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Abstract 
‘Robot cars’ are cars that can drive themselves without human control. Robot cars can safely drive 
closer together than cars driven by humans, thereby possibly increasing road capacity. By allowing 
drivers to perform other activities in the vehicle, they may reduce the value of travel time losses 
(VOT). We investigate the effects of robot cars using a dynamic equilibrium model of congestion 
that captures three main elements: the resulting increase in capacity, the decrease in the VOT for 
those who acquire one and the implications of the resulting changes in the heterogeneity of VOTs. 
We do so for three market organizations: private monopoly, perfect competition and public supply. 
Even though an increased share of robot cars raises average capacity, it may hurt existing robot car 
users as those who switch to an robot car will impose increased congestion externalities due to their 
altered departure time behaviour. Depending on which effect dominates, switching to an robot 
vehicle may impose a net negative or positive externality. Often public supply leads to 100% robot 
cars, but it may be optimal to have a mix of car types, especially when there is a net negative 
externality. With a positive (negative) externality, perfect competition leads to an undersupply 
(oversupply) of robot cars, and a public supplier needs to subsidise (tax) robot cars to maximise 
welfare. A monopolist supplier ignores the capacity effect and adds a mark-up to its price.  
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1. Introduction 
‘Robot cars’—also referred to as autonomous or self-driving cars—are cars that drive themselves 
and have an automated speed choice. They can drive closer together and at more uniform speeds 
than ‘normal’ human driven cars. All else being equal, a group of robot cars can move at a greater 
density for any given speed than ‘normal cars’, thereby increasing the capacity of roads (Chang and 
Lai, 1997). Besides this favourable capacity effect, people adopting an robot car instead of a normal 
car may gain a decrease in their value of travel time (VOT) as time in the car can be spent on other 
activities besides driving. This makes travel time more useful and lowers its costliness. As a result, 
the VOT may become more heterogeneous for a mix of drivers using normal and robot cars. Such 
heterogeneity may alter the effects of introducing robot cars and of policies such as congestion 
pricing and capacity expansion. It also enforces the relevance of considering distributional effects 
of policies (see, e.g., Arnott et al. (1988), Lindsey (2004) and Van den Berg and Verhoef (2011ab)).  
 Robot cars may also lead to fewer accidents, to a smaller or larger total car fleet, to fewer parking 
spots, to higher speed limits, and to reduced fuel use.2F

3 There are also potential problems, including 
the question of liability for accidents, reliability, loss of privacy, and risks of hacking of robot cars. 
For more detailed overviews see Anderson et al. (2014) and Fagnant and Kockelman (2015). 

Robot cars can be expected to have a considerable influence on urban transport and in the long 
run on the layout of our cities. This explains the strong interest of policymakers, the media and the 
general public in robot cars as a solution to our transport problems. This paper investigates the 
welfare impacts of the uptake of robot cars. It concentrates on the effects on congestion via a number 
of channels: the resulting increase in capacity, the decrease in the VOT and the implications of the 
resulting changes in the heterogeneity of the VOT. We do not consider heterogeneity other than that 
due to the decision to obtain an robot car or not. The VOT is the same for everyone who has the 
same car. Section 6 gives an exploratory discussion of some model extensions, including pre-
existing heterogeneity. Our focus on the congestion effects of robot cars reflects the emphasis this 
has received in policy debates and the media in a congested country like the Netherlands. We could 
add differences in environmental or safety externalities between the two types of vehicles. However, 
from an analytical perspective, this would be rather straightforward and would divert attention from 
the behavioural and congestion impacts in which we are interested.  

We are the first to consider the effects of robot cars via the VOT, and to consider robot cars with 
endogenous departure time and car type decisions. To achieve this objective, we use the bottleneck 
model, as do Lamotte et al. (2016). They also have an endogenous choice of car type. However, they 
have separate roads for normal and robot cars and assume that robot cars voluntarily cooperate by 
having a departure rate equal to the capacity of their road. In their setting, robot cars do not affect 
preferences. Levin and Boyles (2016) use a cell transmission model to study the route choice 
equilibrium with robot and normal cars, but the choices of departure time and car type are 
exogenously fixed.  

                                                 
3 If only robot cars use a road, it may become possible to redesign it: e.g., to reduce lane widths and turn a two-lane highway into a 

three-lane one. 
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With a heterogeneous VOT, users self-select over time. With queuing, the users with the highest 
VOTs travel in the edges of the peak when queuing delays are minimal; the users with the lowest 
VOTs travel in the middle of peak and accept long travel times in exchange for a convenient arrival 
time (Arnott et al., 1988). If users’ VOTs fall after buying an robot car, they will impose increased 
external costs on users who arrive closer to the preferred arrival time than they do. The reason is 
that they now care less about travel time losses and therefore ‘need’ and create a steeper travel time 
development over time to be in dynamic user equilibrium (Lindsey, 2004). A user’s marginal 
external cost decreases with its VOT (Van den Berg and Verhoef, 2011a), and when the VOT 
decreases due to acquiring an robot car, this raises this user’s marginal external cost. 

This ‘heterogeneity effect’ via the marginal external cost means that, ignoring the capacity effect, 
an increase in the share of robot cars raises the costs for existing robot car users. If the capacity 
effect is sufficiently strong, the total cost is minimised when everyone has an robot car; but if not, it 
is socially optimal when not everyone has one.3 F

4  
Total cost not only includes travel costs, but also automobile costs due to depreciation and fuel 

use. Robot cars are likely to be more expensive to produce than normal cars, implying higher 
depreciation costs. However, robot cars may also have a higher residual value on resale, implying a 
lower depreciation cost. At the same time, robot cars may have lower insurance premiums and may 
use less fuel as they drive at more uniform speeds.  

We examine three provision schemes of robot cars: socially optimal ‘public provision’, the 
perfectly competitive case of ‘marginal cost provision’, and provision by a profit-maximising 
‘monopolist’. The effects of the provision regimes of robot cars have not previously been studied. 
Private supply would approach the marginal cost case as the provision becomes more competitive. 
The other extreme of private provision is the private monopoly. When the capacity effect is stronger 
than the heterogeneity effect, there is a net positive externality and robot cars need to be priced 
below the marginal production cost when normal cars are priced at marginal cost and roads are 
priced suboptimally. When the heterogeneity effect dominates, marginal cost provision leads to 
over-consumption of robot cars. Provision by a monopolist typically leads to a substantially lower 
supply of robot cars than marginal cost provision as this supplier uses its market power to maximise 
profits.  

We only study settings with unpriced congestion. With optimal congestion pricing and charges 
that differ by car type, the pricing of cars at marginal production cost is optimal and the issue of 
potential under- or oversupply with a competitive robot car market will disappear.   
 For our results, the strength of the capacity effect is an important determinant. The literature 
overview in Section 2 will show a large variation in predictions. The average prediction is that 
capacity would double with a switch from normal cars only to robot cars only. However, predictions 
vary from a rise of only 1% to a rise of over 400%. These results refer to switching from 100% 
normal cars to 100% robot cars. With a mix of car types, capacity gains may remain modest: the 

                                                 
4 Gubins and Verhoef (2011) find a similar result on the effects of teleworking. Lamotte et al. (2016) also find a similar result when 

studying cooperation between vehicles.  
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marginal capacity effect probably increases with the level of penetration because this allows robot 
cars to cooperate more efficiently (Tientrakool et al., 2011). We incorporate this by making the 
capacity for robot cars a function of the fraction of robot vehicles in the total fleet. 

Another important parameter is the effect of using an robot car on the VOT, the size of which is 
an even more open question than the size of the capacity effect. Finally, there is little to no guidance 
from the literature on how much higher or lower the costs of purchasing and operating robot cars 
will be, when compared to normal cars. The effects of robot cars and their provision regimes are 
sensitive to these parameters. Hence, it is vital to do extensive sensitivity analyses, and we will do 
so in Section 5.  

