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Abstract This paper investigates second-best congestion pricing in a monocentric city characterized by 
distortionary, rigid regulatory mechanisms in the housing market (building height restrictions, zoning and 
property taxation). The Pigouvian toll is shown to retain its optimality under any setting with quantity 
restrictions in the housing market. However, the extent of the quantity restriction determines the volume 
of the welfare gains in a non-monotonic fashion. This finding introduces a warning to cost-benefit 
analyses: our numerical results suggest that the actual gains of a road tax might be 40% lower than the 
gains predicted by a model that disregards maximum building height restrictions, and 80% higher than the 
gains suggested by a model that disregards zoning. In general, this implies that decision making on urban 
road pricing can ignore quantitative restrictions in the related markets of land, housing and labor insofar 
as the determination of optimal marginal tax rules is concerned; the tax levels stemming from those rules 
will be affected by the restrictions. However, this is not the case in the presence of a tax-induced 
distortion. Introducing an ad-valorem property tax on housing, we show that adjustments of the Pigouvian 
toll can lead to small, but not negligible welfare gains.    

Keywords: road pricing, building height restrictions, zoning, property tax, monocentric city, cost-benefit 
analysis 

JEL classification: R48, R52, R13, H21, H23, D61 
 
 
1. Introduction 
 
Second-best issues are a prominent theme in the contemporary literature on externality regulation. This is 
true for the transport economics literature in the context of road pricing (Verhoef et al., 1996), the urban 
economics literature in the discussion on urban growth boundaries (Brueckner, 2007; Anas and Rhee, 
2007), and the environmental economics literature, where the double dividend hypothesis is an important 
theme (e.g. Goulder et al. 1997). Second-best issues may emerge for a variety of reasons. One is that the 
market for the commodity under consideration (whose consumption generates the externality) is directly 
related to the market of another imperfectly priced commodity, because the two commodities are either 
substitutes or complements. This provides a motive to adjust Pigouvian taxes in the market of primary 
interest: welfare losses due to deviations of the tax from marginal external costs in one market are 
motivated by welfare gains in the related market. As an example, in the absence of road congestion 
pricing, second-best fares in public transport will reflect unpriced congestion on the road: they will be 
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adjusted downwards (upwards) when public transport functions as a substitute (complement) to private 
road use. These considerations, and the corresponding second-best adjustments, vanish once optimal road 
pricing is implemented. 

In this paper we examine optimal road pricing from a new perspective, i.e. under the impact of a 
series of regulations in the housing and land market that are: i) distortionary, and thus suboptimal to 
begin with, and ii) non-adjustable, i.e. they are assumed to be fixed, in contrast to road pricing schemes 
which will be optimized. Both assumptions are relevant.  

Regarding the first assumption, most urban land and housing markets are heavily distorted due to 
a range of suboptimal pricing (e.g. housing taxation, mortgage interest deduction) and quantity-restriction 
policies (e.g., regulated building height, zoning). Although the impact of tax-induced distortions in urban 
labor markets on optimal road pricing has received some attention in the recent literature (Parry and 
Bento, 2001; Mayeres and Proost, 2001; Tikoudis et al, 2013), the associated impact of imperfectly 
functioning land and housing markets on the latter has remained under-researched. Empirical observation 
suggests that, in a substantial part of the world, quantity restrictions are common. For example, in the 
Netherlands, most municipalities set maximum building height restrictions for buildings including 
residences. In most other European countries, similar regulatory restrictions have been implemented.1 In 
the US, zoning is a common practice. The bottom line is that, in almost every case, these regulations are 
decided in the sphere of politics and do not correspond to a welfare maximization plan.  

The second assumption is also reasonable for several reasons. First, command and control 
regulations might be more difficult to adjust than tolls in a road pricing scheme. Current homeowners 
have strong incentives to lobby for building height restrictions, as well as zoning (Fischel, 2001; Schuetz, 
2009). These regulations have been shown to increase housing prices (e.g. Ihlanfeldt, 2007) and are, 
therefore, very likely to remain intact in the years to come. Similarly, housing property taxation (as well 
as their counterpart, subsidies through mortgage interest deduction) is frequently observed in most 
countries and has been established as a standard way to raise public revenue.2 Property taxes might in 
theory be easier to adjust, but in most cases the authority that sets its level will be a different principle 
than the regulator who controls the road tax.3 Second, specific command and control restrictions (such as 
minimum and maximum building heights, as well as urban growth boundaries) cannot be implemented in 
an already formed urban landscape and network. For instance, there is no way to introduce an urban 
growth boundary in the interior of a city, or a maximum building height below the one observed in a 
specific location. The first would outlaw existing private property outside the boundary; the second would 
impose a heavy financial cost associated with demolition and reconstruction.  

 Our paper is, therefore, closely related to a rapidly developing literature in urban economics that 
explores the potential of land-use practices to substitute for congestion pricing when it comes to curbing 
traffic-induced externalities. Looking at the same issue from a totally different perspective, this stream of 
research is (implicitly) motivated by the large implementation costs and the limited political acceptability 

                                                           
1 Building height restrictions is one specific form of land-use planning. Cheshire and Sheppard (2002) find a 
negative welfare effect of land-use planning in general.  
2 Taxation in the housing market include transaction as well as property taxes, but taxation may also be negative in 
case of mortgage interest deduction. Other regulatory channels include rent control (Gyourko et al. 1989, 1990; 
Arnott, 1995) and public housing. Via different channels, these regulatory mechanisms may cause welfare losses 
through a suboptimal allocation of space across economic agents and activities (Glaeser and Luttmer, 2003). See 
Cheshire and Hilber (2008) for the effect of building height restrictions in the market of office space. 
3 But even if the different levels of government could coordinate, the primary function of the property tax would still 
be the raise of a pre-determined revenue. 
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associated with road pricing. Brueckner (2007) and Anas and Rhee (2007) investigate the efficiency of an 
urban growth boundary relative to a congestion toll. Optimal floor-to-area ratio (FAR) regulations, have 
been examined in conjunction with population externalities by Joshi and Kono (2009) and Kono et al. 
(2010). More recently, Kono et al. (2012) evaluate the efficiency of regulations on building size and city 
size relative to the gains that can be achieved by a first-best road toll. Pines and Kono (2012) discuss 
second-best allocations based on space-varying property taxation and FAR regulations. The critical 
differentiator between the above literature and this paper is that we investigate welfare-enhancing policies 
exclusively through road pricing, i.e. by assuming that housing market regulations are given and rigid.     

