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Abstract

A simple methodology is presented for modeling time variation in volatilities and other higher-
order moments using a recursive updating scheme similar to the familiar RiskMetricsTM ap-
proach. We update parameters using the score of the forecasting distribution. This allows the
parameter dynamics to adapt automatically to any non-normal data features and robustifies the
subsequent estimates. The new approach nests several of the earlier extensions to the exponen-
tially weighted moving average (EWMA) scheme. In addition, it can easily be extended to higher
dimensions and alternative forecasting distributions. The method is applied to Value-at-Risk fore-
casting with (skewed) Student’s t distributions and a time-varying degrees of freedom and/or
skewness parameter. We show that the new method is competitive to or better than earlier meth-
ods in forecasting volatility of individual stock returns and exchange rate returns.

Keywords: dynamic volatilities, dynamic higher-order moments, integrated generalized
autoregressive score models, Exponentially Weighted Moving Average (EWMA), Value-at-Risk
(VaR).

JEL: C51, C52, C53, G15.

1. Introduction

Time variation in second and higher-order moments is an important phenomenon

for assessing (tail) risk, constructing hedge strategies, and pricing assets. Exponentially

Weighted Moving Average (EWMA) methods have proved to be useful tools to capture
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such time variation in a parsimonious and effective way. Here, we develop a new empiri-

cal methodology to extend and improve upon the standard EWMA approach. Our frame-

work exploits the higher-moment properties of the forecasting distribution to drive the

dynamics of volatilities and other time-varying parameters. By doing so, the new method

is robust to outliers if a non-normal forecasting distribution is used, which is typically the

case when forecasting financial asset returns. The new method is easy to implement and

remains close in spirit to the highly familiar EWMA approach of RiskMetricsTM.

The score-driven EWMA (SD-EWMA) model we propose builds on a new observation

driven methodology, namely the generalized autoregressive score (GAS) dynamics; see

Creal et al. [2011, 2013] and Harvey [2013]. In particular, we consider an integrated ver-

sion of the score-driven dynamics. The analogy is simple: just as the standard EWMA ap-

proach is a special case of the IGARCH(1,1) model of Engle [1982] and Bollerslev [1986],

the proposed SD-EWMA approach is a special cases of the IGAS(1,1) model of Creal et al.

[2013]. Its key feature is that the time-varying parameter dynamics are driven by the score

of the forecasting distribution. Empirical evidence for the usefulness of score driven dy-

namics is provided in for example Creal et al. [2014], Lucas et al. [2014], and Harvey and

Luati [2014], while Blasques et al. [2015] demonstrate the information-theoretic optimal-

ity properties of score-driven updates.

The intuition for using the score is straightforward. As an example, consider forecast-

ing a time-varying variance of a fat-tailed distribution. If one uses the standard EWMA

approach, a large absolute return has a major impact on next period’s estimated vari-

ance due to the use of squared returns in the variance updating equation. Given the

integrated nature of the EWMA dynamics, this impact affects a large number of subse-

quent volatility estimates. If one accounts for the fat-tailedness of the return distribution

using a score-driven propagation mechanism for the variances, the impact of incidental

tail observations is substantially mitigated. This mitigation or robustifying mechanism is

particularly important in our current context with integrated (infinite memory) dynam-
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ics.

Our methodology is computationally simple and remains close in spirit to the stan-

dard EWMA approach. We also show that the SD-EWMA approach encompasses other

proposals from the literature to model time-varying parameters, such as the normal based

standard EWMA, the robust EWMA of Guermat and Harris [2002] based on the Laplace

distribution, and the skewed EWMA of Gerlach et al. [2013] based on the asymmetric

Laplace distribution. Given that we are interested in modeling the time variation in fi-

nancial risk measures, we explicitly develop an SD-EWMA model based on the fat-tailed

skewed Student’s t distribution; see for example Poon and Granger [2003] for stylized

facts about financial returns. It is clear, however, that the modeler can easily substitute

his/her own favorite forecasting distribution instead, such as the normal inverse Gaus-

sian (NIG) or the generalized hyperbolic (GH) distribution. We illustrate this by also

making the skewness and degrees of freedom parameter of a skewed Student’s t fore-

casting distribution time-varying.

We apply our approach to forecasting Value-at-Risk (VaR) for individual stock returns

and foreign exchange rate returns. It turns out that the (skewed) Student’s t based SD-

EWMA schemes work better for most of the series considered. All SD-EWMA methods

improve uniformly on the normal based EWMA method. We show that both the shape of

the conditional distribution and the score-driven updates can be helpful to improve the

value-at-risk forecasting performance.

Compared to previous methods, such as Jensen and Lunde [2001] and Wilhelmsson

[2009], the SD-EWMA approach has the distinct advantage that it provides a unifying

framework that embeds previous proposals from the literature, such as Guermat and

Harris [2002] and Gerlach et al. [2013]. In addition, the generality of the SD-EWMA ap-

proach also allows for a straightforward generalization to higher dimensions, estimating

score-driven versions of both volatilities, covariances and correlations, and other higher-

order moments.
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The remainder of the paper is set up as follows. In Section 2, we introduce the ba-

sic methodology and convey the main intuition using the Student’s t distribution as a

leading example. Next, we extend the framework to forecasting distributions with time

varying skewness and/or kurtosis. In Section 3, we briefly review the tests used in our

forecasting experiment to assess the performance of quantile forecasts. In Section 4, we

provide our empirical application to Value-at-Risk forecasting. Section 5 concludes.

2. Score Driven Exponentially Weighted Moving Averages

2.1. Standard Gaussian EWMA approach

Consider a time series yt ∈ R observed over the sample period t = 1, . . . , T. In our

setting, yt typically holds financial returns, such as stock returns or foreign exchange rate

returns. We assume that yt has a time-varying conditional distribution p(yt|Ft−1; ft, θ),

where Ft−1 is the information set available at time t − 1, ft is a vector of time-varying

parameters, and θ is a vector of static parameters. For example, Ft−1 may include lags of

yt and of exogenous variables, and ft may include time-varying means and/or volatili-

ties, while θ may hold the remaining parameters characterizing the distribution, such as

skewness and excess kurtosis parameters.