For ease of reference, the nomenclature box below summarises the notation. The notation will 
also be introduced in the text. 
 
Nomenclature  

α Value of time (VOT) for normal car users: the cost of an hour of travel time. 
β Value of schedule delay early: the cost of an hour earlier arrival than the preferred arrival time t*. 
γ Value of schedule delay late: the cost of an hour later arrival than the preferred arrival time t*. 
δ Compound preference parameter: δ≡βγ/(β+γ) . 
θ VOT reduction parameter for an robot car: the VOT for an robot car is θ∙α with β/α<θ<1. 
∆C Change in travel cost when switching from a normal car to an robot car: ∆C=Ca−Cn. 
Ci Travel cost for car type i={a, n} with a indicating an robot car and n a normal car. Travel cost is the sum of free-flow 

travel time cost and bottleneck cost, which equals the queuing time cost plus the schedule delay cost.  
CB Bottleneck cost equals the queuing time cost plus the schedule delay cost. 
f Fraction of users with an robot car. 

aMC  Marginal automobile cost of the robot car. The corresponding cost for a normal car is set to zero. MCa gives how much 
higher or lower the sum of the fuel cost and per trip marginal production cost is for an robot car. 

MEB Marginal external benefit of marginally increasing the number of the users with an robot car; it equals the change in 
travel cost minus the change in average social cost: MEB=∆C−(∂TTC/∂f)/N. 

aMU  Per trip mark-up on the robot car. The mark-up on the normal car is normalised to zero. 
N Total number of users. 
P (Generalised) price equals the travel cost plus the per trip marginal automobile cost and the mark-up.  
r[f] Function determining the effective bottleneck capacity for robot cars of s/r[f].  
s Bottleneck capacity for a normal car.  
t Arrival time. 
t* Preferred arrival time. 
te Moment that the last car arrives and thus the peak ends. 
ts Moment that the first car arrives and thus the peak starts. 
TT Travel time, which equals free-flow travel time plus queueing time. 
TTff Free-flow travel time. 
TTC Total travel cost of N ∙ (f∙Ca + (1−f) Cn). 
TC Total cost of TTC+f∙N∙MCa.. 

2. Overview of the research on the effect of robot cars on capacity 
It is difficult to assess the possible effect of robot cars on the capacity of our roads. There is a 

large literature that considers this question. But it remains an open and debated issue. Table 1 gives 
an overview of some estimates. Zwaneveld and Van Arem (1997) review the early literature and 
argue that a doubling or tripling of capacity is likely. In more recent literature, the expected increase 
in capacity can be as low as 1% for robot cars that do not cooperate (Shladover et al., 2012) and as 
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high as 414% with very efficient cooperation (Fernandes and Numes, 2012). The predictions thus 
vary from almost no effect to a quintupling of capacity.  

All results refer to switching from 100% normal cars to 100% robot cars. If car types travel mixed, 
the effects could be much less beneficial as the strongest gains are likely to be realized when going 
from many to only robot cars (e.g. Tientrakool et al., 2011). This would make the capacity a highly 
convex function of the share of robot cars. Van Arem et al. (2006) even find that introducing robot 
cars may reduce capacity when their share is low. Levin and Boyles (2016) find that the fraction 
needs to exceed 75% for capacity not to decrease due to inefficiencies with mixed traffic at 
intersections. In the dynamic equilibrium of our model, robot and normal cars will travel perfectly 
separated in time. Nevertheless, we assume that the capacity convexly increases with the penetration 
rate via a non-linear capacity effect. This may reflect that in reality cars may interact on the network 
elsewhere, but also that the separation over time of car types may vanish if there were pre-existing 
heterogeneity. 

Table 1: Increase in capacity from switching from only normal cars to only robot cars 
Study Uncooperative robot cars Cooperative robot cars 
Chang and Lai (1997) 33% X 
Fernandes and Numes (2012) x 84–230% at 36 km/h, 186–414% at 72 km/h 
Ni et al. (2010) x 20–50% 
Shladover (2011) x 80%  
VanderWerf et al. (2002) 7% Around 220% 
Shladover et al. (2012) 1–4% 97% 
Tientrakool et al. (2011) 90% at 50 km/h, 40% at 100 km/h 200% at 50 km/h, 270% at 100 km/h 

 
3. The model 
3.1. Set-up 

We use the Vickrey (1969) bottleneck model to capture the effects of robot cars in a stylised 
setting that allows for analytical closed-form solutions while capturing the important behavioural 
aspects discussed above. We focus on how introducing robot cars changes the equilibrium and will 
be brief in our description of the standard model. For complete reviews see Arnott et al. (1993) or 
Small (2015). 

We assume that demand is fixed. We thus ignore that, if robot cars lower costs, this will increase 
demand and congestion. We also ignore other transport modes such as public transport and taxis 
(see International Transport Forum (2015)). 

The travel time cost equals travel time multiplied by the value of time (VOT). The VOT for a 
normal car is α; for an robot car, it is θ∙α, where θ<1 is the VOT reduction parameter. Travel time, 
TT, is the sum of free-flow travel time, TTff, and the delay from queueing at the bottleneck. The 
queuing delay equals the number of cars in the queue at the instant of joining it divided by the 
capacity of the bottleneck during the queuing time. When normal cars pass the bottleneck, the 
capacity is s. When robot cars pass the bottleneck, the capacity is s/r[f] with 0<r[f]≤1. The lower 
r[f] is, the higher the capacity for robot cars.  
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A person’s bottleneck cost, CB, equals the queuing time cost plus the schedule delay cost. The 
schedule delay cost is the cost due to arriving at a different time than the most preferred arrival time, 
t*. We assume that t* is the same for all and normalise it to 0. We follow Small (1982) and use 
schedule delay costs that are linear in the time difference between t* and the actual arrival time, t. 
The shadow cost per hour for arrivals earlier than t* is β; for hours late it is γ. The schedule delay 
cost thus equals Max[−β∙t, γ∙t]. 

The travel cost equals the free-flow travel time cost plus the bottleneck cost, CB: 
 

[ ] [ ] ( , ) [ ],n n ffC t CB t TT Max t t TT t                               with a normal car, (1)
[ ] [ ] ( , ) [ ],a a ffC t CB t TT Max t t TT t                         with an robot car, (2) 

Subscript n indicates a normal car and a indicates an robot car.  
As Arnott et al. (1988) show, users with a lower VOT self-select themselves into the centre of 

the peak, when travel times are long and schedule delays are small. These users care less about the 
travel time and can thus enjoy the small schedule delays in the centre peak. Likewise, drivers with 
a larger VOT self-select into the early and late shoulders of the peak. Consequently, normal and 
robot cars will travel separated over time, and the bottleneck capacity is either s or s/r[f].  

The generalised price per trip (or price for the sake of brevity) is the sum of the travel cost, the 
automobile cost and the mark-up on the car. The mark-up is determined by the producer of the car 
and is expressed in a per-trip equivalent. The generalised cost (or cost for brevity) is the price minus 
the per-trip mark-up. The automobile cost is assumed to be a fixed amount per trip. This cost 
includes the fuel cost and the depreciation per trip, capturing the marginal production cost of the 
car. Robot cars probably have a lower fuel cost, but will probably be more expensive to produce and 
purchase, raising the depreciation cost. The depreciation cost should also account for the residual 
value when selling the car. Robot cars may have a higher or lower residual value than normal cars, 
which also depends on how fast their technology becomes obsolete.4F

5 It seems likely that robot cars 
will have a higher net automobile cost. Nonetheless, we do not impose this, and our numerical 
analyses also study robot cars with lower automobile costs. The mark-up on the car is also reworked 
into a per-trip equivalent. The per-trip profit for a car manufacturer equals the number of cars times 
this mark-up. MUa gives the mark-up per trip on robot cars. This mark-up may be negative, zero or 
positive. For normal cars, we normalise the automobile cost and the mark-up to zero. The automobile 
cost for an robot car, MCa, therefore reflects by how much its marginal production cost exceeds that 
for normal cars.  

