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Abstract
We study the performance of two analytical methods and one simu-
lation method for computing in-sample confidence bounds for time-
varying parameters. These in-sample bounds are designed to reflect
parameter uncertainty in the associated filter. They are applicable to
the complete class of observation driven models and are valid for a wide
range of estimation procedures. A Monte Carlo study is conducted
for time-varying parameter models such as generalized autoregressive
conditional heteroskedasticity and autoregressive conditional duration
models. Our results show clear differences between the actual coverage
provided by our three methods of computing in-sample bounds. The
analytical methods may be less reliable than the simulation method,
their coverage performance is sufficiently adequate to provide a reason-
able impression of the parameter uncertainty that is embedded in the
time-varying parameter path. We illustrate our findings in a volatility
analysis for monthly Standard & Poor’s 500 index returns.

Keywords: autoregressive conditional duration; delta-method; generalized autoregressive
conditional heteroskedasticity; score driven models; time-varying mean.

Acknowledgments: Blasques and Lucas thank the Dutch National Science Foundation
(NWO; grant VICI453-09-005) for financial support. Koopman acknowledges support from
CREATES, the Center for Research in Econometric Analysis of Time Series (DNRF78)
at Aarhus University, Denmark, funded by the Danish National Research Foundation,
(DNRF78). We thank the Editor for the invitation and his general support.

1



1 Introduction

Over the last decades, time-varying parameter models have become increas-

ingly popular in empirical economics and finance. The fast development of

new methods for filtering time-varying parameters in dynamic models with

nonlinear and non-Gaussian features has made these models more accessible,

flexible and attractive. Starting from the 1960s, time-varying parameters for

the mean equation in linear Gaussian models were initially typically handled

by the Kalman filter and related methods. For a given linear Gaussian state

space model, the Kalman filter can be used to calculate conditional means

and variances of unobserved time-varying parameters (or linear functions

thereof) in a computationally efficient manner; see, for example, Durbin and

Koopman (2012) for a detailed treatment. In this modeling framework, the

construction of in-sample and out-of-sample confidence bounds is straightfor-

ward and is performed on a routine basis as expressions for the conditional

variances of the time-varying parameters are explicitly available. In case of

nonlinear and/or non-Gaussian extensions of state space models, the com-

putation of confidence bounds can be somewhat more involved. An example

is the stochastic volatility model for which simulation-based methods are

typically used for its analysis; see the discussions in Shephard (2005).

Since the 1980s, other model classes for time-varying parameters have

been developed. Specifically, models for time-varying conditional variances

have received much attention in the empirical economic financial literature.

For example, the generalized autoregressive conditional heteroskedasticity

((G)ARCH) model by Engle (1982) and Bollerslev (1986) have led to a range

of model formulations for time-varying parameters. In the standard ARCH
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and GARCH models, the conditional variance is obtained from filtering past

observations through a volatility updating equation. The relative simplicity

of GARCH models has spurred their widespread use in both the academic

and professional worlds.

In most empirical studies, the estimated volatility from the GARCH

model is presented without in-sample bounds that reflect parameter uncer-

tainty in the volatility updating equation. Exact analytical results are not

available because the actual estimates are highly nonlinear functions of past

observations. As a result, statistical software programs rarely provide bounds

for estimates of such time-varying parameters. This argument also applies

to other models related to GARCH including the autoregressive conditional

duration (ACD) model of Engle and Russell (1998), the multiplicative error

model of Engle (2002), the observation driven Poisson count model of Davis,

Dunsmuir, and Streett (2003), and the score driven models of Creal et al.

(2013). All these models belong to the class of observation driven models as

opposed to the class of parameter driven models, which includes the state

space model briefly discussed above; see Cox (1981) for a detailed description.

Here we review and analyze the behavior of two simple approximate an-

alytical expressions for in-sample bounds that reflect parameter uncertainty.

We further consider a simulation method for the evaluation of these bounds.

The three different methods can be readily implemented in software packages.

The approximate analytical bounds are much simpler to compute and are not

subject to small random fluctuations originating from simulation error. The

in-sample bounds can be used as long as the updating equation is differen-

tiable and the estimator of the static parameters is asymptotically normally
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distributed. We investigate in detail the coverage probabilities of each of

these different approaches over a range of different time-varying parameter

models and confidence levels. We find that simulation based methods are

the most reliable, but that the more advanced approximate analytical bound

also performs well in many settings, and is much easier to compute.

