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Abstract

Based on unique data we show that macro variables, the default rate and loss

given default of bank loans share common cyclical components. The innovation in

our model is the distinction between loans with either severe or mild losses. The

variation in the proportion of these two types drives the cyclic behavior of the loss

given default, and constitutes the links with the default rate and macro variables.

These links vary according to loan and borrower characteristics. During downturns,

the proportion of defaults with severe losses increases, but the distribution of

losses conditional on their being mild or severe does not change. Though loans

are monitored more closely than bonds and are more senior, the cyclical variation

in their losses resembles those for bonds, albeit around a lower average level.

This variation leads to an increase in the capital reserves required for loan portfolios.
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1 Introduction

Recent advances in the risk management of bank loans, such as stress tests for the

banking sector, highlight the importance of investigating their risk in relation to the

macroeconomic environment. As stated in the Basel II Accord, risk measures should

“reflect economic downturn conditions where necessary to capture the relevant risks”

(BCBS, 2005). Though loan defaults occur more frequently during economic downturns,

it is neither clear whether the resulting losses also show cyclical behavior, nor whether

they are related to the business cycle.

In this paper, we analyze the cyclical variation in bank loan losses, their relation to the

business cycle and differences across loan categories, and show that this information can

improve the risk management of banks. We base our analysis on a large sample of 22,080

defaults from Global Credit Data1, spanning the period 2003–2010. Their databases

contain loans and defaults, and information on the recovery, the seniority of the loans,

and the industry, country and size of the borrowers. To exploit this detailed information,

we build a model that can accommodate both time and cross-sectional variation in the

default rate and the loss given default (LGD), and link them to macroeconomic variables.

We show how the model can be used for risk management.

Our research brings new insights for two reasons. First, the cyclicality of bank loan

losses might be different from the more commonly studied bond losses, whose LGD and

default rates are cyclical, related to the business cycle and positively correlated with each

other.2 Bank loans differ in several fundamental respects from bonds. Banks monitor

their loans more closely than bond owners. Their loans are often more senior and backed

by collateral. Further, they can postpone the sale of collateral until a favorable economic

state, hoping to receive a higher price.3 As a consequence, the default rate and LGD for

bank loans can be lower, less cyclical and less interrelated. Besides, our research is based

on the actual workout LGD, whereas research on bond losses mostly uses the expected or

market-implied LGD shortly after default.

Second, research on bank loans default is scarce because data are not easily available

and typically constitute samples that are either short or focus on a single country or

1In March 2015, the consortium changed its name to Global Credit Data from Pan European Credit
Data Consortium.

2See the surveys by Allen and Saunders (2003) and Schuermann (2004). Pesaran et al. (2006), Duffie
et al. (2007) and Azizpour et al. (2015) model the relation between the default rate and macro variables,
whereas Frye (2000) and Creal et al. (2014) also include the LGD in their models.

3Acharya et al. (2007) shows the importance of the fire-sales effect for the LGD of bonds.
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loan type, see, for example, Grunert and Weber (2009), Calabrese and Zenga (2010)

and Hartmann-Wendels et al. (2014). We instead study a unique and rich data set that

contains defaults for various countries and loan types over a period of eight years. Our

model can reveal the influence of characteristics on time variation, in the form of different

sensitivities to the same cycle or of adaption to different cycles, for example based on

industry (see Shleifer and Vishny, 1992).

An important empirical difference between loan and bond LGD is their domain. Our

data shows that bank loan LGD can exceed 100% or fall below 0%, whereas bond LGD

always lies within this interval. If the LGD exceeds 100%, the bank loses more than

the initial loan, for example because of principal advances (the bank lends an additional

amount to the borrower for recovery). If the LGD falls below 0%, the bank recovers more

than the initial loan, for example because of penalty fees, additional interest and recovered

principal advances. Moreover, the LGD distribution is bimodal, with most loans being

close to either a full recovery or a full loss. Schuermann (2004) shows this bimodality for

bond LGD. Because of the differences in domain, we cannot use existing models for bond

LGD in our analysis.

Our model links macroeconomic variables, the default rate, and the LGD via latent

factors that follow autoregressive processes. While this set-up has been used before (see

e.g. Pesaran et al., 2006; Koopman et al., 2012), the LGD component in our model is new.

We model the LGD as a mixture of two normal distributions that differ in their means

to capture the bimodality and LGD outside the [0, 1] interval. So, losses can be mild or

severe with a certain probability that depends on the factors.4 The parameters that relate

the LGD and the default rate to the latent factors can depend on loan characteristics.

We estimate our hierarchical model using a Bayesian Gibbs sampler. The main

advantage of the Gibbs sampler is that it allows us to divide the complicated overall

estimation problem into smaller subproblems (the different Gibbs steps) which are easier

to deal with. The main complication in the estimation is that the probability of default

and of severe losses depend in a nonlinear way on parameters and factors. We solve this

issue using a new data augmentation technique proposed in Polson et al. (2013) which

leads to easier to analyze Gaussian likelihoods conditional on the new Pólya-gamma latent

variables.

Our results show the presence of a macro factor that captures the business cycle, and a

4Knaup and Wagner (2012) also distinguish severe and mild losses to derive a bank’s credit risk
indicator.
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default-specific factor that captures variation in the credit cycle unrelated to the business

cycle.5 The LGD distribution varies over time via the probability of a loss being severe

or mild. We do not find evidence that the average LGD for either severe or mild losses

varies over time. In line with earlier research (see e.g., Frye, 2000; Schuermann, 2004),

default rates and LGD of bank loans go up during economic downturns. However, the

default-specific factor has an opposite effect, indicating that increases in the default rate

unrelated to the business cycle are typically caused by borrowers that miss a payment

but catch up later, and hence the LGD is low or zero.

Loan and borrower characteristics influence the cyclical variation in the default rate

and LGD. The LGD of a collateralized loan is on average lower, but fluctuates more

strongly over the business cycle as in Bruche and González-Aguado (2010). Loans to small

and medium enterprises exhibit stronger fluctuations in both their default rates and LGDs

compared to large corporates. While we find differences in the factor sensitivities of default

rates and LGDs for different industries, we do not find evidence for industry-specific cycles.

We use our model to investigate the loss distribution of a fictional loan portfolio as in

Miu and Ozdemir (2006) in a point-in-time setting. We calculate the expected loss and the

economic capital (the difference the 99.9% quantile and the mean of the loss distribution).

Both statistics show considerable variation over the business cycle. From peak to bottom

of the cycle, the economic capital increases by a factor two. It is quite sensitive to

the cyclical variation in the LGD. 22% of its increase over the cycle can be attributed

to time-variation in the LGD. This result illustrates the importance of accounting for

time-variation in the LGD that is related to the business cycle in risk management.

Our findings contribute to the literature on credit risk in two ways. First, we show

that just as for bonds, the LGD of bank loans varies over the business cycle. The LGD

for bank loans is generally much lower than for bonds, but can still double in times

of distress. Whereas the average bond LGD varies from 25% to 80% as reported by

Schuermann (2004), Altman et al. (2005), and Bruche and González-Aguado (2010), we

find that loan LGD varies from 14% to 29% over time, though the periods that they

study do not fully match with ours.6 We also show how the cyclical behavior of the

LGD is affected by characteristics. These results complements papers that only report

how industry characteristics influence the (average) LGD (Schuermann, 2004; Acharya

5Koopman et al. (2012) refer to this default-specific factor as frailty factor.
6Schuermann (2004) also reports variation in LGD between 20% and 55% for traded bank loans,

whereas our loans are not traded.
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et al., 2007) or how the impact of seniority varies over the business cycle (Bruche and

González-Aguado, 2010).

Second, our model exploits the panel structure of the LGD observations in a novel way.

Though the time-varying mixture distribution for the LGD adds a layer of complexity to

our model, it shows in detail how the LGD distribution changes. These insights would be

lost if we would model the time-variation of the cross-sectionally averaged LGD or analyse

the LGD distribution at each point in time. Our methods can be seen as an extension

of Koopman and Lucas (2008), who only model the default rate, and Koopman et al.

(2012), who add macro variables, by modeling the LGD as well. We also extend Calabrese

(2014a), who only models the LGD, by linking the LGD to the default rate and macro

variables. We deviate from Creal et al. (2014) and Bruche and González-Aguado (2010),

who use the Beta distribution for the LGD, because the mixture of normals in our model

can more easily accommodate observations outside [0, 1]. The default-specific factor also

extends single Markov-switching business cycle of Bruche and González-Aguado (2010).

Moreover, our model can flexibly include covariates and can easily be adopted in analyses

of the risk of loan portfolios.

2 Data

We combine observations of macroeconomic variables, defaults of bank loans and their

losses. Because we want to focus on the part for bank loans in our model, we make

standard choices for the variables that represent the business cycle. In particular, we

consider three macro variables that are also analyzed by Creal et al. (2014): the gross

domestic product (GDP), industrial production (IP) and the unemployment rate (UR).

The variables included are the growth rates with respect to the same quarter in the

previous year. To match the mostly European loan data sets, we use macro variables of

European countries. We provide an overview of the macro series in Appendix A in the

online supplementary material.

Besides the macroeconomic component, our model contains components for the default

rate and the LGD. We calculate the default rate as the number of defaulted loans divided

by the number of loans at the start of a year. The LGD is the amount lost as a fraction

of the exposure at default (EAD). We have observations of the workout LGD (also known

as economic LGD), which is based on the actual cash flows after default. They are timed

5



to coincide with the default date. By analyzing workout LGD, we further complement

studies of the LGD of bonds, which mostly use the market prices of bonds soon after

default (see e.g. Schuermann, 2004). Our sources for default and LGD observations are

unique databases from Global Credit Data, to which we have access via NIBC, a Dutch

bank. We first discuss the databases, and then turn to the data sets that we analyze.

2.1 Global Credit Data

Global Credit Data (GCD) is an international cooperation of banks to support statistical

research for the advanced internal ratings-based approach (IRB) under the Basel accords.7

The members pool information on loans and defaults to create two anonymous databases,

the LGD database with information about the losses on resolved defaults, and the loan

database with information to analyze the default rate. GCD has been founded in 2004

by 11 banks, and has grown to 53 members (April 2017). It focused originally on LGD,

but later expanded its focus to the default rate.

Data quality is a crucial issue for GCD. It sets specific and detailed rules with regard

to the default information that its members should submit. Default definitions are based

on the Basel accords, and GCD uses its own standards to characterize further aspects,

such as the size, industry and region of the borrower. Before default data is included in

the databases, GCD conducts regular audits to check whether the data that a member

submitted complies with its standards. A methodology committee regularly reviews these

rules. To stimulate participation, data is available to members on the give-to-get principle.

To obtain default data from a given year and loan category, members have to submit their

own default data for that given year and category.

The LGD database contains the cash flows of all defaulted loans of the member banks.