Our contribution is, however, much more general than the investigation of the specific interaction 
between transport and the housing market. We show – in a rather general setting – that second-best issues 
as arising from imperfectly-functioning related markets have different impacts, and therefore different 
policy implications, depending on the nature of the distortion. We compare two types of distortions 
arising from policy interventions: distortionary taxation (for example motivated by the desire to raise tax 
revenues) and quantitative restrictions generated by policies that are not justified from a welfare 
perspective. In the context of a city where residents commute to a given workplace, we investigate both 
types of policy interventions by focusing on housing taxation and building height restrictions respectively 
(Arnott and MacKinnon, 1977; Bertaud and Brueckner, 2005). Both interventions have in common that 
they affect the welfare gains that externality pricing in the primary market of interest (road transport, in 
our example) could bring. But an important difference is that, whereas tax-induced distortions invoke 
deviations from the Pigouvian principle in the primary market (i.e. the optimal tax deviates from the 
marginal external cost), such deviation is not efficiency enhancing in the case of quantitative restrictions 
(command and control regulations). The question of whether regulatory taxes must be adjusted given 
distortionary policies in related markets does, therefore, not so much depend on whether there are 
distortions on these other markets, but much more on the type of distortions. 
      In the specific context of the study, we provide answers to a series of policy-relevant questions. 
Given the presence of land-use regulations we examine i) if there is any road pricing scheme superior to 
the Pigouvian toll, and ii) if the gains from the Pigouvian toll vary substantially (and in which direction) 
across cities with identical household preferences and road technologies but different building height 
limits or areas subject to zoning. Answers to both questions are valuable to the transport planner, because 
they provide knowledge on the extent to which road demand management can be detached from urban 
planning and public finance decisions (which are usually taken at different levels of government). In 
addition, knowledge over the extent of Pigouvian toll gains/losses across different levels of quantity 
restrictions is useful to understand to what extent the gains from congestion charges for cities without any 
housing regulation (as commonly assumed in the literature) can be extrapolated to cities with restrictive 
land-use regulations.  

We use as a starting point the voluminous literature on the welfare costs of land-use and housing 
market regulations (Brueckner, 1996; Bertaud and Renaud, 1997; Bertaud and Brueckner, 2005; Glaeser 
et al., 2005; Cheshire and Hilber, 2008).4 In the current paper, a monocentric city framework is expanded 
to incorporate congestion as in Verhoef (2005) and, more recently, Tikoudis et al. (2013). A numerical 

                                                           
4 In Bertaud and Brueckner (2005), the welfare cost from a certain level of building height restrictions in a 
monocentric city is shown to be equal to the difference in commuting costs that the household in the city fringe 
would face if the building height restrictions were removed. Numerical simulations suggest the welfare cost to be 
2% of household income. For an empirical application of this framework for India, see Brueckner and Shridhar 
(2012). 
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version of the model is calibrated such that the benchmark equilibrium reproduces a set of stylized facts 
that characterize a representative monocentric city in the Western world, in absence of congestion 
charges.   

Using the parameters of the benchmark equilibrium, we compute the welfare effect of the 
Pigouvian toll as a function of the maximum floor-to-area ratio (FAR) allowed. We show that this effect is 
not only very sensitive to the underlying FAR regulation, but also non-monotonic: a Pigouvian toll 
imposed in a city without height restrictions may produce up to 40% larger welfare gains than Pigouvian 
tolling in a city with a mild, uniform in space, FAR restriction. Similar computations for the case of 
zoning suggest that the welfare gains might be 80% larger in an equilibrium with a large zoned area close 
to CBD. At the same time, we demonstrate that the Pigouvian toll retains its optimality independent of the 
extent and the type of quantity restriction. And finally, we show that this optimality ceases when other 
relevant preexisting taxes (e.g. a housing property tax) are added to the model.5 Additional sensitivity 
analysis is used to examine the efficiency of the Pigouvian toll relative to the optimal space-varying tax. 
 The structure of the paper is as follows. Section 2 introduces the analytical model, Section 3 
discusses the performance of the Pigouvian toll under a generic building height restriction, Section 4  
presents the calibration and the stylized facts that characterize the benchmark equilibrium (absence of 
housing market regulations). Section 5.1 discusses the welfare effects of the Pigouvian toll at various 
levels of a uniform FAR restriction. Section 5.2 shows the respective results for the case of zoning. 
Section 5.3 presents numerical results, i.e. the deviation of the optimal space varying-tax from the 
corresponding Pigouvian toll and the corresponding relative efficiency, for the case of a distortionary 
housing property tax. Section 5 summarizes and concludes. 
 
2. Model 

The analytical model presented in this section is based to the models used in Verhoef (2005) and Tikoudis 
et al. (2013).6 The extension uses elements from Bertaud and Brueckner (2005) and Muth (1969). 

2.1. Households  

Households are located anywhere within a linear monocentric city, i.e. a city with a single central 
business district (hereafter, CBD) where all jobs are located. Let 𝑧 and 𝑧̅ denote the distances of an 
arbitrary household and the city fringe, respectively, from the CBD. Utility is derived from the 
consumption of a numéraire good, 𝑦, floor space, 𝑠, and leisure time, 𝑇𝐹. Assuming CES preferences, the 
household that locates at distance 𝑧 from CBD maximizes: 

 𝑈𝑧 =  [(𝛼  𝑦𝑧)𝜌 + (𝛽 𝑠𝑧)𝜌 + (𝛾 𝑇𝐹𝑧)𝜌]
1
𝜌.  (1) 

The total time endowment, 𝑇 (e.g. a year), is spent on commuting, 𝑇𝐶, working, 𝑇𝐿, and leisure, 𝑇𝐹: 

                                        
𝑇 = 𝑇𝐶𝑧 + 𝑇𝐿𝑧 + 𝑇𝐹𝑧. 

 (2) 

Labor supply is inelastic throughout a working day, thus the working day is of fixed duration, 𝑡𝐿. Every 
                                                           
5 The efficiency of such anti-sprawl tax instruments  has been discussed in Bento et al. (2006, 2011) 
6 The exposition in Section 2 draws heavily from these two contributions. Literal citations from these sources are not 
marked as such for legibility; duplicating equations are provided in order to keep this paper self-contained. 
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trip to work requires 𝑡𝑧 units of time. For 𝐷𝑊𝑧 working days the time constraint becomes:  

                                
𝑇 = 𝐷𝑊𝑧 𝑡𝑧 + 𝐷𝑊𝑧 𝑡𝐿 + 𝑇𝐹𝑧 . 

 (3) 

Normalizing the duration of the working day, 𝑡𝐿, to one, the time constraint becomes:  

                    
𝑇 = 𝐷𝑊𝑧 (1 + 𝑡𝑧) + 𝑇𝐹𝑧 ⇔𝐷𝑊𝑧 = (𝑇 − 𝑇𝐹𝑧) (1 + 𝑡𝑧)⁄ . 

 (4) 

The net wage per working day is defined as the difference between wage, 𝑤, and the total pecuniary 
commuting cost, which consists of the total road toll charged between 𝑧 and the CBD, 𝜏𝑅𝑧, and the 
operational cost (gasoline, vehicle depreciation etc.), 𝑚𝑧, which is a linear function of commuting 
distance. Full income of the household at distance 𝑧, 𝑀𝑧, is the maximum income that can be realized 
when leisure time is set to zero:  

                   

𝑀𝑧 = 𝐵 +
(𝑤 − 𝜏𝑅𝑧 −𝑚𝑧)

1 + 𝑡𝑧
𝑇, (5) 

where 𝐵 denotes a lump-sum transfer (discussed below) from the government to the household, 
independent of its location. Full income can be used to buy back leisure at its shadow price, 
(𝑤 − 𝜏𝑅𝑧 − 𝑚𝑧) (1 + 𝑡𝑧)⁄ , the composite good (with price normalized to one) and residential space 
(priced at 𝑝𝑧(1 + 𝜏𝑉), where 𝜏𝑉 denotes an ad-valorem property tax rate):  

                   

𝑀𝑧 =
(𝑤 − 𝜏𝑅𝑧 − 𝑚𝑧)

1 + 𝑡𝑧
𝑇𝐹𝑧 +  𝑦𝑧 + 𝑝𝑧(1 + 𝜏𝑉)𝑠𝑧. 