The presented in-sample bounds ignore other sources of uncertainty, apart

from parameter uncertainty, such as measurement uncertainty and model un-

certainty. Measurement uncertainty typically arises from problems in data

collection or from difficulties in observing the data of interest. In certain ap-

plications, measurement uncertainty can be safely ignored. In other cases, we

can treat this uncertainty by, for example, incorporating observational noise

in the model. This effectively turns the problem of measurement uncertainty

back into a problem of the uncertainties in model specification and parameter

estimation. Model uncertainty is virtually always ignored when producing

confidence bounds as it is simply too difficult to integrate it into the design

of bounds. Researchers will usually work under the assumption of correct

specification, and apply a battery of specification tests in order to judge how

reasonable that assumption is. In certain cases, however, model uncertainty

is less problematic. For example, we can ignore model uncertainty when the

statistical model is sufficiently general to contain the data generating process

with high probability. We can refer to the method of sieves for estimation in

infinite dimensional spaces of unbounded model complexity; see Grenander

(1981) and the review of Chen (2007).

To provide evidence of how effective the different methods are in comput-

ing the in-sample bounds, we present the results of a Monte Carlo study in
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which we compute in-sample bounds for generated time series from GARCH,

score driven, ACD and time-varying mean (local level) models. The results

for these models reveal that the actual coverage of the analytical bounds

from our preferred method is close to the nominal coverage obtained by sim-

ulation. An empirical application for the GARCH model applied to a time

series of monthly log-returns from the Standard & Poor’s 500 index reveal

the practical importance of these bounds. We also show that the choice of

method for computing in-sample bounds is empirically relevant, and that

our preferred analytical bounds provide a good approximation to the more

computationally intensive simulation based bounds.

This paper is organized as follows. Section 2 introduces the class of

observation driven models. Section 3 introduces different bounds for the

time-varying parameter. Section 4 analyzes the relative performance of these

bounds in a Monte Carlo study. Section 5 presents our empirical findings for

the Standard & Poor’s 500 monthly returns. Section 6 concludes.

2 Observation driven model and estimation

In observation driven models, the time-varying parameter is filtered using

an updating equation that depends only on past observations. The main

focus is on how to let past realizations of the variable of interest affect the

current value of the time-varying parameter. This can be achieved by means

of different specifications.

Consider a time series model for an observed time series y1, . . . , yT given

by

yt ∼ py(yt|ft;θ), t = 1, . . . , T, (1)
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where density py( · ) is implied by a model equation for yt and is a function

of the time-varying parameter ft and the static parameter θ, for example,

yt = ft + εt for a time-varying mean, or yt = µ + f
1/2
t εt for a fixed mean

and time-varying variance, where εt ∼ N(0, 1). The time-varying parameter

is formally defined as a function ft := ft(y
1:t−1, f1;θ) that depends on the

past observations y1:t−1 := {y1, y2, . . . , yt−1}, on some initial value f1, and

on a static parameter vector θ. The updating function for the time-varying

parameter can be expressed in many different ways. For example, we can

consider a linear updating equation consisting of lagged values of yt and ft.

When only considering single lags, we obtain

ft+1 = ω + βft + αs(yt, ft;θ), (2)

with initialization f1 and where s(yt, ft;θ) is some, possibly, nonlinear func-

tion. The function s( · ) can be chosen in a flexible way and is often just a

transformation of yt as we will show in the examples below. The coefficients

ω, α and β are part of the parameter vector θ. The recursive nature of the

formulation implies that ft+1 is a (nonlinear) function of y1, . . . , yt, f1 and θ.

Hence, the updating equation (2) is consistent with the definition of ft, that

is ft := ft(y
1:t−1, f1;θ). We can also write the updating equation (2) in the

general form of a stochastic recurrence equation,

ft+1 = φ
(
yt, ft;θ

)
, (3)

with initialization f1 and recurrence function φ( · ). The choice of the function

s( · ) in (2) thus defines the type of updating used for ft.
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Example 1. The generalized autoregressive conditional heteroskedasticity

model of Engle (1982) and Bollerslev (1986), known as the GARCH model,

for a mean-adjusted financial return series y1, . . . , yT is a special case of

equations (1) and (2) with

yt = f
1/2
t εt, εt ∼ NID(0, 1), s(yt, ft;θ) = y2t ,

for t = 1, . . . , T , where NID(0, 1) refers to a standard normally independently

distributed sequence. The GARCH-t model of Bollerslev (1986) is obtained

when we replace the normal by the Student’s t distribution.