In the dynamic equilibrium, for both types of car, the travel costs need to be constant over the 
arrival times used by their users and can be no lower at other times. Therefore, we can omit the 
arrival time indicator and write the equilibrium prices as:  

                                                 
5 We ignore the risk of accidents to keep the model tractable. Robot cars may have lower accident risks, if only due to the absence of 

drunk driving. This may lower insurance premiums for robot cars, thus lowering the per trip cost. 
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n nP C , (3) 
a a a aP C MC MU   . (4) 

 
3.2. Standard bottleneck model without robot cars 
We now briefly reintroduce the bottleneck model without robot cars and thus with homogeneous 
users. The three subsections hereinafter look at three cases of interest, namely where robot cars only 
affect capacity, only the VOT, and finally both in the full model. This order of presentation helps 
identify the different effects of robot cars.  

In the dynamic equilibrium with homogeneous users, the travel cost should be constant over time 
as long as arrivals occur. Fig. 1 illustrates this equilibrium. It shows the travel time pattern over 
arrival time, t, which leads to constant costs. The curve can be interpreted as an iso-cost function 
since costs are constant along it. Shifting the curve upwards implies a higher cost level. This iso-
cost interpretation will prove useful later on. The first driver arrives at the starting time, ts, of the 
peak and faces a zero queuing time. The last driver arrives at te and also incurs no queuing. 

 
Fig. 1: Equilibrium queuing times without robot cars  

 
 
To keep the travel cost constant over time before t*, the travel time must grow linearly over arrival 

time at a rate β/α, so that the decrease in schedule delay cost over arrival time is matched by the 
increase in the queueing time cost. Similarly, after t*, the travel time must shrink at a rate γ/α over 
arrival time. 

 
The equilibrium travel cost is:  

, with .ff
N β γC δ α TT δs β γ

       (5) 

N is the number of users and δ is a composite scheduling preference parameter. The term δ∙N/s gives 
the bottleneck cost, which consists of the schedule delay cost and the queuing time cost. The term 
α∙TTff gives the free-flow travel time cost.  
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3.3. Special case 1: robot cars only increase capacity 

The first special case that we consider assumes that robot cars only affect capacity and not the 
VOT. The equality of preference parameters means that drivers will not self-select into separate time 
windows, but will instead travel at the same moments in a pooled equilibrium. Of the users, a fraction 
f has an robot car and faces a capacity of s/r[f]≥s when they pass the bottleneck. The others have 
normal cars and face a capacity of s. The new equivalent capacity is the weighted harmonic mean 
of the normal car capacity and the robot car capacity. For now, f is treated as a given. Section 4 will 
derive the equilibrium shares. The literature review found that the maximum capacity gain is very 
uncertain: r[f=1] may be close to 1 or as low as 1/5. Moreover, robot cars may increase capacity 
more when they form a larger fraction of the fleet of cars. Therefore, we assume that r[f] is a 
concavely decreasing function of f with / 0r f    and 2 2/ 0r f   , while 0<r[f]≤1.  

Fig. 2 illustrates the equilibrium. The solid line shows the queuing times without robot cars. The 
dotted line applies with a positive number of users with an robot car. The increased capacity shifts 
all users to the lower solid iso-cost curve. Everyone gains the same cost reduction. The slope of the 
equilibrium travel times is the same for all drivers because α, β and γ are equal across users. Hence, 
everyone is on the same iso-cost curve and thus faces the same cost.   

 
Fig. 2: Equilibrium queuing times when robot cars only affect capacity  

 

  
Without an effect on the VOT, the equilibrium travel cost is:  

  1 [ ]a n ff
NC C δ f r f f a TTs        . (6) 

This is the same cost function as for the standard bottleneck model, except that a fraction f of the 
users face a higher capacity of s/r[f]. The travel cost does not differ by car type as everyone has the 
same preferences.  

The total travel cost, TTC, equals: 
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  2
( (1 ) )

1 [ ] .
n a

ff

TTC N C f C f
Nδ f r f f a TT Ns

     
         (7) 

A higher f increases the total capacity and lowers the total travel cost. In this special case, the social 
optimum is always at a corner solution: either everyone should have an robot car if the extra 
automobile cost of robot cars is not too great or otherwise nobody should have one. 

Because normal and robot cars have the same travel costs, a marginal user who switches car type 
will experience a zero change in travel cost, ∆C: 

0a nC C C    .  (8) 
Yet, the total travel cost decreases in f. Consequently, buying an robot car instead of a normal car 
imposes a positive ‘marginal external benefit’, MEB: 

  / 1 [ ] / 0.TTC f NMEB C δ r f f r fN s
            (9) 

The smaller r[f] + f ∙ ∂r/∂f  is, the larger the increase in capacity following a marginal increase in f and 
the greater the positive externality. 
 To conclude, when robot cars only affect capacity, all users have the same cost and everyone 
gains by the same amount if the share with an robot car increases. Hence, getting an robot car causes 
a positive externality because it reduces the negative congestion externality. If cars are priced at 
marginal production costs, users will ignore the positive externality and there would be an under-
consumption of robot cars.  
 
3.4. Special case 2: robot cars only affect the values of time  

Now we turn to robot cars only affecting the VOT, while capacity remains unaffected. Users of 
a normal car have a VOT of α. Users of an robot car have a VOT of θ∙α. The following constraint 
must hold: β/α<θ<1.5F

6 When some users have an robot car and others do not, the VOT is 
heterogeneous. A user who switches from a normal car to an robot car gets a lower VOT, thereby 
gaining a lower free-flow travel time cost and a lower bottleneck cost. The bottleneck cost equals 
the queuing time cost plus the schedule delay cost.  

The share of drivers with an robot car affects external costs and total bottleneck cost by changing 
the heterogeneity in the VOT. We will refer to this as the ‘heterogeneity effect’, to distinguish it 
from the ‘capacity effect’ just discussed.  

                                                 
6 The θ  has to be above β/α as in dynamic congestion models the VOT must be above the value of schedule delay early (Arnott et al., 

1990). The constraint is also intuitive: a VOT below β would imply that people prefer sitting in the car over getting out and reaching 
the destination to, e.g., work or visit family. Similarly, we assume that an robot car will decrease the VOT and thus θ<1. A θ equal 
to 1 leads to an uninteresting case with no effect on the VOT. We ignore θ>1: because an increased VOT would be strange as one 
could still switch off robot driving and because this would complicate the modelling. 
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Fig. 3 illustrates this effect by depicting three situations: when nobody has an robot car (solid 
lines), when 50% of users do (dashed lines) and when everybody does (dotted lines). Note again that 
the queuing time functions shown can be interpreted as iso-cost lines. In the 50% case, robot cars 
arrive in the centre peak between tas and tae. For this 50% case, the thin dashed lines denote an out-
of-equilibrium continuation of the iso-cost function for robot cars. They indicate what the travel 
times would have to be, but are not, for robot cars to be willing to travel at those moments outside 
their equilibrium time window [tas, tae]. Equilibrium travel times, however, are higher due to the 
flatter iso-cost lines for normal cars. The reverse applies for normal car users: the high equilibrium 
travel times in the centre peak [tas, tae] make that arrival time window less attractive than the two 
shoulder periods. When both car types are present, robot car owners self-select into the centre peak, 
and normal car owners self-select into the shoulders of the peak. The decreased VOT of robot car 
users means that they can enjoy the lower schedule delays in the centre peak as they care less about 
travel times than users of normal cars do.  

