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Abstract

The computation of various risk metrics is essential to the quantitative risk management of

variable annuity guaranteed benefits. The current market practice of Monte Carlo simulation

often requires intensive computations, which can be very costly for insurance companies to

implement and take so much time that they cannot obtain information and take actions in

a timely manner. In an attempt to find low-cost and efficient alternatives, we explore the

techniques of comonotonic bounds to produce closed-form approximation of the risk measures

for variable annuity guaranteed benefits. The techniques are further developed in this paper to

address in a systematic way risk measures for death benefits with the consideration of dynamic

policyholder behavior.

Key Words. Variable annuity guaranteed benefit, risk measures, value at risk, conditional

tail expectation, geometric Brownian motion, comonotonicity, dynamic policyholder behavior.

1 Introduction

Quantitative modeling, pricing and risk management of variable annuities have become an active

area of research, driven by rapid market innovation and increasing complexity of guaranteed bene-

fits. Non-traditional quantitative techniques are required for quantifying, assessing and managing

embedded option-like investment features. In recent years, regulators in North American markets

have set up capital requirement standards for equity-linking insurance products based on Monte

Carlo simulations. Among their many great advantages, simulation methods are known for their

universal applications to complex systems of product designs and their easy implementation, es-

pecially with the rapid improvement of computational power. Bauer et al. (2008) and Bacinello

et al. (2011) give comprehensive treatments of major product designs of guaranteed benefits by

simulations. However, one should bear in mind that simulation-based techniques are sampling

procedures that provide statistical estimation. It is a well-known fact that the sampling error of
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Monte Carlo simulation in general goes down by 1/
√
n with n being the sample size. In other words,

the sample size has to increase a hundredfold in order for the estimate to improve one significant

digit. Many industrial surveys have reported the growing problems of inefficient simulation exer-

cises which make it extremely difficult to obtain useful information and make decisions on pricing

and risk management in a timely manner. It is not surprising that practitioners often have to strike

a difficult balance between the accuracy of results and the efficiency of their simulations.

There has been growing interest in both the industry and the literature for the improvement of

model efficiency by either analytical methods or statistical means. For example, Koursaris (2011)

discussed the computation of capital requirement by least squares Monte Carlo simulations. Bauer

et al. (2010) compared least squares Monte Carlo simulations and numerical PDEs for valuing

surrender options in equity-linking insurance.

The pricing of various types of variable annuity guaranteed benefits is extensively studied in

the actuarial literature. Hardy (2003) provides a comprehensive review of option pricing theory

and its applications to many investment guarantees. Ulm (2008) and Ulm (2014) derived analytical

solutions to guaranteed minimum death benefits (GMDB) with rollup and ratchet options; Chi and

Lin (2012) introduced a PDE method for pricing guaranteed minimum maturity benefit (GMMB)

and GMDB with continuously paying premiums. As an alternative, a closed-form approximation

for the same guarantees with flexible premium payments was derived in Costabile (2013). Marshall

et al. (2010) studied the valuation of a guaranteed minimum income benefit (GMIB). Bernard

et al. (2014) proposed models for optimal surrender strategy for various guaranteed benefits with

surrender options. However, less is known with regard to the risk management of these guaranteed

benefits. For many complex product designs, Monte Carlo simulations remain the only available

tool for computing risk measures. Nevertheless, efforts have been made in the recent literature

to draw analytical techniques non-conventional to actuarial literature to the computation of risk

measures. Feng and Volkmer (2012) developed integral solutions to risk measures of GMMB and

GMDB net liabilities using Yor’s representation of the joint distribution of geometric Brownian

motion and its time-integral. An improvement using spectral expansion techniques was made in

Feng and Volkmer (2014).

Variable annuities are financial contracts between annuity writers (typically life insurers) and

individual policyholders. Policyholders make purchase payments into investment accounts at the

inception and expect to reap financial gain on the investment of their accounts. Let us first

consider the cash flows of a stand-alone variable annuity contract. The life cycle of a variable

annuity contract can be broken down into two phases. The first is known as the accumulation

phase, in which policyholders’ investment accounts grow in proportion to certain equity-indices in

which policyholders choose to invest at the inception. Let {St, 0 ≤ t ≤ T} describe the dynamics

of the underlying equity-index from the inception of the contract to the maturity T (which is

assumed to be an integer) and {Ft, 0 ≤ t ≤ T} describe the evolution of fund values in a particular

policyholder’s investment account with F0 being the initial purchase payment. Let us consider the

discrete time model with a valuation period of 1/n of a time unit, i.e. t = 1/n, 2/n, · · · , k/n, · · · , T.
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The fees and charges by annuity writers are typically taken as a fixed percentage of the-then-current

account values on a periodic basis. The equity-linking mechanism for variable annuity dictates that

Fk/n = F0

Sk/n

S0

(
1− m

n

)k−1
, k = 1, 2, · · · , nT,

where m is the annual rate of total charge compounded n times per year, and charges are made at

the beginning of each valuation period. This annual charge m is also referred to in practice as the

mortality and expense (M&E) fee. Let r be the continuously compounding yield rate per year on

bonds backing up the guaranteed benefits. Observe that the income from the insurer’s perspective

is generated by a stream of account-value-based payments. The present value of fee incomes, also

called margin offset, up to the k−th valuation period is given by

Mk/n =

k−1∑
j=0

e−rj/n
(me

n

)
Fj/n.

where me is the annual rate of GMMB rider charge compounded n times each year (part of the

total charge m allocated to fund the GMMB).

The second phase typically starts at the beginning of payments from guaranteed benefits and

is called the income phase. The models of the liabilities differ greatly by the designs of investment

guarantee. In this paper, we consider the two most common types of benefits.

Guaranteed Minimum Maturity Benefit (GMMB) - Individual Model

In the case of a GMMB, the policyholder is guaranteed to receive a minimum balance G in the

investment account at maturity T . The present value of the gross liability to the insurer is

e−rT (G− FT )+I(Tx > T ),

where (x)+ = max{x, 0} and Tx is the future lifetime of the policyholder of age x at inception.

Consider the net liability of the guaranteed benefits from the insurer’s perspective, which is the

gross liability of guaranteed benefits in the income phase less the fee incomes in the accumulation

phase. The present value of the GMMB net liability is given by

L(n)
e (Tx) := e−rT (G− FT )+I(Tx > T )−

(nT∧Tx)−1∑
j=0

e−rj/n
(me

n

)
Fj/n,

where x ∧ y = min{x, y}.
We shrink the valuation period to zero by taking n to∞ and observe that lim

n→∞
(1− m

n )n = e−m

where m in this case should be interpreted as the continuously compounded annual rate of total

charges. As a result, for each sample path,

Ft = lim
n→∞

F dnte
n

=
F0

S0
lim
n→∞

S dnte
n

(
1− m

n

) dnte−1
n

n
= F0

St
S0
e−mt.
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Similarly, the margin offset can be written as

Mt = lim
n→∞

M dnte
n

= lim
n→∞

dt/ne−1∑
j=0

1

n
e−rj/nmeFj/n =

∫ t

0
e−rsmeFs ds

where me is interpreted as the continuously compounded annual rate of rider charge allocated to

the GMMB rider.

The limit of L leads to a continuous time model. In the case of the GMMB,

L(∞)
e (Tx) = e−rT (G− FT )+I(Tx > T )−

∫ T∧Tx

0
e−rsmeFs ds. (1.1)

Guaranteed Minimum Death Benefit(GMDB) - Individual Model

In case of a GMDB, the policyholder is guaranteed to receive a minimum balance G regardless

of the performance of the investment account at the end of the 1/n-th period following his/her

death. It is fairly common that the guarantee amount accumulates interest at a fixed rate δ > 0,

which is known as a roll-up option. The present value of the gross liability to the insurer is

e−rKx(GeδKx − FKx)+I(Kx < T ),

where Kx is the curtate future lifetime

Kx =
1

n
dnTxe,

where dxe is the integer ceiling of x. The present value of the GMDB net liability is given by

L
(n)
d (Tx) := e−rKx(GeδKx − FKx)+I(Kx < T )−

(nT∧Kx)−1∑
j=0

e−rj/nmeFj/n

(
1

n

)
.

