lower

bound P0 = 0. If unimodality is required the zero deflation should be bounded as γ ∈
( min(P−1,P1)−P0

1+min(P−1,P1)−P0
, 1) which ensures P0 ≥ min(P−1, P1). The mean and variance of the MSKI

distribution are E(Yt) = (1− γ)µ and Var(Yt) = (1− γ)σ2 + γ(1− γ)µ2 which follows from

Var(Yt) = (1− γ)
∞∑

x=−∞
x2 p(Yt = x;µ, σ2)− (1− γ)2

[ ∞∑

x=−∞
x p(Yt = x;µ, σ2)

]2

,

with
∑∞

x=−∞ x2 p(Yt = x;µ, σ2) = σ2 + µ2 being the second moment of the Skellam distri-

bution of (1). The inflation/deflation of probability mass to non-zero values of Yt can be

achieved in a similar way.
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B Moments of the MSKII(i, j, k) distribution

Let µ and σ2 denote the mean and variance of the standard (non-deflated) Skellam distri-

bution. The mean of the MSKII(i, j, k, µ, σ2, γ) distribution is given by

E(Yt) =
∑

x∈Z

x pII(Yt = x;µ, σ2, γ)

=




∑

x∈Z\{i,j,k}

x p(Yt = x;µ, σ2)



+ i(1− γ)Pi + j(1− γ)Pj + k(γPi + γPj + Pk)

=




∑

x∈Z\{i,j,k}

x p(Yt = x;µ, σ2)



+ iPi + jPj + kPk − iγPi − jγPj + kγPi + kγPj

= µ− iγPi − jγPj + kγPi + kγPj,
(B.1)

which is equal to the first equation of (4). The second moment of the MSKII(i, j, k, µ, σ2, γ)

distribution is given by

E(Y 2
t ) =

∑

x∈Z

x2 pII(Yt = x;µ, σ2, γ)

=




∑

x∈Z\{i,j,k}

x2 p(Yt = x;µ, σ2)



+ i2(1− γ)Pi + j2(1− γ)Pj + k2(γPi + γPj + Pk)

=




∑

x∈Z\{i,j,k}

x2 p(Yt = x;µ, σ2)



+ i2Pi + j2Pj + k2Pk

− i2γPi − j2γPj + k2γPi + k2γPj

= σ2 + µ− i2γPi − j2γPj + k2γPi + k2γPj.
(B.2)

Combining (B.1) and (B.2) leads to the variance of the MSKII(i, j, k) distribution as pre-

sented in the second equation of (4).

C Simulation study

We conduct a simulation study to verify the performance of the importance sampling esti-

mation methodology explained in the Online Appendix D in combination with the Skellam

model as presented in (12). The case of zero inflation, zero deflation and zero neutral is

covered in this study. We assume that the Skellam model of (12) is the true data generating

process and we simulate time series of Skellam variables with length n = 23,400 which is
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Table C.1: Simulation results of the zero-altered Skellam model

This table reports simulation averages of maximum likelihood estimates of the static parameters for the
dynamic Skellam model of Section 3. The simulation averages are calculated with R = 100 replications of
time series with length n = 23,400. The true parameter values are in the table above the simulated values.
Standard deviations of the estimates over the Monte Carlo simulations are in parentheses. The column t(s)
denotes the average computation time (in seconds) for finding the maximum of the log likelihood function.
Computations are carried out on a i7-2600, 3.40 GHz desktop PC using four cores.

φ ση c γ∗ β1 β2 t(s)

true 0.99 0.05 −0.30 0.00 1.00 −0.40
0.987 0.055 −0.298 −0.024 1.005 −0.400 356.24
(0.007) (0.022) (0.065) (0.082) (0.131) (0.064)

true 0.95 0.15 0.10 −0.50 1.00 −0.40
0.944 0.154 0.101 −0.498 0.997 −0.395 271.71
(0.022) (0.046) (0.059) (0.140) (0.110) (0.055)

true 0.95 0.15 0.10 0.25 1.00 −0.40
0.945 0.150 0.104 0.252 0.996 −0.396 269.58
(0.030) (0.054) (0.056) (0.028) (0.107) (0.054)

equal to the length of the tick price change series in the application of this paper. To incor-

porate missing values in the simulated data sets we denote P.NaN which is the probability of

no trade at time t. We set P.NaN = 0.85 at 09:30 and 16:00 and P.NaN = 0.95 at 13:00. Every