Because defaults are only included after the recovery process has ended, theses cash flows

are final and realized. It also contains the default and resolution dates, the seniority of

the loan, the presence of collateral, the size or type of the borrower as well as the industry

and country to which the borrower belongs. GCD aims at a representative database with

defaults dating from 1998, but some defaults go back as far as 1983. Members are obliged

to submit defaults dating from 2001 onwards. Table B.I in Appendix B shows that a

stable number of 40–45 banks contribute to the LGD database after 2001.

7See https://www.globalcreditdata.org/ for general information and https://www.

globalcreditdata.org/index.php?page=members for an up-to-date overview of the members.
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The loan database contains information about borrowers and defaults, in particular

their size or type, industry and country. Information about the seniority and the presence

of collateral is not available in this database, as these characteristics are not seen as

default drivers. GCD started with the construction of this database in 2009. It aims at

a representative database from 2000 onwards. Table B.I shows that the number of banks

contributing to this database is considerably less than to the LGD database. Because the

number of defaults per bank is generally small, the need for pooling is larger for LGD

than for loan data.

GCD provides a new version of the LGD database semi-annually, and of the loan

database annually. Via NIBC we have access to the June-2014 version of the LGD

database and the June-2013 version of the default database. While the parts of the

databases that are available to NIBC vary per characteristic, they represent a large

proportion of the total databases.

2.2 Sample selection

NIBC’s LGD data set contains 92,797 loans with 46,628 counterparties We exclude

non-representative observations based on Höcht and Zagst (2007) and NIBC’s internal

policy (see Appendix B.2 for details). Following NIBC’s practice, we discount all cash

flows by the two-year swap rate plus the spread from the loan. When the contractual

spread is unavailable, we use the average spread of all defaulted loans. We transform the

resulting workout LGD to a percentage of the EAD. We order the LGDs by quarter in

line with the frequency of the macro variables.

The loan data set consists of in total 2.80 million loans of which 37,385 go into default,

leading to an average default rate of 1.34%. The number of loans and defaults is specified

per year. Because the number of contributing banks to this database is lower, the number

of defaults is lower than in the LGD data set. Though we filter outliers from the LGD

data set based on the size of the loan (measured by EAD), we cannot do so for the loan

data set because the base value of the loan is not recorded.

Because the loan database starts in 2003, and the most recent LGD observations

may be biased, we restrict our analysis to the period 2003–2010. The LGD is positively

correlated with the workout period, i.e. the period needed to resolve the default. The most

recent observations are few, have a short workout period by construction, and their LGDs

are therefore typically small. After filtering the raw LGD data set, our sample contains
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22,080 LGD observations of mostly European defaults, one of the most comprehensive

datasets for bank loan LGD studied thus far. The largest data set that is reported by

Grunert and Weber (2009) in their summary of empirical studies on bank loan recovery

rates contains 5,782 observations over the period 1992–1995. More recently, Calabrese

and Zenga (2010) and Calabrese (2014a,b) study a portfolio of 149,378 Italian bank loan

defaults resolved in 1999. Hartmann-Wendels et al. (2014) consider 14,322 defaulted

German lease contracts from 2001–2009. Though large, these studies focus on defaults

from a single country or a single loan type whereas our dataset is more extensive.

2.3 Sample characteristics

The average LGD and the default rate both exhibit cyclical behavior (see Figure B.1 in

Appendix B). Both increase during the financial crisis, though the peak of the LGD (of

28.4%) falls in 2008, whereas the peak of the default rate (of 2.2%) falls in 2009. By 2010,

the average LGD is back at its pre-crisis level, but the default rate remains higher.

For our LGD sample we also investigate the cross-sectional distribution. When we

pool all observations, the distribution shows bimodality, as is typical for LGD data (see

e.g. Schuermann, 2004). Figure 1a shows that the LGD is either close to zero, or close to

one when the complete value of the loan is lost. A substantial part (12.5%) of the LGD

observations falls outside the [0, 1] interval. These exceedances are related to principal

advances, legal costs or penalty fees. A principal advance is an additional amount lent to

aid the recovery of the defaulted borrower. If none of it is paid back, the losses exceed

the EAD and the LGD exceeds one. If on the other hand the full debt is recovered,

including penalty fees, legal costs and principal advances, the amount received during

recovery exceeds the EAD and the LGD is negative. In line with Höcht and Zagst (2007)

and Hartmann-Wendels et al. (2014), LGD observations below -0.5 or above 1.5 have been

removed.

[Figure 1 about here.]

The bimodality in the distribution of the LGD is present in every quarter as shown by

Figure 1b. In 2008, the financial crisis leads to higher peaks at zero and at one, indicating

more defaults with either no loss or a full loss. In 2009, the peak around one is still

present, but the peak at zero is substantially lower. The large proportion of full losses

explains the large average LGD in those years. Our modeling framework exploits both

the bimodality and the time variation of the LGD.
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We report the effect of loan and borrower characteristics on the LGD statistics

in Table I. The dip statistic of Hartigan and Hartigan (1985) indicates that all large

subsamples are bimodal. Because some subsamples contain a small number of defaults,

we limit our analysis to those subsets with at least 3,200 observations, which corresponds

with 100 observations per quarter.

[Table I about here.]

Panel A shows that, as can be expected, loans of lower seniority have on average a

higher LGD, and a increased probability of an LGD above 0.5. Most loans in our sample

are senior, and 44% have some form of collateral. The non-parametric Kruskal-Wallis

(KW) test rejects the hypothesis that the distributions of the subsets have the same

location.

In Panel B we split the sample based on the size or type of the borrower. GCD

distinguishes SMEs, large corporates and some more specific types of financing, for

example for real estate, aircraft, or shipping. While these specific types are interesting,

the number of observations is too small, and we concentrate on loans to SMEs and large

corporates. The differences between those two loan categories are small, but the KW-test

still indicates that they are significant.

Panel C categorizes the loans according to the industry of the borrower as indicated by

GCD. A large part of the loans (67%) is concentrated in three industries, being industrials,

financials or consumer staples. Industrials have the lowest average LGD and proportion

of defaults with LGDs below 0.5, followed by consumer staples, and then financials. The

KW-test indicates again significant differences in the locations of the distributions.

In Appendix B we compare our LGD data set to the LGD information of bonds in

Moody’s Ultimate Recovery Database (URD). The recovery of bank loans being different

from bonds is an important motivation for our paper. Loans are typically more senior,

more often have collateral, and lead to more closely monitoring (see Emery et al., 2004;

Schuermann, 2004). We find that the LGDs on loans and bonds are bimodal, though

bonds encounter more large LGDs. Our analysis will shed more light on the behavior of

the LGD of bank loans, and the role that for example seniority plays.
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3 Methods

3.1 Model specification

We propose a mixed measurement model in the style of Koopman et al. (2012) (whose

notation we follow) and Creal et al. (2014), where the observations can follow different

distributions and depend on latent factors. Our model contains a total of N variables at

each point in time, though not all variables are always observed. We separate them in

three sets being macro, loan and LGD variables, labeled m, l and d. We use ycit to denote

the time t observation of variable i in category c, c =m, l, d. We use N c to denote the

size of a category. We collect all variables in the vector y = (ym′,yl′,yd′)′.

The set of K latent factors ft form the central part of our model, through which

all observed processes are linked. We distinguish Km macro factors fm
t that capture the

business cycle, and affect all observed variables. Next to these macro factors, we introduce

K l loan factors f l
t that influence both the default and the LGD variables. The Kd LGD

factors fd
t influence only the LGD variables. The factors f l

t and fd
t capture the dynamics

of the credit cycle that are unrelated to the business cycle. Because of this general setup,

we can investigate whether the LGD variables are related to the business cycle, the credit

cycle, their own separate LGD cycle, or no cycle at all.

Following Koopman et al. (2012), we assume that ft follows a VAR(1) process,

ft+1 = Φft + ηt, ηt ∼ N(0,Ω), (1)

where the coefficient matrix Φ is a diagonal matrix. The innovations are serially

uncorrelated. These restrictions ensure that the loan and LGD factors are independent

of the macro factors, in line with the literature on credit risk (see e.g. Duffie et al., 2009;

Koopman et al., 2012). We impose that ft is stationary, so |φkk| < 1. The initial state

vector f1 follows the unconditional distribution of the latent process, that is f1 ∼ N(0,Σf )

with Σf solving Σf = ΦΣfΦ
′ +Ω. For identification, we impose that the unconditional

variance equals the identity matrix Σf = I.

The first variable set contains the Nm macro variables, which depend linearly on the

latent macro factors,

ym
t = αm +Bmfm

t + νt, νt ∼ N(0,Σm), (2)

10



where αm is a vector of size Nm containing the intercepts, and Bm is a Nm×Km matrix

with coefficients. The innovations in the macro variables follow a normal distribution

with mean zero and variance matrix Σm and are independent of the latent process.

We standardize the macro variables to have zero mean and unit variance to ease the

comparison of their relation with the latent factor (cf. Stock and Watson, 2002). For

identification, we impose thatBm is lower triangular with a sign restriction on the diagonal

elements, and Km < Nm.

The second variable set contains the status of the loans, ylit. Loan i at time t can

either be performing (ylit = 0) or in default (ylit = 1). Conditional on ft, y
l
it follows a

Bernoulli distribution with default probability plit,

ylit|ft ∼ Bernoulli(plit) (3)

plit = Λ(αl
i + βl′

i f
m
t + γ l′

i f
l
t), (4)

where, Λ(z) = 1/(1 + exp(−z)) is the logistic function. The coefficients αl
i, β

l
i and γ l

i can

depend on J l loan-specific characteristics. Collecting them together with an intercept in

the vector xl
i, we obtain αl

i = αl′xl
i, β

l
i = Bl′xl

i and γ l
i = Γ l′xl

i, where αl is a vector

and Bl and Γ l are matrices. For identification, we impose that Γ l is lower triangular

with sign-restricted diagonal elements. The number of loan factors should not exceed the

number of characteristics, K l ≤ J l.

We assume that conditional on ft, the default status of the loans are mutually

independent. When no loan-specific characteristics are used, the default rate at time t is

the same for all loans, plit = plt = Λ(αl +βl′fm
t + γlf l

t), and the number of defaulted loans

follows a binomial distribution. When the characteristics are categorical and separate the

loans into groups, for example based on industry, country or borrower type, the number

of defaulted loans within a particular group also follows a binomial distribution.

Whereas the structure of our model thus far is similar to Koopman et al. (2012), we

propose a novel part for the final set of variables, which are the LGDs of a defaulted loan,

ydit. Based on the empirical distribution in Figure 1, we distinguish defaulted loans with

a severe loss (close to a full loss) from those with a mild loss (close to a full recovery).