Example 2. The autoregressive conditional duration model of Engle and

Russell (1998), known as the ACD model, for irregularly spaced data is also

a special case of equations (1) and (2) with

yt = ftεt, εt ∼ Exp(1), s(yt, ft;θ) = yt,

for t = 1, . . . , T , where Exp(1) is the standard Exponential distribution. Dif-

ferent specifications of this modeling framework for durations and intensities

are discussed in Grammig and Maurer (2000).

The score driven models of Creal et al. (2013) and Harvey (2013) also be-

long to the model class represented by equations (1) and (2) where py(yt|ft;θ)

can be any density with ft as the time-varying parameter. The specific choice

of function s( · ) distinguishes the score driven model from other models. It

is chosen as the scaled first derivative of the predictive log density function
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for yt, that is

s(yt, ft;θ) = St
∂ log py(yt|ft, y1:t−1;θ)

∂ft
,

for some scaling function St := St(ft;θ). In many models of practical interest,

the predictive density py(yt|ft, y1:t−1;θ) reduces to the conditional observa-

tion density py(yt|ft;θ) since ft is also a function of y1:t−1. The scaling St can

be simply set to unity or alternatively be set to reflect the local curvature in

the log conditional density function at time t.

When we consider the observation densities of Examples 1 and 2 and

apply the score driven framework, we obtain equivalent updating functions

if we scale the score by the inverse conditional Fisher information matrix;

see Creal et al. (2013). Indeed the score driven models include many well-

known and popular dynamic models. However, in the case of a Student’s t

distribution for py(yt|ft;θ) in equation (1), we obtain the model as discussed

in Harvey and Chakravarty (2008) and Creal et al. (2011).1

Example 3. The Student’s t score driven model discussed in Harvey and

Chakravarty (2008) and Creal et al. (2011, 2013) has s( · ) given by

s(yt, ft;θ) = (1 + 3λ−1)
( (1− λ−1)y2t

1 + λ−1y2t /ft
− ft

)
,

where λ is the degrees of freedom in the Student’s t distribution. This expres-

sion uses a scaling function based on the inverse Fisher information matrix;

see Creal et al. (2011, 2013) for more details.

The parameter vector θ is unknown and needs to be estimated to obtain
1More literature on score driven models with theoretical and empirical developments

is provided via the website http://www.gasmodel.com.
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estimates of the time-varying parameter ft. The estimation of θ can be based

on the principle of maximum likelihood as we can evaluate the loglikelihood

function `(θ; f1) via the prediction error representation. We have

`(θ; f1) =
T∑
t=1

log py(yt|ft, y1:t−1;θ),

where values for ft are evaluated via equation (2) with a specific initial value

f1. When it is difficult to find a “natural” value for f1, it can be included in the

parameter vector θ and estimated simultaneously with the other parameters

in θ. We notice that in many, if not most, cases of empirical interest we

have py(yt|ft, y1:t−1;θ) = py(yt|ft;θ) such that we can rely simply on the

model density when computing the loglikelihood function. Hence maximum

likelihood estimation reduces to the basic task of numerically maximizing

`(θ; f1) with respect to θ. This is the standard practice for GARCH and

related models.

We write the maximum likelihood estimator of θ as θ̂T . The values of ft

obtained from equation (2) under θ = θ̂T are denoted by f̂t for t = 1, . . . , T .

The f̂t’s can be regarded as a weighted function of f1 and y1:t−1 with the

weights determined by θ̂T , for t = 2, . . . , T . We can summarize the sources

of uncertainty for f̂t as follows:

• Parameter uncertainty: we do not know the true parameter vector θ

but we replace it by its maximum likelihood estimate θ̂T to compute

f̂t;

• Filtering uncertainty: we consider the updating equation (2) for ft but

we do not know the underlying time-varying parameter process;
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• Model uncertainty: we consider py( · ) in equation (1) but we do not

know the true data generation process for yt.

As discussed in the introduction, in this paper we concentrate on devel-

oping bounds that reflect the parameter uncertainty for f̂t, t = 1, . . . , T while

taking the other two sources of uncertainty as given. This is an important

step forward in the current literature, where in-sample uncertainty bounds

around the time-varying parameter are almost never shown. The next sec-

tion presents several ways to construct the approximate bounds. Section 4

investigates the coverage properties of these bounds by conducting a Monte

Carlo study.