The standard RiskMetricsTM approach sets ft = σ2
t and uses the exponentially weighted

moving average (EWMA) scheme

σ2
t+1 = λσ2

t + (1− λ)y2
t , 0 < λ < 1. (1)

The EWMA scheme in (1) corresponds to a zero-intercept IGARCH model,

σ2
t+1 = ω + αy2

t + βσ2
t = ω + α(y2

t − σ2
t ) + (α + β)σ2

t , (2)

with ω = 0, β = λ, and α = 1− β, such that α + β = 1. The volatility is thus a weighted

sum of past squared observations. In particular the term (y2
t − σ2

t ) is directly propor-
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tional to the score of the normal distribution with respect to σ2
t . If the observations yt are

conditionally fat-tailed, using squared observations in (2) may not be optimal as large re-

alizations of yt may occur regularly even if the variance has not changed substantially. If

not properly accounted for, such large realizations may bias the estimates of the true un-

derlying volatility. Due to the long memory of the integrated GARCH model (2), the bias

may persist for a long time and affect a large number of subsequent volatility estimates.

2.2. Score Driven EWMA

To account for the shape of the conditional forecasting distribution in constructing an

EWMA scheme, we use the generalized autoregressive score (GAS) framework of Creal

et al. [2011, 2013]; see also Harvey [2013]. Blasques et al. [2015] show that updating

the time-varying parameters by the score of the forecasting distribution always locally

improves the Kullback-Leibler divergence between the model and the true, unknown

data generating process. The GAS(1,1) dynamics for the time-varying parameter ft are

given by

ft+1 = ω + Ast + B ft, st = St · ∂`t/∂ ft, `t = ln p(yt|Ft−1; ft, θ), (3)

where St = S( ft,Ft−1; θ) is an Ft−1-measurable scaling function. Note that the scaled

score st is a function of yt, ft, and Ft−1. The time-varying parameter ft as specified in (3)

is thus observation driven in the classification of Cox [1981]. More complicated dynamics

than the ones specified in equation (3) can be added to the specification; see for example

Janus et al. [2011] for fractionally integrated dynamics, Creal et al. [2013] for higher-order

dynamics, and Harvey and Luati [2014] for higher order dynamics as well as structural

time series dynamics. For our current purposes, however, the GAS(1,1) dynamics suf-

fice. For the scaling matrix St, we propose the inverse diagonal of the Fisher conditional
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information matrix,

St = diag(It|t−1)
−1 = diag

(
Et−1

[
(`t/∂ ft) (`t/∂ ft)

′ ])−1 .

This form of scaling accounts for the local curvature of each of the score elements and

embeds the standard GARCH dynamics as a special case; see Creal et al. [2013] for more

details. In contrast to Creal et al. [2013] we use only the diagonal (rather than the full)

information matrix for scaling. The advantage of this is that each parameter only feeds

directly on its own score, rather than on a mix of scores for different parameters. This

may be an advantage in the current EWMA setting, where parameter dynamics are typ-

ically considered parameter by parameter. We also found that a diagonal scaling matrix

increases the stability of the EWMA procedure, particularly if we consider time-varying

volatility, skewness, and degrees of freedom parameters jointly, for instance in the case

of our skewed Student’s t distribution.

Scaling by the inverse (diagonal) information matrix enables us to construct a Score

Driven EWMA (SD-EWMA) scheme by building on the analogy of the EWMA scheme

in equation (1) and the IGARCH specification in (2). In particular, similar to (2) our SD-

EWMA uses the integrated GAS dynamics

ft+1 = Ast + ft, (4)

also labeled a Newton score step in Blasques et al. [2015]. This corresponds to an inte-

grated GAS specification by setting ω = 0 and B = 1 in equation (3). For example, if

p(yt|Ft−1; ft, θ) is the Gaussian distribution with zero mean and variance ft = σ2
t , Creal

et al. [2013] show that (4) reduces precisely to the standard EWMA scheme in (1) if we set

A = 1− λ.

There is, however, no particular need to restrict oneself to the normal distribution. As
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it is well established that financial returns are typically fat-tailed, it makes much more

sense to use an SD-EWMA scheme based upon a fat-tailed distribution. In this paper we

follow Creal et al. [2011, 2013] and Harvey [2013] and use the Student’s t (and later also

the skewed Student’s t) distribution with ν degrees of freedom,

p(yt|Ft−1; ft, θ) =
Γ( ν+1

2 )

Γ( ν
2 )
√
(ν− 2)πσ2

t

(
1 +

y2
t

(ν− 2)σ2
t

)− ν+1
2

, (5)

with ft = σ2
t and θ = ν > 2. The corresponding SD-EWMA scheme is given by

σ2
t+1 = σ2

t + A · (1+ 3ν−1) ·
(

ν + 1
ν− 2 + y2

t / ft
· y2

t − ft

)
= (1− λ)σ2

t + λ · ν + 1
ν− 2 + y2

t / ft
· y2

t ,

(6)

with λ = A · (1 + 3ν−1). One can either fix ν at a predetermined value such as 5 for

robustness purposes, or estimate it using an initial estimation sample.

As discussed in Creal et al. [2013] and Harvey [2013], the weight factor in front of y2
t

in equation (6) has a robustifying effect on the volatility dynamics. If yt lies in the tails of

the conditional distribution at time t, the volatility is increased, but not by the full y2
t . Part

of the effect is attributed to the fat-tailedness of the Student’s t distribution as can be seen

from the division by (ν− 2 + y2
t /σ2

t ). As the SD-EWMA scheme has the same integrated

dynamics as the original EWMA scheme, a more robust estimate of the volatility at time

t has a persistent effect on subsequent volatility estimates as well.

Though the SD-EWMA approach adapts itself to any parametric distribution, there is

a trade-off to be considered. If the conditional distribution depends on more parameters

than the time-varying parameter ft only, e.g., the degrees of freedom parameter ν, these

parameters need to be estimated before the SD-EWMA scheme can be operationalized.