We model the default type by a latent binary variable sit that takes a value zero (one) to
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indicate a mild (severe) loss.8 Conditional on ft, sit follows a Bernoulli distribution with

parameter pdit. Conditional on sit, y
d
it follows a normal distribution. Mathematically, this

part of the model can be written as

ydit ∼

N(µi0, σ
2
i ) if sit = 0

N(µi1, σ
2
i ) if sit = 1

(5)

sit|ft ∼Bernoulli(pdit) (6)

pdit = Λ(αd
i + βd′

i f
m
t + γd′

i f
l
t + δd′i f

d
t ). (7)

We assume that conditional on ft, the LGDs are independent.

Conditional on ft, y
d
it follows a mixture of two normal distributions9 that differ in their

means,

µis = µ′
sx

d
i , s = 0, 1 (8)

with µs a vector of size Jd + 1. These means can again be a function of the Jd default

characteristics that we collect together with an intercept in the vector xd
i of size Jd + 1.

To prevent label switching, we impose µi0 < µi1 over the support of xd
i . We also allow

the variance to be a function of the loan characteristics,

lnσ2
i = λ′xd

i , (9)

with λ a vector of size J + 1. We do not allow the variances to depend on the default

type sit. Because of this restriction and µi0 < µi1, the probability Pr[sit = 0|ydit,ft] is a

decreasing function of ydit. So, the probability of a default being labeled mild decreases

for increasing LGD. Without this restriction, losses that become more and more extreme

would be inferred with an increasing probability to be of the type with the largest variance.

The (conditional) probability of a severe loss, pdit depends via a logit transformation on

the latent factors (cf. Equation (4)). The coefficients can depend on the default-specific

characteristics, that is αd′
i = αdxd

i , βd
i = Bd′xd

i , γd
i = Γ d′xd

i and δdi = ∆d′xd
i , where αd

is a vector and Bd, Γ d and ∆d are matrices. For identification, we impose that ∆d is

lower triangular with positive diagonal elements. The number of default factors should

8This model component of latent default types is similar to the latent distinction between good and
bad loans or investment projects that is used to include asymmetric information in models of capital
structure, see e.g. Flannery (1986).

9In section 4.4, we consider a mixture of Student’s t distributions.
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not exceed the number of characteristics, Kd ≤ Jd.

The latent factors influence the LGD via the probability pdit with which the default is

severe. We do not include an effect of the factors on the average LGD for a given type µis,

because the location of the modes of the distributions in Figure 1b stay approximately

constant. The variation in the relative heights of the peaks is driven via the mixture

probability pdit.

3.2 Estimation

We use uninformative priors that are specified in Appendix C. We impose the identification

restrictions explained in the previous section using the priors.

We use a Gibbs sampler to estimate the model in a Bayesian way. This means that

we simulate from the conditional posterior distributions for each parameter to obtain

draws from the full posterior distribution of all parameters. The main advantage of

the Gibbs sampler is that it allows us to divide our complicated estimation problem into

smaller subproblems (the different Gibbs steps), which makes the estimation feasible. The

following explains how we estimate the model without loan and default characteristics.

The estimation of the model with these characteristics is a straightforward extension as

explained in Appendix C.

The main complication in the simulation is that the probabilities of default and of

a severe loss depend in a nonlinear way on the parameters and the latent factors via

the logistic function. We tackle this complication by using new results in Polson et al.

(2013) and Windle et al. (2013), who show that one can easily sample the parameters and

latent factors from their conditional posterior distributions once one adds auxiliary latent

variables - denoted ωl
t and ωd

t here - to the model. The main idea is that we obtain an

easier to analyze linear Gaussian (state space) model conditional on the auxiliary latent

variables. This new result makes our analysis feasible.

For ease of notation, we define Am as the matrix that collects the intercepts and slopes

in Equation (2), αl as the vector which collects all parameters in Equation (4), and αd

as the vector which collects all parameters in Equation (7).

The Gibbs sampler consists of the following steps:

• Macro module

SampleAm from the matricvariate normal distribution (re-draw untilAm
2,1 = Bm

1,1 <

0 for identification of the first factor) and Σm from an inverse Wishart distribution.
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• Loan status module

Sample latent variable ωl
t from a Pólya-gamma distribution and αl from a

multivariate normal distribution (re-draw until αl
3 = γl > 0 for identification of

the second factor).

• Loss given default module

Sample latent variable ωd
t from a Pólya-gamma distribution for all t and αd from

a multivariate normal distribution (re-draw until αd
4 = δd > 0 for identification of

the third factor). Sample sit from a Bernoulli distribution for all i, t, µ0 and µ1

from normal distributions (re-draw until µ0 < µ1) and σ2 from an inverse gamma-2

distribution.

• Factor module

Simulate the latent factors using the simulation smoother of Durbin and Koopman

(2002). Sample φjj for factors j = 1, .., K using a Metropolis-Hastings step that

imposes that |φjj| < 1.

We refer to Appendix C for the exact distributions and derivations. We retain

100,000 draws after a burn-in of 50,000 draws to obtain results. Increasing the number of

simulations does not impact results.

3.3 Motivation of modeling choices

Our model is designed to get a detailed view of the variation in LGDs and default

rates, both over time and in relation to loan characteristics, and also of the interplay

between these two sources of variation. Though simpler analyses are available, they

cannot satisfactorily answer our research questions, because they do not fully exploit the

richness of our data set. We first highlight the appealing properties of our model, and

then indicate how it deviates from the other advanced alternatives that have recently been

proposed.

Arguably, our model has two layers of complexity. The first is the latent

factor structure that drives the time-series dynamics and dependence of our variables.

Alternatively, the probability of default and of a severe loss can be linked directly to the

macro variables. An additional default-specific (frailty) factor would then be difficult to

include. The literature on credit and default risk shows that a latent factor structure can
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accurately capture this issue.10 We do not use a Markov-switching process as in Bruche

and González-Aguado (2010) or Calabrese (2014a), because autoregressive processes more

naturally link to the gradual changes in macro variables. Our model is more advanced

than the models proposed by Frye (2000); Gordy (2003); Pykhtin (2003) as we can include

more factors and explicitly model their behavior and effect on the probability of default

and LGD.

The second layer stems from the panel structure of our LGD observations, which we

model by a mixture distribution with time-varying weights. Easier solutions could consist

of data reduction by modeling the time-variation of the cross-sectional average of the

LGD, or a separate or two-step analysis of the LGD distribution at each point in time.

Because we fully model the LGD distribution, we can incorporate the determinants of

both the cross-sectional variation and the time-variation. We think that in particular

the effect of the loan and default characteristics add interesting insights to our analysis.

Besides, we circumvent a generated regressor problem as in Pagan (1984).

Our model component for the LGD differs from existing models. We do not use

a standard Beta distribution for the LGD as in Creal et al. (2014) and Bruche and

González-Aguado (2010) or a mixture of point masses at 0 and 1 and a Beta distribution

as in Calabrese (2014b). These distributions only have support on the unit interval.

Because over 10% of the LGD observations are outside the [0, 1] interval (see Figure 1a),

using these distributions would require a transformation of the data. The results for the

discrete-continuous distribution are difficult to interpret, since the LGDs drawn from the

Beta component can be arbitrarily close to 0 and 1.

4 Results

4.1 Models without loan and default characteristics

We start our analysis by investigating the general relation between the macro variables,

the defaults and the LGDs. In the basic specification we investigate whether the defaults

and LGDs exhibit cyclical behavior, and how many factors are needed to capture it. We

do not include loan nor default characteristics in this analysis. Based on the evidence in

Duffie et al. (2007); Koopman et al. (2012); Azizpour et al. (2015) that favor at least one

10See among others Frye (2000); Gordy (2003); Pykhtin (2003); Pesaran et al. (2006); Koopman and
Lucas (2008); Koopman et al. (2012); Creal et al. (2014); Azizpour et al. (2015).
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macro and one default-specific factor, we take the two-factor model with a macro and

a loan factor as our starting point. The macro factor can affect all processes, and the

loan factor can only influence the probabilities of default and of a severe LGD. We then

investigate the added value of an additional default factor. We present our estimation

results in Table II.

[Table II about here.]

Our results for the two-factor specification show a persistent macro factor, and a loan

factor with much quicker mean reversion. The macro variables show clear exposures to the

macro factor. A high value signals a recessionary state of the world, with low growth rates

for GDP and industrial production, and a high unemployment rate. Because the macro

variables have been normalized with unconditional variances equal to one, an increase of

the factor by one leads to changes equal to one standard deviation times their loadings,

so decreases of GDP and IP by 0.969 · 2.57% = 2.49% and 0.802 · 6.41% = 5.14%,

and a increase of the unemployment rate by 0.879 · 0.90% = 0.79%. The factor has a

slightly stronger effect on GDP growth and the unemployment rate than on the growth

of industrial production.

Unsurprisingly, the business cycle factor positively affects the probability of default.

On average its marginal effect is 0.11%, which is economically large, compared to the

average default probability of 0.31% per quarter. The sensitivity to the loan factor is

smaller than to the macro factor, and consequently the average marginal effect is smaller

(0.080%) as well, though still sizable.

Our main interest is the component for the LGD. Here we also see a clear effect of the

business cycle. The posterior distribution of βd has a mean of 0.328, but the spread is

wide. So, during a recession when the latent factor is positive, the probability of defaulted

loans with a severe loss increases. A mild LGD has a mean of 7.2%, whereas severe losses

are on average much larger at 82.9%. The two loss types are clearly different, as indicated

by the standard deviation of 13.1%. On average, the probability of a severe loss is 17.4%,

and the average LGD equals 20.4%. The marginal effect of the macro factor on the severe

loss probability is on average 4.5%, which translates to an increase of the average LGD by

3.4%. Though this effect is less strong than for the default rate, it is still quite substantial.

The loan factor has a negative effect on the LGD, as indicated by the negative posterior

mean and small standard deviation for γd. A positive shock to this factor leads to more

defaults, but decreases the probability of a severe loss. These effects indicate that these
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defaults are related to firms that miss a loan payment (interest or repayment), but catch

up afterwards.

To get a better understanding of the factors, we plot their evolution in Figure 2a. The

macro factor starts negative, which indicates the benign economic environment of the first

part of our sample period. After 2008, it shows a sharp increase, corresponding with the

credit crisis. The loan factor shows more erratic behavior, and is less persistent than the

macro factor. It is high around 2006 and low around 2008. So, given the sensitivities

the factor has an upward effect on the default probabilities but downward on the LGDs

around 2006. Around 2008, the effects are reversed, indicating fewer defaults related to

temporary delays in payments.

[Figure 2 about here.]

The plot of the fit over time of the macro variables, the realized default rate, and the

average LGD in Figure 3 shows which part of their variation is captured by the factors.