3 Asymptotic Approximation of Parameter

Uncertainty

Conditional on past information and the initial value f1, and based on the

maximum likelihood estimate θ̂T for θ, we develop confidence bounds for f̂t

that reflect parameter uncertainty about the true value of θ. The bounds

are based as usual on the variance of f̂t, which we denote as Vt := Var(f̂t),

and reflect the randomness of the estimator θ̂T . We propose three different

methods to obtain approximations for these bounds:

1. simple non-cumulative bounds;

2. cumulative delta-method bounds;

3. simulation based bounds.
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The first two methods are analytic and very fast. They approximate the

variance of the filter Vt by linearizing the updating function φ( · ) and using

the asymptotic variance of θ̂T . These analytic methods have the advantage

of easy implementation in software packages as they are based on simple cal-

culations. The third method provides probably the most accurate reflection

of parameter uncertainty in f̂t but it comes with the disadvantage that the

computations are subject to randomness by construction. This method also

uses the asymptotic variance of θ̂T , but does not require the linearization

of the updating function φ( · ). Hence this method may be preferable when

nonlinearities play an important role in the filter.

The simple non-cumulative bounds do not take into account the accu-

mulation of parameter uncertainty in the updating or filtering process for

f̂t. They rely on simple expressions, but are also somewhat naive and there-

fore only deliver accurate results for a restrictive class of observation driven

models. Specifically, these bounds only become interesting when the autore-

gressive component is either not present, that is when β = 0 in equation (2),

or when it is sufficiently small. For example, the method is appropriate for

the ARCH model of Engle (1982), which is the model of Example 1 with

β = 0.

The cumulative delta-method bounds take the accumulation of parameter

uncertainty in the updating process into account. These bounds are obtained

by a simple application of the delta-method and are relevant for all observa-

tion driven models, including GARCH, ACD, and score driven models where

the updating equation for f̂t features an autoregressive term, that is β 6= 0.

The simulation bounds deal not only with the accumulation of the uncer-
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tainty due to the parameter vector θ, but also treat the effects of possible

nonlinear functional relations between θ and f̂t. These bounds are most

appropriate for cases where we have strong nonlinear expressions in the up-

dating process and the linearization error produced by the delta-method can-

not be ignored. In contrast to the first two methods for computing bounds,

this method is not fully analytic and requires repeated simulations of the

estimtated time-varying parameter paths f̂t.

All methods for computing bounds rely on the asymptotic normality of

the estimator θ̂T . The bounds can therefore be computed for any estima-

tor θ̂T as long as it has a normal distribution asymptotically. The Monte

Carlo study in Section 4 investigates the extent to which this reliance on

the asymptotic distribution of the estimator may be problematic in small

samples.

3.1 Simple Non-Cumulative Bounds

Our simple non-cumulative bounds can generally be obtained by linearizing

the function φ(yt, f̂t; θ̂T ), as defined in equation (3) with ft = f̂t and θ =

θ̂T , around the true parameter vector used for generating y1, . . . , yT , that is

θ0 ∈ Θ where Θ is the parameter space. We use f̂t to denote the filter that

is a function of the point estimate θ̂T . In the case of the non-cumulative

bounds, we take f̂t as given in calculating the approximate variance of f̂t+1.

Our proposed simple bounds then rely on the approximation

f̂t+1(y
1:t, f̂1; θ̂T ) ≈ φ

(
yt, f̂t;θ0

)
+

q∑
i=1

∂φ(yt, f̂t;θ0)

∂θi
(θ̂T,i − θ0,i), (4)
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for any f and around some point θ, where θ0,i is the ith element of the q× 1

true parameter vector θ0 and, similarly, θ̂T,i is the ith element of the q × 1

maximum likelihood estimate vector θ̂T , for i = 1, . . . , q.

We define the partial derivative of φ
(
yt, f̂t;θ

)
with respect to θi, the ith

element of θ, as the function

∇i,t = ∇i(yt, f̂t;θ) :=
∂φ(yt, f̂t;θ)

∂θi
, i = 1, . . . , q. (5)

Hence we can write the approximation (4) as

f̂t+1 ≈ φ
(
yt, f̂t;θ0

)
+

q∑
i=1

∇i,t × (θ̂T,i − θ0,i),

for t = 1, . . . , T . The approximate variance of f̂t+1 for given f̂t is then

obtained by

Vt+1 = Var
(
f̂t+1

)
≈

q∑
i=1

∇2
i,tVar(θ̂T,i) + 2

∑
1≤i<j≤q

∇i,t∇j,tCov(θ̂T,i, θ̂T,j), (6)

where Var and Cov are the variance and covariance operators, respectively.