Without a capacity effect, normal cars impose lower externalities than robot cars. The lowered 
VOT with an robot car means that, for its users to be in user equilibrium, they need a steeper 
development of travel time over time. Hence, such a user imposes longer travel times on all those 
who travel closer to the central peak (Lindsey, 2004). The marginal external cost of a user thus 
decreases with its VOT (Van den Berg and Verhoef, 2011a). When a driver’s VOT decreases due 
to acquiring an robot car, this raises the driver’s marginal external cost. The lower θ is, the more 
strongly an robot car reduces the VOT and therefore larger the difference in the marginal external 
cost imposed by a normal and an robot car user.  

Increasing the share of robot cars hurts existing robot car users by lowering the share of users 
who impose a lower queuing externality onto them. During the early arrival window of normal car 
users, the queuing time increases at a rate of β/α by arrival time; it changes by −γ/α for late arrivals. 
For robot car users, these slopes are steeper and equal β/(θ∙α) before t* and −γ/(θ∙α) thereafter. 
Normal car users impose less steep travel time changes over arrival time than robot cars users. 
Hence, a normal car user imposes a lower queuing time cost on an robot car than a fellow robot car 
user does. Consequently, the iso-cost line for robot car drivers in Figure 3 shifts upwards when their 
fraction increases.   
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Fig. 3: Equilibrium queuing times when robot cars only affect the value of time 

 
              
Case 1: no robot cars     

          
 Case 2: 50% with an robot car 

          
Case 3: everyone has an robot car 

Note: For the 50% case, tas is the moment robot cars start to pass the bottleneck and thus arrive at the destination; tae is the moment the last robot car 
arrives. The thin dashed lines are an out-of-equilibrium continuation of the iso-cost function for robot cars: robot cars do not arrive at these times, 
but the thin lines indicate what the travel times would need to be, although they are not, for them to have the same cost. 
  

Without a capacity effect, changing the fraction f has no effect on normal car users. They always 
travel in the shoulders of the peak and therefore will not face an upward pressure of equilibrium 
queuing times when someone switches car type. Because the duration of the peak is now 
independent of the share of robot cars, a normal car user stays on the same iso-cost line and thus 
keeps the same cost, no matter what the fraction of robot car drivers is.  
 Following Van den Berg and Verhoef (2011ab), the travel costs for normal and robot cars 
respectively can be shown to be:  

n ffNC TTs     , (10) 

  1a ffNC f f TTs          . (11) 

Equations (10) and (11) confirm that increasing the share f has no effect on the cost for a normal car 
driver, whereas a higher f raises the cost of existing users of robot cars.  

For a user who switches from a normal car to an robot car, the travel cost decreases: 
     1 1 1 0.a n ffNC C C f TTs               (12) 

The higher f is, the smaller the cost difference in favour of the robot car. 
The total travel cost is:  

    2
( (1 ) )

1 1 1 (1 ) .
n a

ff

TTC N C f C f
N f TT N fs   

   
         (13) 
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The derivative of the total travel cost with respect to f is: 
   1 2 1 .ffTTC NN f TTf s              (14) 

When f≤1/2, the total travel cost decreases with f. When f gets sufficiently far above 1/2, the total 
cost may increase with f. The derivative ∂TC/∂f increases with f: the more people who already have 
an robot car, the less socially beneficial increasing the share becomes. Still, if δ∙N/s<α∙TTff, the 
derivative ∂TTC/∂f remains negative for the possible range of f between zero and one. This condition 
implies that the bottleneck cost is relatively unimportant and the free-flow travel time is relatively 
important, and if this is the case, equipping another driver with an robot car always lowers the total 
travel cost. 

Switching to an robot car lowers one’s own cost, but it also imposes a negative externality by 
increasing the travel time of other robot cars. The MEB≤0 is:  

 / 1 0.TTC f NMEB C fN s          (15) 
Users will ignore this negative externality. If cars are priced at the marginal production cost, there 
will be over-consumption of robot cars. Conversely, with only a capacity effect, we found a positive 
externality and marginal cost pricing resulted in under-consumption. There is no a priori reason why 
either effect would dominate. 
 
3.5. General case: robot cars affect capacity and value of time 
Now we turn to the full setting, in which robot car ownership brings changes in the capacity and the 
VOT. The effects will prove to be a combination of those in the previous two subsections. Increasing 
the fraction with an robot car, f, hurts existing robot car users due to the heterogeneity effect. Yet, 
increasing this fraction also increases the total capacity and this lowers the travel cost for everyone. 
Normal car users always gain from increasing f due to the increased capacity. 

 Travel costs are a combination of those in the previous two subsections:   
  1 [ ] ,n ffNC f f r f TTs         (16) 

  1 [ ] .a ffNC f f r f TTs            (17) 

There are two opposing effects of raising the share f on the existing robot car users, which are in 
accordance with the separate effects in the previous two subsections. Even though an increased share 
raises average capacity, it may hurt existing robot car users as those who switch to an robot car will 
impose increased externalities, due to their altered departure time behaviour. Depending on which 
effect dominates, the travel cost in an robot car may increase or decrease with f. When 

[ ] /r f f r f     , raising f decreases the travel cost in an robot car. The capacity effect is stronger 
when [ ] /r f f r f    is smaller, making an increased share more beneficial for all users. A smaller 
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θ means that an robot car user needs a steeper travel time development over arrival time. 
Consequently, this user imposes longer travel times on those who arrive closer to t* than the user. 
Hence, a smaller θ strengthens the heterogeneity effect, making increasing f less beneficial for 
current robot car users.  
 The iso-cost curves in Fig. 4 illustrate this. The figure shows equilibria for three penetration 
levels: 0%, 50% and 100% robot cars. It does so for two cases. The left panel has a weak capacity 
effect relative to the heterogeneity effect. The right panel has a relatively strong capacity effect. In 
the left panel, going from 50% to 100% robot cars hurts those who already have an robot car by 
shifting them to a higher iso-cost curve; in the right panel, these people gain because the relatively 
strong capacity effect brings them to a lower iso-cost curve.  
 

Fig. 4: Equilibrium queuing times when robot cars affect values of time and capacity 

 
  

Case 1: no robot cars 
 

Case 2: 50% with an robot car 
 

Case 3: everyone has an robot car 
Note: In the 50% case, the thin dashed lines are an out-of-equilibrium continuation of the iso-cost function for robot cars: robot cars do not arrive at 
these times, but the thin lines indicate what the travel times would need to be, although they are not, for them to have the same cost. 

 
When a user switches from a normal to an robot car, the user’s travel cost decreases: 

     1 1 1 0.a n ffNC C C f TTs               (18) 
The larger f is, the smaller the difference in bottleneck costs between car types and thus the less 
switching to an robot car lowers one’s own travel cost. The individual’s cost gain from switching is 
independent of the capacity effect.  

The total travel cost is: 
      2 21 1 2 [ ] 1 (1 ) .ffNTTC f f r f TT N fs                (19) 

Just as in the previous section, increasing f may increase or decrease the total cost.  
The marginal external benefit due to switching to an robot car may be negative or positive: 
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    / 1 1 [ ] / .TTC f NMEB C f r f f r fN s           
 (20) 

It is negative when the heterogeneity effect dominates the capacity effect, which occurs when 
f(1−θ)>1−(r[f]+f ∙ ∂r/∂f).6F

7 The MEB is more likely to be negative when the fraction f is larger as then 
there are more robot car users who are hurt by increasing the share. A smaller θ means that getting 
an robot car decreases the VOT more, which strengthens the heterogeneity effect and thereby lowers 
the marginal external benefit. When r[f] + f ∙ ∂r/∂f is smaller, switching to an robot car brings a larger 
capacity gain and thus the MEB is higher. Eq. (20) shows how these different forces jointly 
determine the overall MEB.  