An attractive feature of the EWMA approach for volatility filtering and forecasting is

precisely that no off-line estimation is needed. One way to achieve this is to estimate the

auxiliary parameters on an estimation sample and to update them only infrequently. For
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the Student’s t SD-EWMA scheme this approach works well and better than a number

of competing schemes for a range of foreign exchange rate and stock returns; see the

application in Section 4. For other distributions, however, more care may be needed.

2.3. The Skewed Student’s t distribution with time varying higher-order moments

We note the flexibility of the SD-EWMA approach to account for other dynamic pa-

rameters beyond the volatility context. For example, the model can easily be extended to

handle both volatilities and covariances, or volatilities and correlations, using the recur-

sions in Creal et al. [2011] and the integrated GAS(1,1) specification in (4). In addition, the

approach can be further generalized to handle time variation in higher-order moments,

such as skewness and kurtosis, by putting the appropriate parameters into ft rather than

θ. An example that we use in our subsequent empirical analysis is a new SD-EWMA

model with a time-varying degrees of freedom parameter. For this, consider the likeli-

hood in equation (5) and set f ′t = ( f1,t, f2,t) with σ2
t = f1,t and νt = 2 + exp( f2,t). Using

inverse Fisher information scaling, we obtain the following recursion for νt,

f2,t+1 = f2,t − Aν
2

νt − 2

[
γ′′
(

νt + 1
2

)
− γ′′

(νt

2

)
+

2(νt + 4)(νt − 3)
(νt + 1)(νt + 3)(νt − 2)2

]−1

[
γ′
(

νt + 1
2

)
− γ′

(νt

2

)
− 1

νt − 2
− ln

(
1 +

y2
t

(νt − 2) σ2
t

)

+
νt + 1
νt − 2

· y2
t

(νt − 2)σ2
t + y2

t

]
, (7)

where Aν > 0 is a scalar tuning parameter similar to the parameter A used for the

volatility dynamics in (6), and γ′(·) and γ′′(·) are the first and second order derivatives

of γ(·) = ln Γ(·). The derivation of this result follows by using results in for example

Gómez et al. [2007], accounting for the fact that we model the variance of the Student’s

t distribution, rather than the scale parameter; see the online appendix for further de-

tails. The reparameterization νt = 2 + exp( f2,t) automatically ensures that the degrees
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of freedom parameter νt is always larger than 2, such that the variance of the Student’s

t distribution always exists. The score based recursions automatically account for this

reparameterization via the chain rule used in the score calculations.

Though the shape of the recursion for νt in (7) may look complicated at first sight, it is

actually easy to implement. Interestingly, it does not directly use fourth order moments

as one may have expected for the dynamics of a tail-shape parameter. Rather, it only

uses a logarithmic moment, combined with the explicit information embedded in the

tail shape of the Student’s t distribution. An advantage of using the recursion in (7) is

that it typically results in a much more stable path of the degrees of freedom parameter.

Fourth order moments of the data, by contrast, are notoriously unstable. The composition

of squared data and the gamma functions and their derivatives in (7) circumvent this

problem of instability. We provide some typical shapes of the news impact curves related

to equation (7) for several values of νt in Figure 1. The curves are re-centered and re-

scaled to be comparable within one figure. We also plot a fourth order polynomial −z4
t

as a benchmark.

Figure 1 shows that large values of |zt| result in a downward adjustment of νt+1 for

all curves considered. This is intuitive, as large values of |zt| can be associated with tails

being fat. The decline in (7) for large values of zt is comparable for different values of

νt. Interestingly, the sensitivity of the GAS based news impact curves for νt+1 is much

lower than that of the fourth order polynomial curve −z4
t . This provides the SD-EWMA

recursion for νt with its robustness feature. Also note that for fatter tailed distributions

such as νt = 3, values zt near zero also result in smaller values of νt+1. This is a con-

sequence of the fact that fat-tails for the Student’s t distribution go hand in hand with

leptokurtosis, i.e., ‘peaked-ness’ at the center of the distribution. The less leptokurtic

the distribution, the smaller the downward effect of observations near zero compared to

near, say, −1 or −2. The informativeness of observations in the center compared to tail

observations only really becomes clear if the distribution is already fat-tailed, i.e., if νt is
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Figure 1: News impact curves for the time-varying degrees of freedom recursion (7)

Scaled and recentered news impact curves (7) as a function of zt = y2
t /((νt − 2)σ2

t ) for different values of
νt. The (rescaled and recentered) curve of fourth order powers −z4

t is also shown as a benchmark.

low. For higher values of νt, downward signals for νt+1 predominantly must come from

tail observations.

We note that the smoothing parameter Aν for the νt recursion is typically smaller than

that of the volatility recursion. Starting values for the estimation of Aν for empirical data

in the range of 0.001 work quite well. The low values of Aν underline the stable path

dynamics for νt described by (7). We show in Section 4 that allowing for a time-varying

degrees of freedom parameter helps to further improve the accuracy of tail probability

estimates for fat-tailed data.

Finally, the SD-EWMA also allows us to combine time-varying skewness and kurto-

sis, if so desired. One way forward is to use the skewed Student’s t distribution with

associated score and information matrix expressions as derived in for example Gómez

et al. [2007] and discussed in the score-driven setting by Harvey [2013]. The density of
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the skewed Student’s t distribution is given by

p(yt|Ft−1; ft, θ) =
Γ( νt+1

2 )

Γ( νt
2 )
√
(νt − 2)πσ̄2

t

(
1 +

y2
t

(1− ε · sign(yt − µ̄t))(νt − 2)σ̄2
t

)− νt+1
2

,

(8)

where −1 < εt < 1 is the skewness parameter, and µ̄t and σ̄t are the location and scale

parameter, respectively. We can use the expressions for the mean µt and variance σ2
t of

yt as given in Gómez et al. [2007] to model the mean and time-varying variance rather

than the location m̄t and time-varying scale σ̄t. The precise equations are presented in the

online appendix to this paper. The skewed Student’s t model also allows us to illustrate

the flexibility of the SD-EWMA approach to parameterize the model in such a way as to

ensure proper parameter values for all values of ft. For example, to ensure positive σ2
t ,

−1 < εt < 1, and 2 < νt < 100, we can for instance choose σ2
t = exp( f1,t), εt = tanh( f2,t),

and νt = 51 + 49 tanh( f3,t). This reparameterization only causes slightly more involved

expressions for the score, but leaves the rest of the SD-EWMA procedure untouched.