Similarly, it is easy to use limiting arguments to show that in case of the GMDB,

L
(∞)
d (Tx) = e−rTx(GeδTx − FTx)+I(Tx ≤ T )−

∫ T∧Tx

0
e−rsmeFs ds. (1.2)

The net liabilities L should be negative with a sufficiently high probability, as the products are

designed to be profitable. However, in adverse scenarios, the net liabilities can become positive.

The objective of actuarial risk management is to ensure that insurers set aside sufficient capitals

to absorb unexpected losses in the adverse scenarios. The amount of minimum capital is often

determined by risk measures of insurance liabilities, such as the value-at-risk, also known as quantile

risk measure, defined as

VaRp(L) := inf{y : P[L ≤ y] ≥ p}.

Another risk measure, which incorporates both the likelihood and severity of losses, is the condi-

tional tail expectation

CTEp(L) := E[L|L > VaRp].
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The risk measures VaRp(L
(∞)
e ),CTEp(L

(∞)
e ),VaRp(L

(∞)
d ), and CTEp(L

(∞)
d ) were studied in Feng

and Volkmer (2012) and Feng and Volkmer (2014) by analytical methods.

Guaranteed Minimum Maturity Benefit (GMMB) - Average Model

It is shown in Feng and Shimizu (2014) that if the future lifetimes of all policyholders are

mutually independent and all contracts are of equal size, i.e. all policyholders make the same

purchase payments and all contracts have the same guarantee level, then as N →∞,

1

N

N∑
i=1

L(n)
e (T 〈i〉x ) −→ L

(n)
e , almost surely,

where T
〈i〉
x denotes the future lifetime of the i-th individual. The GMMB net liability under the

average model is given by

L
(n)
e := e−rT T px (G− FT )+ −

(
1

n

) nT−1∑
j=0

e−rj/n j/npxmeFj/n, (1.3)

Observe that the mortality risk is fully diversified in the sense that there is no uncertainty on the

timing of cash flows. The continuous time analogue of the GMMB net liability under the average

model is given by

L
(∞)
e := e−rT T px(G− FT )+ −me

∫ T

0
e−rt tpxFt dt. (1.4)

The risk measures VaRp(L
(∞)
e ) and CTEp(L

(∞)
e ) were also studied in Feng (2014) using a numerical

PDE method. The comparison of risk measures under the two models (1.1) and (1.4) shows in

the paper that the financial risk is the dominating factor contributing to positive net liability in

comparison with the mortality risk for the GMMB.

Guaranteed Minimum Death Benefit (GMDB) - Average Model

Under the same assumption as mentioned above, it is known that as N →∞,

1

N

N∑
i=1

L
(n)
d (T 〈i〉x ) −→ L

(n)
d , almost surely.

The GMDB net liability under the average model is given by

L
(n)
d :=

nT∑
j=1

e−rj/n (j−1)/npx 1/nqx+(j−1)/n (Geδj/n − Fj/n)+ −
(

1

n

) nT−1∑
j=0

e−rj/n j/npxmdFj/n. (1.5)

The mortality risk is fully diversified in the sense that there is no uncertainty on the timing of

death benefits. The continuous time analogue of the GMDB net liability is determined by letting
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n go to infinity

L
(∞)
d :=

∫ T

0
e−rt tpx µx+t(Ge

δt − Ft)+ dt−md

∫ T

0
e−rt tpxFt dt,

where µx+t = −( d/ dt) tpx/ tpx is the force of mortality in a continuous mortality model. Unlike

the previous models, the numerical PDE method used in Feng (2014) does not apply directly in this

case, although other PDE methods may be possible. In this paper, we sort to alternative methods

such as comonotonic approximations in this paper.

Although the above formulation of net liabilities can be used for any equity return model, we

rely on analytical properties of the underlying processes for the computation of risk measures.

Among several commonly used asset return models recommended by the American Academy of

Actuaries (c.f. Gorski and Brown (2005)), we use the geometric Brownian motion {St, t ≥ 0}, also

known as the independent lognormal model by the insurance industry,

St = S0e
µt+σBt , t ≥ 0, (1.6)

where {Bt, t ≥ 0} is a standard Brownian motion. In practice, most equity funds offer a fixed

(or relatively stable) make-up of subaccounts by periodic rebalancing. For instance, 30%-high-

yield-equity, 30%-low-yield-equity and 40%-bonds. If each of the subaccounts in the equity fund is

modeled by a geometric Brownian motion and the proportion attributable to each subaccount is

fixed, then the overall equity fund is also driven by a geometric Brownian motion. Continuously

rebalanced portfolios were studied with comonotonicity techniques in Dhaene et al. (2006), Marin-

Solano et al. (2010) and Dhaene et al. (2005). Even though we only consider the model (1.6) in

this paper, most results can be extended to regime-switching geometric Brownian motions, also

recommended in the AAA guideline.

The main contributions of the paper can be summarized as follows. (1) While there exists

actuarial literature on the pricing of exotic options using comonotonicity (c.f. Simon et al. (2000),

Albrecher et al. (2005), Hobson et al. (2005), Chen et al. (2008), Linders et al. (2012) amongst

others), this is the first paper to systematically explore this technique for risk measures of vari-

able annuity contracts. (2) In the same technical framework of comonotonicity, we address the

computational issue of dynamic policyholder behavior, which was only previously known by sim-

ulations in the literature and in practice. (3) Given the complexity of the (time-inhomogeneous)

average models, it is quite remarkable that the technique of comonotonicity produces easy-to-

implement explicit solutions (Propositions 3.1 and 4.1). The approximation can be viewed as a

“back-of-envelope-calculation” alternative to Monte Carlo simulations which require intensive com-

putations. The computational advantage is even more pronounced when policyholder behavior is

considered. (4) To the best of our knowledge, this is the first paper in the actuarial literature

to provide an analysis of risk metrics with dynamic policyholder behavior using a non-simulation

based approach.

In Section 2, we will introduce the concept of comonotonicity, its basic properties and a general

form of comonotonic bounds for path dependent equity-link products. Comonotonic bounds for
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the net liability of GMMB are discussed in detail in Section 3. A more complex development of

comonotonic approximations of the net liability of GMDB is introduced in Section 4. In Section

5, we compare the approximations developed in this paper with the benchmark of Monte-Carlo

simulation through several numerical examples. In Section 6, we extend the comonotonic approxi-

mation approach to address the computation of risk measures for net liabilities taking into account

dynamic policyholder behavior.

2 Comonotonicity

The theory of comonotonicity was originally studied in the actuarial literature with respect to

estimating aggregate claims, which are often sums of dependent random variables representing

individual claims. Over the past decades it has seen wider applications ranging from rate-making

of property-casualty insurance to pricing of exotic options. Readers can find a comprehensive review

on the theory of comonotonicity in Dhaene et al. (2002b), Dhaene et al. (2002a), Dhaene et al.

(2006), Deelstra et al. (2011) and the references therein. For the sake of completeness, we briefly

review the properties of comonotonic bounds which will be used in our calculations. Although

some error analysis is known for comonotonic bounds of option prices (c.f. Vanduffel et al. (2005)

and Vanmaele et al. (2006)), there appears to be no error estimation in the previous literature on

the TVaR of comonotonic lower bound, which we shall use for approximations of risk measures for

variable annuity guaranteed benefits. Hence, we first develop a formula for the error estimation.