 
4. Provision regimes in the full model 
Now we turn to the equilibrium outcome under three provision regimes of robot cars: 1) marginal 
cost pricing, 2) socially optimal public supply and 3) profit-maximising monopoly provision. The 
provision at marginal cost leads to over-consumption of robot cars if there is a negative externality 
from their purchase, and to under-consumption under a positive externality. Under private provision, 
as the market becomes more competitive, the outcome will approach marginal cost provision. The 
other extreme of private provision is the private monopoly.  

The total cost, TC, is the sum of the total travel cost, TTC, and the total automobile cost due to 
buying robot cars instead of normal cars, MCa∙f∙N:7F

8 
TC= TTC + MCa ∙ f ∙ N. (21) 

 With an interior equilibrium, the travel cost reduction, ∆C, from switching to an robot car is 
exactly offset by the sum of the per trip extra marginal cost and the mark-up of an robot car, such 
that no one wants to switch car type. For a corner solution without robot cars, the price for robot 
cars should be above that of normal cars and vice versa for a corner solution without normal cars. 
As we will see in the numerical analysis, corner outcomes are likely to occur. 
 
4.1 Marginal cost provision 
Perfect competition leads to marginal cost provision and thus to a zero mark-up. Assuming an 
interior solution, this leads to an equilibrium share of robot car users, ݂ெ஼, of:8F

9 

    1 1 .1
MC a ffsf MC TTN         (22) 

                                                 
7 This condition for a positive MEB is less stringent that the earlier condition for ∂Ca/∂f<0 as now we also look at the effect on normal 

car users who allways gain from increasing f.  
8 As the mark-up payments to the firm are a transfer and not a cost, the total cost does not contain MUa. The marginal production cost 

of normal car is normalised to zero. 
9  As ∆C decreases with f, there is one unique solution for f where  ∆C+MCa=0.  
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However, often, there is a corner solution. When  1a ffMC TT   , eq. (22) would predict ݂ெ஼>1 
and thus we are in the corner outcome ݂ெ஼=1. Under marginal cost supply, individual users ignore 
the capacity effect as it does not affect the cost difference between car types.9F

10 
 

4.2 Public provision 
Public provision minimises the total social cost by finding the optimal fraction, f, under the 

second-best limitation that there is no direct congestion pricing. Corner solutions are very likely. A 
capacity that convexly increases with f makes it likely that the total cost is globally concave in f, and 
accordingly the minimum is always at a corner. But even besides this, it often occurs that the total 
cost always decreases with the share, implying an optimum at the corner ݂௣௨௕=1. For an interior 
solution, setting ∂TC/∂f to zero implies: 10F

11  
/ ,a TTC fMU C MEBN

       (23) 

      1 2 [ ] 1/ .2 1
pub pub a ffsf r f M Tr f C TN   

             (24) 

Therefore, the public operator imposes a negative or positive mark-up to correct for the externality, 
where a subsidy applies when MEB is positive.11F

12  
One may expect ݂௣௨௕  to exceed ݂ெ஼ because of a dominating positive externality. Yet this is not 

always true. The net externality is zero when f(1−θ)−r[f]+f ∙ ∂r/∂f =0, which means that the two shares 
are equal. When this equation is negative, the heterogeneity effect dominates the capacity effect and 
݂௣௨௕  is below ݂ெ஼. In our numerical analysis, public provision most often leads to the corner 
outcome of ݂௣௨௕=1, and marginal cost supply may lead to an undersupply. For interior solutions of 
our numerical model, however, oversupply with marginal cost pricing is most common and 
undersupply is rare. Parameterisations that lead (22) and (24) to imply that the public provider’s 
share is above the marginal cost supplier’s share also tend to imply that we will be in a corner 
outcome ݂௣௨௕ = 1. 

                                                 
10 Assuming ݂ெ஼<1, the ݂ெ஼  is higher when: i) δ∙N/s is larger, ii) when ffTT   is larger, and iii) when θ is smaller. All these changes 

mean that switching to an robot car reduces one’s own travel cost more and thus such cars are more attractive to buy. The ݂ெ஼  understandably decreases with the extra cost of robot cars, MCa. 
11 The first and second order derivatives of total cost with respect to f are:   

    2 2 1 2 [ ] / 1 ,ff aTC N f r f f r f TT N MC Nf s                      
  2 2 2 2 2

2 2 2 1 2 / / .TC TTC N r f f r fsf f               For an interior optimum to possibly to occur, 1 − θ + (∂r/∂f + ∂2r/∂f2 
 ∙  f/2)>0 must hold as otherwise the total cost is not stricly convex 

in f. As 0<θ<1, this happens when r does not overly depend on f and is not too concave.  
12 The ݂௣௨௕  is higher when: i) the capacity effect is stronger (i.e. smaller r), ii) the capacity function is more curved (i.e. more negative 

∂r/∂f), iii) MCa is lower, iv) ffTT   is higher and v) δ∙N/s is lower. Unlike with marginal cost pricing, the effect of θ on f is now 
ambiguous.  
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The public supplier has a larger share compared to the marginal cost supplier when r is lower. 
This is because the public supplier then wants to take advantage of the stronger capacity effect, 
whereas marginal cost provision ignores the capacity effect. When aMC  is smaller or  1 ffTT   
larger, the robot car reduces costs more and the share with both regimes increases, but this effect is 
smaller with a public supplier as it also considers the car purchase externality.  

To conclude, public provision often leads to the corner outcome of 100% robot cars. However, 
for interior solutions, marginal cost supply can lead to over- or undersupply. 

 
4.3. Provision by a private monopolist 
The monopolist maximises its profit, which equals the mark-up per trip multiplied by the number of 
robot cars:  

  .a aMU f C MC fN N          (25) 
The C  gives how much higher the travel cost of an robot car is than of a normal one and thus C  
measures the willingness to pay for an robot car over a normal one.  

For interior solutions, the optimal share for a private monopolist is half of that under marginal 
cost provision, where the latter already often leads to undersupply:12 F

13 

    1 1 12 1
1 .2

mon a ff

MC

sf MC TTN
f

  
       


 (26) 

The corner solution ݂ ௠௢௡=݂ெ஼=0 occurs in both regimes when the travel cost reduction from owning 
an robot car is so small that nobody wants one.  

The monopolist’s share may increase or decrease with θ. A lower θ means that switching to an 
robot car lowers one’s own travel cost more, thereby raising the willingness to pay for an robot car 
and this makes raising the share more profitable. However, a lower θ also raises the externality that 
robot cars impose on each other, which makes raising the share less profitable. The monopolist 
therefore internalises the negative heterogeneity externality that robot cars impose on each other. 
Under fixed demand, the monopolist ignores the positive capacity externality as this affects normal 
and robot car users equally and does not change the willingness to pay.  

The monopolist almost invariably has a much lower share than the public supplier does. For 
interior solutions, the monopolist has a lower share unless robot cars have no effect on capacity. The 
corner outcomes without undersupply of ݂௣௨௕=݂௠௢௡=0 and ݂௣௨௕=݂௠௢௡=1 are unlikely. The 
outcome ݂௠௢௡=1 needs a rather negative MCa and this tends to require that robot cars must be 
cheaper to produce than normal cars. The outcome ݂௣௨௕=0 is also unlikely as this requires robot cars 
to be very expensive or the effects on the VOT and the capacity to be very small. Ignoring 

                                                 
13 The first-order and second-order conditions of maximisation hold for an interior solution and there is one unique optimum.  
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implausible corner outcomes, the monopolist supplies too few robot cars from the societal 
perspective.  