The macro factor reasonably tracks the macro variables, in particular during the great

recession. The model-implied and realized default rate series almost coincide. While the

macro factor captures the long-term swings in the default rate, the loan factor captures

the more short-lived fluctuations. The deviations between the average model-implied

and realized LGD are also relatively small, though larger than for the default rate. The

combination of the factors captures the low average LGD in 2006-2007, and the subsequent

pronounced upswing.

[Figure 3 about here.]

The addition of a third factor that can only influence the LGD decouples it from

the other variables. The default factor is persistent, and strongly affects the LGD. The

posterior mean of δd is 0.512, much larger than the mean of βd of 0.031, which captures

the effect of the macro factor. Compared to the two-factor specification, the influence

of the macro factor decreases by a factor 10, and the effect of the loan factor is halved.

Figure 2b shows that the default factor seems to lead the macro factor. A longer sample

period may shed more light on this issue. Both the plot and the Widely Applicable

Information Criterion, version 2 (WAIC2, Watanabe, 2010), which corrects for the number

of parameters, indicate that the fit of the three-factor model is better for the macro

variables, in particular for the unemployment rate. For the default rate changes are
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negligible. Though the fit for the average LGD in Figure 3e looks slightly better for

the three-factor structure, the WAIC2 actually deteriorates.11 Because we are mostly

interested in capturing the LGD part in relation to the other variables, we do not favor

the three-factor specification.

We investigate the importance of time-variation in the probability of a severe loss

by estimating a two-factor specification with the restriction βd = γd = 0. The WAIC2

value for the unrestricted specification is lower, indicating that the improvement in the

fit outweighs the additional two parameters.

We conclude that the combination of a macro and a loan factor accurately captures

the dynamics in the macro variables, probability of default and LGD. The macro factor

captures the business cycle with relatively long swings, whereas the loan factor captures

more short-lived fluctuations. During recessions, both the probability of default and the

LGD increase, so the macro factor leads to positive dependence between default rates and

LGD. However, the loan factor negatively affects their dependence, because it captures

the defaults related to mere delays in loan payments.

4.2 The effects of loan and default characteristics

Loan and default characteristics affect the probability of default and the LGD of a loan.

Their influence can take the form of a fixed effect, may influence the sensitivity to the

latent factors, or give rise to a completely new latent factor. For example, Shleifer and

Vishny (1992) argue that credit cycles are industry specific.

We use the richness of our data set to investigate the effect of seniority, and the

size and industry of the borrower. Because this information in the GCD databases is

categorical, we include it in our model by dummy variables. We require a minimum of

3,200 observations (100 per quarter) for a group to include the corresponding dummy

variable.

For each characteristic we estimate a two-factor model and extensions with additional

loan and default factors. To save space we present the results for the two-factor models

here. We show the full results in Appendix D.

[Table III about here.]

[Figure 4 about here.]

11Because of differences in the scales of the variables, the sum of the WAIC2 values cannot be used to
evaluate the overall fit.
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4.2.1 Effects of seniority

In our analysis of seniority, we distinguish defaults of senior secured and senior unsecured

loans (see the number of observations in Table I). Because seniority is only available for

the LGD observations, it only influences the LGD component of our model.

The left panels of Table III show considerable differences between the LGD of senior

secured and senior unsecured loans. First, unsecured loans suffer on average a larger LGD.

Both the average severe LGD, and the average probability of the loss being severe are

higher for unsecured loans (85.8% vs. 76.6% and 19.1% vs. 15.1%). The average values

for a mild LGD do not differ much. Together, these differences translate to an average

LGD of 22.2% for an unsecured loan and 17.5% for a secured loan.

Second, secured loans are more sensitive to the business cycle. Its sensitivity is about 2

times as large, and consequently the marginal effect on the average LGD is 7.2% (5.9%) for

the secured (unsecured) loans. The LGD of secured loans does not respond strongly to the

loan factor. The posterior distribution of γd is wide and close to zero. The corresponding

sensitivity of unsecured defaults is much larger and clearly negative. Apparently, delays

in loan payments are concentrated in unsecured loans.

The behavior of the loan factor and the probability of default have also changed in

comparison with the results without characteristics. The loan factor has become more

persistent, and the default rate has lost is sensitivity to the macro factor. The posterior

mean of βl is negative, but its distribution is very wide. The plot in Figure D.1a shows

that the loan factor resembles the macro factor much more than in Figure 2a, except for

the crisis period where it lags the macro factor, and looks again more like the loan factor

of the model without characteristics. Because we do not know the seniority of each loan,

we cannot further investigate this issue.

The fit over time of the default rate (Figure 4a) is similar to the model without

characteristics in Figure 3d. Figure 4a clearly shows the differences in the LGD behavior.

The average LGD is generally higher for unsecured loans than for secured loans, except

during the credit crisis. These results are in line with Bruche and González-Aguado

(2010) and extend Hamerle et al. (2011). The sensitivity to the macro factor explains the

pronounced increase around 2008 in the LGD of secured loans. Its effect on the LGD of

unsecured loans is partly offset by the loan factor. During the credit crisis, the LGD of

both loan types increases, but less for unsecured loans. The dependence of the value of

collateral on the business cycle may explain part of this effect.
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Our results for a three factor specification, which has an additional default factor that

only affects the LGD of unsecured loans do no support a different cycle for unsecured loans.

While the fit of the average unsecured LGD improves, the WAIC2 actually increases. We

conclude that a two-factor structure, with a strong effect of the macro factor on the

secured LGD, and of the loan factor on the unsecured LGD is the best model.

4.2.2 Effects of borrower size

In our analysis of the effect of borrower size, we distinguish SMEs and large corporates,

both for the loans and the defaults in our sample. Comparing the middle panels of

Table III to the two-factor results in Table II shows that borrower size mostly affects the

probability of default. It is much larger when lending to SMEs (0.35%) than to large

corporates (0.14%). The sensitivities to both the macro and the loan factor are also

higher for SMEs. This result is in line with the higher riskiness, both systematic and

idiosyncratic that is documented for the equities of small firms. The distribution of the

LGD does not vary in relation to borrower type. The differences in the coefficients and the

implied statistics in the middle of panel D are small compared to their posterior standard

deviations.

The macro and loan factors in Figure D.2a largely resemble those in Figure 2a. The

default rates implied by the two-factor structure track the realized rates closely for SMEs

and a bit less for large corporates (Figure 4c). However, in particular in the first part of

our sample period, there is room for improvement. Because of the large number of loans

to SMEs (12,000 vs. 6,500 large corporates), the loan factor reflects the SME default rate

more. The factors fit the dynamics of the average LGD for SME also better than for large

corporates (Figure 4d).

In Appendix D, we report the three-factor specification that has an additional SME

loan factor. The comparison by WAIC2 values favors this specification, though the

improvement over the two-factor model is small. The sensitivities of the SME probability

of default and LGD to the general loan factor become less at the expense of the sensitivities

to the new SME loan factor. The additional factor has most influence at the beginning

and end of our sample period, but also points to different behavior during the credit

crisis. We interpret these results as some evidence for separate default-specific factors

that depend on size.
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4.2.3 Effects of industry

The industry in which the borrower is active substantially influences the probability of

default and the LGD. Due to the number of observations, we can distinguish the industries

Consumer Staples (CS), Industrials (IND) and Financials (FIN). The results for this

analysis in the right panels of Table III indicate that these differences pertain to both the

components for the default probabilities and for the LGD.

For the probability of default, both the average and the factor sensitivities vary over

the industries. Loans to borrowers in FIN (IND) have the lowest (highest) average default

probability of 0.16% (0.41%). Sensitivities to the business cycle is highest for FIN, followed

by IND. The average default probability for CS is in the middle (0.27%), but least sensitive

to the business cycle. The sensitivities to the loan factor are about equal.

The LGDs differ mainly in their sensitivity to the business cycle. It is highest for FIN,

followed by CS and lowest for IND. The differences in marginal effects on the average LGD,

which equal 7.0%, 4.3% and 3.2%, are substantial. The differences in the other parameters

are less consequential, and the average LGD is about the same for the different industries.

The factor estimates are again not much different than in our baseline specification.

The ability of the model to fit the default rates remains remarkably good, as deviations of

the model-implied series from the realisations are small (Figure 4e). For the LGD series,

the deviations are a bit larger.

Our analysis of a four-factor specification with two additional loan factors does not

provide evidence in favor of separate credit cycles for each industry, as proposed by Shleifer

and Vishny (1992). The three loan factors are difficult to distinguish from white noise, and

the factor loadings do not indicate that each industry has its own factor. The four-factor

specification improves the fit, though perhaps less than expected.

We conclude that industry characteristics have an important effect on default rates

and LGD. Loans to industrials are generally most risky, as their probability of default is

highest, but loans to financials vary most related to business cycle fluctuations. Loans to

CS firms are more in the middle.

4.3 Implications for risk management

We illustrate the implications of our model for risk management by the calculation of the

expected loss and the economic capital, which measures the risk of unexpected losses on a

loan portfolio. We calculate it as the difference between 99.9% quantile and the mean of
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the loss distribution. We show how they change during our sample period for a portfolio

that corresponds with our data set and based on the latent factors we have inferred.

Though other papers12 have already shown the importance of the positive dependence

between default rates and LGD for economic capital in an unconditional setting, our

analysis gives additional insights in the dynamics of the loss distribution.

At each point in time we consider a portfolio of 2,000 loans, each with an exposure at

default of 1 euro, as in Miu and Ozdemir (2006). After every full iteration of the Gibbs

sampler, we simulate the loss on the portfolios, conditional on the values drawn for the

parameters and factors in that iteration. This yields the posterior loss distribution per

time period, from which we get the quarterly expected loss and economic capital.

Figure 5 shows the cyclical variation in the expected loss distribution and the economic

capital, both for our base two-factor model and the restricted version with constant LGD

as presented in of Section 4.1. We clearly see that both the expected loss and the economic

capital fluctuate stronger when the LGD is also time-varying. When the LGD cannot

vary over time, the expected loss varies from 0.61 (0.03%) to 2.37 (0.12%), but when the

LGD can vary, the maximum is at 2.98 (0.15%), a substantial increase. In good times,

time variation in the LGD leads to a slightly lower expected loss, but in bad times to a

pronounced increase. These effects carry over to the economic capital, which is clearly

lower from 2005 to 2006, and rapidly increases during 2008. During 2008, economic capital

based on time-varying LGD is 5.64 (0.28%) compared to 5.03 (0.25%) with constant LGD.

While these number may seem small, it means that 0.60 of the cyclical increase of 5.64 -

2.91 = 2.73 comes from time-variation in the LGD, so 22%. The increase of 0.60 is similar

to the results in Bruche and González-Aguado (2010, Table 3).

[Figure 5 about here.]

These results illustrate how our model can be used in a risk management setting.