2.1 Convex order and implication for TVaR

The random variable X is said to be smaller than the random variable Y in convex order, denoted

by X 6cx Y , if for all d ∈ R,

E(X) = E(Y ) and E(X − d)+ 6 E(Y − d)+.

There are several commonly used risk measures for loss random variables. The Value-at-Risk,

also known as the quantile risk measure, is defined by

VaRp(X) := inf{x : P(X > x) < p}, p ∈ [0, 1],

with inf ∅ = −∞. Another risk measure often used for regulatory capital requirements is the

Conditional Tail Expectation, defined by

CTEp(X) := E[X|X > VaRp(X)], p ∈ [0, 1].

Other risk measures include the Left-Tail-Value-at-Risk and the (right-)Tail-Value-at-Risk, defined

for p ∈ [0, 1],

TVaRp(X) :=
1

1− p

∫ 1

p
VaRq(X) dq, LTVaRp(X) :=

1

p

∫ p

0
VaRq(X) dq,
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where the definitions should be considered as limits of the fractions for TVaR1 and LTVaR0. In

the applications of this paper, we shall apply these risk measures to continuous random variables

such as L
(n)
e and L

(n)
d . It is easy to show that CTEp is identical to TVaRp for continuous random

variables for all p ∈ [0, 1]. Hence, we do not distinguish them in this paper.

For insurance applications, we often encounter problems of computing risk measures of random

variables arising from complex structure. For example, it may be difficult to directly determine the

distribution of some random variable, X. Then we may use the convex order relation

X l = E(X|Λ) ≤cx X, (2.1)

which implies that

TVaRp(X
l) ≤ TVaRp(X), ∀p ∈ (0, 1). (2.2)

The proof of this result can be found, for example, in Dhaene et al. (2006). The TVaR of the

comonotonic approximation X l is sometimes much easier to compute than that of the original

variable X and serves as a lower bound. This is in particular the case where X is the sum of the

components of a multivariate lognormal random vector. For numerical implementation, we want

to know the magnitude of the errors of the lower bound.

Proposition 2.1. For all p ∈ [0, 1),

TVaRp(X)− TVaRp(X
l) ≤ 1

2(1− p)
E(|X −X l|). (2.3)

Proof. It is easy to prove that for two real-valued functions f and g bounded from below with the

same domain,

inf f + inf g ≤ inf{f + g},

which implies

inf f − inf g ≤ − inf{g − f}.

Furthermore, if g − f is bounded, then

inf f − inf g ≤ sup{f − g}.

We know from (Denuit et al., 2005, p.75) that

TVaRp(X) = inf
a∈R

{
a+

1

1− p
E(X − a)+

}
.

Let us denote the expression inside the brackets by fX(a). Then it is clear that

f ′X(a) = 1− 1

1− p
P(X > a).
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Therefore, there exists some number a0 such that f is non-increasing on (∞, a0) and non-decreasing

on (a0,∞). Since

lim
a→−∞

a+
1

1− p
E(X − a)+ ≥

1

1− p
lim

a→−∞
a+ E(X − a)+ =

1

1− p
E(X) > −∞,

we find that fX is indeed bounded from below. Note that by Jensen’s inequality,

fS(a)− fSl(a) =
1

1− p
{E(S − a)+ − E(Sl − a)+} ≥ 0, ∀a ∈ R.

Moreover, fS − fSl is differentiable and

lim
a→+∞

fS(a)− fSl(a) = 0.

Thus fS − fSl is bounded. Therefore,

TVaRp(S)− TVaRp(S
l) ≤ 1

1− p
sup
a∈R

{
E(S − a)+ − E(Sl − a)+

}
.

It follows from (Rogers and Shi, 1995, (3.5)) that

E(Y+)− E(E(Y |Λ)+) ≤ 1

2
E(|Y − E(Y |Λ)|).

Let Y = S − a. Therefore, we find the error bound (2.3).

Hereafter we provide some examples to demonstrate that (2.1) is a tight upper bound of the

difference in the sense that the upper bound can be reached for a particular choice of p ∈ (0, 1).

Example 2.1. Let Λ be independent of X, then (2.1) is reduced to the special form

TVaRp(X)− E(X) 6
1

2(1− p)
E|X − EX|

1. Consider X to be a standard normal random variable with cdf Φ. It follows immediately that

VaRp(x) = Φ−1(p) and TVaRp(X) =
1

(1− p)
√

2π
e−

1
2

(Φ−1(p))2

Since EX = 0 and E|X| =
√

2/π, the upper bound is attained if and only if p = 1
2 .

2. Consider X to be an exponential random variable with mean 1/λ. Then

VaRp(x) = − 1

λ
ln(1− p) and TVaRp(X) =

1− ln(1− p)
λ

and E|X − EX| = 2/(λe) where e is the Euler’s constant. It turns out that the upper bound

is attained at the constant p = (e− 1)/e ≈ 0.6321205588.
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3. Let X be a gamma random variable with mean α/β and variance α2/β. Then VaRp(x) is the

inverse function of F (x) = 1
Γ(α)γ(α, βx) and γ is the lower incomplete gamma function. And

TVaRp(X) =
1

(1− p)βΓ(α)
Γ(α+ 1, βVaRp(x))

E|X − EX| = 2ααe−α

βΓ(α)

where Γ(·) and Γ(·, ·) are the gamma function and the upper incomplete gamma function. It

can be shown that the upper bound is attained at the constant p = γ(α, α)/Γ(α), which is

independent of β.

Remark 2.1. In applications, it is often difficult to determine a closed-form expression for E(|X−
X l|). Therefore, using the fact that E|X − X l| ≤ Var(X|Λ), we find the following weaker upper

bound:

TVaRp(X)− TVaRp(X
l) ≤ 1

2(1− p)
E(Var(X|Λ)1/2), for p ∈ [0, 1). (2.4)

Here, Var is to used to denote the variance, not to be confused with the value-at-risk VaRp. Note,

however, the upper bound in (2.4) may not be attained for any p in [0, 1).

Numerical experiments indicate that the bounds in (2.3) and (2.4) are generally very conserva-

tive for large p, and actual errors are orders of magnitude smaller.

2.2 Comonotonic bounds for sums of random variables

We are often interested in the aggregate sum of random variables such as S = X1 +X2 + · · ·+Xn,

where the marginal distributions of random variables X1, X2, · · · , Xn are known but their joint

distribution is either unknown or too complex to be useful for computations. In such cases, one

can exploit the theory of comonotonic bounds to find closed-form approximations that can be

implemented efficiently.

By definition, the random vector (X1, X2, · · · , Xn) is comonotonic if

(X1, X2, · · · , Xn) ∼
(
F−1

1 (U), F−1
2 (U), · · · , F−1

n (U)
)
,

where ∼ means equality in distribution and F−1
k is the (generalized) inverse distribution function

of Xk for k = 1, · · · , n. For any random vector (X1, X2, · · · , Xn) and any random variable Λ,

Sl :=

n∑
i=1

E(Xi|Λ) 6cx

n∑
i=1

Xi 6cx

n∑
i=1

F−1
Xi

(U)

where U has a uniform distribution on [0, 1]. We call Sl the comonotonic lower bound of S based

on Λ. The right-hand side of the second inequality is called the comonotonic upper bound.

It is known in the literature (c.f. Vanduffel et al. (2005)) that in a multivariate lognormal setup

with appropriate choices of Λ, the comonotonic lower bound Sl provides a better approximation of

10



S than the comonotonic upper bound. Since (2.1) implies (2.2), we have that for any conditioning

random variable Λ,

TVaRp(S
l) ≤ TVaRp(S).