P.NaN between the time points 09:30−13:00 and 13:00−16:00 is determined by two triangles

with the hypotenuses connecting P.NaN = 0.95 in the middle of the day and P.NaN = 0.85

at the beginning and end of the day. With the probability of a missing value over the day,

missing values are randomly positioned at time points with the idea that the probability of a

missing values is highest when trading activity is lowest. We refer to, for example, Koopman,

Lit, and Lucas (2015) for graphs of trading patterns. For this simulation study, we obtain

an average of 2000-2500 simulated trades out of 23,400 which is just below average.

The simulated data comes from a slightly more parsimonious model specification than

(12). We set δ = 0.30, ση,S = 0 and the vector of hyper parameters has dimension 6 and is

given by

ψsim = (φ, ση, c, γ
∗,β′, )

′
,

where the elements of the 2× 1 vector β correspond to a zero sum spline with spline knots

placed at {09:30, 12:30, 16:00}. We present the estimation results in Table C.1.

Given that we are estimating a non-Gaussian state space model for a time series of length

of n = 23,400, our estimation procedure is generally fast with optimizing times of only a

couple of minutes. We also note that our methodology in combination with the novel Skellam

model is able to estimate the parameter vector ψ with high precision. Finally, the model is

able to distinguish both zero-inflation and zero-deflation situations accurately. The results

of this simulation study provide confidence for applying the Skellam model to real data sets.
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Online Appendix to:

Intraday Stochastic Volatility in Discrete Price Changes:

the Dynamic Skellam Model

Siem Jan Koopman, Rutger Lit, André Lucas

D Monte Carlo likelihood and parameter estimation

We first present a short review of Monte Carlo techniques for likelihood evaluation for state

space models and the efficient importance sampler (EIS) of Liesenfeld and Richard (2003)

and Richard and Zhang (2007). Next, we present our bivariate extension of the numerically

accelerated importance sampling techniques (NAIS) of Koopman et al. (2014).

NAIS : likelihood evaluation and importance sampling

We can express the likelihood function for the non-Gaussian nonlinear state space model (9)

as

L(y;ψ) =

∫
p(y,θ;ψ) dθ =

∫
p(y|θ;ψ)pg(θ;ψ) dθ. (D.1)

An analytical expression is not available for this high dimensional integral. In cases where

the model is linear and Gaussian, the Kalman filter can be used for likelihood evaluation,

signal extraction and forecasting. Here we rely on numerical integration techniques that

need to be both practical and feasible. It is well established that we can use Monte Carlo

simulation methods for the evaluation of (D.1); see Ripley (1987) for a general introduction.

A naive Monte Carlo estimate of L(y;ψ) is given by

1

S

M∑

k=1

p(y|θ(k);ψ), θ(k) ∼ pg(θ;ψ),

where S is the number of Monte Carlo replications and the simulated value of θ(k) is obtained

by simulating the state vectors from the vector autoregressive process (8) and with θ =

c + Zα for a given parameter vector ψ. This Monte Carlo estimate is numerically highly

inefficient since the simulated paths have no support from y.

In various contributions in statistics and econometrics it is argued that (D.1) can be

evaluated efficiently using the method of importance sampling; see, for example, Shephard

and Pitt (1997), Durbin and Koopman (1997), Liesenfeld and Richard (2003) and Richard

and Zhang (2007). For a feasible implementation of this method we require a Gaussian
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importance density g(θ|y;ψ∗) from which the θs are sampled conditional on the observation

vector y, where ψ∗ denotes a fixed parameter vector, containing ψ as well as parameters ψ̃

particular to the importance density g(y|θ; ψ̃), i.e., ψ∗ = (ψ′, ψ̃
′
)′. Under the assumption

that a numerically efficient device can be developed for sampling θ from g(θ|y;ψ∗), we can

express the likelihood function (D.1) in terms of the importance density as

L(y;ψ) =

∫
p(y,θ;ψ)

g(θ|y;ψ∗)
g(θ|y;ψ∗) dθ, (D.2)

with the importance sampling estimate given by

1

S

S∑

k=1

ω(y,θ(k);ψ∗), ω(y,θ;ψ∗) =
p(y,θ;ψ)