By using values for the latent factors at a specific point in time, or prespecified values,

stress tests can be conducted. Based on the point-in-time estimates of portfolio losses, or

by constructing an unconditional loss distribution, our model can be used to construct

through-the-cyle economic capital (see Miu and Ozdemir, 2006).

12See Frye (2000); Pykhtin (2003); Gordy (2003); Düllmann and Gehde-Trapp (2004); Miu and Ozdemir
(2006) among others.
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4.4 Alternative specifications

Figure 6 shows the fit of our model for the LGD distributions at two points in time, Q4

of 2005 and Q2 of 2008. The probability of a severe loss is much higher in 2008Q2, and

accordingly, we see an increase in the right mode and a decrease in the left mode. While

this effect captures some of the changes in the empirical distributions, other more flexible

distributions may lead to a better fit. We therefore investigate a replacement of the

normal distribution in Equation (8) by the skewed Student’s t of Azzalini and Capitanio

(2003). We show the full results in Appendix E and discuss the main consequences here.

[Figure 6 about here.]

The dotted lines in Figure 6 show an improvement in the fit. The low degrees of

freedom leads to more peakedness for the mild losses. Both distributions show considerable

skewness, which helps to fit the observations in the middle. Though we observe an increase

in the average probability of a severe loss, the overall factor structure, and the factor

sensitivities change only marginally (see Figure E.1).

Though the mixture of skewed Student’s t distributions offers a better cross-sectional

fit, it has an important theoretical disadvantage. The mixture of normal distributions

with the same variance has the property that Pr[sit = 0|ydit,ft] is a decreasing function

of ydit. So, if the LGD grows larger, the probability with which it is inferred as mild

decreases. The (skewed) Student’s t distribution does not have this property because of

its fat tails, even when the degrees of freedom of the mixture components are equal.13 For

this reason, we do not replace the normal distributions in our specifications. Because the

consequences for the other model components are small, we conclude that our results are

robust to this choice.

Our specification does not allow for lead-lag relations between the macro variables

and the loan and default variables. While we leave a full investigation of models with

lead-lag effects, as well as richer VAR dynamics for future research, we briefly investigate

the potential of such extensions by simply leading and lagging the macro series. We find

that using past values of the macro variables does not lead to a better fit of the default

rates and LGD series. Using future values slightly increases the fit of the LGD series but

not of the default rate. This is likely related to the workout period. Though interesting,

a model that needs future information is of course less useful in practice.

13We illustrate this effect in Figure E.2.
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5 Conclusion

The loss given default and the default rate on bank loans are both cyclical. We show that

this variation stems from a macro factor capturing the business cycle and a default-specific

factor that captures variations in the credit cycle on top of the business cycle. The time

variation in the LGD is explained by changes in the probability of a severe versus a mild

loss. While different from bonds, bank loans are also sensitive to the business cycle with

higher default rates and LGD during downturns.

Our model describes the stylized facts of the LGD on bank loans well. It captures

the bimodal shape of the empirical distribution and provides an interpretation of the

components, by explicitly modeling the extremes of no and full loss. It is flexible enough

to include the differences across loan characteristics. Further, the model has applications

in risk management, such as the calculation of economic capital.
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Figure 1: Empirical distribution of LGD

(a) Histogram of pooled LGD observations
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(b) Distribution of LGD observations per quarter

Panel a shows the histogram of the pooled set of LGD observations. Panel b shows the empirical
distribution of the LGD observations per quarter. We use all LGD observations over the period 2003–2010
after applying the filters in Appendix B.2.
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Figure 2: Latent factors

(a) Two factors
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The figures show the smoothed latent factors for the model defined in Section 3.1. We report results for
specifications with a macro and a loan factor (a), and an additional default factor (b). The specifications
do not include loan or default characteristics.
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Figure 3: Time series fit
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(d) Default rate
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The panels show the time series fit of the model without cross-sectional differences for the growth rate
of GDP (a), the growth rate of industrial production (b), the year-on-year change in the unemployment
rate (c), the default rate (d) and the cross-sectional average of the LGD (e).
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Figure 4: Time series fit, loan characteristics

(a) Default rate, seniority
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(c) Default rate, borrower size
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(d) Loss given default, borrower size

2003 2004 2005 2006 2007 2008 2009 2010 2011
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lo
ss

 g
iv

en
 d

ef
au

lt

 

 
LC (realized)
LC (2 factors)
SME (realized)
SME (2 factors)

(e) Default rate, industry
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(f) Loss given default, industry
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The panels show the time series fit of the two-factor model with different loan and default characteristics
for the default rate and the cross-sectional average of the LGD.
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Figure 5: Portfolio simulation results
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The figure presents the portfolio loss (EL) and economic capital (EC) for a portfolio of loans, each quarter
consisting of 2,000 loans and each loan with an exposure of 1 euro. The EL and EC are based on the
two-factor model without cross-sectional variation, with a time-varying LGD (solid line) and a constant
LGD (dashed lines).
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Figure 6: Mixture fit
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Panel a shows the cross-sectional fit on the LGDs of the mixture of normals and mixture of skew-t for the
fourth quarter of 2005, and panel b shows the fit for the second quarter of 2008. The fitted distributions
are based on the posterior means of the parameters of the two-factor model without cross-sectional
variation.
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Table I: LGD statistics per loan and borrower characteristics

Characteristic Defaults Average Fraction HDS
LGD > 0.5 p-value

Total 22,080 0.204 0.170 0.000

Panel A: Seniority

Senior secured∗ 9,723 0.175 0.138 0.000
Senior unsecured∗ 12,011 0.222 0.191 0.000
Subordinated secured 110 0.289 0.255 0.002
Subordinated 236 0.427 0.419 0.000

Panel B: Borrower size or type

SME∗ 12,028 0.193 0.164 0.000
Large Corporate∗ 6,496 0.199 0.159 0.000
Real Estate Finance 2,068 0.326 0.284 0.000
Aircraft Finance 556 0.088 0.045 0.000
Shipping Finance 331 0.077 0.054 0.100
Project Finance 302 0.177 0.132 0.002
Banks 276 0.286 0.286 0.000
Public Services 23 0.246 0.174 0.234

Panel C: Industries

Industrials∗ 6,944 0.178 0.150 0.000
Financials∗ 4,629 0.217 0.178 0.000
Consumer Staples∗ 3,232 0.186 0.162 0.000
Unknown 2,817 0.309 0.279 0.000
Information Technology 1,384 0.188 0.155 0.000
Consumer Discretionary 1,089 0.196 0.128 0.034
Other 606 0.147 0.102 0.000
Telecommunication Services 410 0.203 0.183 0.304
Utilities 391 0.145 0.079 0.280
Health Care 366 0.123 0.082 0.086
Materials 212 0.147 0.127 0.534

This table presents the number of defaults, the average LGD, the fraction of defaults with an LGD larger
than 0.5 and the p-value of Hartigan and Hartigan’s (1985) dip statistic (HDS) using 500 bootstraps, to
test the null hypothesis of a unimodal distribution versus the alternative of a multimodal distribution,
for different subsets of the LGD data set. Subsets with more than 3,200 observations (indicated by a ∗)
are selected for analysis with our model in Section 4.2.
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Table II: Parameter estimates, model without loan and default characteristics

Macro and loan Macro, loan and Macro and loan
factor default factor factor, constant LGD

Panel A: Factor

φ11 0.856 (0.078) 0.917 (0.050) 0.939 (0.045)
φ22 0.322 (0.207) 0.271 (0.220) 0.290 (0.215)
φ33 0.778 (0.130)

Panel B: Macro variables

αGDP −0.008 (0.317) −0.198 (0.391) 0.580 (0.668)
βGDP −0.969 (0.531) −0.904 (0.562) −1.102 (0.824)
αIP −0.007 (0.284) −0.156 (0.338) 0.475 (0.572)
βIP −0.802 (0.465) −0.725 (0.483) −0.889 (0.714)
αUR 0.008 (0.298) 0.253 (0.467) −0.707 (0.801)
βUR 0.879 (0.491) 1.125 (0.673) 1.376 (0.971)
WAIC2 110.3 −2.4 −9.3

Panel C: Loan status

αl −5.850 (0.097) −5.759 (0.122) −6.057 (0.197)
βl 0.371 (0.201) 0.318 (0.200) 0.360 (0.271)
γl 0.258 (0.058) 0.298 (0.065) 0.292 (0.070)
av. pl (×10−2) 0.309 (0.002) 0.310 (0.002) 0.310 (0.002)

m.e. of fm 0.114 (0.062) 0.098 (0.092) 0.111 (0.084)
m.e. of f l 0.080 (0.018) 0.062 (0.020) 0.090 (0.022)

WAIC2 323.2 319.8 320.5

Panel D: Loss given default

µ0 0.072 (0.001) 0.072 (0.001) 0.072 (0.001)
µ1 0.829 (0.002) 0.829 (0.002) 0.829 (0.003)
σ 0.131 (0.001) 0.131 (0.001) 0.131 (0.001)
αd −1.643 (0.159) −1.697 (0.302) −1.560 (0.018)
βd 0.328 (0.202) 0.031 (0.211)
γd −0.293 (0.075) −0.153 (0.072)
δd 0.512 (0.339)
av. pd 0.174 (0.003) 0.174 (0.003) 0.174 (0.003)

m.e. of fm 0.045 (0.028) 0.004 (0.029)
m.e. of f l −0.040 (0.010) −0.021 (0.010)
m.e. of fd 0.070 (0.046)

av. LGD 0.204 (0.002) 0.204 (0.002) 0.204 (0.002)
m.e. of fm 0.034 (0.021) 0.003 (0.022)
m.e. of f l −0.030 (0.008) −0.016 (0.007)
m.e. of fd 0.053 (0.035)

WAIC2 −25,978.3 −25,969.3 −25,958.4

This table presents the posterior mean and standard deviation (in parentheses) of the parameters of the
model in Section 3.1. We report results for specifications with a macro and a loan factor, an additional
default factor. and macro and loan factor that do not influence the LGD component. The specifications
do not include loan or default characteristics. Panel A presents the elements of Φ of the factor component.
Panel B presents the macroeconomic component with the intercepts α and factor sensitivities β for the
gross domestic product (GDP), industrial production (IP) and unemployment rate (UR). Panel C presents
the loan status component. The probability of default has fixed effect αl and factor sensitivities βl for
the macro factor, and γl for the loan factor. Panel D presents the LGD component. The LGD type can
be either mild or severe. Conditional on the type, the LGD follows a normal distribution with mean µ0

or µ1, and volatility σ. The probability of severe loss has fixed effect αd and factor sensitivities βd for
the macro factor, γd for the loan factor, and δd for the default factor. We also report time-series averages
of the probability of default pl, the probability of a severe loss pd and the average LGD, the marginal
effects that the factors have on these variables, and the Widely Applicable Information Criterion, version
2 (WAIC2) for each component. The number of observations, N , given by the sum of the macroeconomic,
default rate, LGD observations is 22,208.
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Table A.I: Macroeconomic variables description

Abbreviation Subject Measure Country Transformation

GDP B1 GE: Gross
domestic product -
expenditure approach

GYSA: Growth rate
compared to the same
quarter of previous year,
seasonally adjusted

OECD -
Europe

-

IP Industrial production,
s.a.