 
5. Numerical example 
This section presents numerical results for two base calibrations of the model developed above: one 
for the USA and one for the Netherlands. The latter case may be viewed as representative for 
European countries. Compared to the USA, the Netherlands has a lower recommended VOT and a 
lower mileage before a car is sold on the second-hand market. The Netherlands has much higher 
fuel prices, which are partly offset by a higher fuel efficiency. These differences in parameterisation 
will turn out to be important. We will find that, for the USA calibration, marginal cost provision and 
public provision lead to the same outcome, while for the Dutch case, marginal cost pricing leads to 
too few robot cars.  

After discussing these base cases, we turn to the sensitivity analyses. The model outcomes are 
sensitive to the parameterisation and hence it is important to present these results.  

 
5.1. Calibration of the numerical models 
We focus on petrol passenger cars. For both countries, the schedule delay parameters will be based 
on the ratios β/α=39 64⁄  and γ/α=1521/640 established in Small (1982), as is common in the 
literature. As in Van den Berg and Verhoef (2011ab), we use N=9000 and s=3600. We consider a 
trip of 20 km, with a free-flow travel time of 20 minutes. To ensure that the regular equilibrium of 
the bottleneck model holds, the VOT with an robot car must be greater than the value of schedule 
delay early and thus θ>β/α=39/64≈0.609. Hence, θ can be between 0.61 and 1 and the sensitivity 
analyses will indeed vary θ over this entire range. Our base value is θ=0.8, so that the VOT effect is 
in the middle of the possible range.  

Following the average prediction from the literature, we assume that switching from all normal 
cars to all robot cars doubles capacity. Many studies have found that the capacity effect is non-linear. 
Following Tientrakool et al. (2011), we assume that going from 90% robot cars to 100% leads to 
half of the total increase in capacity and that capacity monotonically increases in f. Fitting a 
polynomial leads to r = 1 − 0.5 ∙ f 3.85. This relationship is illustrated in Fig. 5. 

 
 

Fig. 5: The r[f] function (left) and effective capacity for robot cars (right) for the numerical models 
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 For the USA, we use a VOT of $18.82/h. This is the recommended value (US Department of 
Transportation, 2011) updated using 2013 income data (US Census Bureau, 2014). Our base case 
USA value of MCa is 1.13. For the USA in 2013, the fuel expenditure per mile was13F

14 $0.13, implying 
a fuel efficiency of 26 miles per gallon14 F

15 or 11 km per litre. Let us assume that an robot car has a 
20% higher fuel efficiency than a normal car. This implies a fuel cost saving for an robot car of 
$0.31 per trip. We further assume that the extra cost to purchase an robot car is $7,500, when also 
considering the difference in residual value when reselling the car on the second-hand market. We 
use that in 2013 a car was driven on average 13,476 miles per year.15 F

16 We assume that a new car is 
sold after 4.5 years. Then, the extra depreciation cost for an robot car becomes $1.54 per trip. This 
results in an extra automobile cost per trip of $1.13. 

For the Netherlands, the recommended VOT is €10 (Kouwenhoven et al., 2014), and following 
a similar calculation as for the USA, an MCa of €1.51 seems reasonable.16 F

17,
17 F

18   
 

5.2. Base case 
Table 2 shows the outcomes18 F

19 for the base calibrations for four cases: no robot cars, perfectly 
competitive provision at marginal production cost, second-best public provision that minimises total 
social cost, and monopoly provision that maximises the profit of the robot car producer. TTC is the 
total travel cost and TC is the total cost including the automobile cost; %∆TTC and %∆TC are the 
corresponding percentage changes in totals from the case without robot cars. Relative efficiency is 
the total cost saving of a policy from the case without robot cars divided by the cost reduction under 
socially optimal public provision.  

The introduction of robot cars lowers costs. Even with a private monopolist, users are slightly 
better off than without robot cars. Of course, users can never be worse off than before as they can 
always all choose to stick to the normal car. The monopolist asks a substantial mark-up per trip of 

                                                 
14 www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_03_17.html (accessed 

on 24 February 2015). 
15 Using a 2014 average price of $3.43 per gallon from www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htm (accessed on 14 February 

2015). 
16 www.fhwa.dot.gov/ohim/onh00/bar8.htm (accessed on 24 February 2015).  
17 The average daily travel distance for people with a car is 41 km (CBS, 2015a). We assume an extra purchase cost (minus residual 

value) of €5,000 and that the car will be sold after 3.5 years, which is lower than for the USA as a large part of new Dutch cars are 
leased for a few years only. This results in a depreciation cost per trip of €1.91. Fuel savings would be €0.40 per trip, using an 
average fuel price for 2014 of €1.695/litre (CBS, 2015b), a 14 km/litre fuel efficiency for normal cars 
(http://gemiddeldgezien.nl/meer-gemiddelden/68-gemiddeld-verbruik-auto as accessed on 14 February 2015), and a 20% higher 
fuel efficiency for an robot car.  

18 In our welfare evaluation, we ignore that a part of the fuel price is tax. Including this would complicate the modelling but would 
not change the individual’s choice. It may affect the choice of the public supplier, but in our base cases it would not do so as the 
component for fuel in the automobile cost is small and the public optimums will turn out to be deep in the corner solution of 100% 
robot cars anyway as eq. (24) predicts shares above 150%. Ignoring the tax part does affect the cost savings, but even here the effect 
is small. For instance, in the Netherlands, taxes form about 64% of the fuel price (www.nl.wikipedia.org/wiki/Benzineaccijns as 
accessed on 15 April 2015) and removing the reduction in tax payments from the cost saving would reduce the total cost savings in 
the public case by only 3.7%.  

19 The results were calculated in Mathematica 9. For marginal cost and monopoly supply, we used the analytical conditions and then 
checked if a corner solution occurred. For public supply, the objective may not be globally convex. Therefore, we used the command 
‘minimize’ to find the global minimum as the total cost is a polynomial function of f.  
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$2.34, which implies that the profit is 60% of revenue. The costs are higher for the USA than for the 
Netherlands because the USA has a higher VOT.  

For the USA, marginal cost provision leads to the same corner solution of 100% robot cars as 
public provision. The robot car has a lower cost (i.e. travel cost plus automobile cost) than the normal 
car and hence everybody wants one. For the Netherlands, marginal cost provision results in too few 
robot cars. This MC regime attains only 15% of the societal cost savings from public provision. The 
private monopoly attains a much lower cost saving in both countries. Partly responsible for these 
low cost savings from private supply is the non-linear capacity effect: the smaller market shares with 
these regimes mean that capacity is much lower. Yet, even under a constant capacity effect, 
monopoly supply fares much worse than public supply, while also MC supply often does worse than 
public supply (see Subsection 5.5 below). 

Table 2: Outcomes under the base calibrations for the USA and the Netherlands 
 USA The Netherlands 
 Only 

normal cars 
Marginal 

cost Public Monopoly Only normal 
cars 

Marginal 
cost Public Monopoly 

Share with an robot car 0 1 1 0.514 0 0.652 1 0.326 
Total travel cost (TTC) 261839 147857 147857 241719 139128 123392 78564 132136 
%∆TTC - -44% -44% -8% - -11% -44% -5% 
Total cost (TC) 261839 158027 158027 246943 139128 132256 92154 136568 
%∆TC - -40% -40% -6% - -5% -34% -2% 
Relative efficiency# 0 1 1 0.14 0 0.15 1 0.05 
Cost per trip for a normal car - 17.68 17.68 28.64 - 14.70 9.40 15.43 
Cost per trip for an     
    robot car 29.09 17.56 17.56 28.64 15.46 14.70 9.40 15.43 
Mark-up - 0 0 2.34 - 0 -0.84 0.79 
Corner solution - yes yes no - no yes no 

Note: Relative efficiency is the welfare gain of a policy relative to the case without robot cars divided by the gain from public provision.  
 
