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Tinbergen Institute Amsterdam
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Abstract

We establish the strong consistency and asymptotic normality of the maximum likeli-
hood estimator for time-varying parameter models driven by the score of the predictive
likelihood function. We formulate primitive conditions for global identification, invert-
ibility, strong consistency, and asymptotic normality under both correct specification
and mis-specification of the model. A detailed illustration is provided for a conditional
volatility model with disturbances from the Student’s t distribution.

Some key words: score-driven models, time-varying parameters, Markov processes,
stationarity, invertibility, consistency, asymptotic normality.

1 Introduction

The class of score-driven models encompasses many well-known time-varying parameter
models in the literature, such as the generalized autoregressive conditional heteroskedastic-
ity (GARCH) model of Engle (1982) and Bollerslev (1986), the autoregressive conditional
duration (ACD) model of Engle and Russell (1998), the multiplicative error model (MEM)
of Engle (2002), and many more. Furthermore, the score-driven models have given rise to
a new strand of empirical literature, which includes dynamic models for location and scale

∗We thank Peter Boswijk, Christian Francq, Andrew Harvey, and Anders Rahbek, as well as the partici-
pants of the “Workshop on Dynamic Models driven by the Score of Predictive Likelihoods”, Amsterdam; the
“7th International Conference on Computational and Financial Econometrics”, London; the “Workshop on
Dynamic Models driven by the Score of Predictive Likelihoods”, Tenerife; the IAAE London conference; and
seminar participants at Vrije Universiteit Amsterdam, University of Cologne, CREST Paris, and University
of Maastricht, for helpful comments and discussions. Blasques and Lucas thank the Dutch National Sci-
ence Foundation (NWO; grant VICI453-09-005) for financial support. Koopman acknowledges support from
CREATES, Aarhus University, Denmark, funded by the Danish National Research Foundation, (DNRF78).
An overview of contributions on score-driven models is provided at http://gasmodel.com.
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of fat-tailed data (Harvey and Luati, 2014), models for mixed measurement dynamic fac-
tor structures (Creal et al., 2014), models for dynamic spatial processes (Blasques et al.,
2016; Catania and Billé, 2017), and models for dynamic copulas, both with short-memory
dynamics (Creal et al., 2011; Lucas et al., 2014, 2017), long-memory dynamics (Janus et al.,
2014), factor structures (Oh and Patton, 2017), and with realized measures as inputs (De
Lira Salvatierra and Patton, 2015; Opschoor et al., 2017). Despite the impressive wide range
of new models with score-driven dynamics, not many theoretical results are available for the
estimators of the parameters in such models. The main complication lies in the non-linearity
of the updating equation in score-driven models. In this paper, we attempt to fill this gap by
deriving new asymptotic results for the maximum likelihood estimator which are applicable
to a wide class of score-driven models.

In general, a score-driven model is specified by the equations

yt ∼ py(yt|ft;λ),

ft+1 = ω + α st + βft,

st = S(ft;λ) · ∇(ft, yt;λ),

∇(ft, yt;λ) = ∂ log py(yt|ft;λ)/∂ft,

(1.1)

where yt denotes the observed data, ft is a time-varying parameter characterizing the condi-
tional density py of yt, ∇t := ∇(ft, yt;λ) denotes score of the predictive conditional density,
and st denotes the scaled score for some choice of scaling function S(ft;λ). The static para-
meters in the density py are collected in a vector λ while all static parameters, including the
updating coefficients ω, α, and β, are gathered in the parameter vector θ = (ω, α, β, λ>)>

with > denoting transposition.
A distinguishing feature of the model in (1.1) is the use of the scaled score st in the

transition equation for ft. A popular example of a score-driven model is the Student’s t
conditional volatility model, given by

yt = f
1/2
t · ut,

ft+1 = ω + α
(
wt y

2
t − ft

)
+ βft,

wt = (1 + λ−1)/(1 + λ−1 y2
t /ft),

(1.2)

where {ut}t∈Z is a sequence of independent identically distributed random variables with
Student’s t distribution and λ degrees of freedom; see Creal et al. (2011, 2013) and Harvey
(2013). The time-varying parameter ft represents the conditional volatility of yt. We use
this model as our leading example throughout the paper.

The score model in (1.2) is markedly different from a GARCH model with Student’s
t innovations. In particular, next period’s volatility is not merely driven by the square
y2
t of past observations, but rather by the weighted squares using weights (1 + λ−1)/(1 +
λ−1 y2

t /ft). These weights tend to zero for large values of y2
t . The score-driven dynamics

thus automatically correct for outliers if yt is allowed to be conditionally fat-tailed. This is
a desirable feature for many financial time series. In the limit as λ → ∞, the weight wt
collapses to unity, such that we recover the GARCH model. More details on our leading
example and other examples are presented in Section 2.1.