Then we can try to obtain the maximum value of the lower bound TVaRp(S
l),

max
Λ∈Θ

TVaRp(S
l), (2.5)

as the approximation of TVaR(S), where Λ is taken from a family Θ of normal random variables.

3 Guaranteed minimum maturity benefit

For brevity, we suppress the superscripts (n) and subscripts e in the notation introduced earlier, as

the frequency of charges and the type of benefit are clear from the context of this section. Given

that L > 0, we consider the net liability in the average model (1.3):

L = e−rT T pxG−
(

1

n
meF0 + S

)
,

where

S =
nT−1∑
i=1

αie
Zi , Zi = (µ− r −m)

i

n
+ σBi/n,

and the αi’s are positive constants defined by

αi =


1

n i/npxmeF0, i = 1, · · · , nT − 1,

T pxF0, i = nT.

Consider the comonotonic lower bound of S given by

Sl = E[S|Λ] =

nT−1∑
i=1

αiE[eZi |Λ],

where the conditioning random variable Λ is a linear combination of M appropriately chosen normal

random variables, {N1, · · · , NM}, derived from {Bt, t ≥ 0}, i.e.

Λ =
M∑
k=1

λkNk.

In the work of Vanduffel et al. (2008b) and Vanduffel et al. (2008a), a total of M = nT normal

random variables was used with Nk = Zk. Under this choice of random variables, the weights

{λk, k = 1, · · · ,M} were derived to approximately maximize TVaRp(S
l) or Var(Sl), see Appendix

B. However, as we shall demonstrate in the numerical examples, it is possible to achieve roughly

the same maximum with a fewer number of random variables, which requires less computational

efforts. For example, we can let Nk = Znk and M = T .

11



Using properties of conditional distributions, we obtain

Sl =
nT∑
i=1

αie
E[Zi]+

1
2

(1−r2
i )σ2

Zi
+riσZi (Λ−E[Λ])/σΛ ,

where E[Zi] and σ2
Zi

are the expectation and variance of Zi, i.e.

E[Zi] = (µ− r −m)
i

n
, σZi = σ

√
i

n
,

while ri is the correlation coefficient of Zi and Λ, and σ2
Λ is the variance of Λ. Owing to the

structure of the sum Sl, we can find explicit expressions for the risk measures

VaRp[S
l] =

nT−1∑
i=1

αie
E[Zi]+

1
2

(1−r2
i )σ2

Zi
+riσZiΦ

−1(p)

and

TVaRp[S] > TVaRp[S
l] =

1

1− p

∫ 1

p
VaRp[S

l] dp =
1

1− p

nT−1∑
i=1

αiE[eZi ]Φ(riσZi − Φ−1(p)).

The derivation can be found in Vanduffel et al. (2008b).

Proposition 3.1. Consider the net liability for the GMMB in the average model (1.3). The value-

at-risk and the conditional tail expectation of the comonotonic lower bound Ll = E[L|Λ] are given

by

VaRp(L
l) = e−rT T pxG−

(
1

n
meF0 + VaR1−p(S

l)

)
(3.1)

and

CTEp(L
l) = e−rT T pxG−

1

n
meF0 − LTVaR1−p(S

l) (3.2)

where

VaRp(S
l) =

nT−1∑
i=1

αie
E[Zi]+

1
2

(1−r2
i )σ2

Zi
+riσZiΦ

−1(p)
,

and

LTVaR1−p(S
l) =

1

1− p

nT−1∑
i=1

αiE[eZi ](1− Φ(riσZi − Φ−1(1− p))).

Remark 3.1. Note that the risk measures VaRp(S
l) and LTVaRp(S

l) only depend on the unspecified

vector (λ1, · · · , λM ) through the vector (r1, · · · , rM ). Rather than searching for λi’s, Vanduffel et al.

(2008a) proposed two methods for selecting optimal ri’s. Their first approach is to maximize the

first-order approximation of the variance of Sl (globally optimal choice), in which case Nk = Zk for

k = 1, · · · , nT . The second approach maximizes the first-order approximation of TVaRp(S
l) (locally

optimal choice). The exact formulas for the optimal choice of ri’s can be found in the Appendix.

The first numerical example in Section 5 provides a testimony to the remarkable effectiveness of

the approximations. However, even the first-order approximations can be difficult to find for the

GMDB. Hence, we propose to use numerical optimization algorithms to find λi’s that achieve (2.5).

12



4 Guaranteed minimum death benefit

For the net liability of the GMDB in the average model (1.5),

L =
nT∑
i=1

ui(Ge
δi/n − Fi/n)+ −

nT−1∑
i=0

viFi/n

where

ui := e−ri/n (i−1)/npx 1/nqx+(i−1)/n, vi :=
1

n
e−ri/nmd i/npx.

We use random variable Nk’s with mean zero,

Λ =
M∑
k=1

λkNk.

Since Fi/n = exp(Zi) where Zi = (µ−m) in + σBi/n, we must have

Zi|Λ = λ ∼ Norm

(
µi

(
λ

σΛ

)
, σ2

i

)
,

where

µi(y) := (µ−m)
i

n
+ riσ

√
i

n
y, σ2

i := σ2 i

n
(1− r2

i ).

Recall that

E
[
(G− F0e

µ+σΦ−1(U))+

]
= GΦ

(
ln(G/F0)− µ

σ

)
− F0e

µ+σ2/2Φ

(
ln(G/F0)− σ2 − µ

σ

)
.

Let µ∗i (y) = µi(y)− δi/n. Consider the conditional expectation

E[L|Λ = λ] =
nT∑
i=1

ui

Geδi/nΦ

 ln(G/F0)− µ∗i
(
λ
σΛ

)
σi

− F0e
µ∗i

(
λ
σΛ

)
+σ2

i /2Φ

 ln(G/F0)− σ2
i − µ∗i

(
λ
σΛ

)
σi


−
nT−1∑
i=0

vi F0 exp

{
µi

(
λ

σΛ

)
+ σ2

i /2

}
. (4.1)

It is easy to show that E
[
(G− F0e

µ+σΦ−1(U))+

]
is a decreasing function of µ. Therefore, each term

in (4.1) is a decreasing function of λ. This implies that we have closed-form formulas for both risk

measures of Ll := E[L|Λ].

Proposition 4.1. Consider the net liability for the GMDB in the average model (1.5). The value-

at-risk and the conditional tail expectation of the comonotonic lower bound Ll are given by

VaRp(L
l) =

nT∑
i=1

ui

[
Geδi/nΦ

(
ln(G/F0)− µ∗i

(
Φ−1(1− p)

)
σi

)

− F0e
µ∗i (Φ−1(1−p))+σ2

i /2Φ

(
ln(G/F0)− σ2

i − µ∗i
(
Φ−1(1− p)

)
σi

)]

−
nT−1∑
i=0

vi F0 exp
{
µi
(
Φ−1(1− p)

)
+ σ2

i /2
}
− 1

n
md F0,

(4.2)
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and

CTEp(L
l) =

1

1− p

nT∑
i=1

ui

[
Geδi/nH

(
Φ−1(1− p); ai, bi

)
− F0 exp

{
µ∗i (0) +

1

2
σ2 i

n

}
H

(
Φ−1(1− p)− riσ

√
i

n
; ai, bi −

iσ2

nσi

)]

− 1

1− p

nT−1∑
i=0

vi F0 exp

{
µi(0) +

1

2
σ2 i

n

}
Φ

(
Φ−1(1− p)− riσ

√
i

n

)
− 1

n
md F0,

(4.3)

where

ai =
ri√

1− r2
i

, bi =
ln(G/F0)− (µ−m− δ)i/n

σi
.

and H is a special function whose definition and computation are discussed in the Appendix.