Further details can be found in the online appendix.

2.4. Extensions: other forecasting distributions

Interestingly, the SD-EWMA approach also encompasses previous adaptations of the

EWMA scheme proposed in the literature. For example, Guermat and Harris [2002] in-

troduce a robust-EWMA scheme

σt+1 = λσt + (1− λ)
√

2|yt|, (9)

which is driven by absolute rather than squared observations. The authors relate their

model to the GARCH type models of Taylor [1986] and Schwert [1990]. However, (9) can

also be seen as a special case of the SD-EWMA scheme in (4). To see this, consider the
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Laplace density

p(yt|Ft−1; ft, θ) =
1√
2σt

exp(−
√

2 |yt|/σt). (10)

As for the standard EWMA, we set ft = σ2
t . The IGAS(1,1) for the Laplace distribution is

ft+1 = ω + 2A ·
√

2|yt|σt + (B− 2A) ft ⇔ σ2
t+1 = λσ2

t + σt · (1− λ)
√

2|yt|, (11)

if we set ω = 0, A = (1− λ)/2, and B = 1. Except for the multiplication by σt, which is

due to the parameterization ft = σ2
t rather than ft = σt, (11) is the same as (9). The robust-

EWMA or Laplace based SD-EWMA model produces a modest increase in volatility for

large values of |yt| compared to the standard EWMA (1). The derivation above reveals

that the scheme can be motivated as a score-driven approach based on the heavy-tailed

Laplace distribution rather than the fat-tailed Student’s t distribution in (6).

The SD-EWMA scheme introduced in Section 2.2 is very flexible. We can use it to ac-

commodate the forecaster’s favorite conditional distribution p(yt|Ft−1; ft, θ). As long as

the conditional density has a parametric1form, we can compute the score and construct

the SD-EWMA scheme. The scheme also works for asymmetric distributions. For exam-

ple, Gerlach et al. [2013] introduces an EWMA scheme based on the asymmetric Laplace

distribution

p(yt|Ft−1; ft, θ) =
kt

σt
exp

(
−
(

1
1− pt

1[yt > 0] +
1
pt

1[yt < 0]
)

kt |yt|
σt

)
, (12)

with ft = (σt, pt), and kt = (p2
t + (1− pt)2)1/2. Gerlach et al. [2013] introduce EWMA

1See Blasques et al. [2015] for an extension to a non-parametric density setting.
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type time variation in both σt and pt, specified by the recursions

σt+1 = λσt + (1− λ)

(
kt

1− pt
1[yt > 0] +

kt

pt
1[yt < 0]

)
|yt|, (13)

ut+1 = βuut + (1− βu)|yt|1[yt > 0],

vt+1 = βvvt + (1− βv)|yt|1[yt < 0],

pt+1 =
(

1 +
√

ut+1/vt+1

)−1
. (14)

We can also derive the IGAS(1,1) dynamics for σ2
t using ft = σ2

t directly from (12) and

obtain

σ2
t+1 = λσ2

t + σt · (1− λ)

(
kt

1− pt
1[yt > 0] +

kt

pt
1[yt < 0]

)
|yt|, (15)

with λ = 1− 2 A. Again we notice from (15) that the original robust and asymmetric

EWMA scheme of Gerlach et al. [2013] can be interpreted as an SD-EWMA update if we

set ft = σt rather than ft = σ2
t as in the original EWMA.

3. Value-at-Risk and backtesting

We evaluate the performance of the SD-EWMA scheme for forecasting Value-at-Risk

(VaR). We define the VaR = −Ya at confidence level (1− a) as

Ya = sup
{

Y∗
∣∣ P[Y < Y∗] ≤ a

}
.

The value of Ya hinges tightly together with the distributional assumptions for Y; see

Chen and Lu [2012] for a recent survey. There is a trade-off between the fat-tailedness of

the distribution of Y, and the transition dynamics of the volatility updating mechanism.

In the Student’s t based SD-EWMA framework, the volatility updates are less responsive

to extreme realized returns compared to the standard Gaussian EWMA scheme. This

makes the computed VaR less responsive to abrupt volatility changes. By contrast, if

there are incidental tail observations, the Student’s t based SD-EWMA scheme provides
13



a much better and robust estimate of the volatility at time t. Moreover, the fat-tailedness

of the conditional Student’s t distribution pushes the VaR levels farther out into the tails

compared to the Gaussian distribution for a fixed confidence level (1− a). The trade-off

between all these forces results in the relative performance of the different methods for

forecasting, which can only be investigated empirically across different confidence levels

(1− a) and different datasets.

To assess the performance of alternative (SD)-EWMA methods, we consider a number

of standard tests for the quality of tail probability forecasts: the Unconditional Cover-

age test, the Independence test, the Conditional Coverage test, and the tail shape test of

Berkowitz [2001]. All these tests are Likelihood Ratio (LR) based tests. A good VaR model

should be consistent in that the fraction of VaR violations, i.e. events {yt < −VaRt},

should equal a in large samples. Define the violation indicator

It = 1{yt < −VaRt},

and the number of violation N = ∑T
t=1 It out of T time periods. Following Christoffersen

[1998], good VaR models produce serially independent Its. Our backtesting methods are

all related to good coverage, serial independence, or both.