Growth on the same
period of the previous
year

OECD -
Europe

-

UR Harmonised
unemployment rate
(monthly), Total, All
persons

Level, rate or quantity
series, s.a.

European
Union (28
countries)

Difference with
same quarter of
previous year

The table presents the macroeconomic variables as defined in the OECD database (see http://stats.oecd.org/)
and possible transformations.
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Table A.II: Macroeconomic variables statistics

GDP IP UR

Mean 1.575 0.968 0.070
Median 2.621 2.806 0.017
Maximum 3.940 8.715 2.167
Minimum -5.617 -16.945 -1.100
Standard deviation 2.567 6.412 0.903
Skewness -1.755 -1.692 0.877
Kurtosis 4.981 5.086 3.084
AR(1) 0.894 0.861 0.938
AR(2) 0.646 0.535 0.786
AR(3) 0.343 0.135 0.581
AR(4) 0.070 -0.212 0.354

The table presents descriptive statistics for the macroeconomic variables gross domestic product, industrial
production, and unemployment rate, in differences with the same quarter of the previous year, as defined in
table A.I. AR(x) is the x-th order autocorrelation.
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Figure A.1: Macroeconomic variables time series

(a) GDP
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The figures present the time series of the macroeconomic variables gross domestic product (a), industrial
production (b) and unemployment rate (c), in differences with the same quarter of the previous year, as defined
in table A.I.
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B Loan and default data

B.1 GCD databases

[Table B.I about here.]

[Figure B.1 about here.]

B.2 Data Filter

Following Höcht and Zagst (2007), who also use data from the Global Credit Data Consortium,

and NIBC’s internal policy, we apply the following filters to the LGD database.

• EAD ≥ e100,000. The paper focuses on loans where there has been an actual (possible)

loss, so EAD should be at least larger than 0. Furthermore, there are some extreme LGD

values in the database for small EAD. To account for this noise, loans with EAD smaller

than e 100,000 are excluded.

• −10% <
(
(CF + CO) − (EAD − EAR)

)
/(EAD + PA) < 10%, where CF cash flows, CO

charge-offs and PA principal advances. The cash flows that make up the LGD should be

plausible, because they are the major building blocks of the LGD. A way of checking this

is by looking at under-/overpayments. The difference between the EAD and the exposure

at resolution (EAR), where resolution is the moment where the default is resolved, should

be close to the sum of the cash flows and charge-offs. The cash flow is the money coming

in and the charge-off is the acknowledgement of a loss in the balance sheet, because the

exposure is expected not to be repaid. Both reduce the exposure and should explain the

difference between EAD and EAR. There might be an under- or overpayment, resulting

in a difference. To exclude implausible cash flows, these loans are excluded when they are

more than or equal to 10% of the EAD and principal advances (PA). The 10% is a choice

of the Global Credit Data Consortium.

• −0.5 ≤ LGD ≤ 1.5. Although theoretically, LGD is expected between 0 and 1, it is

possible to have an LGD outside this range, e.g. due to principal advances or a profit on

the sale of assets. Abnormally high or low values are excluded. They are implausible and

influence LGD statistics too much.
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• No government guarantees. The database contains loans with special guarantees from the

government. Most of the loans are subordinated, but due to the guarantee, the average of

the subordinated LGD is lower than expected. Because the loans are very different from

others with the same seniority and to prevent underestimation of the subordinated LGD,

these loans are excluded from the dataset.

Some consortium members also filter for high principle advances ratios, which is the sum

of the principal advances divided by the EAD. Even though high ratios are plausible, they

are considered to influence the data too much and therefore exclude loans with ratios larger

than 100%. NIBC does include these loans, because they are supposed to contain valuable

information and the influence of outliers is mitigated because they cap their LGD to 1.5. The

data shows that the principal advances ratio does not exceed 100%, so applying the filter does

not affect the data and is therefore not considered.

B.3 Comparison with Moody’s Ultimate Resolved Database

Because we do not have direct access to Moody’s URD, we use its discussion in Altman

and Kalotay (2014) and Bastos (2014) to construct a comparison. Moody’s URD contains

information about some 5,200 resolved defaults of bonds (around 60%) and bank loans (around

40%), and about 1,000 borrowers. Figure B.2a shows that the LGD distribution of bonds is still

bimodal, but has more probability mass at large losses. The LGD distributions of bank loans of

both data sets are quite similar, even though URD focuses on “US non-financial corporations

holding over $50 million in debt at the time of default” (Bastos, 2014). Consequently, the

average LGD of bonds is much higher (55.1%) than of loans (19.5% based on URD and 20.1%

in our data set). Figure B.2b shows that the average LGD of bonds exceeds that of loans. The

behavior of both series is similar before the credit crisis, but differs after it. It also shows that

our LGD data set is much larger than the URD. These results confirm that the LGD of bank

loans differ substantially from bonds.

[Figure B.2 about here.]
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Table B.I: Number of banks contributing to the databases

Year LGD Loan

2000 33 NA
2001 38 NA
2002 41 NA
2003 43 7
2004 39 9
2005 41 10
2006 45 10
2007 47 11
2008 46 14
2009 46 16
2010 43 17
2011 40 17
2012 42 16
2013 39 NA
2014 37 NA

This table shows how many banks contribute loans and defaults to the LGD and the loan databases for a given
year. The versions of the databases correspond with June 2014 (LGD) and June 2013 (Loan).
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Figure B.1: Evolution of LGD and default rate observations
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(a) Number of defaults and average LGD over time
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Panel a presents the average LGD and the number of observations per year for the period 1983–2011 from the
Global Credit Data default database. Panel b presents the number of loans and the observed default rate per
year for the period 2003–2012 from the Global Credit Data loan database.
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Figure B.2: Comparison of LGD in our data set with Moody’s URD

(a) Histogram of pooled LGD observations

-0.5 0   0.5 1   1.5 

Loss given default

0

0.1

0.2

0.3

0.4

0.5

0.6

GCD
URD (loans)
URD (bonds)
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Panel a shows the pooled distribution of the LGD, and panel b shows the number of defaults and the average LGD
per year, both for our GCD data set and Moody’s Ultimate Recovery Database. We use all LGD observations in
the GCD data set over the period 2003–2010 after applying the filters in appendix B.2. The URD distributions
in panel a are based on Altman and Kalotay (2014), and the evolution in panel b on Bastos (2014).
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C Bayesian estimation procedure

This section provides a description of the Bayesian estimation of the model in section 3.

The likelihood, priors and posteriors are derived for the model without loan and default

characteristics. We explain in appendix C.4 how to extend this to include loan and default

characteristics, and how to replace the LGD component by a mixture of skew-t distributions.

C.1 Likelihood and latent variables

The likelihood consists of a macro, loan status and LGD component. First, we consider the

macro component of the likelihood. Define Y m as the T × Nm matrix with observations on

ymt and define Xm as the T × (Km + 1) matrix with a constant and observations on the macro

factors fm
t . We can write the likelihood as

p(Y m|Am,Σm,ft) ∝ |Σm|−T/2 exp

(
−1

2
tr((Σm)−1(Y m −XmAm)′(Y m −XmAm)

)
.

Second, we derive the loan status component of the likelihood. Define yl as the vector with

all loan indicators ylit, the vector ψl with elements ψl
t = αl + βl′fm

t + γl′f l
t , Dt as the number

of defaulted loans in period t and Lt as the number of total loans in period t. We can write the

likelihood as

p(yl|ψl) =

N,T∏
i,t

(plt)
ylit(1− plt)1−y

l
it

=

T∏
t

Λ(ψl
t)
Dt(1− Λ(ψl

t)
)Lt−Dt

=
T∏
t

exp(ψl
t)
Dt(

1 + exp(ψl
t)
)Lt

.

Third, we analyze the LGD component given the severe loss indicator sit. Define yd as the

vector with all realized LGDs and define s as the vector which contains all sit for all i, t. We

can write the likelihood as

p(yd|s, µ0, µ1, σ2) ∝
N,T∏
i,t

σ−1 exp

(
− 1

2σ2
(ydit − µ0(1− sit)− µ1sit)2

)
.

We use three types of latent variables in our model next to the factors. First, we use the

severe loss indicators sit for all i, t. Define the vector ψd with elements ψd
t = αd + βd′fm

t +

10



γd′f l
t+δ

d′fd
t , Tt as the total number of LGD observations in period t and Nt as the total number

of severe losses in period t.

p(s|ψd) =
NT∏
it

(pdt )sit(1− pdt )(1−sit)

=

T∏
t

Λ(ψd
t )Nt

(
1− Λ(ψd

t )
)(Tt−Nt)

=

T∏
t

exp(ψd
t )Nt(

1 + exp(ψd
t )
)Tt .

Second, we follow Polson et al. (2013) and use the auxiliary latent variables ωl
t and ωd

t to

make the sampling of respectively the loan status and LGD components easier

p(ωl
t|Lt, ψl

t) = PG(Lt, ψ
l
t),

p(ωd
t |Tt, ψd

t ) = PG(Tt, ψ
d
t ),

where the definition of the Pólya-gamma distribution is given in equation (1) of Polson et al.

(2013).

Finally, we derive some useful results that help us with deriving the posterior distribution.

Windle et al. (2013) show that the Pólya-gamma distribution has the special form

p(ωl
t|Lt, ψl

t) = coshLt(ψl
t/2) exp(−ωl

t(ψ
l
t)
2/2)p(ωt),

and that the following holds

coshLt(ψl
t/2)/

(
1 + exp(ψl

t)
)Lt ∝ exp(−ψl

tLt/2).
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This implies the following result that we use in the next sections

p(yl|ψl)

T∏
t

p(ωl
t|Lt, ψl

t) =

T∏
t

exp(ψl
t)
Dt(

1 + exp(ψl
t)
)Lt

coshLt(ψl
t/2) exp(−ωl

t(ψ
l
t)
2/2)p(ωl

t)

∝
T∏
t

exp
(
Dtψ

l
t − ψl

tLt/2− ωl
t(ψ

l
t)
2/2
)
p(ωl

t)

∝
T∏
t

exp
(
κltψ

l
t − ωl

t(ψ
l
t)
2/2
)
p(ωl

t)

∝
T∏
t

exp

(
−ω

l
t

2

(
κlt
ωl
t

− ψlt
)2
)

exp

(
ωl
t

2

(
κlt
ωl
t

)2
)
p(ωl

t),

where κlt = Dt − Lt/2.