 (6) 

Maximizing (1) subject to (4), (5) and (6), and defining 𝜒 = 𝜌 (𝜌 − 1)⁄  and 𝜎 = 1 (1 − 𝜌)⁄  yields the 
conditional (on 𝑧) Marshalian demand functions for the composite good, space and leisure time 
respectively: 

 
𝑦𝑧∗ = 𝑀𝑧  

(1 𝛼𝜌⁄ )−𝜎

�1
𝛼�

𝜒
+ �𝑝𝑧(1 + 𝜏𝑉)

𝛽 �
𝜒

+ �𝑤 − 𝜏𝑅𝑧 −𝑚𝑧
𝛾(1 + 𝑡𝑧) �

𝜒 , (7) 

  

𝑠𝑧∗ = 𝑀𝑧  
(𝑝𝑧(1 + 𝜏𝑉) 𝛽𝜌⁄ )−𝜎

�1
𝛼�

𝜒
+ �𝑝𝑧(1 + 𝜏𝑉)

𝛽 �
𝜒

+ �𝑤 − 𝜏𝑅𝑧 − 𝑚𝑧
𝛾(1 + 𝑡𝑧) �

𝜒 , (8) 

 

𝑇𝐹𝑧∗ = 𝑀𝑧  
�𝑤 − 𝜏𝑅𝑧 − 𝑚𝑧
𝛾𝜌(1 + 𝑡𝑧) �

−𝜎

�1
𝛼�

𝜒
+ �𝑝𝑧(1 + 𝜏𝑉)

𝛽 �
𝜒

+ �𝑤 − 𝜏𝑅𝑧 − 𝑚𝑧
𝛾(1 + 𝑡𝑧) �

𝜒 . (9) 

Finally, substituting (7)-(9) into the objective function yields the conditional indirect utility: 
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𝑉𝑧∗ = �𝐵 +

(𝑤 − 𝜏𝑅𝑧 − 𝑚𝑧)
1 + 𝑡𝑧

𝑇� ��
1
𝛼
�
𝜒

+ �
𝑝𝑥(1 + 𝜏𝑉)

𝛽 �
𝜒

+ �
𝑤 − 𝜏𝑅𝑧 − 𝑚𝑧
𝛾(1 + 𝑡𝑧) �

𝜒
�
−1/𝜒

. (10) 

The spatial equilibrium is characterized by locational indifference, i.e. constant utility, 𝑢, over space. The 
space-derivative of equation (10) can then be reformulated to express the price of floor space as a function 
of equilibrium utility:  

 
𝑝𝑧(𝑢) =  

𝛽
(1 + 𝜏𝑉) �

𝑢−𝜒 �𝐵 +
(𝑤 − 𝜏𝑅𝑧 − 𝑚𝑧)

1 + 𝑡𝑧
𝑇�

𝜒

− �
1
𝛼
�
𝜒

− �
𝑤 − 𝜏𝑅𝑧 − 𝑚𝑧
𝛾(1 + 𝑡𝑧) �

𝜒
�
1/𝜒

. 
(11) 

Now, equation (11) can be plugged into (7), (8) and (9) to yield the compensated demands for the 
composite good, space and leisure at any arbitrary distance 𝑧, which we denote by 𝐶𝑧(𝑢), 𝑠𝑧(𝑢), and 
𝑇𝐹𝑧(𝑢) respectively.  

2.2. Developers 

Developers use constant returns to scale technology to convert land and capital into residential space. The 
capital intensive form of the Cobb-Douglas production function for residential space per unit of land 
(hereafter, FAR) is: 

 �̂�𝑧 = 𝑔𝑘�𝑧𝛿 , (12) 

(where �̂� denotes floor space per unit of land) with corresponding profit per unit of land: 

 𝜋 = 𝑝𝑧𝑔𝑘�𝑧𝛿 − 𝑝𝐾𝑘�𝑧 − 𝑝𝐿𝑧, (13) 

where 𝑔 > 0 is a technology constant, 𝑘� denotes the units of capital over one unit of land (hereafter, 
structural density), 𝑝𝐾 the exogenous price of capital and 𝑝𝐿𝑧 the per-unit price of land at 𝑧. Dividing the 
supplied space in (12) with the compensated space demand at distance 𝑧, 𝑠𝑧, yields the household density 
at point 𝑧:  

 
𝑛𝑧 =

𝑔𝑘�𝑧𝛿

𝑠𝑧
. 

(14) 

From the first-order condition for profit maximization, we derive the (privately) optimal structural 
density: 

 
𝑘�∗ = �

𝑝𝐾
𝛿𝑝𝑧𝑔

�
1 (𝛿−1)⁄

. 
(15) 

Inserting (15) into (13) and solving for zero profits, yields the land rent: 

 𝑝𝐿𝑧 = (𝑝𝐾)𝛿 (𝛿−1)⁄ (𝑝𝑧𝑔)1 (1−𝛿)⁄ (𝛿𝛿 (1−𝛿)⁄ − 𝛿1 (1−𝛿)⁄ ). (16) 
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2.3. Firms 

A representative firm, which is located at the CBD, operates under constant returns to scale, producing 
the composite good with capital and labor:  

 𝑌 = 𝐾𝜁𝐿1−𝜁 . (17) 

From cost minimization we derive the conditional factor demands for labor: 

 
𝐿 = 𝑌 �

(1 − 𝜁)𝑝𝐾
𝜁𝑤 �

𝜁

, 
(18) 

and capital:  

 
𝐾 = 𝑌 �

𝜁𝑤
(1 − 𝜁)𝑝𝐾

�
1−𝜁

. 
(19) 

Using (18) and (19), it can be shown that the marginal cost is:  

 𝑝𝐾
𝜁𝑤1−𝜁  �(1− 𝜁)𝜁 (1−𝜁)⁄ + 𝜁(1−𝜁) 𝜁⁄ �. (20) 

2.4. Commuting 

Commuting from any given location 𝑧 to the CBD is taking place through a single road, used by all 
households. Letting 𝑛𝑧 denote the residential density at location z, we can write the travel time per unit of 
distance at location 𝑧 as:   

 
𝑡0 + 𝑡1 �𝑛𝜁

�̅�

𝑧

𝐷𝑊𝜁  𝑑𝜁, (21) 

i.e. the sum of the free-flow travel time per unit of distance, 𝑡0, and a term that represents the congestion 
delay caused by the aggregate traffic flow at 𝑧.7 This flow contains all commuting trips by households 
located between 𝑧 and the city limit, 𝑧̅. Multiplying the aggregate flow with a sensitivity parameter, 𝑡1, 
yields the time delay per unit of distance at each point 𝑧. Integrating (21) over the interval (0, 𝑧) yields 
the commuting time for the household at 𝑧:8       

 
𝑡𝑧 = 𝑧𝑡0 + 𝑡1 �𝑚𝑚𝑛{𝑧, 𝜁} 𝑛𝜁

�̅�

0

𝐷𝑊𝜁  𝑑𝜁 . (22) 

An additional commuting trip generated by a household at distance 𝑧 increases the travel time of a 
commuter located at 𝜁 ≥ 𝑧 by 𝑡1𝑧, and the travel time of a commuter located at 𝜁 ≤ 𝑧  by 𝑡1𝜁. 
Multiplying this delay with the shadow value of time at 𝜁, (𝑤 − 𝜏𝐿 − 𝜏𝑅𝜁) (1 + 𝑡𝜁⁄ ), and labor supply at 