For the USA, a realistic lower bound for MCa seems to be −$0.75, using a fuel efficiency gain of 

50%, an extra purchase cost of $1,000 and a usage of 5.5 years. A reasonable upper bound seems to 
be MCa=$4, using a 5% higher fuel efficiency, an extra purchase cost of $15,000 and 3 years of 
usage. Under the lower bound case of MCa=−$0.75, the outcome is similar to that in the base USA 
case: marginal cost pricing and public provision lead to 100% robot cars. Monopoly supply has a 
similar relative efficiency as in Table 2, although the fraction with an robot car is larger. For the 
upper bound case of MCa=$4, public supply still leads to 100% robot cars, but this requires a large 
subsidy. Accordingly, robot cars need to be very costly for it not to be socially worthwhile for 
everyone to get one if the capacity effect is as strong as assumed.  

 
5.3 Sensitivity with respect to θ and MCa  
There is little to no guidance from the literature on the values of MCa and θ. There is also a very 
wide range of predictions for the size and shape of the capacity effect. Therefore, it is vital to do 
extensive sensitivity analyses. The effects of the other parameters are in line with the theoretical 
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discussion. Moreover, for these parameters we have much more guidance from the literature. Hence, 
these parameters will not be discussed further here. Subsection 5.4 will vary the maximum capacity 
s/r[f=1] for the same general shape of the r[f] function. Subsection 5.5 will vary this shape. This 
subsection varies the VOT reduction parameter, θ, from its theoretical minimum of β/α to 1. It also 
varies the extra marginal automobile cost of an robot car, MCa, from −2 to 8. As fuel savings can 
only be so large, a MCa below −1 tends to imply that robot cars are cheaper to produce than normal 
cars. For The Netherlands, the base case values were MCa=1.51 and θ=0.8.  

Fig. 6 shows the equilibrium share with an robot car for marginal cost (left panel), public (middle 
panel) and monopoly provision (right panel). The darker the area of a contour plot is, the lower the 
share with an robot car. A white area is for the corner solution f=1 and a black area for f=0. The 
graph is for the Dutch VOT of €10, with the other parameters being the same for both cases. Using 
the VOT for the USA leads to qualitatively equivalent pictures. 

 
Fig. 6: Effect on share of robot cars of MCa and θ: the left panel is for marginal cost provision, the middle 

panel for public supply and the right panel for monopoly provision 

 Note: The darker the area of a contour plot is, the lower the share with an robot car; a white area is for f=1 and a black area for f=0. 
 
In θ vs MCa space, public provision only leads to corner outcomes. It leads to 100% robot cars 

unless they are very expensive to make, with MCa>6. This would imply that robot cars cost around 
€17,500 more than normal cars after considering the difference in residual value as well. 

Marginal cost supply also tends to lead to a large share with an robot car. If MCa and θ are 
sufficiently low, marginal cost and public provision both lead to 100% robot cars. Still, for higher 
values of MCa, marginal cost provision leads to a below optimal share. Monopoly provision leads 
to an even larger undersupply and welfare loss. Only when MCa<0 and when θ is sufficiently large 
does monopoly provision not lead to too few robot cars because this implies that all regimes lead to 
100% robot cars. For interior solutions, the monopoly leads to half as many robot cars as marginal 
cost pricing. Marginal cost and monopoly provision lead to 0% robot cars for exactly the same black 
parameter range as in this range getting an robot car always increases the user’s cost. In a part of 
this range, the public provider still ensures that everyone gets an robot car because there is a large 
positive externality.   
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Fig. 7 compares the changes in total costs that the regimes attain. In this sensitivity analysis, 
monopoly supply always performs worse than public supply and often leads to a large welfare loss. 
Marginal cost supply can also lead to substantial welfare losses, even when the difference in shares 
is small. For a slightly positive or negative MCa and thus robot cars not being too expensive, 
marginal cost supply leads to the same corner outcome of f=1 as public supply.  

 
Fig. 7: Effects of MCa and θ on the percentage change in total cost with only normal cars  

Left: %∆TC for marginal cost provision Middle: %∆TC for public provision Right: %∆TC for monopoly provision 

  
5.4. Sensitivity analysis with respect to the maximum increase in capacity  
Next, we look at the impact of the maximum increase in capacity due to robot cars by varying 
s/r[f=1]. In the base case, the maximum capacity was 2∙s. We range the maximum capacity from s 
to 4.4∙s. We again also vary θ. The power of the polynomial defining r is kept constant at 3.85. 

Fig. 8 depicts the shares with an robot car. Consistent with the analytics, s/r[f=1] has no effect 
on the share under marginal cost or monopoly provision as these regimes ignore the capacity effect. 
The maximum capacity does not affect the shares under these regimes, although it does affect the 
total costs. 

For public provision, we show a much smaller range of the maximum capacity as the only area 
of interest is for small values. For s/r[f=1]>4120≈1.14∙s, so for a maximum increase of more than 
14%, public provision always leads to f=1. Only when the capacity effect is very small is it optimal 
for not everyone to be equipped. Still, such a small increase is within the possible range.19F

20 
Public supply only leads to 0% robot cars when the effect on the VOT is limited (i.e. θ>0.9) and 

the capacity effect is very small (i.e. s/r[f=1]<4120). Monopoly supply leads to an undersupply 
unless a corner outcome ݂௣௨௕=0 holds. Still, the difference in shares is minor when the maximum 
capacity is below 3950. Consistent with the theory, the difference between ݂௠௢௡ and ݂௣௨௕ goes 
towards zero as maximum capacity decreases towards s=3600. When the VOT effect is not too 
weak, with θ<0.9, and the maximum capacity is below 3950, marginal cost pricing leads to an 
oversupply that can be quite large. Still, for values of the maximum capacity that seem more 
reasonable—say between 1.25∙s and 2.5∙s—public supply leads to 100% robot cars; marginal cost 

                                                 
20 At no point are the parameter areas of the ݂௣௨௕=0 and ݂௣௨௕=1 corner solutions connected; there is always a (small) area between 

them where the interior outcome smoothly goes from 0 to 1.  
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supply often does the same or leads to a small undersupply. Still, even a small undersupply can lead 
to a large loss in welfare.2 0F

21
 

 
Fig. 8: Effect of maximum capacity and θ on equilibrium shares of robot cars: the left panel is for marginal 

cost provision, the middle panel for public provision and the right panel for monopoly provision 

 
Note: The darker the area of a contour plot is, the lower the share with an robot car. A white area is for f=1 and a black area for f=0. For public 

supply, the range of s/r[f=1] is much smaller than for the other regimes as for s/r[f=1]>4120≈ 1.14 ∙  .public provision always leads to f=1 ݏ
 

5.5. Sensitivity analysis with respect to the shape of the capacity function  
This final sensitivity analysis looks at the effects of the shape of capacity function. It does so by 
varying the power, m, of the polynomial: 

 r[f]=1−0.5∙f m.  (27) 
For a power of m=0, we have a constant capacity effect that is independent of f. For m≥1, the higher 
m is, the more convex the capacity s/r[f] is in f. Our base case had m=3.85 and thus capacity was 
highly convex. No matter what the power is, it is socially optimal to have 100% robot cars when the 
MCa is low enough and the maximum capacity for robot cars is high enough. Because the maximum 
capacity is independent of m, the total cost under public supply is independent of the power m. As 
Section 4 proved, the shares under marginal cost and monopoly supply are also independent of the 
capacity function as these providers ignore the capacity effect.  