Similarly, the following holds

p(yd|ψd)

T∏
t

p(ωd
t |Tt, ψd

t ) ∝
T∏
t

exp

(
−ω

d
t

2

(
κdt
ωd
t

− ψdt
)2
)

exp

(
ωd
t

2

(
κdt
ωd
t

)2
)
p(ωd

t ),

where κdt = Nt − Tt/2.

Refer to page 8-9 of Windle et al. (2013) for more details.

C.2 Prior

First, we consider the macro parameters

p(Am,Σm) ∝ iW(0.01INm , Nm)I(Am),

where INm is an identity matrix of dimension Nm. Second, we consider the loadings on the

factors for the loan status and LGD components

p(αl,αd) ∝ I(αl,αd).

Third, we impose priors for the parameters of the LGD component

p(µ0, µ1, σ
2) ∝ iG2(0.01, 0.01)I(µ0, µ1).
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Finally, we use a prior for the persistence of the factor

p(φjj) ∝ I(φjj) for all j.

The indicator functions I(·) impose the identification restrictions mentioned in the main text. To

be precise, they impose that the first macro variable loads negatively on the macro factor, that

the probability of default loads positively on the second default factor and that the probability

of a severe loss loads positively on the third loan factor. The functions also impose that µ0 < µ1

and −1 < φjj < 1 for all j.

C.3 Posterior

C.3.1 Macro component

We collect the terms involving Σm and Am from the likelihood and prior and get

p(Am,Σm| . . .) ∝ |Σm|−(T+Nm+Nm+1)/2

× exp

(
−1

2
tr
(
(Σm)−1

[
0.01INm + (Y m −XmAm)′(Y m −XmAm)

] ))
I(Am)

Using standard results for multivariate regression models we see that Am can be drawn from a

matricvariate normal distribution and Σm from an inverse Wishart distribution

p(Am| . . .) = MN
(
(Xm′Xm)−1(Xm′Y m),Σm ⊗ (Xm′Xm)−1

)
,

p(Σm| . . .) = iW
(
0.01INm + (Y m −XmAm)′(Y m −XmAm), T +Nm

)
,

where we redraw until Am satisfies the identification restrictions.

C.3.2 Loan status component

Since ωl
t only occurs in its own distribution (and not in the priors or likelihoods), we sample ωl

t

from its Pólya-gamma distribution

p(ωl
t| . . .) = PG(Lt, ψ

l
t).

13



We collect the terms involving αl from the likelihood, prior and latent variable distributions

p(αl| . . .) ∝
T∏
t

exp

(
−ω

l
t

2

(
κlt
ωl
t

− ψlt
)2
)

exp

(
ωl
t

2

(
κlt
ωl
t

)2
)
p(ωl

t)I(αl),

where ψl
t is a function of αl.

We see that we can interpret the single term in the product as the likelihood of a pseudo

data point
κlt
ωl
t

drawn from a normal distribution with mean ψl
t and variance 1/ωl

t as in Windle

et al. (2013). Following Polson et al. (2013) and using the standard results for a linear regression

with heteroscedasticity, we simulate αl from a normal distribution

αl ∼ N(ml,V l),

where

V l = (X l′ΩlX l)−1,

ml = (X l′ΩlX l)−1(X l′κl),

where X l is a matrix that contains the constant and the relevant factors, where κl is a vector

that collects the elements κlt and where Ωl is a diagonal matrix with ωl
t as diagonal elements.

We redraw αl until it fulfills the identification restrictions.

C.3.3 LGD component

Using a similar reasoning as above, we sample ωd
t from the Pólya-gamma distribution

p(ωd
t | . . .) = PG(Tt, ψ

d
t )

and sample αd from a normal distribution

αd ∼ N(md,V d),

where

V d = (Xd′ΩdXd)−1,

md = (Xd′ΩdXd)−1(Xd′κd),
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where Xd is a matrix that contains the constant and the relevant factors, where κd is a vector

that collects the elements κdt for all t and where Ωd is a diagonal matrix with ωd
t as diagonal

elements. We redraw αd until it fulfills the identification restrictions.

We collect the terms involving sit in the prior and likelihood and obtain

p(sit| . . .) ∝ (pdt )sit(1− pdt )(1−sit) exp

(
− 1

2σ2
(ydit − µ0(1− sit)− µ1sit)2

)
.

Hence we can sample sit from the following Bernoulli distribution

p(sit = 1| . . .) =
pdt N(µ1, σ

2)

(1− pdt )N(µ0, σ2) + pdt N(µ1, σ2)
.

We collect the terms involving µ1 from the posterior and get

p(µ1| . . .) ∝
N,T∏
i,t

σ−1 exp

(
− 1

2σ2
(ydit − µ1sit)2

)
.

Hence, we can sample µ1 (and µ0 as well) from normal distributions

p(µ1| . . .) = N

(
ȳ1,

σ2

N1

)
,

p(µ0| . . .) = N

(
ȳ0,

σ2

N0

)
,

where ȳ1 is the sample mean for the N1 observations with a latent indicator of 1 and where ȳ0

is the sample mean for the N0 observations with a latent indicator of 0. We redraw µ0 and µ1

from their posterior distributions until they fulfill the identification restrictions.

We collect the terms involving σ2 from the prior and likelihood and get

p(σ2| . . .) ∝ σ−
NT+0.01+2

2 exp

(
− 1

2σ2

(
0.01 +

NT∑
it

(ydit − µ0(1− sit)− µ1sit)2
))

,

which means that we can sample σ2 from an inverse gamma-2 distribution

p(σ2| . . .) = iG2

(
0.01 +

NT∑
it

(ydit − µ0(1− sit)− µ1sit)2, 0.01 +NT

)
.
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C.3.4 Factor component

If we collect the terms involving the factors from the prior, likelihood and latent variable

distributions, we see that we have a linear Gaussian state space model as in Windle et al.

(2013).

Our model has the following transition equation

ft+1 = Φft + ηt, ηt ∼ N(0,Ω),

where Ω = I −ΦΦ′ because of the restriction on the unconditional covariance matrix.

We obtain the following observation equations

ymt = αm +Bmfm
t + εt, εt ∼ N(0,Σm),

κlt
ωl
t

= αl
i + βl′

i f
m
t + γl′

i f
l
t + ζ lt, ζ lt ∼ N(0, 1/ωl

t),

κdt
ωd
t

= αd
i + βd′

i f
m
t + γd′

i f
l
t + δd′i f

d
t + ζdt , ζdt ∼ N(0, 1/ωd

t ),

where the second and third observations are pseudo data points as explained in the derivations

of αl and αd. We sample the latent factor ft using the simulation smoother of Durbin and

Koopman (2002).

We collect the terms involving φjj from the equation for the latent factor and obtain

p(φjj | . . .) ∝ (1− φ2jj)−1/2 exp

(
− 1

2(1− φ2jj)
(fj,t+1 − φjjfjt)2

)
, for all j.

Since φjj occurs in both the mean and variance, we cannot derive the posterior analytically.

We use a Metropolis-Hastings step instead where we use a normal distribution as proposal

density and where we calculate the acceptance probability in the usual way for the independence

Metropolis-Hastings sampler. To calculate the mean and variance of the proposal density we

maximize the log PDF of the above expression and use the mode as mean and the inverse of

the negative Hessian as the covariance matrix. We redraw from the proposal density until the

proposed draw satisfies the identification restriction.

C.4 Extensions

We consider a couple of alternative models in the main paper and appendix.

16



First, we consider models with loan and default characteristics that affect the probability of

default and the LGD of a loan. It is straightforward to extend our method to allow for these

differences. The only difference is that we need to draw all parameters and latent variables

except for ft, φjj , A
m and Σm per group of characteristics.

Second, we consider a model with a mixture of two skewed student-t distributions instead

of a mixture of normals. The only difference is that we draw the parameters in the LGD

component (except for ωd
t and αd) based on the derivations in Frühwirth-Schnatter and Pyne

(2010). Please refer to the online appendix of Frühwirth-Schnatter and Pyne (2010) for more

details on the conditional posterior distributions.
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D Results for models with loan and default characteristics

[Figure D.1 about here.]

[Figure D.2 about here.]

[Figure D.3 about here.]

[Table D.I about here.]

[Table D.II about here.]

[Table D.III about here.]

[Table D.III (continued) about here.]
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Table D.I: Parameter estimates, model with seniority

Macro and loan factor Macro and two loan factors

Panel A: Factor

φ11 0.813 (0.120) 0.803 (0.115)
φ22 0.775 (0.138) 0.720 (0.231)
φ33 0.477 (0.309)

Panel B: Macro variables

αGDP 0.241 (0.631) -0.035 (0.418)
βGDP -0.935 (0.694) -0.843 (0.487)
αIP 0.187 (0.518) -0.027 (0.346)
βIP -0.725 (0.583) -0.633 (0.411)
αUR -0.207 (0.556) 0.031 (0.388)
βUR 0.792 (0.612) 0.756 (0.456)
WAIC2 129.4 123.3

Panel C: Loan status

αl -5.665 (0.233) -5.780 (0.175)

βl -0.179 (0.199) -0.174 (0.320)

γl
1 0.628 (0.354) 0.574 (0.292)

av. pl (×0.01) 0.309 (0.002) 0.309 (0.002)
m.e. of fm -0.055 (0.061) -0.054 (0.099)

m.e. of f l
1 0.193 (0.109) 0.177 (0.090)

WAIC2 321.3 320.0

Panel D: Loss given default

Sen. secured Sen. unsecured Sen. secured Sen. unsecured

µ0 0.070 (0.002) 0.072 (0.001) 0.070 (0.002) 0.072 (0.001)
µ1 0.766 (0.004) 0.858 (0.003) 0.766 (0.004) 0.858 (0.003)
σ 0.129 (0.001) 0.130 (0.001) 0.129 (0.001) 0.130 (0.001)

αd −2.174 (0.580) −1.665 (0.250) −1.930 (0.393) −1.542 (0.315)

βd 0.900 (0.619) 0.500 (0.320) 0.849 (0.450) 0.385 (0.247)

γd
1 0.041 (0.055) −0.216 (0.133) −0.037 (0.050) 0.146 (0.126)

γd
2 −0.257 (0.240)

av. pd 0.151 (0.004) 0.191 (0.004) 0.151 (0.004) 0.191 (0.004)
m.e. of fm 0.103 (0.070) 0.075 (0.048) 0.097 (0.051) 0.058 (0.037)

m.e. of f l
1 0.005 (0.006) −0.033 (0.020) −0.004 (0.006) 0.022 (0.019)

m.e. of f l
2 −0.039 (0.036)

av. LGD 0.175 (0.003) 0.222 (0.003) 0.175 (0.003) 0.222 (0.003)
m.e. of fm 0.072 (0.049) 0.059 (0.038) 0.067 (0.036) 0.046 (0.029)

m.e. of f l
1 0.003 (0.004) −0.026 (0.016) −0.003 (0.004) 0.017 (0.015)

m.e. of f l
2 −0.030 (0.028)