In case the derivative ∇i(yt, f ;θ) is a function of θ and/or f , we evaluate

the derivative at θ = θ̂T and f = f̂t.

Let the maximum likelihood estimator θ̂T be asymptotically normally

distributed as
√
T (θ̂T − θ0)

d→ N(0,W), (7)

where θ0 is the true parameter vector andN(0,W) is the multivariate normal

distribution with zero mean vector and covariance matrix W. The standard
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notation d→ is for convergence in distribution. We typically take W as the

robust sandwich covariance matrix estimator and evaluate it at θ = θ̂T . We

then write explicitly W = Ŵ. It further follows that

Var
[√

T
(
θ̂T − θ0

)]
≈ Ŵ ⇔ Var(θ̂T ) ≈ T−1Ŵ.

From the asymptotic properties of the maximum likelihood estimator θ̂T ,

we can deduct that the asymptotic variance of f̂t+1 converges asymptotically

to Vt+1 where

Vt+1 ≈
q∑
i=1

T−1wi,i∇2
i,t + 2

∑
1≤i<j≤q

T−1wi,j∇i,t∇j,t, (8)

and with wi,j as the (i, j) element of matrix W. In a standard fashion and

based on the asymptotic normal ditribution for f̂t+1, we obtain asymptotic

95% in-sample confidence bounds for f̂t+1 as[
f̂t+1 − 1.96

√
Vt+1 , f̂t+1 + 1.96

√
Vt+1

]
. (9)

Example 4. (Cont’d from Example 1) Consider the ARCH model of Engle

(1982) which is defined as the GARCH model of Example 1 with β = 0 in

equation (2) and with θ = (ω, α)′. The resulting updating function for f̂t+1

is given by f̂t+1 = ω̂T + α̂Ty
2
t where ω̂T and α̂T are respectively the first and

second elements of the parameter vector θ̂T . It follows immediately that

∇1,t = 1, ∇2,t = y2t , t = 1, . . . , T.
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The asymptotically correct bounds obtained from our simple non-cumulative

approach are then given by (9) with

Vt+1 = Var(ω̂T ) + y4tVar(α̂T ) + 2y2tCov(ω̂T , α̂T )

≈ T−1(w1,1 + y4tw2,2 + 2y2tw1,2).

These expressions are very simple to compute numerically once W has been

replaced by its estimate Ŵ .

In Section 4 we provide evidence that our simple non-cumulative bounds

are not appropriate for observation driven models where the filter has strong

autoregressive dynamics. This applies to the GARCH model with β 6= 0 and

in particular to the case where β is far away from zero.

3.2 Cumulative Delta-Method Bounds

The previous approximations did not account for the fact that also f̂t itself

depends on the estimator θ̂T . This is an important defect. In filters with

an autoregressive component, the parameter uncertainty accumulates as the

filter evolves over time. This occurs because f̂t+1 depends on f̂t, which already

contains parameter uncertainty. This accumulation of parameter uncertainty

in the filtering process can be analytically tracked by application of the delta-

method. It is based on the same linearization (4) of φ( · ), but where we also

explicitly account for the dependence of f̂t on θ̂T . We redefine ∇i,t as

∇i,t = ∇i(yt, ft;θ) :=
∂φ(yt, ft;θ)

∂ft

∂ft
∂θi

+
∂φ(yt, ft;θ)

∂θi
. (10)
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We assume that the point estimate θ̂T is consistent and sufficiently close the

true parameter θ0. Hence when calculating ∇i,t we take ft as the value of

the filter at time t for the point estimate of θ̂T , that is f̂t. The derivatives

∂ft/∂θi can then be computed resursively. For example, for the GARCH

model we have

∂ft+1

∂θi
=

(
∂ω

∂θi
+
∂α

∂θi
y2t +

∂β

∂θi
ft

)
+ β

∂ft
∂θi

, (11)

which can be computed in parallel to the resursion for ft itself.

The variance Vt+1 of the filtered estimate f̂t is again approximated by

(8), but with ∇i,t defined as in equation (10). Also the asymptotic 95% in-

sample confidence bounds for f̂t+1 can be based on equation (9), but with

Vt+1 computed as indicated above.

The delta-method bounds are subject to two approximation errors: (i)

the linearization of the updating equation; and (ii) the use of the asymp-

totic distribution of the estimator as an approximate distribution. As we

shall see in Section 4, these bounds are accurate when: (i) the the updating

equation is sufficiently well approximated by a linear function; and (ii) when

the sample is sufficiently large for the distribution of the estimator to be

approximately normal. These two conditions are met in many situtations of

empirical interest.