The shape of the capacity function can hence only affect travel costs under marginal cost or 
monopoly supply. The higher the power in (27) is, the lower the capacity for robot cars when f<1, 
and the lower the welfare gain from a regime that leads to a below socially optimal share. Fig. 9 
shows this by giving the relative efficiency of the two private regimes over the power m. It does so 
for different levels of θ. The relative efficiency of a regime equals its total cost saving from the 
initial setting with only normal cars relative to the cost savings with public supply. The sensitivity 
analysis is again for the Dutch case. The pictures for the USA look qualitatively the same.  

                                                 
21 We repeated this analysis with a lowered MCa of −2 and with an increased MCa of 7, whereas here MCa was 1.51. When MCa=−2, 

getting an robot car always reduces one’s own cost . Hence, marginal cost provision always leads to 100% robot cars. When MCa=7, 
getting an robot car always increases one’s own cost, and hence both marginal cost pricing and monopoly supply lead to 0% robot 
cars. Still, if the capacity effect is not too weak, there is a positive externality and the socially optimal share may be positive. Besides 
these changes, the effects of the parameters are qualitatively the same as in the main sensitivity analysis. 
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To conclude, the shape of the capacity function can greatly affect the welfare effects of the 
regimes. However, the shape never affects the equilibrium fraction of robot cars with marginal cost 
and monopoly provision. For our parameterisations, the shape also has no effect on the fraction with 
public supply as this regime always leads to the corner outcome of 100% robot cars. 

 
Fig. 9: Relative efficiencies of marginal cost and monopoly supply over the convexity of the capacity 

function as determined by the power of r[f] in eq. (27) 

 
Note: Relative efficiency is the welfare gain of a policy from the case without robot cars divided by the gain from public provision. From a power of 

1, the higher the power of r[f] is, the more convex the capacity for robot cars. 
 

6. Model extensions 
We have used what is arguably the simplest dynamic model to investigate the effects of robot cars 
via increased capacity, a lower VOT and the resulting VOT heterogeneity. There are a number of 
logical extensions worthy of mentioning here and it seems worthwhile to explore qualitatively how 
some of these might affect our results.   

First, it seems plausible that the extent to which getting an robot car reduces the VOT will differ 
among people. Some office workers may spend the freed-up time preparing documents or checking 
email, becoming nearly as productive as in the office. Manual workers may well face some difficulty 
in using the freed-up time working, but may spend the travel time on leisure activities. A 
businessperson may already be using the time in a normal car in a productive way and hence buying 
an robot car may bring modest benefits. In any case, the parameter θ is likely to vary over 
individuals. This would mean that car buyers self-select, with those for whom an robot car reduces 
travel costs more being more likely to get one. This also suggests that increasing the fraction with 
an robot car may be less beneficial. For a high enough share, the user who switches has a relatively 
small reduction in VOT and thus a small cost saving. A heterogeneous θ gives marginal cost and 
monopoly supply an extra disadvantage from the efficiency viewpoint: these suppliers only consider 
the marginal user in deciding their f, whereas the public supplier considers the average robot car 
user who has a lower θi than the marginal user. This issue is akin to the classical issue of quality 
provision by a private firm in Spence (1975). 
  There may also be pre-existing heterogeneity in the values of time and/or schedule delay. Then, 
users arrive ordered by the heterogeneous ratios βi/VOTi and γi/VOTi, which are now heterogeneous 
for two reasons: pre-existing heterogeneity and differences in car type. Pre-existing heterogeneity 
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may lessen the heterogeneity effect as robot cars may add little in heterogeneity. It may also 
strengthen the heterogeneity effect as the last users to switch to an robot car will tend to have the 
lowest reduction in travel cost. Pre-existing heterogeneity means that some normal and robot car 
users may have the same ratio βi/VOTi or γi/VOTi, implying that they travel mixed and reach the 
bottleneck at the same time. As car types now no longer travel separated in time, this may reduce 
the capacity benefit of robot cars.   

An interesting form of pre-existing heterogeneity is ‘proportional heterogeneity’, which leads to 
variation in αi, βi and γi in fixed proportions and could be argued to be due to differences in income 
(Vickrey, 1973; Van den Berg and Verhoef, 2011b; Van den Berg 2014; Hall, 2015). Such 
heterogeneity would not affect the order in which users arrive, but would mean that those with higher 
incomes may have lower marginal utilities of income and higher travel costs. Hence, people with 
higher incomes would be more likely to buy robot cars and may gain more from doing so. This 
implies important distributional effects from introducing robot cars.   

Finally, we assume that total demand is fixed and we ignore other modes. If robot cars reduce the 
price of car travel for a given number of users, this induces more demand and attracts users away 
from other modes such as public transport. If the travel cost by public transport decreases with the 
amount of its use, for example, due to economies of scale or frequency benefits, a Downs-Thomson 
paradox could occur.21 F

22 Then, a mode shift towards car travel raises the cost of travel by public 
transport and thus even more public transport users will switch to the car. This then also increases 
the equilibrium price for car travel and hence everyone is worse off. For related paradoxes, see 
Arnott and Small (1994).  

 
7. Conclusion 
We have investigated the effects of introducing robot cars on the costs of travel via a number of 
distinct channels. These include an increase in the capacity of roads, a decrease in the values of time 
(VOTs) and the resulting heterogeneity in VOTs. The share of users with an robot car was 
endogenous as we incorporated the equilibrium of the car purchase market. We considered three 
provision regimes: perfect competition leading to marginal cost pricing, second-best public 
provision, and monopoly supply.  

Buying an robot car instead of a normal car raises road capacity and thus imposes a positive 
externality. However, it also lowers a user’s VOT. As under heterogeneity the bottleneck congestion 
externality decreases with a user’s VOT, buying an robot car also imposes a negative externality. 
The net externality may be positive or negative. The numerical analyses suggest that a net positive 
externality is most likely, especially when the capacity for robot cars increases with their market 
share. 

If there is a positive externality due to buying an robot car, marginal cost pricing tends to lead to 
under-consumption of robot cars. To prevent this and attain the second-best optimum, the public 

                                                 
22 As discussed by Zhang et al. (2016), this assumes that total travel demand is fixed, automobile and public transport are perfect 

substitutes and public transport is not congested or crowded. Relaxing these assumptions often eliminates the paradox. 
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supplier needs to provide a subsidy. However, if there is a negative externality, a corrective tax is 
needed to prevent over-consumption. The private monopolist is likely to lead to a large undersupply 
and welfare loss. 

The results are sensitive to the model’s crucial parameters. For instance, in the USA base case, 
public and marginal cost supply both lead to 100% robot cars, whereas, for the Dutch base case, 
marginal cost supply leads to only 76% robot cars and public supply to 100%. There is great 
uncertainty about these parameter values and this makes investigating them an important future 
research topic. The inclusion of pre-existing heterogeneity in multiple dimensions and the analysis 
of the resulting distributional effects also seem interesting and important extensions. 

We only consider one supplier, but in reality, there will be multiple suppliers of robot cars who 
may also supply normal cars. Will these suppliers face incentives to allow their robot cars to 
cooperate or would it be more profitable to keep them incompatible? And what about supporting 
infrastructure for robot cars along the road? Will each car supplier need to build its own? The 
introduction of robot cars will have great effects on public transport, taxi transport and parking 
demand. In the long run, it may even affect the structure of the city. These questions deserve 
attention in future research efforts. 

Finally, we have only considered congestion and ignored other externalities, such as pollution 
and safety. Including these would raise the marginal external benefit of purchasing an robot car as 
they are often argued to be safer and more fuel-efficient. For safety, it may be that this benefit 
increases with the market share of robot cars, just as we also assumed for the capacity benefit. The 
analytical analysis core is likely to remain unchanged by including these other externalities. 
However, the parameterisation and the calibration of the safety function would be important 
extensions to increase the completeness of our work.  
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