Kupiec [1995] tests the Unconditional Coverage (UC) of the VaR model using

LRu = 2(ln LN − ln Lα) ∼ χ2(1), T → ∞; (16)

where LN = (1 − N/T)T−N(N/T)N, and Lα = (1 − α)T−NαN. Christoffersen [1998]

proposes the Independence (IN) test for the VaR violation indicators It. The transition

matrix of the corresponding first-order Markov Chain is

Π =

π00 π01

π10 π11

 , πij = P(It = j | It−1 = i) = Tij/(Ti0 + Ti1),
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with Tij recording the times of transition from state i to j, where i, j ∈ {0, 1}. The LR test

for independence is

LRin = 2(ln LA − ln L0) ∼ χ2(1), T → ∞, (17)

where LA = πT00
00 πT01

01 πT10
10 πT11

11 and Lα = (1− α)T01+T11αT00+T10 . The simultaneous test for

Unconditional Coverage and Independence, namely the correct Conditional Coverage

(CC) test, is

LRc = LRu + LRin ∼ χ2(2), T → ∞. (18)

In practice, risk managers are not only concerned with the number of VaR failures,

but also with the accuracy of the model for the tail shape beyond the VaR. This is rele-

vant for assessing the potential magnitude of losses in the tail, and relates to the general

shift in the industry and in regulation from VaR to Expected Loss (or Conditional VaR)

computations. To test for the general tail shape, we adopt the test proposed by Berkowitz

[2001]. The test operates on an inverse standard normal transformation of the probability

integral transforms of the data, i.e.,

zt = Φ−1(F̂t(yt)
)
, (19)

where F̂t(·) denotes the estimated cumulative distribution function applicable at time t

using the postulated VaR model, such as the Laplace, Asymmetric Laplace, or (skewed)

Student’s t distribution, and Φ−1(·) denotes the inverse standard normal distribution

function. The variable of interest is constructed by truncating the variable zt at the thresh-

old Φ−1(a) = −VaR, such that zt = −VaR if zt ≥ −VaR. Estimating the mean and

variance for a censored normal random variable can be achieved by maximizing the like-
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lihood function

L(µ, σ2) = ∑
zt<−VaR

(
−1

2
ln(2πσ2)− 1

2σ2 (zt − µ)2
)
+ ∑

zt≥−VaR
ln
(

1−Φ
(
−VaR− µ

σ

))
.

(20)

The Berkowitz [2001] test uses the maximum likelihood estimates to compute a likelihood

ratio (LR) test for the null hypothesis µ = 0 and σ2 = 1. The corresponding LR test is

LR = −2(L(0, 1)− L(µ̂, σ̂2)),

which is asymptotically χ2(2) distributed.

4. Empirical results

4.1. Data and descriptive statistics

In this section, we compare the performance of different SD-EWMA schemes. Note

that for the normal distribution, the SD-EWMA scheme coincides with the standard

EWMA for volatility modeling. As explained in Section 2, the SD-EWMA updating

schemes (11) and (15) based on the Laplace and asymmetric Laplace distribution, re-

spectively, are very close to the robust EWMA scheme (9) of Guermat and Harris [2002],

and the skewed EWMA scheme(13) of Gerlach et al. [2013], respectively. For the dynamic

asymmetric Laplace, we use the same dynamics for pt in (14) as used in Gerlach et al.

[2013]. As Gerlach et al. [2013] show that the GARCH and GJR-GARCH based on a nor-

mal or Student’s t distribution do not outperform the skewed EWMA models, we do not

include them in our current study. We also benchmark our results against a standard

EWMA scheme for the variance, while using a Student’s t distribution to compute the

relevant VaR and associated statistics.

We use 12 daily financial time series over the period January 5, 1999 to February 6,

2015. The dataset contains 6 exchange rate log returns and 6 equity log returns with
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Table 1: Summary Statistics
The descriptive statistics present the centered moments of the financial time series considered. The sample
period is January 5, 1999 to February 6, 2015. We split the sample into an in-sample estimation period and
out-of-sample forecasting period. The sample mean is multiplied with 100. A standard deviation (SD) of
1.28 denotes 1.28% per day. SK and EKS denote skewness and excess kurtosis, respectively.

Data In-sample: 1999-2006 Out-of-sample: 2007-2015
Mean SD SK EKS Mean SD SK EKS

exchange rate returns
GBP 0.008 0.51 -0.02 0.57 -0.012 0.64 -0.40 6.94

AUD 0.012 0.68 -0.50 1.98 0.000 0.97 -0.71 12.83
JPY 0.003 0.63 -0.23 2.04 0.000 0.69 -0.26 5.07

CAD -0.013 0.45 0.00 0.66 0.004 0.67 -0.08 5.98
SEK -0.008 0.65 0.08 0.65 0.010 0.88 -0.20 4.14
EUR 0.006 0.61 0.02 0.73 -0.008 0.65 0.19 3.41

equity returns
AA 0.032 2.34 0.22 2.63 -0.023 3.03 -0.34 6.95
BA 0.056 2.07 -0.38 5.76 0.035 1.90 -0.02 4.21
GE 0.014 1.86 0.05 4.12 -0.006 2.14 -0.06 9.87

IBM 0.006 2.08 -0.09 8.08 0.031 1.46 -0.07 5.49
KO -0.009 1.61 -0.06 4.92 0.038 1.21 0.08 6.87

T -0.004 2.04 -0.09 3.19 0.020 1.49 0.80 14.99

slightly over 4,000 observations per series. The exchange rates are always vis-à-vis the

US Dollar and are taken from the database of the Federal Reserve St. Louiss (FRED). We

consider the Australian Dollar, the Canadian Dollar, the Euro, British Pound, Japanese

Yen, and Swedish Kroner, denoted as AUD, CAD, EUR, GBP, JPY, and SEK, respectively.

The stocks considered represent different industries and are all listed at the New York

Stock Exchange: Alcoa Inc., Boeing Co., General Electric, IBM, Coca-Cola and AT&T,

denoted as AA, BA, GE, IBM, KO, and T. Stock data are taken from Datastream.