The derivation is largely based on the simple identity (A.1). It should be pointed out that

it is in general difficult to find explicit formulas for optimal choices of ri because of the complex

structure of H functions. Nevertheless, numerical methods for nonlinear optimization problems are

widely available in computational software packages such as Matlab. In Section 5, we shall provide

an example in which the optimization procedure is implemented.

5 Numerical example

We illustrate the computation of risk measures for variable annuity guaranteed benefits by two

examples, which are based on the following assumptions. The policyholder is 65-year-old at policy

issue, and the term of the variable annuity is 10 years, i.e. T = 10. The mean and standard

deviation of log-returns per annum in the Black-Scholes model (1.6) are set as µ = 0.09 and

σ = 0.3 respectively. The yield rate per annum of the assets backing up the guarantee liabilities

is r = 0.04. The M&E fee per annum is m = 0.01, and rider charge me or md is assumed to be

35 basis points per annum of the separate account. The initial guarantee amount is set to be the

initial purchase payment G = F0. To model the future lifetime of policyholders, we use the life

tables published in the actuarial study by the U.S. Social Security Administration in 2005.

All computations in Sections 5 and 6 are carried out on a personal computer with Intel Core

i7-4700MQ CPU at 2.40GHz and an RAM of 8.00 GB.

5.1 Guaranteed minimum maturity benefit

The purpose of the first example is to test the accuracy and efficiency of the comonotonic approx-

imations proposed in Proposition 3.1. The computation of risk measures for the GMMB under

the continuous time average model (1.4) was investigated in (Feng, 2014, Tables 5 and 6) through
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x qx k kpx x qx k kpx

65 0.01753 0 1 71 0.03059 6 0.87275

66 0.01932 1 0.98246 72 0.03343 7 0.84606

67 0.02122 2 0.96348 73 0.03633 8 0.81778

68 0.02323 3 0.94304 74 0.03942 9 0.78807

69 0.02538 4 0.92113 75 0.04299 10 0.75700

70 0.02785 5 0.89775

Table 1: Life Table

a numerical PDE method. As we shall demonstrate, the comonotonic approximations appear to

be very efficient with only small compromise of accuracy, which is likely negligible for practical

purposes. Hence, the comonotonic approximation is arguably superior to the PDE method for this

example.

Method VaR0.9 CTE0.9 Time (secs)

Global optimization ΛMV 0.14900 0.25944 0.04

Local optimization Λ(p) 0.14901 0.25948 0.04

Nonlinear optimization 0.14902 0.25948 33.95

Monte Carlo 0.14914 0.25966 179.84

(1 million) (0.00043) (0.00034)

Monte Carlo 0.14902 0.25949 18042.09

(100 millions) (0.00007) (0.00004)

Table 2: GMMB

We first run Monte Carlo simulations for the average model (1.3) with n = 4, i.e. fees are

collected on a quarterly basis. The probability of the policyholder surviving a non-integer period

is calculated under the assumption of constant force of mortality in each year. For each scenario

of investment accounts generated by the geometric Brownian motion, we calculate the net liability

based on the formulation (1.3). After repeating the simulation 1 million or 100 million times, the

net liability values form an empirical distribution, from which we use order statistics to obtain one

estimate of the value-at-risk and conditional tail expectation. Then we repeat the whole procedure

20 times to obtain a sample of risk measure estimates. In Table 2, we show the mean and standard

deviation (in brackets) of the estimated risk measures.

We test the comonotonic approximations (3.1) and (3.2) with various choices of Λ. In the first

case, we set Nk = Zk for k = 1, · · · , nT and use the globally optimal choice of Λ, proposed by

Vanduffel et al. (2008b), which is the optimization of the linear approximation of Var(Sl) as a

function of the vector (r1, · · · , rM ). The exact expressions for ri’s are given in (B.1). In the second

case, we use the locally optimal choice of Λ, proposed in the same paper, which is the optimization
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of the linear approximation of TVaRp(S
l) as a function of the vector (r1, · · · , rM ). The exact

expressions for ri’s are given in (B.2). In the third case, we treat the risk measures as nonlinear

functions of the vector (λ1, · · · , λM ) and use Matlab’s fminsearch to find the optimal value of

the vector that minimizes −TVaRp(S
l). This algorithm uses a version of the Nelder-Mead simplex

search method to obtain a local minimum value of the function. It works well in unconstrained

nonlinear optimization system, which suits our situation. Based on empirical data, we observe that

TVaRp(S
l) is in fact unimodal and hence the numerical algorithm is very stable and efficient.

It is not surprising that the approximations based on the global and local optimal choices of

ri’s are more efficient than the nonlinear optimization, as the former pins down the values of ri’s

by closed-form formulas where as the latter invokes a search algorithm for λi’s. It is also worth to

note that the nonlinear optimization brings TVaRp(S
l) closer to the true value of TVaR(S).

5.2 Guaranteed minimum death benefit

Consider the net liability of the GMDB rider in (1.5). For simplicity, the net liabilities are evaluated

under the same valuation basis as in the GMMB case. Keep in mind that we no longer have closed-

form solutions to (λ1, · · · , λM ). In the case of Nk = Zk for k = 1, · · · , 4T (quaterly valuation), a

10-year contract with quarterly fee payments require 40-dimensional optimization (the first row in

Table 3). Therefore, we intend to reduce computational efforts by restricting the space of normal

random variables Θ in (2.5). We use the results from Monte Carlo simulations as the bench mark

for accuracy and efficiency. In the second row of Table 3, the normal random variables are sampled

every half-year, i.e. Nk = Z2k for k = 1, · · · 2T . (The number of random variables is reduced by

half from the quarterly case.) In the third row of Table 3, the normal random variables are chosen

on yearly basis, i.e. Nk = Z4k for k = 1, · · · , T . (The number of random variables is reduced by

75% from the quarterly case.) It appears that the running time can be reduced drastically with

small compromises of accuracy.

Method VaR0.9 CTE0.9 Time (secs)

Nonlinear optimization 0.03035 0.06126 69.97

Nonlinear optimization ( 50% reduced) 0.03031 0.06123 30.50

Nonlinear optimization ( 75% reduced) 0.03018 0.06111 7.83

Monte Carlo 0.03059 0.06137 226.16

(1 million) (0.00013) (0.00010)

Monte Carlo 0.03035 0.06128 22602.80

(100 millions) (0.00002) (0.00002)

Table 3: Risk measures for the GMDB net liability with δ=0

In the next example, we intend to consider the impact of offering a roll-up bonus on the GMDB

net liability. In this case, the guarantee base accumulates interests at the rate of δ = 0.06 per

annum. In comparison with the tail behavior in Table 3 with no roll-up, the 90% risk measures
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show that the tail of the net liability is heavier owing to the richer benefit payments. We have also

experimented with the reduction of normal random variables in Λ as was done in the previous case.