                                                           
7 Therefore, the essence of congestion is captured by assuming that the travel time per unit of distance increases with 
the number of vehicles passing that point; the linear form is chosen for analytical convenience. 
8 Note that in (21), 𝑧 refers to a location along the road and 𝜁 to household locations, while in (22) and (23) 𝑧 refers 
to household location. 
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𝜁, 𝑛𝜁𝐷𝑊𝜁, provides a measure for the marginal external cost of an additional unit of labor imposed by the 
commuter at z to the commuter at ζ.9 Integrating over the interval (0, 𝑧̅) yields the marginal external cost 
of congestion, generated by the household located at 𝑧: 

 
𝑚𝑚𝑚𝑚(𝑧) = 𝑡1 �𝑚𝑚𝑛{𝑧, 𝜁}  𝑛𝜁  

�̅�

0

𝐷𝑊𝜁 �
𝑤 − 𝜏𝐿 − 𝜏𝑅𝜁

1 + 𝑡𝜁
�  𝑑𝜁 .  (23) 

2.5. Government and public budget 

The government can tax (or subsidize) road use, and recycle the tax revenue and land rents in a manner 
that ensures a balanced budget. The total land revenue collected is the sum: 

 
𝑅𝐿 = 𝑅𝑎 + 𝑅 = 𝑧̅𝑟 𝐴 + �(𝑝𝐿𝑧 − 𝑟 𝐴)

�̅�

0

𝑑𝑥, (24) 

of which the first term, 𝑅𝑎 = 𝑧̅ 𝑟 𝐴, is transferred to an absentee land owner and the second term, 𝑅, i.e. 
the excess land rent, is returned to the consumers in a lump-sum manner.10 This assumption ensures that 
the city cannot expand without cost, and that the excess rents remain within the urban economy. 
 When imposed, a location-based road tax generates the revenue: 
 

𝐺 = �𝑛𝑧𝐷𝑊𝑧𝜏𝑅𝑧

�̅�

0

𝑑𝑧, (25) 

which is endogenous, since it depends on density, 𝑛𝑧, labor supply, 𝐷𝑊𝑧, and city size, 𝑧̅. Furthermore, 
the revenue from the ad-valorem tax on property is: 
 
 

𝑄 = �𝑝𝑧𝜏𝑉𝑔𝑘�𝑧𝛿
�̅�

0

𝑑𝑧. (26) 

Toll and tax revenues are returned in the form of a lump-sum transfer. Therefore, the lump-sum transfer 
per household, 𝐵 (see equation (5)), can be written as:   
 
 𝐵 =

𝐺 + 𝑅 + 𝑄
𝑁

 . (27) 

2.6. Equilibrium without distortions in the housing markets  

In equilibrium, the (closed) city must accommodate the exogenous population, 𝑁, thus:   

                                                           
9 The volume delay function is the same used in Verhoef (2005), and in line with those used in other monocentric 
city models, for instance by Mun et al. (2003) and Brueckner (2007). 
10 The model is a general equilibrium analogue of the closed-city under public ownership model (CCP) proposed in  
Fujita (1989). 
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�𝑛𝑧

�̅�

0

𝑑𝑧 = 𝑁. (28) 

We assume an absentee landlord concedes the land at an exogenous opportunity cost of land, i.e. the 
agricultural rent, 𝑟𝐴. Thus, the city fringe, 𝑧̅, is endogenously determined via the condition: 

 𝑟𝐴 = (𝑝𝐾)𝛿 (𝛿−1)⁄ (𝑝�̅�𝑔)1 (1−𝛿)⁄ �𝛿𝛿 (1−𝛿)⁄ − 𝛿1 (1−𝛿)⁄ �, (29) 

where the right hand side gives the equilibrium value of (16) evaluated at 𝑧̅. The rest of the equations 
comprise the clearing of the labor market:   

 
��

𝑇 − 𝑇𝐹𝑧
1 + 𝑡𝑧

� 𝑛𝑧

�̅�

0

𝑑𝑧 = 𝑌 �
(1 − 𝜁)𝑝𝐾

𝜁𝑤 �
𝜁

, (30) 

the zero profit condition for the representative firm:   

 𝑝𝐾
𝜁𝑤1−𝜁  �(1 − 𝜁)𝜁 (1−𝜁)⁄ + 𝜁(1−𝜁) 𝜁⁄ � = 1, (31) 

(which is obtained by setting the normalized price of the numéraire equal to the marginal cost of the 
composite good) and the closing identity:   

 
𝑌 −�𝑦𝑧𝑛𝑧

�̅�

0

𝑑𝑧 = 𝑧̅𝑟 𝐴 + 𝑝𝐾 �𝑌 �
𝜁𝑤

(1 − 𝜁)𝑝𝐾
�
1−𝜁

+ ��
𝑝𝐾
𝛿𝑝𝑧𝑔

�
1 (𝛿−1)⁄

�̅�

0

𝑑𝑧� , (32) 

which requires the value of the city export (left hand side) to be equal to the opportunity cost of land, 𝑧̅𝑟 𝐴, 
and the value of imported capital; the latter is the product of its exogenous price, 𝑝𝐾, and the sum of: i) 
the demanded quantity by the representative firm, given in equation (19), and ii) the demanded quantity 
by the construction sector developers, i.e. the integral of (15) across space.  
 Equations (28)-(31) define a non-linear system in four unknowns: 𝑌, 𝑧̅, 𝑤, 𝑢. The remaining 
endogenous variables (𝑀,𝑦, 𝑠,𝑇𝐹 ,𝑝,𝑝𝐿 , �̂�,𝑛,𝐺,𝐾, 𝐿,𝑅,𝐵, 𝑡,𝑘�) are completely determined, given the 
values of the above four variables, through the equations in sections 2.1-2.5. 

2.7. Equilibrium with a uniform building height restriction  

In this paper, we consider the case of a uniform floor-to-area ratio restriction as a possible quantity-
induced distortion in the housing market. This introduces a new endogenous variable, �̂�, which is the 
distance from CBD at which the maximum height constraint ceases binding (hereafter, the building height 
restriction boundary, or BHR boundary). Equation (12) becomes: 

 
�̂�𝑧 = �

ℎ�        𝑚𝑖 𝑧 < �̂�      
𝑔𝑘�𝑧𝛿   𝑚𝑖 𝑧 > �̂� 

  
(33) 

where ℎ� is the maximum number of floors (floor-to-area ratio) permitted at any point in the city. The 
equilibrium population density in (14) becomes: 
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𝑛𝑧 =

⎩
⎪
⎨

⎪
⎧ ℎ�

𝑠𝑧
    𝑚𝑖 𝑧 < �̂�

      
𝑔𝑘�𝑧𝛿

𝑠𝑧
   𝑚𝑖 𝑧 > �̂� . 

 (34) 

And the equilibrium condition in (28) is now written as: 

 
[�

ℎ�
𝑠𝑧

�̂�

0

𝑑𝑧 + �
𝑔𝑘�𝑧𝛿

𝑠𝑧

�̅�

�̂�

𝑑𝑧] = 𝑁. (35) 

The additional endogenous variable, �̂�, is accompanied by a new equation in order for the model to close. 
This states that the building height at point �̂� is equal to the restricted height limit, ℎ�. Inserting (15) into 
(12), this condition can be written as: 

 
�̂��̂� = 𝑔 �

𝑝𝐾
𝛿𝑝�̂�𝑔

�
𝛿 (𝛿−1)⁄

= ℎ� . 
(36) 

2.8. Equilibrium under zoning  

The other quantity restriction examined in this paper is zoning. Under zoning, the structural density, 𝑘�, 
and floor-to-area ratio, �̂�, are restricted to be zero in an interval (𝑧𝐿 , 𝑧𝑈) specified by government. That is: 

  
�̂�𝑥 = �𝑔𝑘

�𝑧𝛿       𝑚𝑖 𝑧 < 𝑧𝐿  𝑜𝑟 𝑧 > 𝑧𝑈
0                𝑚𝑖 𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝑈 .

  
(37) 

Furthermore, travel times in (22) and marginal external costs in (23) are adjusted for the fact that the flow 
at any point in the interval (𝑧𝐿 , 𝑧𝑈) remains constant. As in the unintervented case, the rent at city fringe is 
given by (29); no specific restrictions apply to points 𝑧𝐿 and 𝑧𝑈. Despite the fact that zoned land is 
required to be vacant, it is still acquired from the absentee landlord at the opportunity cost of land. 

 

3. Pigouvian taxation under non-price regulation in related markets 

It is well known that non-optimal pricing in a market interacting with the market in which an externality 
is to be regulated typically calls for an adjustment of the standard Pigouvian prescription, i.e. setting taxes 
equal to marginal external costs. Such non-optimal pricing in the related market may result from pre-
existing taxation, in which case the tax on the externality usually has to be adjusted to reduce the 
distortionary impact of the pre-existing tax in the other market. For the optimal design of policies 
addressing externalities, it is therefore important to take into account distortions elsewhere in the 
economy, including those arising from other taxes. An important question is then whether a similar 
reasoning also holds when the distortion in the related market is not due to a tax policy, but rather to other 
types of regulation. In this section we focus on quantity policies in a rather general setting. Applied to the 
topic of the paper, the more specific question would be whether application of the conventional Pigouvian 
congestion toll becomes suboptimal when the city has building height restrictions. 
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We will argue that the answer to this question is negative: the marginal external cost toll remains 
optimal, and this reflects an important distinction between a tax-induced distortion and distortions from 
quantitative policy measures in related markets. That is, a road tax can strongly interact with taxes 
imposed in the urban labor or housing market (see section 5.3), but does not do so with quantitative 
restrictions in related markets. The reason is that, at the margin in the Pigouvian equilibrium, an 
adjustment of the road toll will leave the supply of floor space intact at all locations where the constraint 
is binding, that is the interval (0, �̂�). Therefore, there is no efficiency gain in the land or housing market to 
be realized from a marginal adjustment of the Pigouvian toll in response to this distortion. 
 In this section we seek to put this argument in a rather general setting, where an externality tax is 
to be levied in one market and there is an undetermined number of related markets in which other policies 
may or may not be pursued; these policies can be taxes or quantitative non-tax measures. To that end, 
consider an economy with M markets. Denote the marginal social benefit on market m as 𝑀𝐵𝑚, the 
marginal social cost as 𝑀𝐶𝑚, and the quantity as 𝑞𝑚. Consider the case where social surplus 
maximization is the relevant social objective. The marginal impact on social welfare from a perturbation 
of a given tax, 𝜏𝑚, can then be compactly written as: 
 
 

𝛥𝑊(𝜏𝑚) =  ���𝑀𝐵𝜇 −𝑀𝐶𝜇�
𝑑𝑞𝜇
𝑑𝜏𝑚

� .
𝑀

𝜇=1

 
(38) 

where 𝑑𝑞𝑚 𝑑𝜏𝑚⁄  may also include policy-induced effects via adjustments in other taxes (e.g. when 
considering tax recycling). For a single market, m, the optimum 𝛥𝑊(𝜏𝑚) = 0 requires that 𝑀𝐵𝑚 −
𝑀𝐶𝑚 = 0 if 𝑑𝑞𝑚 𝑑𝜏𝑚⁄ ≠ 0. This would call for a Pigouvian tax equal to the marginal external cost when 
present. With multiple markets, welfare effects in other markets 𝜇 affect the second-best level of 𝜏𝑚 when 
the corresponding term in (38) for that market is non-zero; i.e., if 𝑀𝐵𝜇 ≠ 𝑀𝐶𝜇 (the market is distorted) 
and 𝑑𝑞𝜇 𝑑𝜏𝑚⁄ ≠ 0 (the equilibrium quantity in market 𝜇 has a non-zero response to a marginal change in 
𝜏𝑚). Stated differently, indirect effects in other markets vanish if these markets operate efficiently or if 
the quantity is insensitive, possibly because of a quantitative policy measure such as the building height 
restriction considered in this paper. Therefore, a tax in market μ that drives a wedge between MBμ and 
MCμ directly affects the optimality condition for the tax, 𝜏𝑚, whereas markets for which 𝑞𝜇 is fixed 
would not affect the first-order condition – even though they may of course affect the equilibrium level of 
the tax.11 

There is another way to rationalize the optimality of the Pigouvian toll when policy-induced 
distortions in related markets involve fixed quantities rather than taxes. Returning to the example of 
building height restrictions, assume the existence of a non-smooth production function, alternative to (12), 
where developers use a constant return to scale technology to convert land and capital into residential 
space only up to a certain building height, ℎ�, but where the capital cost of buildings exceeding ℎ� is 
infinite. It is straightforward that a maximum FAR restriction and this building technology will result in 
identical equilibria. But a Pigouvian toll would be optimal under the alternative building technology, 

                                                           
11 This effect is not to be confused with the mirror case where a quantity restriction on an externality-generating 
commodity (i.e. a polluting good) generates a non-negligible welfare effect in a primary factor market distorted by a 
pre-existing tax (e.g. labor tax). Parry (1996) shows that, for plausible parameters, an environmental quota can cause 
losses in labor market (i.e. through a decrease in labor supply) that are large enough to outweigh the beneficial 
partial equilibrium effect, i.e. the direct welfare benefit of an environmental quota. 
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since all conditions of the first welfare theorem, apart from the externality, then hold. Thus, a Pigouvian 
toll must also be optimal in the twin equilibrium under FAR where for a different reason building heights 
are restricted, but in essentially the same manner (Appendix C offers a numerical illustration, using 
computations of the optimal road tax for different staring values, with all of them converging to the value 
of the Pigouvian toll).  

 
 
Figure 1. Floor-to-area ratio (upper left panel), commuting time (upper right), residential space prices (lower left), 
and marginal external congestion cost (lower right) in the two equilibria without building height regulations: 
unregulated (solid) and Pigouvian (dashed).

 

The above optimality has a clear policy implication: possibly distortive policies in other markets 
can be ignored for the determination of optimal Pigouvian taxes as long as these taxes are based on 
correctly computed marginal external costs. In the context of this paper: decisions on road pricing can in 
general ignore building height restrictions (or other quantitative restrictions such as zoning), in that sense 
allowing a detachment of optimal road pricing from urban planning. Of course, to the extent that the 
restrictions will affect the behavioral responses to pricing and hence the marginal external costs in the 
optimum, there remains an impact of the FAR on the optimal levels of road prices; it is however not the 
tax rule that is affected. As shown in section 5.3, the detachment of optimal road pricing from urban 
planning ceases in the presence of tax interactions. 
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4. Calibration 

4.1. Unregulated equilibrium  

We now turn to the numerical version of the model presented in section 2. The calibration of the 
unregulated equilibrium (hereafter, the free market equilibrium) seeks to create a city that, despite the 
model’s abstract nature, resembles reality as closely as possible, in line with Tikoudis et al. (2013). We 
set the parameters such that equilibrium characterizes a quite sprawled (40 kilometers), congested 
metropolitan area in absence of government intervention.12 The distance between the CBD and the city 
fringe is then covered in 47 minutes. The average speed ranges between 15 and 50 kilometers per hour, 
depending on the location from which the commuter departs. The average speed of the median household 
is approximately 37 km per hour, which is roughly consistent with the average commuting speed reported 
for large US cities in the national household travel survey. The speed near the CBD is one-fifth of the 
speed in the city fringe. The floor-to-area ratio ranges between 25.0 (CBD) and 0.2 floors (fringe). 
Housing prices in the CBD are roughly 3.5 times those in the fringe. This price variation is accompanied 
by a respective variation in the household size (2.5 times larger in the fringe) and a steeper variation in 
land prices and structural density.  