g(θ|y;ψ∗)
, θ(k) ∼ g(θ|y;ψ∗), (D.3)

where the number of simulations S should be sufficiently high and where θ(k) is drawn

independently for k = 1, . . . , S. In this framework we assume that pg(θ;ψ) = g(θ;ψ), which

implies that the marginal stochastic properties of θ in the model are the same as in the

importance sampling distribution. It follows immediately that

ω(y,θ;ψ∗) =
p(y,θ;ψ)

g(θ|y;ψ∗)
=

p(y|θ;ψ)pg(θ;ψ)

g(y|θ; ψ̃)g(θ;ψ)/g(y;ψ∗)
= g(y;ψ∗)

p(y|θ;ψ)

g(y|θ; ψ̃)
, (D.4)

see, for example, Durbin and Koopman (2012). The density g(y;ψ∗) can be taken as a scaling

function since it does not depend on θ. The function ω(y,θ;ψ∗) is usually referred to as

the importance sampling weight function. If the variance of ω(y,θ;ψ∗) exists, the estimate

(D.3) is consistent for any g(y|θ; ψ̃) and a central limit theorem applies; see Geweke (1989)

and Koopman et al. (2009). We may expect that a well-behaved weight function leads to an

efficient importance sampling estimate of the likelihood function.

NAIS : construction of the importance density

The key choice in selecting an importance density g(θ|y;ψ∗) is numerical efficiency. We

follow the predominant choice in the literature and opt for the Gaussian density; we construct

g( · ) efficiently using standard techniques such as regression analysis and the Kalman filter.

Several proposals for constructing a Gaussian g(θ|y;ψ∗) have been developed. Shephard

and Pitt (1997) and Durbin and Koopman (1997) determine the choice of ψ̃ via a second

order Taylor expansion of density p(y|θ;ψ) around a θ that is equal to the mode of p(θ|y;ψ).

The mode can be found by an iterative method involving the Kalman filter and the related

smoother. Alternatively, in the EIS method of Liesenfeld and Richard (2003) and Richard

ii



and Zhang (2007), the appropriate Gaussian importance density is found by solving

argmin
ψ̃t

∫
λ2(yt,θt;ψ

∗)ωt(yt,θt;ψ
∗) g(θt|y;ψ∗) dθt, (D.5)

for each t = 1, . . . , n, with ψ̃
′
= (ψ̃

′
1, . . . , ψ̃

′
n), ψ

∗′ = (ψ′, ψ̃
′
), and

λ(yt,θt;ψ
∗) := log ωt(yt,θt;ψ

∗) := log p(yt|θt;ψ)− log g(yt|θt; ψ̃t). (D.6)

The importance density is effectively determined by the minimization of the variance of the

log weight ωt, for each t. Richard and Zhang (2007) evaluate the integral in (D.5) using

importance sampling and perform its minimization via weighted least squares regression.

Koopman, Lit, and Nguyen (2012) show that the EIS method can also fully rely on com-

putationally efficient Kalman filter and smoothing methods. Their modification leads to a

faster and efficient importance sampling method, especially for large state dimensions.

In a further development of EIS, Koopman et al. (2014) replace the evaluation of the

integral in (D.5) by standard Gauss-Hermite quadrature methods. This results in a highly

numerically efficient importance sampling technique, that can be augmented with easy-

to-compute control variates to increase efficiency even further. They label their method

numerically accelerated importance sampling (NAIS). The key to NAIS is the availability

of analytic expressions for the marginal densities g(θt|y;ψ∗) given the Gaussian importance

densities g(y|θ; ψ̃) and a Gaussian marginal density g(θ;ψ) = pg(θ;ψ). Although NAIS

was originally developed for a univariate signal θt ∈ R, the method can easily be extended

to multiple dimensions; see Scharth (2012, Ch. 5) and the discussions in Koopman et al.

(2014). Scharth (2012) proposes Halton sequences and quasi-Monte Carlo integration for

the evaluation of high dimensional integrals. In the case of our dynamic Skellam model,

the signal is only two-dimensional and hence we can still rely on Gauss-Hermite quadrature

methods efficiently.