WAIC2 −11,645.0 −14,438.7 −11,648.0 −14,434.2

This table presents the posterior mean and standard deviation (in parentheses) of the parameters of the model
in section 3.1 for different loan and default characteristics. We report results for specifications with a macro and
a loan factor, and an additional loan factors. The horizontal panels correspond with the panels in table II. We
distinguish defaults of senior secured and senior unsecured loans. The characteristics are included as dummy
variables.
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Table D.II: Parameter estimates, model with borrower size

Macro and loan factor Macro and two loan factors

Panel A: Factor

φ11 0.845 (0.098) 0.861 (0.090)
φ22 0.510 (0.217) 0.245 (0.262)
φ33 0.618 (0.190)

Panel B: Macro variables

αGDP -0.433 (0.628) -0.627 (0.492)
βGDP -1.225 (0.885) -1.265 (0.886)
αIP -0.362 (0.543) -0.535 (0.440)
βIP -1.025 (0.756) -1.083 (0.790)
αUR 0.385 (0.572) 0.568 (0.455)
βUR 1.087 (0.814) 1.149 (0.782)
WAIC2 114.9 109.7

Panel C: Loan status

Large corp. SME Large corp. SME

αl −6.441 (0.174) −5.533 (0.237) −6.394 (0.127) −5.474 (0.132)

βl 0.404 (0.273) 0.559 (0.383) 0.335 (0.256) 0.426 (0.323)

γd
1 0.231 (0.101) 0.366 (0.143) 0.303 (0.088) 0.168 (0.080)

γd
2 0.392 (0.160)

av. pl (×0.01) 0.143 (0.003) 0.347 (0.002) 0.147 (0.004) 0.346 (0.002)
m.e. of fm 0.058 (0.039) 0.193 (0.132) 0.049 (0.038) 0.147 (0.111)

m.e. of f l
1 0.033 (0.014) 0.126 (0.049) 0.045 (0.013) 0.058 (0.028)

m.e. of f l
2 0.135 (0.055)

WAIC2 349.9 333.4 252.1 319.2

Panel D: Loss given default

Large corp. SME Large corp. SME

µ0 0.075 (0.002) 0.062 (0.001) 0.075 (0.002) 0.062 (0.001)
µ1 0.848 (0.005) 0.849 (0.003) 0.849 (0.005) 0.849 (0.003)
σ 0.126 (0.001) 0.124 (0.001) 0.126 (0.001) 0.124 (0.001)

αd −1.707 (0.291) −1.564 (0.269) −1.630 (0.268) −1.517 (0.270)

βd 0.293 (0.302) 0.243 (0.272) 0.333 (0.389) 0.348 (0.295)

γd
1 −0.404 (0.173) −0.406 (0.167) −0.490 (0.143) −0.186 (0.110)

γd
2 −0.370 (0.159)

av. pd 0.160 (0.005) 0.166 (0.003) 0.160 (0.005) 0.166 (0.003)
m.e. of fm 0.036 (0.037) 0.033 (0.037) 0.042 (0.049) 0.048 (0.041)

m.e. of f l
1 −0.050 (0.022) −0.056 (0.023) −0.062 (0.018) −0.026 (0.015)

m.e. of f l
2 −0.051 (0.022)

av. LGD 0.199 (0.004) 0.193 (0.003) 0.199 (0.004) 0.193 (0.003)
m.e. of fm 0.028 (0.029) 0.026 (0.030) 0.033 (0.038) 0.038 (0.032)

m.e. of f l
1 −0.039 (0.017) −0.044 (0.018) −0.048 (0.014) −0.020 (0.012)

m.e. of f l
2 −0.040 (0.017)

WAIC2 −8,207.3 −15,655.8 −8,194.0 −15,661.0

This table presents the posterior mean and standard deviation (in parentheses) of the parameters of the model
in section 3.1 for different loan and default characteristics. We report results for specifications with a macro
and a loan factor, and an additional loan factors. The horizontal panels correspond with the panels in table II.
We distinguish loans and defaults of large corporates and SMEs. The characteristics are included as dummy
variables.
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Figure D.1: Latent factors, seniority

(a) Two factors
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(b) Three factors
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The figures show the smoothed latent factors for the model defined in section 3.1. We report results for
specifications with a macro and a loan factor (a), and an additional loan factor (b). We distinguish defaults
of senior secured and senior unsecured loans. The characteristics are included as dummy variables.
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Figure D.2: Latent factors, borrower size

(a) Two factors
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(b) Three factors
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The figures show the smoothed latent factors for the model defined in section 3.1. We report results for
specifications with a macro and a loan factor (a), and an additional loan factor (b). We distinguish loans
and defaults of large corporates and SMEs. The characteristics are included as dummy variables.
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Figure D.3: Latent factors, industry

(a) Two factors
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(b) Four factors
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The figures show the smoothed latent factors for the model defined in section 3.1. We report results for
specifications with a macro and a loan factor (a), and an additional two loan factors (b). We distinguish loans
and defaults of borrowers in the sectors Consumer Staples, Industrials, and Financials. The characteristics are
included as dummy variables.
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E Results for model with mixture of skew-t

In section 4.4, we discuss replacing the LGD component’s mixture of normals with a mixture

of skewed Student’s t, or skew-t, distributions.

Following Azzalini and Capitanio (2003), if a random variable X is skew-t distributed,

X ∼ St(ξ, ω, α, ν), then

f(x; ξ, ω, α, ν) =
2

ω
tν(qx)Tν+1

(
αqx

√
ν + 1

q2x + ν

)
, (E.1)

with location parameter ξ, scale parameter ω, shape parameter α, and degrees of freedom ν,

where qx = (x− ξ)/ω, and tν and Tν the PDF and CDF of a standard Student’s t distribution

with ν degrees of freedom.

The expected value of X is not ξ, but is shifted to the left or right, depending on the

skewness. It is given by

E[X] = ξ + ωδ

√
ν

π

Γ((ν − 1)/2)

Γ(ν/2)
, (E.2)

where δ = α/
√

1 + α2. The normal distribution is nested, by setting α = 0 and ν →∞.

For the Bayesian estimation procedure, we follow the reparametrization by

Frühwirth-Schnatter and Pyne (2010), g(x;θ) = f(x; ξ, ω, α, ν), with parameter vector

θ = (ξ, σ, ψ, ν), where σ2 = ω2(1 − δ2) and ψ = ωδ. The estimates for the model with the

mixture of skew-t distributions are presented in table E.I. Plugging in the posterior mean of θ,

we find that the mean of the mild (severe) loss is 0.090 (0.605).

The PDF of a mixture is given by the sum of the PDFs of the mixture components, weighted

by the mixture probability, or mathematically, h(x; pdt ,θ0,θ1) = (1 − pdt )g(x;θ0) + pdt g(x;θ1).

From this, we can calculate the posterior mixture probabilities. The likelihood that, conditional

on the latent factors ft, observation ydit is a severe loss is

Pr[sit = 1|ydit,ft] =
pdt g(x;θ1)

(1− pdt )g(x;θ0) + pdt g(x;θ1)
, (E.3)

and Pr[sit = 0|ydit,ft] = 1 − Pr[sit = 1|ydit,ft]. The mixture fit in figure 6 and the posterior

mixture probabilities in figure E.2 are based on the posterior means of θ and of the implied

probability of a severe loss pdt .
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[Table E.I about here.]

[Figure E.1 about here.]

[Figure E.2 about here.]
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Table E.I: Parameter estimates, mixture of skew-t

Mixture of normals Mixture of skew-t

Panel A: Factor

φ11 0.856 (0.078) 0.878 (0.075)
φ22 0.322 (0.207) 0.230 (0.235)

Panel B: Macro variables

αGDP −0.008 (0.317) −0.342 (0.355)
βGDP −0.969 (0.531) −1.033 (0.611)
αIP −0.007 (0.284) −0.273 (0.313)
βIP −0.802 (0.465) −0.824 (0.517)
αUR 0.008 (0.298) 0.341 (0.355)
βUR 0.879 (0.491) 1.032 (0.617)

Panel C: Loan status

αl −5.850 (0.097) −5.700 (0.118)

βl 0.371 (0.201) 0.428 (0.260)

γl 0.258 (0.058) 0.254 (0.059)

av. pl (×10−2) 0.309 (0.002) 0.310 (0.002)
m.e. of fm 0.114 (0.062) 0.132 (0.080)

m.e. of f l 0.080 (0.018) 0.078 (0.018)

Panel D: Loss given default

ξ0 0.072 (0.001) −0.024 (0.001)
ξ1 0.829 (0.002) 1.041 (0.002)
σ 0.131 (0.001) 0.017 (0.001)
ψ0 0.119 (0.003)
ψ1 −0.399 (0.008)
ν0 4.891 (0.172)
ν1 3.065 (0.143)

αd −1.643 (0.159) −1.242 (0.187)

βd 0.328 (0.202) 0.399 (0.264)

γd −0.293 (0.075) −0.308 (0.104)

av. pd 0.174 (0.003) 0.220 (0.004)
m.e. of fm 0.045 (0.028) 0.064 (0.043)

m.e. of f l −0.040 (0.010) −0.050 (0.017)
av. LGD 0.204 (0.002)

m.e. of fm 0.034 (0.021)

m.e. of f l −0.030 (0.008)

This table presents the posterior mean and standard deviation (in parentheses) of the parameters of the model
in section 3.1 with different distributions for the LGD component. All model specifications have a macro and a
loan factor. The specifications do not include loan or default characteristics. The horizontal panels correspond
with the panels in table II. The LGD type can be either mild or severe. In the left column, conditional on the
type, the LGD follows a normal distribution with mean ξ0 or ξ1 (corresponding to µ0 and µ1 in table II), and
volatility σ. In the right column, conditional on the type, the LGD follows a skew-t distribution with location
parameter ξ0 or ξ1, scale parameter σ, shape parameter ψ0 or ψ1 and degrees of freedom ν0 or ν1.
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Figure E.1: Latent factors, skew-t
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The figure shows the latent factors of the two-factor model without cross-sectional variation, with the LGD
distributed as a mixture of normals or mixture of skew-t.
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Figure E.2: Smoothed posterior state probabilities

(a) Normal
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(b) Skew-t
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The figures present the smoothed state probabilities Pr[sit = 0|ydit,ft] (blue line) and Pr[sit = 1|ydit,ft] (orange
line) for the two-factor model , with a mixture of normals (a) and with a mixture of skew-t distributions (b) for
the LGD. The mixture probabilities are for the first quarter of 2003 and based on the posterior mean estimates
of the parameters of the two-factor model without cross-sectional variation.
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