Method VaR0.9 CTE0.9 Time (secs)

Nonlinear optimization 0.10318 0.13681 63.75

Nonlinear optimization ( 50% reduced) 0.10315 0.13677 31.08

Nonlinear optimization ( 75% reduced) 0.10301 0.13664 7.23

Monte Carlo 0.10346 0.13710 223.51

(1 million) (0.00016) (0.00009)

Monte Carlo 0.10335 0.13706 21955.19

(100 millions) (0.00001) (0.00002)

Table 4: Risk measures for the GMDB net liability with δ=0.06

6 GMDB with dynamic policyholder behavior

We now incorporate into the average model a feature of dynamic policyholder behavior (DPB)

commonly used in practice. In many product designs, variable annuity policyholders have the op-

tion to surrender their contracts subject to a certain surrender charge. It is common to see that

policies tend to lapse at a higher rate when the guarantees are out-of-money than when they are

in-the-money. In the past few years, the Society of Actuaries has been publishing annual reports

on its industrial surveys on dynamic policyholder behavior. Interested readers are recommended

to consult IAA (2010) and Campbell et al. (2014) for the practitioner’s approach to modeling poli-

cyholder behavior. For illustration purpose, we construct a model based on the concepts described

in (IAA, 2010, II-50,IV-9). Practitioners typically break down lapse rates as

dynamic lapse rate = base lapse rate× dynamic lapse factor,

where the base rate reflects the average experience that varies with the duration of the contract and

the dynamic factor is modeled by a decreasing function of the in-the-moneyness ratio. According

to the SOA 2012 survey (c.f. PBITT working group (2013)), “a majority of insurers now use

dynamic lapse functions for GMDBs. The percentage increased from 25% in 2008 to over 55% in

2011 and 2012.” The majority of participating companies vary their basic lapse rates by applying

dynamic factors once the in-the-moneyness exceeds 10%. The definition of the in-the-moneyness

ratio (ITM) and the dynamic factor function vary company by company. Nevertheless, based on

the most common practice described in IAA (2010), we define the ITM as either

ITM =
present value of the guaranteed benefit

account value
, (6.1)

or alternatively,

ITM =
present value of the guaranteed benefit

surrender value
. (6.2)
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Hence, we consider the lapse factor determined by

f(x) =


γ1, x ≥ b1
γ2, b2 ≤ x < b1,
...

γw, bw ≤ x < bw−1,

where x represents the ITM, the thresholds b0 =∞ > b1 > b2 > · · · > bw = 0 and dynamic factors

0 ≤ γ1 < γ2 < · · · < γw ≤ 1. An example can be found in Table 6 in the numerical example.

Yearly base lapse rates are typically estimated from experience data. In other words, the base rate

is considered as a decreasing piecewise function of time, which we denote by qbx+t−1.

The surrender charges are typically designed to decline over time so as to discourage early policy

surrender. We denote the surrender charges by a decreasing function of time, ct. An example of

base lapse rate and surrender charge is given in Table 5. If the ITM is defined as a percentage

of the current account value as in (6.1), then the dynamic lapse rate is determined by qlx+t−1(Ft),

with ql given by

qlx+t−1(y) = qbx+t−1 · f
(

(Geδt − y)+

y

)
= qbx+t−1

m∑
k=1

γkI

(
Geδt

bk−1 + 1
< y ≤ Geδt

bk + 1

)
.

If the ITM is defined as a percentage of the surrender value as in (6.2), then the dynamic lapse

rate is given by qlx+t−1(Ft) where ql is determined by

qlx+t−1(y) = qbx+t−1 · f
(

(Geδt − y)+

(1− ct)y

)
= qbx+t−1

m∑
k=1

γkI

(
Geδt

(1− ct)bk−1 + 1
< y ≤ Geδt

(1− ct)bk + 1

)
.

The lapse survival rate is path-dependent, making the computation very difficult. Therefore, we

only consider the current state for the survival rate and then exponentially interpolate the path of

account values between the initial purchase payment F0 and the current value:

k/np
l
x(y) ≈

k∏
i=1

(
1− 1/nq

l
x+(i−1)/n

(
yi/kF

1−i/k
0

))
. (6.3)

The net liability of the GMDB with the dynamic policyholder behavior is then given by

L∗ :=
nT∑
k=1

e−rk/n (k−1)/npx 1/nqx+(k−1)/n (k−1)/np
l
x(Fk/n) (Geδt − Fk/n)+

−
nT∑
k=1

e−rk/n (k−1)/npx (k−1)/np
l
x(Fk/n)1/nq

l
x+(k−1)/n(Fk/n) ck/nFk/n

−
nT−1∑
k=0

1

n
e−rk/nmd (k−1)/npx (k−1)/np

l
x(Fk/n)

[
1− 1/nq

l
x+(k−1)/n(Fk/n)− 1/nqx+(k−1)/n

]
Fk/n.

(6.4)
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The first term of the formula represents the present value of outgoing payments of death benefits

to in-force policies up to k− 1 periods for which death occurs in the k-th period. The second term

shows the present value of incoming payments of surrender charges from in-force policies that lapse

during the k-th period. If the policy remains in force after the k-th period, the fees are collected

as a percentage of the then-current account value, as is shown in the third term of the formula.

Figure 1: Approximations of dynamic lapse survival rates

To take advantage of the method developed in earlier sections, the random variables should

only be a linear combination of (Geδ/n − Fk/n)+ and Fk/n. For the CTE calculation, each of

(Geδ/n−Fk/n)+ terms in the net liability corresponds an H function. As mentioned in the previous

section, the computation of the H function is the most time-consuming part in the whole procedure.

To make the algorithm efficient, we approximate plt by a piecewise constant function with the same

partition of the domain (0,∞) as qlt. The partition points ηki are determined by ηk0 = 0, ηkw = +∞
and

ηki =
Geδk/n

(1− ck/n)bi + 1
, k = 1, · · · , nT ; i = 1, · · · , w − 1.

Then we set the constants of qlk/n and plk/n for the interval (ηki, ηk(i+1)):

αki := 1/nq
b
x+(k−1)/nγi, βki :=

1

2

[
k/np

l
x(ηki) + k/np

l
x(ηk(i+1))

]
.
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In other words, we approximate the lapse survival rate pl by

k/np̃
l
x(y) =

w−1∑
k=0

βkiI(ηki ≤ y < ηk(i+1)). (6.5)

Examples of the survival rates based on exponential interpolation and piecewise constant approx-

imation are given in Figure 2, for which the parameters can be found in the numerical example

below.

If we replace the lapse survival rate pl by its approximation p̃l in (6.4), then the approximated

net liability of the GMDB with the dynamic policyholder behavior can be written as

L∗ ≈ L :=

nT∑
k=1

w−2∑
i=0

uk 1/nqx+(k−1)/nβki (Geδk/n − Fk/n)+Iki −
nT∑
k=1

w−1∑
i=0

ck/nuk βkiαki Fk/nIki

−
nT−1∑
k=0

w−1∑
i=0

md

n
uk βki(1− αki −1/n qx+(k−1)/n)Fk/nIki, (6.6)

where

uk := e−rk/n (k−1)/npx, Iki := I
(
ηki < Fk/n ≤ ηk(i+1)

)
.

We are now ready to apply the technique of comonotonicity to determine closed-form expressions

for the risk measures of Ll = E[L|Λ], which we propose to use as approximations of the risk measures

of L∗.

Remark 6.1. Consider the net liability for the GMDB in the average model with DPB (6.6). The

value-at-risk and the conditional tail expectation of Ll can be calculated by

VaRp(L
l) =

nT∑
k=1

uk 1
n
qx+ k−1

n
Geδk/n

w−2∑
i=0

βki

[
Φ

(
gk(i+1)

σk

)
− Φ

(
gki
σk

)]

−
nT∑
k=1

uk 1
n
qx+ k−1

n
F0e

µk(φ)+σ2
k/2

w−2∑
i=0

βki

[
Φ

(
gk(i+1) − σ2

k

σk

)
− Φ

(
gki − σ2

k

σk

)]

−
nT∑
k=1

uk F0e
µk(φ)+σ2

k/2
w−1∑
i=0

βkick/nαki

[
Φ

(
gk(i+1) − σ2

k

σk

)
− Φ

(
gki − σ2

k

σk

)]

−
nT−1∑
k=0

uk F0e
µk(φ)+σ2

k/2
w−1∑
i=0

βki
md

n
(1− αki − 1

n
qx+ k−1

n
)

[
Φ

(
gk(i+1) − σ2

k

σk

)
− Φ

(
gki − σ2

k

σk

)]
,

(6.7)
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where φ = Φ−1(1− p), gki = ln(ηki/F0)− µk(φ), and