The following example illustrates the application of the current theory to

the case of the GARCH model.

Example 5. (Cont’d from Example 1) Consider the GARCH model of Boller-

slev (1986) as given by equation (2) and with θ = (ω, α, β)′. We have
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yt =
√
ftut with ut ∼ NID(0, 1) and ft+1 = ω + αy2t + βft for t = 1, . . . , T .

Applying equation (10) to the GARCH updating function, it follows that

∇1,t = 1 + β
∂ft
∂ω

, ∇2,t = y2t + β
∂ft
∂α

, ∇3,t = ft + β
∂ft
∂β

, t = 1, . . . , T,

where the partial derivatives on the right-hand side are defined via the recur-

sion (11). We evaluate ft and ft−1 by f̂t and f̂t−1, respectively, and replace

the elements of θ by the corresponding elements of θ̂T . The resulting approx-

imation of the variance of f̂t+1 is then given by

Vt+1 ≈
(

1 + β̂T
∂ft
∂ω

)2

w1,1 +

(
y2t + β̂T

∂ft
∂α

)2

w2,2 +

(
f̂t + β̂T

∂ft
∂β

)2

w3,3

+ 2

(
1 + β̂T

∂ft
∂ω

)(
y2t + β̂T

∂ft
∂α

)
w1,2

+ 2

(
1 + β̂T

∂ft
∂ω

)(
f̂t + β̂T

∂ft
∂β

)
w1,3

+ 2

(
y2t + β̂T

∂ft
∂α

)(
f̂t + β̂T

∂ft
∂β

)
w2,3,

where wi,j denotes element (i, j) of the asymptotic variance matrix W of θ̂T .

The necessary computations are more involved when compared to those re-

quired for the simple non-cumulative method used in Example 4. The bounds,

however, are still straightforward to implement and fast to compute.

When the updating equation is highly nonlinear, the error in the above

linearizations may become substantial, resulting in inaccurate approxima-

tions for Vt+1. The in-sample bounds obtained from using the simulation

method below avoid the linearization step altogether. The resulting bounds

are only subject to the error in approximating the distribution of the esti-
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mator by its asymptotic distribution.

3.3 Simulation Bounds

An alternative approach to obtain in-sample confidence bounds for f̂t+1 is

using simulation methods. Since the bounds only reflect the uncertainty in

θ̂T , one can obtain exact confidence bounds by drawing parameter values

θi from the distribution of θ̂T and running the filter from t = 1 to t = T

for every simulated θi. However, since the finite-sample distribution of θ̂T

is unknown, we draw parameter values from the approximating asymptotic

distribution instead,

θ̂
i

T ∼ N
(
θ̂T , T

−1Ŵ
)
, i = 1, . . . ,M, (12)

for some predefined number M . For each i, the sequence f i1, f̂ i2, . . . , f̂ iT can

then be determined using equations (2) or (3) with f i1 = f1. In particular,

we consider the filtering recursion for each i, that is

f̂ it+1 = φ(yt, f̂
i
t ; θ̂

i

T ), t = 1, . . . , T.

The simulation method is rather different from the two earlier methods.

Instead of linearizing the filtering recursion and working with an approximate

Gaussian distribution for f̂t, we can make use of simulations to obtain more

accurate bounds. The uncertainty of θ̂T is characterized by the asymptotic

distribution (7). Also note that in the simulation method the bounds do not

need to be based on Vt+1, but can rather be obtained directly by calculating

the appropriate percentiles for each t over the M draws of the filtered paths
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f̂ it for i = 1, . . . ,M .

When nonlinearities play a prominent role in the updating equation φ( · ),

the simulation bounds may become more accurate than those based on the

linearization methods. However, simulations can be time consuming when

the sample size T is large and when a high level of accuracy (large M) is

required. Also simulation methods are inevitably subject to simulation error.

Hence the simulation bounds may be less attractive for its implementation

in software packages.

Example 6. (Cont’d from Example 1) Consider the GARCH model with

yt ∼ NID(0, ft) and ft+1 = ω+αy2t +βft, for initial value f1. The simulation

bounds can be simply obtained by drawing M parameter vectors from the

approximate density of the estimator as in (12), we obtain θ̂
i

T = (ω̂iT , α̃
i
T , β̃

i
T )

and

f̂ it+1 = ω̃iT + α̃iTy
2
t + β̃iT f̂

i
t , for i = 1, . . . ,M.

From these simulated paths we compute in-sample bounds for any confidence

level.