The score-driven model in equation (1.1) is observation-driven in the classification of Cox
(1981). Therefore, maximum likelihood estimation of the static parameter vector can easily
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be achieved via a prediction error decomposition. In particular, the likelihood function is
known in closed-form, which significantly reduces the computational burden. Blasques et al.
(2015) show that score-driven models have unique optimality properties in terms of approx-
imating the unknown sequence of conditional densities py(yt|ft;λ), even when the model is
misspecified. Relatedly, using the model confidence set approach of Hansen et al. (2011),
Koopman et al. (2016) show that score-driven time-varying parameter models produce simi-
lar forecasting precision as parameter-driven state-space models, even if the latter constitute
the true data generating process.

We establish an asymptotic statistical theory for the maximum likelihood estimator of
the static parameters of score-driven models as specified in (1.1). Our results have a number
of distinctive features compared to earlier theoretical contributions on observation-driven
models and, more specifically, on score-driven models.

First, the asymptotic properties that we derive for the maximum likelihood estimator
(MLE) are global in nature. For example, we provide a global identification result for score-
driven models in terms of low-level conditions. In particular, we ensure that the likelihood
function has a unique global maximum over the entire parameter space. Our global result
differs from the existing literature that relies on high-level assumptions and only ensures
local identification by imposing invertibility conditions on the information matrix at the
true parameter value; see, for example, Straumann and Mikosch (2006) and Harvey (2013).
Second, our effort to obtain primitive low-level conditions that are formulated in terms of
the basic structure of the model extends well beyond the global identification conditions
mentioned above. For instance, we obtain the required moments of the likelihood function
directly from assumptions concerning the properties of the basic building blocks of equation
(1.1), such as the shape of the density function py. The use of primitive conditions is typically
useful for empirical researchers who want to establish the asymptotic properties of the MLE
for their own score model. We are able to obtain low-level conditions by adapting Theorem
3.1 in Bougerol (1993). The adapted theorem not only delivers the strict stationarity and
ergodicity of stochastic sequences, but also produces bounded moments of any desired order
for the filter. Third, we follow Straumann and Mikosch (2006) in making use of Theorem 3.1
in Bougerol (1993) and the ergodic theorem in Rao (1962) for strictly stationary and ergodic
sequences on separable Banach spaces. These results allow us to establish the invertibility
of the score filter and obtain our asymptotic results under weaker differentiability conditions
than the existing literature on MLE for score-driven models. Finally, we explore consistency
and asymptotic normality results for both well-specified and mis-specified models. These
results extend the literature for score-driven models, which focus only on the correctly spec-
ified case. By allowing for model mis-specification, we ‘align’ the asymptotic estimation
theory for score-driven models with the existing information-theoretic optimality results of
Blasques et al. (2015).

The newly developed theory presented in this paper allows us to establish results for a
much wider range of score-driven models than the ones currently studied, which typically
focus on fat-tailed models with log likelihoods that have uniformly bounded third order
derivatives; see e.g. Harvey (2013), Harvey and Luati (2014), Caivano and Harvey (2014),
and Ryoko (2016). In particular, we emphasize that by establishing the invertibility of the
score-driven filter, our asymptotic results stand in sharp contrast to all the existing results
on score-driven models, which do not ensure invertibility; see also Andres and Harvey (2012)
and Harvey and Lange (2015a,b). The importance of filter invertibility for consistency of
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the MLE has been underlined in Straumann and Mikosch (2006), Wintenberger (2013), and
Blasques et al. (2016), among others. Without invertibility, all the existing asymptotic
results on score-driven models must implicitly assume that the first value of the true time-
varying parameter, f1, is random and known exactly, while the remaining sequence {ft}t≥2

is unobserved. This seems unrealistic.
The lack of theoretical results for the class of score-driven models defined in (1.1) stands

in sharp contrast to the large number of results available for the MLE in GARCH models. We
do not attempt to review that literature here; for good overviews, see for instance Straumann
(2005) or Francq and Zaköıan (2010). The main cause for the limited theoretical progress
for score-driven models lies in their typical complex nonlinear dynamic structure compared
to common GARCH models. This results in new theoretical challenges and puzzles. The
analysis of score-driven models also provides a different perspective from the standard litera-
ture: the characteristics of the likelihood function (based on the conditional density py) in a
score-driven model hinge directly together with the dynamic properties of the time-varying
parameter (via the use of the score ∂ log py/∂ft in the transition equation (1.1) for ft). This
provides an intimate link between the two that departs from most of the literature, where
the properties of the likelihood function and the properties of the time-varying parameter
dynamics can be dealt with separately.