CTEp(L
l) =

1

1− p

nT∑
k=1

uk 1/nqx+(k−1)/nGe
δk/n

w−2∑
i=0

βki

[
H
(
φ; ak, bk(i+1)

)
−H

(
φ; ak, bki

)]

− 1

1− p

nT∑
k=1

uk1/nqx+(k−1)/nF0e
µk(0)+ kσ2

2n

w−2∑
i=0

β(k,i−1)

×

[
H

(
φ− rkσ

√
k

n
; ak, bk(i+1) −

kσ2

nσk

)
−H

(
φ− rkσ

√
k

n
; ak, bki −

kσ2

nσk

)]

− 1

1− p

nT∑
k=1

ukF0e
µk(0)+ kσ2

2n

w−1∑
i=0

βkick/nαki

×

[
H

(
φ− rkσ

√
k

n
; ak, bk(i+1) −

kσ2

nσk

)
−H

(
φ− rkσ

√
k

n
; ak, bki −

kσ2

nσk

)]

− 1

1− p

nT−1∑
k=0

ukF0e
µk(0)+ kσ2

2n

w−1∑
i=0

βki
md

n
(1− αki − 1/nqx+(k−1)/n)

×

[
H

(
φ− rkσ

√
k

n
; ak, bk(i+1) −

kσ2

nσk

)
−H

(
φ− rkσ

√
k

n
; ak, bki −

kσ2

nσk

)]

(6.8)

where

ak =
rk√

1− r2
k

, bki =
ln(ηki/F0)− (µ−m)k/n

σk
.

In the derivation of the expressions above, we divided (6.6) into three parts: the death benefit

part A, the surrender charge part B, and the rider charge part C:

A(λ) :=E
( nT∑
k=1

w−2∑
i=0

[
uk 1/nqx+(k−1)/nβki (Geδk/n − Fk/n)+

]
Iki

∣∣∣∣∣Λ = λ

)
;

B(λ) :=E
(
−

nT∑
k=1

w−1∑
i=0

uk βki ck/nαki Fk/nIki

∣∣∣∣∣Λ = λ

)
;

C(λ) :=E
(
−

nT∑
k=1

w−1∑
i=0

uk βki
md

n
(1− αki −1/n qx+(k−1)/n)Fk/nIki

∣∣∣∣∣Λ = λ

)
.

Although it is difficult to prove monotonicity of A,B,C, numerical experiments show that they

appear to be decreasing functions in the example under consideration. Figure 2 shows the pattern

of E[L|Λ = λ] as a decreasing function of λ in the following numerical example. Using the mono-

tonicity, we obtain the approximations of risk measures in Remark 6.1. Each of the three sums

correspond to the risk measures of A,B,C respectively.

Remark 6.2. The formulas for the risk measures (6.7) and (6.8) in the model with DPB are more

general than their counterparts (4.2) and (4.3) in the model without DPB. When setting γk = 1
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for k = 1, · · · , w, and qbx+n = cn = 0 for all n, we observe that (6.7) and (6.8) reduce to (4.2) and

(4.3), respectively, after cancellations in the telescoping series.

Figure 2: Numerical illustration of the monotonicity of Ll

We provide a numerical example to demonstrate the effectiveness of the comonotonic approx-

imation for the net liability under the average model with DPB. As widely acknowledged in the

insurance industry, Monte Carlo simulations with models of policyholder behavior are very time-

consuming. With all computations performed on a personal computer, we restrict the policy term

to be T = 5 with half-years fee collections (n = 2) in order to save computational efforts. There is

no roll-up of the guarantee base in this example, i.e. δ = 0. The rest of the valuation assumptions

are the same as in Section 5, while additional assumptions on policyholder behavior are shown

in Tables 5 and 6. The surrender charges decline with time, which is to discourage policyholders

from early lapse. Accordingly, the basic lapse rates are relatively small in early years and then rise

drastically immediately after the lapse rates decrease to 0%. The first few columns of Table 6 show

the assumption that the contracts tend to persist (γ ↓) when the guarantees are deep-in-the-money

(ITM ↑). The last few columns show the opposite: the lapse rates are more or less around base

rates when the guarantees are at-the-money or out-of-the-money.

We first test the accuracy of approximation formulas developed in Proposition 6.1 for the model

with DPB by showing its convergence to the model without DPB, when damping down the lapse

rates. The convergence statements in Remark 6.2 are numerically verified in Table 7. The Matlab

algorithm Fminsearch is used in each of the calculations.
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Policy year (t) 1 2 3 4 5 6 7 8 beyond

Surrender charge (ct) 8% 7% 6% 5% 4% 3% 2% 0% 0%

Base lapse rate (qbt ) 1.5% 2.5% 3.0% 3.0% 4.0% 5.0% 8.0% 25.0% 10.0%

Table 5: Assumptions on surrender charges and base lapse rates

k 1 2 3 4 5 6

bk 100% 80% 60% 40% 20% 0%

γk 20% 40% 60% 80% 90% 100%

Table 6: Assumptions on dynamic factors

Table 8 summarizes the risk measures under various models and levels of approximations. The

first row shows the risk measures in the model (1.5) without DPB using Monte Carlo simulations.

The second row shows the risk measures in the model (6.6) where the dynamic factor is set to

constant 1. Note that in this case the lapse rates are deterministic and the model (6.6) can be

incorporated into the model (1.5) by adding the lapse rates to the mortality rates.

Important is to bear in mind that we made three steps of approximations in order to achieve

a linear structure of the net liability. The first approximation is the exponential interpolation for

turning the path-dependent survival rate into a non-path-dependent one in (6.3), while the second

approximation in (6.5) produces a piece-wise constant approximation function. The last step is to

approximate CTEp(L) by the comonotonic bound CTEp(L
l). We demonstrate the loss of accuracy

in each step of the approximation in Table 8. In all Monte Carlo procedures, we simulate 10-million

sample paths of account values for each estimate of the risk measure. The sample mean and variance

of 20 estimates are reported in Table 8. Despite the accumulation of approximation errors in three

steps, the relative errors appear to be under 5% for both risk measures, the nonlinear optimizations

of VaR0.9(Ll) and CTE0.9(Ll) reduce the time consumption by at least hundred times.

7 Conclusion and Extension

This paper proposes a general framework for computing risk measures of variable annuity liabilities

using the techniques of comonotonicity. The framework allows us to analyze the tail events of

net liabilities under various guaranteed benefits and provides closed-form approximations of risk

measures, which are easy to compute with special functions such as the normal distribution function

and Owen’s T function. The paper also proposes an extension to the average model of the GMDB,

which incorporates the analysis of dynamic policyholder behavior. To the authors’ best knowledge,

no alternative method other than Monte Carlo simulation has ever been attempted in the previous

literature on models of DPB. Despite the model complexity, the same analytic framework allows

us to propose closed-form approximations, which have been numerically tested to be very efficient.
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Lapse rates Formula VaR0.9 CTE0.9

qb (6.7)&(6.8) 0.0453 0.0749

0.2 qb (6.7)&(6.8) 0.05019 0.07937

0.1 qb (6.7)&(6.8) 0.05083 0.07995

0 (6.7)&(6.8) 0.05150 0.08054

0 (4.2)&(4.3) 0.05150 0.08054

Table 7: GMDB Comparison

Method VaR0.9 CTE0.9 Time (secs)

MC with no lapse rate 0.05133 (0.00010) 0.08057 (0.00012) 1162.02

MC with constant dynamic factor 1 0.04317 (0.00009) 0.07002 (0.00009) 26645.13

MC with dynamic factor 0.04473 (0.00016) 0.07402 (0.00014) 23420.11

MC with exponential interpolation 0.04460 (0.00021) 0.07376 (0.00018) 51358.37

MC with piecewise approximation 0.04541 (0.00009) 0.07564 (0.00011) 21782.75

Nonlinear optimization (Ll) 0.04529 0.07490 237.32

Table 8: GMDB with dynamic policyholder behavior

It should be pointed out that the framework can be easily extended to consider risk measures

of flexible premium variable annuity, where purchase payments are allowed throughout the accu-

mulation phrase. A related work on the pricing of flexible premium variable annuity is done in

Bernard et al. (2015). In the recent literature, there have been proposals in the actuarial literature

to introduce state-dependent fee rates to replace the constant fee rates in the classical cases, see

Delong (2014), Bernard et al. (2013). The techniques in Section 6 can also be used to compute risk

measures of net liabilities under the models with state-dependent fees.