Households work between 288 (CBD) and 233 (fringe) days per year.13 The (endogenous) annual 
income of the representative household is € 43000, almost all of which (92%) is earned by labor. This 
income is spent on consumption (57%), housing (39%) and transport (4%). The maximum marginal 
external congestion cost, i.e. as generated by the most remote household, is roughly € 4000, 
approximately € 17 per working day and slightly above 9% of the mean income. The solid lines in Figure 
1 show the spatial patterns of some of the key endogenous variables of interest.   
 
4.2. Pigouvian toll  

The dashed lines in Figure 1 indicate how the key variables of interest are affected (in the long-run) when 
a road charge equal to the marginal external cost of congestion, i.e. the scheme in (23), is imposed 
throughout the metropolitan area in the otherwise optimal situation where no constraints apply.  
 Clearly, floor-to-area ratio adjusts upwards in locations fairly close to the CBD and downwards in 
locations further away. Accompanied by a similar adjustment in prices, this reflects changes in relative 
accessibility occurring after the introduction of the policy. The small elasticity of labor supply with 
respect to pecuniary commuting costs underlies negligible adjustments in labor supply. In contrast, with 
adjustments through the behavioral margin of relocation, significant changes take place in commuting 
times and speeds. The reduction in the total external costs in the model is associated with a welfare gain; 
the compensating variation from the Pigouvian toll is approximately € 66 per household, annually. The 
next section investigates the performance of the Pigouvian toll and other policies in a city where the floor-
to-area ratio is regulated.   
 
 

 

                                                           
12 The free market equilibrium parameter vector values are: 𝛼 = 7.0, 𝛽 = 0.11, 𝛾 = 0.9, 𝜌 = 0.2, 𝑡0 = 0.02, 
𝑡1 = 0.12, 𝑔 = 0.01, 𝑁 = 1, 𝑚 = 417.5, 𝑟𝐴 = 10.0, 𝑝𝐾 = 1.0, 𝛿 = 0.8, 𝜁 = 0.2. 
13 This is 0.79 of a total time endowment, which is normalized to one. 
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5. Policy analysis 

5.1. Pigouvian toll in cities with different maximum FAR 

A natural question arising in the context of this paper is to what extent welfare gains of the Pigouvian toll 
vary across different levels of preexisting building height regulations. The left panel of Figure 2 illustrates 
the population density in a series of cities emerging from the same parameters used in the benchmark 
equilibrium of section 4.1, but under various maximum floor-to-area ratios imposed by the planning 
authorities.14 The associated values of the BHR boundary (�̂�) and sprawl (𝑧̅), before (�̂�0 and 𝑧0̅) and after 
(�̂�1 and 𝑧1̅) the introduction of Pigouvian toll are given in Table 1. The values of column 𝑧0̅ confirm that 
the total sprawl increases as the FAR restriction becomes more severe.  
 The total welfare gain of the Pigouvian toll in this series of cities can be conceptually 
decomposed into two separate effects. The first regards the direct benefits realized on the transport 
market. When labor supply responds mildly to commuting distance, one may expect the total number of 
vehicle kilometers to increase with urban sprawl. Cities with a lower maximum FAR produce more 
vehicle kilometers, longer commuting times and larger total external costs, as suggested by the upper 
right and lower right panels of Figure 2. Thus, the Pigouvian toll in these cities will produce a larger 
direct benefit (on the road). 
  
Table 1.  Relative efficiency and city size adjustments from a Pigouvian toll in cities with different FAR regulations. 
Road toll scheme 

 

Relative 
efficiency 

𝑧0̅  𝑧1̅  

 

�̂�0 �̂�1 

Maximum FAR allowed 

 

     
Free* 1.000 40.0 37.8 - - 
20.0  0.741 40.1 38.3 0.95 1.7 
15.0  0.587 40.8 39.3 2.8 3.3 
10.0  0.640 42.9 41.7 6.6 6.8 
6.00 0.884 47.6 46.4 14.0 13.5 
4.00 1.060 53.0 51.8 22.3 21.0 
* The resulting floor-to-area ratio in the CBD of the free market equilibrium is approximately 24.5.  
Notes: 𝑧̅ and �̂� denote total sprawl and BHR boundary respectively, before (𝑧0̅, �̂�0) and after (𝑧1̅, �̂�1) the imposition 
of a Pigouvian toll. The welfare gains (compensating variations) of a Pigouvian toll in a city with an arbitrary 
maximum building height are expressed relative to the respective gains in the city without building height 
restrictions. 

The second effect regards indirect benefits or losses realized in the housing market. In particular, 
the road toll scheme may increase the effective demand for floor space in locations where the maximum 
FAR restriction is already binding, and in locations where FAR is close to its maximum level imposed by 
the regulator.15 Thus, Pigouvian toll may expand the BHR boundary of the city and cause welfare losses 
in the housing market.   

                                                           
14 The maximum FAR values are chosen arbitrarily.   
15 Note that, in contrast to section 3, here we are not referring to a marginal adjustment of an existing toll scheme, 
but to the introduction of a toll scheme equal to the marginal external cost of congestion. 
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Table 1 suggests that this may be the case for cities with a mild FAR restriction, lying not far 
below the respective FAR of the free-market equilibrium. The rationale behind this counter-intuitive result 
is that the population residing in the close neighborhood of BHR boundary, i.e. the population density 
contained on an interval (�̂�0, �̂�0 + 𝛥�̂�0), is larger in these cities (see lower left panel of Figure 2). 
Subsequently, a larger such population (prior to the Pigouvian toll) will generate a larger expansion of the 
BHR boundary (after the introduction of the Pigouvian toll). This expansion is given by the difference 
�̂�1 − �̂�0 in Table 1, and becomes smaller as the BHR regulation becomes more stringent and the pre-toll 
BHR boundary, �̂�0, moves further away from the CBD.  
 
Figure 2. Floor-to-area ratio (upper left panel), commuting times (upper right panel), household densities (lower 
left panel) and marginal external congestion costs (lower right panel) in the BHR equilibria without road pricing. 

 
The results in the same table suggest that, in cities where FAR is pressed far below its free market 

equilibrium level (in this numerical example this is, roughly, when maximum FAR falls below 8.00), a 
Pigouvian toll can even contract the BHR boundary. Again, this result can be explained by the (relatively 
smaller) population density on the associated interval (𝑧0, 𝑧0+𝛥𝑧0) and the location of 𝑧0 itself (larger 
values are associated with larger commuting costs and lower rents for households residing outside the 
area where FAR limit is binding). 
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Combining the two effects yields the total welfare gain induced by a Pigouvian toll in a city with 
a maximum FAR. Table 1 (second column) reports this gain relative to the welfare gain in a city without 
building height restrictions.16 This relative gain turns out to be non-monotonic across cities with different 
maximum FAR. It is the outcome of two functions: a road market benefit function (increasing in 
regulation stringency) and a housing market loss function (decreasing in regulation stringency). It is also 
volatile enough to fall below 60% (that is, 59% in the case of fifteen floors).  