NAIS : bivariate numerically accelerated importance sampling

To facilitate the exposition, we express the Gaussian density as a kernel function in θt,

g(y|θ; ψ̃) =
n∏

t=1

g(yt|θt; ψ̃t), g(yt|θt; ψ̃t) = exp

(
at + b′tθt −

1

2
θ′
tCtθt

)
, (D.7)

with scalar at, 2 × 1 vector bt, a symmetric 2 × 2 matrix Ct, and bivariate θt = (θ1t, θ2t)′.

To ensure that g(yt|θt; ψ̃t) integrates to one, we set at = − log 2π + 1
2 log |Ct| − 1

2b
′
tC

−1
t bt.

We gather the five remaining parameters in bt and Ct into the vector ψ̃t. NAIS obtains

the importance sampling parameters ψ̃t iteratively, starting from an initial guess ψ̃
(0)

t , and
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updating it sequentially to ψ̃
(k)

t for k = 1, 2, . . ., until convergence. Given ψ̃
(k)

t , the next

parameter vector ψ̃
(k+1)

t for the importance densities solves the EIS criterion

argmin
ψ̃

(k+1)
t

∫ ∫
λ2(yt,θt;ψ

∗(k+1))ωt(yt,θt;ψ
∗(k))g(θt|y;ψ∗(k)) dθ1t dθ2t, (D.8)

where ψ∗(k) contains ψ and ψ̃
(k)
. The key to the implementation of NAIS is the availability

of an analytical expression for the smoothing density g(θt|y;ψ∗(k)). In our case of Gaussian

importance sampling distributions, we have

g(θt|y;ψ∗(k)) = N(θ̂
(k)

t ,V (k)
t ) =

1

2π|V (k)
t |1/2

exp

(
−1

2
(θt − θ̂

(k)

t )′(V (k)
t )−1(θt − θ̂

(k)

t )

)
,

(D.9)

where θ̂
(k)

t and V (k)
t are obtained from the Kalman filter and smoother, for given ψ∗ = ψ∗(k),

applied to the linear Gaussian model xt = θt + ut with disturbance ut ∼ N(0,C−1
t ) and

pseudo-observation xt = C−1
t bt, for t = 1, . . . , n. It is straightforward to verify that the

observation density
∏n

t=1 g(xt|θt; ψ̃t) is equivalent to g(y|θ; ψ̃) in (D.7).

We numerically implement the minimization in (D.8) by the Gauss-Hermite quadrature

method; see, for example, Monahan (2001). For this purpose we define

ϕ(yt,θt; ψ̃
(k+1)

t ,ψ∗(k)) = λ2(yt,θt;ψ
∗(k+1))ωt(yt,θt;ψ

∗(k)), (D.10)

and we select a set of abscissae {zi}Mi=1 with associated Gauss-Hermite weights h(zi), for

i = 1, . . .M . The numerical implementation of the minimization (D.8) becomes

argmin
ψ̃

(k+1)
t

M∑

i=1

M∑

j=1

wij · ϕ(yt, z̃(k)
ij,t; ψ̃

(k+1)

t ,ψ∗(k)), (D.11)

with weight wij = h(zi)h(zj) exp(
1
2z

2
i ) exp(

1
2z

2
j ) and z̃(k)

ij,t = θ̂t+F (k)
t zij, where the 2×2 square

root matrix F (k)
t is the result of the decomposition V (k)

t = F (k)
t F (k)

t

′
and zij = (zi , zj)′

for i, j = 1, . . . ,M . In this implementation we have used the fact that g(z̃(k)
ij,t|y;ψ∗(k)) ∝

exp(−1
2z

′
ijzij); see Koopman et al. (2014) and Scharth (2012, Ch. 5). The decomposition

of V (k)
t is needed because the joint set of M2 abscissae zij, for i, j = 1, . . . ,M , is associated

with the bivariate standard normal distribution.

We can express the minimization problem (D.11) as a standard weighted least squares

computation applied to M2 observations for the regression equation

log p(yt|z̃(k)
ij,t) = constant + κ′z̃(k)

ij,t −
1

2
ξ′vech(z̃(k)

ij,tz̃
(k)
ij,t

′) + error, (D.12)

where κ and ξ are regression coefficient vectors and the regression weights are given by
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wij · ωt(yt, z̃
(k)
ij,t;ψ

∗(k)) · g(z̃(k)
ij,t|y;ψ∗(k)), and where vech( · ) stacks elements of the upper

triangular part of a symmetric matrix into a vector. The resulting weighted least squares

estimates for κ and ξ yield the new values for b(k+1)
t and vech(C(k+1)

t ), respectively. Hence,

new values for ψ̃
(k+1)

t are obtained for each t = 1, . . . , n. Using these new estimates, we can

determine a new g(θt|y;ψ∗(k+1)) in (D.9) by constructing a new time series xt and applying

the Kalman filter and smoother to the linear Gaussian model given below (D.9). In this last

step we obtain new values for θ̂
(k+1)

t and V (k+1)
t , which we require in (D.9).