From the descriptive statistics in Table 1, it is obvious that all series exhibit non-normal

features such as non-zero skewness and excess kurtosis, particularly over the more recent

sample period. We thus expect the Laplace based SD-EWMA and Student’s t SD-EWMA
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schemes to provide particular advantages compared to the standard EWMA scheme. We

use the same distributional assumptions to set up the SD-EWMA recursions and to com-

pute the VaR.

We split the sample into two subsamples. We use the sample from January 5, 1999

to December 29, 2006 (in-sample) to start off the estimation of the static parameters. In

particular, for all models we estimate the optimal smoothing parameter A using the es-

timation sample. We also estimate any remaining static parameters needed, such as the

degrees of freedom parameter ν for the Student’s t distribution, or the skewness parame-

ters p and ε for the asymmetric Laplace and skewed Student’s t distribution, respectively.

For the asymmetric Laplace or skewed Student’s t with time-varying skewness, we es-

timate additional separate smoothing parameters for pt, εt, and/or νt. In all cases, the

estimated parameters are kept fixed over the entire forecasting period. This results in a

computationally fast procedure. As in practice parameters are unlikely to be kept fixed

for the entire out-of-sample period of more than 8 years, we also carry an analysis where

all tuning parameters are recursively updated on a daily basis over the entire forecasting

sample; see the discussion in Ardia and Hoogerheide [2014] for the potential benefits of

such an approach.

4.2. Full results for the Euro-Dollar rate

For the Euro-Dollar exchange rate, we report the full results for all tests in Table 2. As

usual, the normal based standard EWMA scheme performs badly deeper into the tails

(α = 1%, 0.5%). If we consider the hit rates (HR), we see that the normal and Student’s t

based approaches typically result in more VaR violations compared to the nominal level,

whereas the Laplace based models have fewer VaR violations. Considering the condi-

tional and unconditional coverage tests (CC, UC), the under-rejection for the Laplace is

significant in several cases, whereas the over-rejection for the Student’s t setting is never

significant.
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Table 2: Full SD-EWMA Results for the Euro-Dollar Exchange Rate
The test statistics correspond to the unconditional coverage (UC) test of Kupiec [1995], the independence
(ID) and Conditional Coverage (CC) test of Christoffersen [1998], and the Berkowitz [2001] test (BE). We use
a confidence level for the VaR equal to 1− a = 0.995/0.99/0.95. Critical values (χ2

cv) at a 1% significance
level are also displayed, as are the Hit Rate (HR) N/T of N VaR violations out of T observations, multiplied
with 100. Static parameters are estimated over Jan 5, 1999 to Dec 29, 2006, and held fixed over the forecast
evaluation period Jan 3, 2007 to Feb 6, 2015. The SD-EWMA schemes use the normal distribution (N),
Laplace distribution (L) with skewness parameter 0.5, p, or pt, the Student’s (T) and skewed Student’s t
(ST) distribution with degrees of freedom parameter ν, νt, and skewness parameter ε or εt. We separate the
results for models with and without updated parameters in two different panels.

No parameter updating With parameter updating
CC UC IN HR BE CC UC IN HR BE

a = 0.5%
N 18.0 17.3 0.7 1.28 29.9 19.9 19.2 0.7 1.33 29.8

T(ν) 3.1 2.9 0.3 0.79 0.1 2.2 2.0 0.2 0.74 0.2
T(νt) 0.5 0.3 0.1 0.59 2.7 0.9 0.7 0.2 0.64 0.5

ST(ε, νt) 4.1 3.8 0.3 0.84 0.2 0.9 0.7 0.2 0.64 1.4
ST(εt, ν) 0.9 0.7 0.2 0.64 0.0 0.1 0.0 0.1 0.49 0.9
ST(εt, νt) 0.9 0.7 0.2 0.64 0.0 0.5 0.3 0.1 0.59 0.8
T(ν)-RM 3.1 2.9 0.3 0.79 0.4 3.1 2.9 0.3 0.79 0.2

L(0.5) 7.0 7.0 0.0 0.15 19.8 7.0 7.0 0.0 0.15 20.0
L(p) 7.0 7.0 0.0 0.15 16.7 9.9 9.9 0.0 0.10 24.2
L(pt) 7.0 7.0 0.0 0.15 19.6 4.9 4.9 0.0 0.20 16.6

a = 1%
N 12.5 11.1 1.4 1.82 29.4 12.5 11.1 1.4 1.82 29.3

T(ν) 5.0 4.1 0.9 1.48 1.0 5.0 4.1 0.9 1.48 1.0
T(νt) 2.7 2.0 0.7 1.33 3.4 2.7 2.0 0.7 1.33 0.6

ST(ε, νt) 5.0 4.1 0.9 1.48 1.3 4.1 3.3 0.8 1.43 3.4
ST(εt, ν) 2.1 1.5 0.7 1.28 0.1 2.7 2.0 0.7 1.33 1.9
ST(εt, νt) 2.1 1.5 0.7 1.28 0.1 2.7 2.0 0.7 1.33 1.9
T(ν)-RM 4.1 3.3 0.8 1.43 1.0 4.1 3.3 0.8 1.43 0.8

L(0.5) 6.6 6.5 0.1 0.49 24.2 5.3 5.2 0.1 0.54 22.3
L(p) 9.9 9.8 0.1 0.39 30.6 6.6 6.5 0.1 0.49 23.9
L(pt) 3.2 3.1 0.2 0.64 19.3 5.3 5.2 0.1 0.54 19.5

a = 5%
N 5.0 4.0 1.0 6.00 29.0 6.1 4.4 1.7 6.05 28.9

T(ν) 13.8 9.3 4.5 6.54 5.8 9.0 7.2 1.8 6.35 4.6
T(νt) 10.4 7.7 2.7 6.39 6.0 9.3 7.7 1.7 6.39 5.0

ST(ε, νt) 13.5 8.8 4.7 6.49 5.5 6.4 4.8 1.6 6.10 5.6
ST(εt, ν) 11.8 5.3 6.5 6.15 2.8 5.0 4.0 1.0 6.00 3.9
ST(εt, νt) 11.8 5.3 6.5 6.15 2.8 5.0 4.0 1.0 6.00 4.0
T(ν)-RM 14.4 7.7 6.7 6.39 4.6 10.0 7.2 2.8 6.35 4.3