The above findings have significant policy implications. They indicate that the same policy rule 
in a series of seemingly identical cities (in terms of road technology, preferences, structure, size, and 
population) can generate rather diverse welfare effects. Improvised extrapolations of benefits across such 
cities may lose the point, and thus should not constitute the basis for decision making if not accompanied 
by elaborate cost-benefit analyses. The latter, as already shown in section 3, do not require background 
information on building height restrictions, as long as traffic forecasts and in particular marginal external 
cost estimates are consistent with these restrictions. 
 

4.3. Pigouvian toll in a city with zoning 

Similar to a maximum FAR, zoning constitutes a quantity distortion. In fact, it can be seen as a special 
case of a building height restriction, in which FAR is forced to be zero in a specified area. For this reason, 
the Pigouvian toll is optimal, as it is the case with a uniform maximum FAR. In contrast to a uniform 
maximum FAR, however, the extent of the distortion in the housing market remains intact after the 
introduction of a Pigouvian toll. As a result, road externalities determine completely the extent of welfare 
gains in any arbitrary choice of zoning area (𝑧𝐿 , 𝑧𝑈). 
  
Table 2.  Pigouvian toll welfare gains in cities with zoning. 

Extent of zoned area (km) 1.00 2.00 

 

3.00 

 

4.00 
Zoning lower bound 

   
    

0.40  1.134 1.338 1.597 1.870 
4.00  1.021 1.023 0.998 0.954 
30.00  0.995 0.992 0.989 0.986 
Notes: All welfare gains are expressed in terms of compensating variations relative to the case without zoning. 
 

 When the lower bound, 𝑧𝐿, is placed close to the CBD, expanding the zoned area forces 
households to relocate further away. With mild adjustments in labor supply, total external costs of 
congestion rise. Then, Pigouvian toll produces gradually larger welfare gains as the extent of the vacant 
area increases (first row of Table 2). The opposite is true when the bound is placed relatively close to city 
fringe. In this case, extension of zoning causes relocation closer to CBD, subsequently decreasing the 
welfare gains from a Pigouvian toll (third row). Apart from having opposite signs, the above effects also 
differ in magnitude due to the initial distribution of population over space, which is far from uniform. 
                                                           
16 For instance, letting 𝐶𝑉𝑠 denote the compensating variation of the Pigouvian toll in a city where maximum FAR is 
restricted to be equal to s (both before and after the introduction of the policy), and 𝐶𝑉𝑓𝑓𝑓𝑓 the associated 
compensating variation in a city without a maximum FAR (either before or after the introduction of the policy), the 
relative efficiency is 𝑅𝑅𝑠 = 𝐶𝑉𝑠 𝐶𝑉𝑓𝑓𝑓𝑓⁄ .   
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Therefore, the welfare gains of a Pigouvian toll produced under policy extrapolations similar to those 
discussed in section 5.1. are much more likely to be underestimated rather than the opposite.17 Between 
the two polar cases, gradual expansion of the upper zoning bound, 𝑧𝑈, produces non-monotonic results; 
that is, the direction of household relocation becomes ambiguous. 
 

4.4. Optimal toll in the presence of ad valorem property taxation   

We now investigate the role a pre-existing tax induced distortion, by considering an ad-valorem tax (value 
tax) on housing property, paid by the consumer. We consider a wide range (0-8%) in order to capture the 
various levels of property taxation observed across Europe and North America. Because unpriced 
congestion is present in the benchmark city, this tax (at low levels) may be welfare improving: it 
generally reduces dwelling size, resulting in a more compact city where fewer vehicle kilometers are 
produced, thus replicating one of the behavioral reactions that also an optimal road price would bring. At 
the same time, the equilibrium tax per square meter is higher closer to CBD; this generates a push-out 
effect which increases urban sprawl. Therefore, the total impact of the ad-valorem tax on the size of the 
city is ambiguous. 
  
Table 3.  Relative efficiency gains from the Pigouvian and optimal toll in cities with a different ad-valorem tax on 
housing property. 

Road toll scheme 

 

Pigouvian toll Optimal tax 
interpolant 

 

% change in 
welfare gains 

 

% change in city 
size 

Value tax rate     
0% 1.0 1.0 0% 0% 
4%  1.021 1.028 0.7% -0.87% 
6% 1.030 1.059 2.8% -1.05% 
8% 1.038 1.095 5.2% -1.30% 
Notes: The welfare gains (compensating variations) of the Pigouvian and optimal toll in a city with an arbitrary ad-
valorem tax rate (second and third column) are expressed relative to the respective gains in the city without property 
taxation.  Therefore, a value above 1 does not signify a welfare level that exceeds that in the first-best, but merely a 
welfare gain from road pricing that exceeds the gain in absence of the housing tax. The percentage changes in 
relative welfare gains and city size refer to the transition from the Pigouvian to the optimal tax interpolant 
equilibrium. 

The imposition of this policy generates a clear tax interaction: a location-specific tax for the use 
of the road coexists with a location-specific tax on property. However, this interaction is relatively weak 
compared to other interactions investigated in relevant literature: for instance, a labor tax and a road toll 
might be perfect substitutes (from the viewpoint of policymaker) in settings where labor supply is 
inelastic in the intensive margin (fixed duration of working day, such as in Parry and Bento, 2001 or 
Verhoef, 2005) and there is no substitute transport mode for car.  

As shown in the second column of Table 3, the welfare gains from a Pigouvian toll are generally 
stable across different levels of the ad-valorem tax. The third (fourth) column displays the gains 

                                                           
17  Note that the welfare effects of zoning per se are negative. That is, equilibria with a larger zoning area, 𝑥𝑈 −  𝑥𝐿 , 
are associated with lower utility, despite Pigouvian toll might produce larger welfare gains. 
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(percentage difference in welfare gains) from an alternative road pricing scheme based on the optimal tax 
interpolant, discussed in Appendix B. This is the numerically established tax schedule that maximizes 
social welfare. Despite the (numerical) difficulty to differentiate between the Pigouvian and the optimal 
tax at low levels of property taxation, the fourth column shows that the former ceases to be optimal even 
at moderate levels of an ad-valorem tax. Intuitively, at higher levels of the tax, the difference between the 
optimal and Pigouvian tax increases, reflecting the increased marginal excess burden.  

 As Figure 3 shows, the optimal road tax lies below the Pigouvian level. This implies that 
the interaction between the road toll and the property tax is negative. That is, the Pigouvian toll erodes the 
base of the property value-tax by reducing apartment sizes, city size and thus total floor space stock of the 
city. Note that, despite the fact that interpolation yields a strictly monotonous, concave price scheme, the 
total toll is negative in a considerable space interval, in all three cases. In fact, forcing the tax to be non-
negative in the entire interval (0, 𝑧̅) exhausts almost all of the additional gains.  
 
Figure 3. Optimal tax (solid) versus marginal external cost of congestion (short dash) and their difference (dash) in 
three different levels of an ad-valorem tax: 4% (left panel), 6% (middle) and 8% (right).   

 
 
This implies that, to a large extent, these gains stem from household relocation closer to CBD, 

revealing that the non-congestion benefits from a downward adjustment of the toll close to CBD (and 
therefore attracting households close to CBD) outweigh the losses from non-optimal pricing of the 
congestion externality. The optimal tax interpolant provides a general downward adjustment and local 
corrections which account for the inefficiency of the property tax. These adjustments, which may not be 
feasible without the use of an additional policy instrument, can provide considerable improvements in 
terms of welfare gains.  