4 Monte Carlo Study

To verify the performances of the three methods for computing the in-sample

bounds of time-varying parameters in observation driven models, we carry

out a Monte Carlo study. We consider five different models: (i) the GARCH

model based on normally distributed innovations; (ii) GARCH based on Stu-

dent’s t(5) innovations; (iii) the Student’s t(5) based score driven volatility

model of Creal et al. (2011, 2013) and Harvey (2013); (iv) the autoregres-
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sive conditional duration (ACD) model; and (v) a time-varying mean (or

local level) model with Gaussian innovations. The GARCH model is in-

troduced in Example 1. In case the density py(yt|ft;θ) is NID(0, ft), we

obtain Model (i); in case it is Student’s t(5) with variance ft and degrees

of freedom λ, we obtain Model (ii). Model (iii) has St(ft;θ) = 1 + 3λ−1,

and s(yt, ft;θ) = (1 + λ)y2t /(λ − 2 + y2t /ft) with λ > 2 degrees of free-

dom. Model (iv) is introduced in Example 2. The local level (LL) model

(v) is a basic application of the score driven model of Example 3. We set

py(yt|ft;θ) to the Gaussian density NID(ft, σ
2) and choose St(ft;θ) = 1 and

s(yt, ft;θ) = yt. For models (i) and (iv), the parameter vector is given by

θ = (ω, α, β)′, for models (ii) and (iii) it is θ = (ω, α, β, λ)′ and for model

(v) it is θ = (ω, α, β, σ2)′. Further details are given in Table 1. We choose ω

and f1 such that the time-varying parameter process is started at its uncon-

ditional mean. We consider two different sample sizes, T = 500, 1000, and

we generate the time series for three values of β = 0.2, 0.5, 0.8, with ω = 0.05,

α = 0.1, λ = 5, σ2 = 1 and f1 = 1.

The aim of this Monte Carlo study is to verify how well the three methods

studied in Section 3 approximate the correct in-sample bounds for f̂t+1. The

in-sample bounds can be determined in a Monte Carlo setting by repeating

the following steps:

1. Generate a time series y1, . . . , yT from one of the models listed in Table

1 for some T .

2. For this generated time series, estimate θ using the method of maxi-

mum likelihood as discussed in Section 2.

20



Table 1: Models in Monte Carlo study

We present the details of the five observation driven models in our Monte Carlo study.
In all cases the updating equation for the time-varying parameter ft is given by (2),
that is ft+1 = ω + αst + βft, with ω = 0.05, α = 0.1 and for three different values of
β = 0.2, 0.5, 0.8. The remaining details for py(yt|ft;θ) and st = s(yt, ft;θ) are given
below with a reference to the examples discussed in Section 2. Student’s t(0, ft, λ) refers
to the Student’s t density function with zero mean, variance (rather than scale parameter)
ft and degrees of freedom λ with λ = 5, Exp(ft) refers to the Exponential density with
intensity parameter ft, and for model (v) we have set σ2 = 1. In all cases, we take f1 = 1.

Model py(yt|ft;θ) s(yt, ft;θ) Example
(i) GARCH NID(0, ft) y2t 1
(ii) GARCH-t iid Student’s t(0, ft, λ) y2t 1
(iii) GAS-t iid Student’s t(0, ft, λ)

(1+3λ−1)(1+λ)y2t
λ−2+y2t /ft

3
(iv) ACD iid Exp(ft) yt 2
(v) Local Level (LL) NID(ft, σ

2) yt –

3. Calculate the time-varying parameter sequence f̂t+1 as well as its deriva-

tive with respect to θ using (2) and (11) for a given f1, based on the

generated time series and the estimate θ̂T .

These three steps can be repeated N times so that we obtain a set of N

paths for f̂t. From this set we can empirically determine the coverage of the

in-sample bounds for f̂t for nominal confidence levels such as 90%, 95% and

99%.

Within this Monte Carlo framework, for each generated time series, we

determine the in-sample bounds by the three methods as described in Section

3. We compute the time series average of the number of times the true ft

lies outside the in-sample bound. We take the average of this number over

the N replications, and present the results in Table 2.
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As expected, the simple non-cumulative bounds are not very accurate for

the GARCH model with β = 0.8, while they are somewhat more accurate for

the model with β = 0.2. However, the simple bounds provide poor overall

results for the three coverages of 90%, 95% and 99%. As we have indicated

in Example 4, the simple method is appropriate for the ARCH model (that

is the GARCH model with β = 0.0). Our Monte Carlo study reveals that

the simple method produces rather inaccurate results even when β = 0.2.