A Appendix: Special function H

A key element in the computation of the conditional tail expectation is the double integral

H(z) =

∫ z

−∞

∫ b−ay

−∞

1

2π
e−(x2+y2)/2 dx dy.

This function was not previously studied in the literature. Although the integral can be evaluated

numerically, our application requires efficient computation as the integrals appear repeatedly for

multiple time points. Hence, we take advantage of the Owen’s T-function, for which fast and accu-

rate algorithms have been developed in the statistics literature. Owen’s T function was introduced

in Owen (1956). For a, h ∈ R ∪ ±∞, T (h, a) is defined by

T (h, a) =
1

2π

∫ a

0

exp
{
−1

2h
2(1 + x2)

}
1 + x2

dx.
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This special function was implemented in Mathematica and can be computed very efficiently. The

probabilistic interpretation of the function is as follows: T (h, a) stands for the probability mass of

two independent standard normal random variables falling in the domain on a plane between y = 0

and y = ax and to the right of x = h, which is referred to as a polygon in Owen (1956).

Proposition A.1. For a, b > 0 and z 6= 0, one has that

H(z; a, b) =
1

2
sgn(z)Φ(|z|) + T

(
z,
az − b
z

)
+

1

2
Φ

(
b√

1 + a2

)
− T

(
b√

1 + a2
,
(1 + a2)z − ab

b

)
.

For a > 0, b < 0 and z 6= 0, one has that

H(z; a, b) =−1

2
sgn(z)Φ(−|z|) + T

(
z,
az − b
z

)
+

1

2
Φ

(
b√

1 + a2

)
− T

(
b√

1 + a2
,
(1 + a2)z − ab

b

)
.

When z = 0, the expressions are given by their limits:

H(0; a, b) =
1

2
Φ

(
b√

1 + a2

)
+ T

(
b√

1 + a2
, a

)
.

Similarly, when b = 0, then one finds

H(z; a, 0) =
1

2
Φ(z) + T (z, a).

Proof. Consider the case where z > 0. Even though Figure 1 only illustrates the case where

0 < z < b/a, all the decompositions and expressions in the case where z > b/a are exactly the

same. Hence, without loss of generality, we derive the expressions based on Figure 1. Note that

the line segments connecting A,F,G,E, I, J extend to infinity. Since the value H(z) is the total

probability mass of two independent standard normal random variables lying in the area below

JBI, we intend to decompose the total mass over polygons on which the probabilities can be

represented as Owen’s T functions. Note that the desired domain can be viewed as the area below

JBG less the sum of polygons GBDE and EDI. We indicate the probability mass over the latter

two polygons by (1) and (2), respectively.
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The probability mass (1) can be determined by the probability mass over ABCDE, denoted by

(3), less that over ABG, denoted by (4). On one hand, note that ABCDE is the union of ABCF

and FCDE. Hence,

(3) = T

(
b√

1 + a2
, a

)
+ T

(
b√

1 + a2
,
(1 + a2)z − ab

b

)
.

On the other hand, we see that ABG is equal to the area above LKG less the area bounded by

the polygon LKBA, which means that

(4) =
1

2
(1− Φ(z))− T

(
z,
b− az
z

)
.

The probability mass (2) is simply FCI less FCDE, i.e.

(2) = T

(
b√

1 + a2
,∞
)
− T

(
b√

1 + a2
, a

)
=

1

2
Φ

(
− |b|√

1 + a2

)
− T

(
b√

1 + a2
, a

)
.

Putting all pieces together, we obtain

H(z) = Φ(z)− (1)− (2) = Φ(z)− (3) + (4)− (2),

which yields the desired expression for H after rearrangement.

When z < 0, the domain of integration of H is shown in Figure 2 as the area below JBI. We

shall use a slightly different decomposition to derive the expression for H.
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Think of the area below JBI as the area below JBG less the area bounded by the polygon

GBI. We denote the probability masses over GBI, FCBG and GBA by (5), (6), (7) respectively.

Note that GBA is same as the area below GKL less ABKL, i.e.

(7) =
1

2
Φ(z)− T

(
−z, b− az

−z

)
=

1

2
Φ(z) + T

(
z,
b− az
z

)
.

Clearly, FCBG is equal to FCBA less GBA. Thus

(6) = T

(
b√

1 + a2
,
ab− (1 + a2)z

b

)
− (7).

Then GBI is equal to FCI less FCBG, which determines

(5) = T

(
b√

1 + a2
,∞
)
− (6).

Finally, the total probability over the area below JBI is given by

H(z) = Φ(z)− (5)

=
1

2
Φ(z)− 1

2
Φ

(
− b√

1 + a2

)
+ T

(
b√

1 + a2
,
ab− (1 + a2)z

b

)
− T

(
z,
b− az
z

)
.

The proof for the expression of H in the cases where a > 0, b < 0 is very similar to the previous

cases and hence omitted.

Proposition A.2.∫ 1

p
exp{CΦ−1(1− p)}Φ

(
B −AΦ−1(1− q)

)
dq =

1√
2π

exp

{
C2

2

}
H
(
Φ−1(1− q)− C;A;B −AC

)
.

(A.1)
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Proof. Let y = Φ−1(1− q). Then the left-hand side of (A.1) is equal to∫ Φ−1(1−q)

−∞
eCyΦ(B −Ay)φ(y) dy =

1√
2π
ec

2/2

∫ Φ−1(1−q)−C

−∞
Φ(B −AC −Ay)

1√
2π
e−u

2/2 du,

which is the right-hand side of (A.1) by definition.

B Appendix: Choices of the conditioning random variable Λ

As discussed in Vanduffel et al. (2008a), the globally optimal choice of Λ refers to the set of ri’s

that maximizes the linear approximation of the variance of Sl:

Var[Sl] ≈ (Corr[

n∑
j=1

αjE[eZj ],Λ])2Var[

n∑
j=1

αjE(eZj )Zj ],

which attains its maximum value when

ΛMV =
n∑
j=1

αjE[eZj ]Zj ,

and

rMV
k =

1

σZkσΛ

n∑
j=1

αjE[eZj ]Cov[Zk, Zj ]. (B.1)

The covariances of the Zi’s and the variance of Λ can be calculated from the basic properties of

Brownian motion:

Cov[Zk, Zj ] =
σ2

n
min{k, j} σ2

Λ =
σ2

n

nT∑
i=1

(

nT∑
j=i

λj)
2.

For a locally optimal choice, Vanduffel et al. (2008a) proposed a linear approximation of CTEp:

CTEp[S
l] ≈ 1

1− p

n∑
j=1

αjE[eZj ]Φ′[rMV
j σZj − Φ−1(p)]rjσZj + constant.

Its value is maximized when

Λ(p) =

n∑
j=1

αjE[eZj ]Φ′[rMV
j σZj − Φ−1(p)]Zj ,

and

r
(p)
k =

1

σZkσΛ

n∑
j=1

αjE[eZj ]Φ′[rMV
j σZj − Φ−1(p)]Cov[Zk, Zj ]. (B.2)
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