 
6. Concluding remarks 

This paper has investigated road pricing policies in the presence of various types of housing market 
regulations. The topic is highly relevant because the existing regulations in the land and housing markets, 
especially command and control regulations (such as maximum building heights and urban growth 
boundaries), might be incomparably more difficult to adjust than tolls in a road pricing scheme.  
 A general result, with relevance beyond the case of road pricing with distorted land and housing 
markets studied here, is that given a quantity restriction in a related market the Pigouvian toll rule remains 
optimal. An intuitive explanation is that the effect of a toll adjustment at the margin of the Pigouvian 
equilibrium will not affect the quantity produced in the distorted market, because that quantity is fixed. 
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The optimality of the Pigouvian toll in such cases suggests that decision making regarding urban road 
pricing can ignore quantitative restrictions in the parallel markets of land, housing and labor. That is, such 
restrictions will not affect the optimal road toll rule, although the equilibrium levels will generally be 
affected. This is a useful result for policymakers, because the socially-optimal road tax scheme can then 
be computed exclusively with data from the road market. However, the Pigouvian toll ceases to be 
optimal when a tax-induced housing market distortion is present.  

Our numerical application examined the presence of maximum floor-to-area ratio and zoning. We 
demonstrated that the welfare gain from a Pigouvian toll is a non-monotonic function of the building 
height regulation stringency. This non-monotonicity is the consequence of two major, but opposing, 
effects that a Pigouvian toll generates. The first regards the welfare gains on the road, which increase as 
the maximum building height is reduced, because travel distances and hence congestion costs increase 
within the city. The second regards the losses in housing market caused by a road toll, which are more 
severe at milder levels of the FAR restriction. With zoning, the second result is absent: the efficiency of 
land use (in the areas where zoning does not apply) does not depend on road pricing. The welfare effects 
of road pricing are then entirely determined on the road.  

Our findings have significant policy implications. Our computations suggest that the Pigouvian 
toll imposed in a city with a mild, uniform over space, floor-to-area ratio restriction may produce up to 
40% smaller welfare gains relative to the gains of a Pigouvian toll in a city without height restrictions. On 
the other hand, welfare gains might be 80% larger in a city with an extensive zoned area close to the 
CBD. Therefore, welfare gains of road pricing across cities with different housing market regulations may 
differ wildly from each other. 
 

Appendices 

A. Notation  

Table A.  Basic model variables and parameters 
z distance from CBD 𝑝 price of floor space  
𝑧̅  city size (sprawl) 𝑝𝐿 price of land 
�̂�  BHR boundary  𝑝𝐾 exogenous price of capital 
𝑘�  structural density 𝑟𝐴 opportunity cost of land 
�̂�  floor-to-area (FAR) ratio R aggregate differential rents 
M disposable income  𝑅𝑎 total opportunity cost of land 
m pecuniary commuting cost (per km)  𝑅𝐿 aggregate rents paid 
𝜏𝑧  total road tax from z to CBD 𝐺 toll revenue 
𝐵  lump-sum income 𝑛 population density at distance z 
𝑇𝐹  leisure time K total capital costs 
𝑡  commuting time  N exogenous population 
𝑠  apartment size ℎ� policy imposed FAR ceiling 
𝑦  composite good (numéraire)  Q tax revenue 
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B. Computational details 

Tax interpolation and direction set optimization  

We have divided the road intervals (0, �̂�) and (�̂�, 𝑧̅) in two and (respectively) three segments of equal 
length. The points that define these segments are given by the vector: 
 
 𝜹′ = [0, 0.33 �̂�, 0.66 �̂�, �̂�, �̂� +  0.33 (𝑧̅ − �̂�), �̂� +  0.66 (𝑧̅ − �̂�), 𝑧̅ ], (B1) 

when FAR regulations are present and by the vector: 
 
 𝜹′ =[0, 0.25 𝑧̅, 0.50 𝑧̅, 0.75 𝑧̅, 𝑧̅ ], (B2) 

when not. Define any pricing scheme in the paper as a vector 𝒄′ of equal size as 𝜹′, and let 𝒄𝑖′  denote the 
total price charged to the household located at distance 𝜹𝑖′ . Under piecewise linear interpolation, for any 
𝜹𝑖′ < 𝑧 < 𝜹𝑖+1′ , the charge is given by: 
 
  

𝑚𝑧 =  𝒄𝑖′ +  
𝑧 − 𝜹𝑖′

𝜹𝑖+1′ − 𝜹𝑖′
(𝒄𝑖+1′ − 𝒄𝑖′ ). 

(B3) 

Under (non-linear) Lagrange interpolation, we define the Vandermonde matrix: 

 

𝑽 =  

⎣
⎢
⎢
⎢
⎢
⎡1 𝜹0′

1 𝜹1′
𝜹0′2 𝜹0′3 𝜹0′4

𝜹1′2 𝜹1′3 𝜹1′4

1 𝜹2′

1
1

𝜹3′

𝜹4′

𝜹2′2 𝜹2′3 𝜹2′4

𝜹3′2

𝜹4′2
𝜹3′3

𝜹4′3
𝜹3′4

𝜹4′4⎦
⎥
⎥
⎥
⎥
⎤

 

(B4) 

and solve 𝑽𝑽 = 𝒄 for the coefficient vector 𝑽 which is used to construct the interpolating polynomial: 

 𝑚𝑧 =  𝑽0′ 𝑧0 + 𝑽1′ 𝑧1  + 𝑽2′ 𝑧2 + 𝑽3′ 𝑧3 + 𝑽4′ 𝑧4. (B5) 

Throughout the paper, the expressions in (B3) and (B5) are called tax interpolants. Any optimization 
technique employed attempts to approximate the vector 𝒄′ that belongs to policy space and maximizes 
(10) subject to the equilibrium conditions. 

C. Numerical illustration of Pigouvian optimality  

To illustrate the optimality of the Pigouvian toll, we perform a series of numerical computations based on 
the idea that the toll function in (23) can be approximated with the use of a piecewise linear interpolant 
(see  Appendix B). Then, the optimal tax at the selected points used in the interpolation (distances from 
CBD) can be computed with standard numerical optimization techniques. We use starting values that 
account for 70% of the Pigouvian toll in the interpolation points. Various different levels of initial 
perturbations have been tried and resulted in slightly different relative efficiencies; however, the general 
result remains intact: in none of the cases has the relative efficiency been observed to fall below 1.0. 
Table C displays the efficiency of the Pigouvian toll relative to the optimized tax interpolant.  
 To establish that the result does not depend on the assumed elasticity of substitution, the 
computations are repeated for two different cities in which σ is lower (higher). In each case, the model 
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parameters are recalibrated in order for the base equilibrium to loosely resemble the unregulated 
equilibrium of section 4.1. The results are displayed in the second (fourth) column of Table C. 
 
 
Table C.  Relative efficiency of the Pigouvian toll (benchmark: optimal tax interpolant).  

Elasticity of substitution 
(𝜎) 

0.40 1.25 

 

1.54 

 Maximum FAR allowed 

 

   
15.0  1.014 1.035 1.025 
10.0  1.009 1.011 1.010 
6.00 1.006 1.008 1.002 
Notes: all results in the table produced with linear piecewise interpolation and Newton-Raphson with line search.  
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