L(0.5) 1.6 0.0 1.6 5.02 26.2 1.3 0.1 1.2 5.16 29.0
L(p) 1.3 0.1 1.2 5.16 31.9 2.2 0.7 1.5 5.41 29.6
L(pt) 1.3 0.1 1.2 5.16 23.1 0.7 0.0 0.7 5.02 21.5

Critical values 9.2 6.6 6.6 — 9.2 9.2 6.6 6.6 — 9.2
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If we proceed by considering the tail shape beyond the VaR level using the Berkowitz

test, we see that the Student’s t based models perform better than both the normal and

Laplace based approaches. We also note that a simple benchmark of standard Gaussian

EWMA dynamics with a Student’s t distribution for the VaR calculations also performs

quite well (T(ν)-RM). For the Euro-Dollar rate, its behavior is quite close to that of the

other models at VaR confidence levels of 1% and 0.5%. Less far out into the tails of the

distribution, the performance of this method drops somewhat compared to that of the

other Student’s t based methods. If, however, we consider the case where the tuning

parameters are updated recursively, we see that the performance of T(ν)-RM starts to

lag more substantially compared to that of the skewed Student’s t methods with time-

varying parameters, particularly in terms of conditional coverage (CC).

To get an impression about the shape of the time-varying parameters, we plot σ2
t , εt,

and νt for the skewed Student’s t model in Figure 2. We clearly see the increased volatil-

ity around the time of the financial crisis, as well as the higher volatility level during

the European sovereign debt crisis (2010–2013). The skewness parameters indicates pos-

itive skewness at the start of the sample. During the remainder of the sample period,

the exchange rate returns are repeatedly negatively skewed, and particularly so around

the time of the financial and European sovereign debt crises. The degrees of freedom

parameter ranges from low values around 3 near the end of the sample, to values of 15 in

the period of the great moderation, the financial crisis, and the European sovereign debt

crisis.

We conclude that the skewed Student’s t models with SD-EWMA dynamics for either

εt, νt, or both, have the best overall performance in terms of coverage (CC, UC, IN) and

tail shape beyond the VaR (BE), especially if we regularly update the tuning parameters

based on the available data, as is commonly done in practice.
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Figure 2: Time-varying variance (σ2
t ), skewness (εt), and degrees of freedom (νt) for the Skewed Stu-

dent’s t model for the Euro-Dollar rate

4.3. Full results: all series

To investigate the robustness of the results, we extend our analysis to other exchange

rates as well as to individual stock returns. To save space, we present the results graph-

ically for all series, three different confidence levels, and for three tests: the conditional

coverage test, the Berkowitz test, and the hit rate (α̂/α− 1). As the setting with updated

tuning parameters is most relevant from a practical point of view, we only present those.

The results are shown in Figure 3. Each column of three panels presents the results

for the three different tests for a given VaR confidence level. The columns contain the

results for the three different VaR confidence levels, α = 0.005, 0.01, 0.05. Results for the

exchange rate series are indicated by circles, and those for the stock returns by inverted

triangles.

Looking at the top row of graphs, we confirm the results from Table 2 concerning the
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hit rates of the different methods. The normal and Student’s t based method typically re-

sult in somewhat more VaR violations compared to the nominal level. The Laplace based

approaches, by contrast, result in a substantially lower number of VaR violations. The

further we go out into the tails, the worse the normal based approach works in terms of

hit rate. We also see that across all series, the overall performance of the skewed Student’s

t based approaches in terms of hit rates is better than that of a standard RiskMetrics plus

Student’s t distribution approach (T(ν)-RM). This is particularly true for VaR confidence

levels of 95% and 99.5%.

The above results are confirmed when looking at the second row of graphs, which in-

dicate the significance of deviations from the nominal coverage combined with possible

violations of the independence assumption. Graphically, it is clear that across different

time series, the skewed Student’s t based approaches perform best. The differences be-

tween using a skewed Student’s t distribution with either εt time-varying, νt, or both,

appear to be much smaller.

If we consider the behavior of different approaches in capturing the tail shape be-

yond the VaR, the bottom row of graphs in Figure 3 shows that the Laplace distribution

is clearly too thin-tailed to adequately describe the tail behavior of exchange rate and

stock returns. Note that the bottom row of graphs does not show the results for the nor-

mal distribution. The Berkowitz test results for the normal are so high that they would

completely distort the picture for the other models. The graphs also reveal that for all

VaR confidence levels the polynomial tail shape of the (skewed or symmetric) Student’s

t distribution typically captures the stochastic behavior of extreme returns quite well.

Note that across all series, the skewed Student’s t SD-EWMA results with time-varying

εt and/or νt appear less susceptible to extreme outcomes for the tests than the other Stu-

dent’s t based approaches. Overall, the SD-EWMA approach on the time-varying skewed

Student’s t appears to have the best and most robust performance in our current volatility

forecasting context.
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5. Conclusion

We developed a range of simple EWMA refinements that build on the recent lit-

erature on score-driven dynamics for time-varying parameters in non-normal models.

We showed that the standard EWMA and the robust Laplace based EWMA can all be

seen as special cases of the new score-driven EWMA (SD-EWMA) approach. In partic-

ular, as financial return series may typically be fat-tailed rather than heavy-tailed (such

as Laplace), we developed a score-driven EWMA scheme based on the symmetric and

skewed Student’s t distribution. As the score-driven approach is not limited to time

variation in volatilities only, we also developed a new SD-EWMA scheme for the simul-

taneous time series dynamics of the volatility, the degrees of freedom, and possibly the

skewness parameter in a (skewed) Student’s t distribution. The new schemes exhibit in-

teresting robustness features for the time-varying parameter dynamics that make them

particularly suited in a context with non-Gaussian distributed observations.