This procedure is iterated until convergence. Typically, we only need a small (< 10)

number of iterations for the applications in this paper. We emphasize that the regression

computations can be carried out in parallel over t, leading to a very efficient implementation.

NAIS : the algorithm

The minimum of (D.11) is obtained when log p(yt|θt;ψ) = log g(yt|θt; ψ̃t). Therefore we

regress the log Gaussian density log g(yt|θt; ψ̃t) as given by (D.7) on the log observation

density log p(yt|θt;ψ) by use of weighted least squares. The regression coefficient vector at

time t, Ψt, consists of the intercept at, the individual components of the 2× 1 vector bt and

the 2× 2 matrix Ct at time t, i.e. Ψt = (at,κ′, ξ′)′. The optimum values Ψ̂t are obtained by

applying the following iterative algorithm

(i) Find appropriate starting values for κ and ξ with t = 1, ...., n and set s = 1 and

Ψ(s)
t = (at,κ′, ξ′)′. In most cases the algorithm is not very sensitive to starting values

so κ consisting of ones and Ct(ξ) set to I2 suffices.

(ii) Construct the linear Gaussian state space model with observation equation xt = θt+ut

with disturbance ut ∼ N(0,C−1
t ) and pseudo-observation xt = C−1

t bt, for t = 1, . . . , n

and apply the Kalman filter and smoother to obtain θ̂
(k)

t and V (k)
t and use these to

calculate z̃(k)
ij,t as described below equation (D.11).

(iii) Minimize equation (D.11) by weighted least squares and obtain Ψ(s+1)
t .

(iv) If
∑n

t=1 ||Ψ
(s+1)
t − Ψ(s)

t || < ε, for some threshold value ε, the algorithm has converged

and can be terminated. Otherwise, set s = s+ 1 and go to step (ii).

Once the iterative algorithm has converged in step (iv), Ψ(s+1)
t , t = 1, . . . , n represents the

new importance density. The number of times the algorithm needs to be called before

convergence depends on the model and the size of the dataset. Starting from init values the

algorithm converges most of the time in 10 steps or less. For repeated analysis, values of Ψ̂t

can be stored and used as starting values for the next call to the algorithm. The minimization

of (D.11) can be carried out independently for all time points t and can therefore be done

in parallel over t.
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E Intradaily time series of price changes in 2012

Table E.1: Empirical distribution of price changes in multiples of tick size.

The table reports the empirical distribution (in percentage points) of tick price changes for the four stocks
Walmart (WMT), Coca-Cola (KO), JPMorgan (JPM), and Caterpillar (CAT), in 2012. The majority of the
observations are -1, 1 and 0, the distribution is close to symmetric and it centers around zero which validates
the use of the MSKII(-1,1,0) distribution presented in (3).

Company ≤ −4 −3 −2 −1 0 1 2 3 ≥ 4

Wal-Mart Stores Inc. (WMT) 0.46 0.83 3.43 19.66 51.25 19.51 3.52 0.86 0.48
The Coca-Cola Company (KO) 0.25 0.44 2.09 18.11 58.31 17.90 2.20 0.45 0.25
JPMorgan Chase & Co. (JPM) 0.15 0.40 2.42 19.37 55.29 19.29 2.53 0.41 0.14
Caterpillar Inc. (CAT) 4.66 4.39 9.22 18.20 27.13 18.12 9.20 4.46 4.62
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Figure E.1: Price changes on August 1, 2012

The panels show the observed price changes for August 1, 2012 for the four stocks {WMT,KO,JPM,CAT}.
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Figure E.2: Absolute price changes on August 1, 2012 with volatility path estimate

The panels show the absolute values of observed price changes for August 1, 2012 for the four stocks
{WMT,KO,JPM,CAT}. Furthermore, in each panel the estimate of 2 × σt is presented together with its
estimated 95% confidence interval.
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