These findings are confirmed by the other models and for both sample sizes

considered.

The cumulative delta-method bounds are considerably more accurate.

The bands are slightly too small, resulting in lower estimated coverage com-

pared to the nominal levels. The differences, however, appear to be tolerable

for most practical purposes. The performances for different values of β remain

stable, while the performances of the simple non-cumulative bounds deteri-

orate rapidly if the value for β is increased. The estimated coverage levels

for the cumulative delta-method bounds remain close to the corresponding

nominal levels for β = 0.2, 0.5, 0.8. The performance slightly improves if the

sample size is increased. The overall performance is very stable across the

different models.

The reported coverages for the simulation method are presented in the

bottom panel of Table 2. The in-sample bounds from the simulation method

are based on M = 1000 simulations. The presented coverages show that

the simulation method is most accurate overall. Again, the improvements

in accuracy compared to the cumulative bounds is clearly noticeable, but

appears to be tolerable for empirical applications. This is a relevant finding,
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as the cumulative bounds are easier and faster to compute than the simulation

based ones. This finding applies to all levels of persistence for the time-

varying parameter process and to all different models considered. In our next

section, we investigate whether this conclusion also holds up for empirical

data.

5 An empirical illustration

To illustrate the use and the appearance of the different in-sample bounds in a

an empirical study, we consider a monthly time series of Standard & Poor’s

(S&P) 500 index returns. Our sample covers January 1990 until January

2015. We consider the standard GARCH model of Example 1 for illustrative

purposes with non-zero conditional mean µ. The returns for our sample are

displayed in Figure 1. The maximum likelihood estimates for the coefficients

are given by µ̂T = 0.145 (0.195), ω̂T = 0.583 (0.346), α̂T = 0.171 (0.053),

and β̂T = 0.805 (0.054), with the corresponding standard errors in parenthe-

ses, where we set f1 equal to the sample variance. The filtered conditional

variances f̂t are presented in the second panel of Figure 1.

The standard errors of the filtered f̂t are computed by our three methods.

We present the results over the last 8 years of the sample in Figure 2. We

clearly corroborate that the simple non-cumulative bounds are unrealistically

small compared to the other two bands. It is interesting to find that the sim-

ulation bounds and the cumulative delta bounds can be hardly distinguished

from each other in the presented sample. The largest difference can be noted

at the height of the financial crisis, where the lower bound of the simulation

approach lies substantially below the cumulative lower bound. In all other
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Figure 1: We present the S&P500 monthly returns from January 1990 until January 2015
(top panel) and the conditional volatility estimates obtained from the standard GARCH
model (bottom panel).

parts of the sample, the cumulative analytic approximation bounds appear

to be highly successful in approximating the bounds of uncertainty around

f̂t, this is in terms of accuracy, computational simplicity and speed.

6 Conclusions

We have reviewed three different methods for the computation of in-sample

confidence bounds for time-varying parameters in a general class of observa-

tion driven models . These bounds reflect the uncertainty due to parameter

estimation. In a Monte Carlo study it is shown that the simulation-based
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Figure 2: We present conditional volatility estimates and their corresponding in-sample
error bounds from the GARCH model applied to the S&P500 index monthly returns from
January 1990 until January 2015; we only present these for the last 8 years (96 months),
from January 2007. The in-sample bounds are obtained from the non-cumulative simple
method (light dotted line), the cumulative delta-method (dashed line) and the simulated
method (dark dotted line).
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method is most accurate for obtaining the correct coverages. Analytical non-

cumulative simple bounds are not sufficiently accurate and should not be

used in practice if the time-varying parameter possesses persistent autore-

gressive dynamics. Interestingly, our analytic approximate bounds based on

a simple recursive delta-method approximation appear to reflect parameter

uncertainty well, both in a controlled Monte Carlo study and in our empirical

illustration. The delta-method is straightforward and fast. Therefore it can

easily be implemented in standard software packages. This would provide

useful additional information in empirical analyses, where confidence bounds

around the time-varying parameters are usually not presented. Although we

have illustrated the methods for well-known models, the different approaches

for computing in-sample bounds can also be used for the skewed Student’s t

distribution with time-varying parameters as in Lucas, Schwaab, and Zhang

(2014) and for dynamic discrete data models as in Rydberg and Shephard

(2003). Future research may concentrate on extending our approach to the

computation of out-of-sample bounds that reflect the uncertainty of future

innovations for the time-varying factor as well.
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