We applied the new methods to forecast Value-at-Risk (VaR) for exchange rate and

stock return data. We found that the skewed Student’s t based SD-EWMA model with

time-varying volatility, degrees of freedom and/or skewness parameter had the best

overall performance for different series and different VaR confidence levels. The new

score-driven EWMA approach thus provides a unified and flexible tool for risk forecast-

ing.

The score-driven EWMA approach can easily be adapted further to accommodate the

researcher’s preferred choice of forecasting distribution. For example, the ideas could be

generalized further to semi-parametric approaches, such as the Gram-Charlier expansion

of Gabrielsen et al. [2012]. Also note that the SD-EWMA can be adapted to handle mul-

tivariate observations; see for example Creal et al. [2011] and Lucas et al. [2014]. Both of

these possible extensions open up an interesting avenue for further research.
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Online supplementary appendix

A.1. Symmetric Student’s t with time-varying νt

In this appendix we show the direct derivations needed for the symmetric Student’s t SD-EWMA

scheme. Alternatively, we could use the results from Gómez et al. [2007] concerning expressions for the

score and information matrix to arrive at the same result. In that case, however, one should make sure to

account for the fact that we model the variance rather than the scale parameter of the Student’s t distribu-

tion. As the information matrix is non-diagonal between the scale parameter and the degrees of freedom

parameter, and the variance is a function of both the scale parameter and the degrees of freedom parameter,

this affects the precise form of the appropriate derivatives.

Define γ(x) = ln Γ(x), with first and second order derivatives γ′(x) and γ′′(x), respectively. Given the

density of the Student’s t distribution with variance σ2
t ,

`t(σ
2
t , νt) = γ

(
νt + 1

2

)
− γ

(νt

2

)
− 1

2
ln
(
(νt − 2)πσ2

t
)
− 1

2
(νt + 1) ln

(
1 +

y2
t

(νt − 2)σ2
t

)
, (A1)

we obtain

∂`t(σ2
t , νt)

∂νt
=

1
2

γ′
(

νt + 1
2

)
− 1

2
γ′
(νt

2

)
− 1

2
1

νt − 2
− 1

2
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(
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t

)

+
1
2
(νt + 1)

y2
t

(νt−2)2σ2
t

1 + y2
t

(νt−2)σ2
t

, (A2)

with E[∂`t(σ2
t , νt)/∂νt] = 0. Taking further derivatives, we obtain

∂2`t(σ2
t , νt)

(∂νt)2 =
1
4

γ′′
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2
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4
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=
1
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1
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1
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Using the transformation of variables ν1/2
t (νt − 2)−1/2yt/σt → yt, we have that for some a, b > 0

q(a, b, νt) = E
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t
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(
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)b
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(
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with z1 ∼ N(0, νt/(νt + 2b)), z2 ∼ χ2(νt + 2b), z3 = (νt + 2b)1/2z1/ν1/2
t ∼ N(0, 1), z1 and z2 are indepen-

dent. Note that if z4 ∼ χ2(νt), then
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such that
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We use the expression for q(a, b, νt) to rewrite

E
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Note that if we use the parameterization ν( ft) with first and second derivatives ν̇t = ν̇( ft) = ∂ν( ft)/∂ ft

and ν̈t = ∂ν̇( ft)/∂ ft, respectively, we have

E
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With inverse Fisher information scaling and thus using minus the expected hessian, we obtain the steps
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A.2. Skewed Student’s t with time-varying εt and νt

We make the following definitions. Let µ̄t and σ̄t denote the location and scale parameter of the skewed

Student’s t distribution with skewness parameter εt and degrees of freedom parameter νt. Let µt and σt

denote the mean and standard deviation of the Student’s t distribution, assuming νt > 2. Following Gómez

et al. [2007], we have

c(νt) =
Γ
(

νt+1
2

)
√

νtπΓ(νt/2)
,

µt = µ̄t −
4c(νt)εtσ̄tνt
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σ̄2

t (νt+1)
0 −h(νt)(νt + 3)− νt+5

2νt(νt+1)


,

h(νt) = 0.25 · (ψ′((νt + 1)/2)− ψ′(νt/2)),

c′(νt) = 0.5c(νt) · (ψ((νt + 1)/2)− ψ(νt/2)− ν−1
t ),

where ψ is the digamma function, and ψ′ the trigamma function. Define the transformations from the main

text,

σ2
t = exp( f1,t),

εt = tanh( f2,t),

νt = 51 + 49 tanh( f3,t),
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with ft = ( f1,t, f2,t, f3,t)
′. We have
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∂
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,

H2,t =
∂
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µ, σ2

t , εt, νt
)

∂ f ′t
=


0 0 0

σ2
t 0 0

0 1− ε2
t 0

0 0 49− (νt − 51)2/49

 ,

and

∇t =
∂ log p(yt| ft)

∂(µ̄t, σ̄t, εt, νt)′
=



(νt+1)(yt−µ̄t)/(σ̄2
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1+Y2
t

−1
2σ̄2

t
+ νt+1

2
Y2

t /σ̄2
t

1+Y2
t

(νt + 1)(1− sign(yt − µ̄t) · εt)sign(yt − µ̄t)
Y2

t /ε̃(yt)

1+Y2
t

c′(νt)
c(νt)
− 1
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,

with ε̃(yt) = (1− sign(yt − µ̄t) · εt)2, and Y2
t = (yt − µ̄t)2/(σ̄2

t νt ε̃(yt)).

The score with respect to ft is now given by

∂ log p(yt| ft)

∂ ft
= H′2,tH′1,t∇t.

We scale each of these elements by the inverse diagonal elements of

H′2,tH′1,tItH1,tH2,t

to obtain three univariate recursions.

If, for example, only σ2
t and εt follow an SD-EWMA scheme, while νt is constant, define the selection

matrix S such that

S ft = ( f1,t, f2,t)
′.
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The two univariate recursions are then driven by

∂ log p(yt| ft)

∂( f1,t, f2,t)′
= SH′2,tH′1,t∇t,

scaled by the inverse diagonal elements of

SH′2,tH′1,tIt H1,tH2,tS′.

Similar formulas hold for other combinations of score-driven and fixed parameters.
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