The remainder of this paper is organized as follows. Section 2 introduces the model.
In Section 3, we obtain stationarity, ergodicity, invertibility, and existence of moments of
filtered score-driven sequences using primitive conditions. Section 4 proves global identifi-
cation, consistency, and asympotic normality of the MLE. Section 5 concludes. The proofs
of the main theorems are gathered in the Appendix. More technical background material is
relegated to the online Technical Appendix (TA).

2 The Score-Driven Model

2.1 An Introduction

As an intuitive introductory example of score-driven models, we consider a score-driven
time-varying location model of the form

yt = ft + ut, ut ∼ pu(ut;λ), (2.1)

ft+1 = ω + α∇t + βft, ∇t =
∂ log pu(yt − ft;λ)

∂ft
(2.2)

where ft is the time-varying location parameter, log denotes the natural logarithm, and pu
is the error density that depends on an unknown, static parameter vector λ. For simplicity,
we have set the scaling function from equation (1.1) in this example to S(ft;λ) = 1. The
dynamics of ft+1 can easily be extended by including higher order lags of ft and/or of
the score ∇t = ∂ log pu(yt − ft;λ)/∂ft, or by imposing structural time series dynamics or
including exogenous variables; see for further details Creal et al. (2013), Harvey and Luati
(2014), and Ord et al. (1997).

If pu in equation (2.1) is the normal distribution with mean zero and variance λ, the
score in equation (2.2) becomes (yt − ft)/λ,

ft+1 = ω + αλ−1(yt − ft) + β ft.
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The location ft+1 then moves linearly up and down with the previous residual value yt −
ft in an intuitive way. In fact, model (2.1)–(2.2) can be re-written as a standard linear
autoregressive moving average (ARMA) model for yt of order (1, 1) with autoregressive
coefficient β and moving average coefficient (α /λ)− β.

The score-driven model becomes more interesting if we consider a non-normal distribu-
tion, such as a Student’s t distribution; see Creal et al. (2013) and Harvey and Luati (2014).
In this case, the score-driven model gives rise to an outlier robust filtering approach. Con-
sider a Student’s t distribution with mean zero, squared scale parameter λ1 and degrees of
freedom parameter λ2. Equation (2.2) then reduces to

ft+1 = ω + α (λ2 + 1)
(yt − ft)

λ1λ2 + (yt − ft)2
+ βft, (2.3)

such that the location parameter ft+1 now reacts nonlinearly to past values of ft for fixed
data yt. For example, whereas a large residual (yt − ft) pushes the next location parameter
ft+1 substantially up if the normal distribution is assumed (λ2 → ∞), under the Student’s
t assumption the impact of such a large residual is of order (yt − ft)−1. The impact on ft+1

therefore becomes negligible as (yt−ft) diverges. The intuition is that such observations are
more likely due to the fat-tailedness property of the Student’s t distribution while they are
not very informative about gradual shifts in the location parameter.

To elucidate on how the theory as developed in this paper may be applied to a realistic
case, we adopt the leading example of a score-driven time-varying volatility model of Creal
et al. (2011, 2013). By providing the details for this example, we keep the exposition focused.
The application of the theory is, however, not limited to this particular case. A substantial
range of additional illustrations of the theory can be provided, including robust time-varying
location models with skewed distributions; conditional volatility models for log volatility;
extensions of conditional duration (ACD) models of Engle and Russell (1998), Grammig and
Maurer (2000), Bauwens and Giot (2000), and Koopman et al. (2016) that allow for fat-tailed
densities; and time-varying location models with non-linear transformations of the location
parameter, thus extending examples studied by Harvey (2013) and Harvey and Luati (2014).

Main example:. Consider the conditional Student’s t model with time varying volatility as
given by

yt = f
1/2
t · ut,

ft+1 = ω + α
([

(1 + λ−1) / (1 + λ−1 y2
t /ft)

]
y2
t − ft

)
+ βft.

(2.4)

where {ut}t∈Z is a sequence of independent identically distributed random variables from the
Student’s t distribution with λ degrees of freedom. We ensure positivity of the scale ft by
imposing β > α > 0, ω > 0, and f̄1 > 0, where f̄1 is the initial condition for ft at time t = 1.
The raw score is scaled by a factor proportional to the inverse conditional Fisher information
as suggested by Creal et al. (2013), to account for the local curvature of predictive density
at time t, i.e., S(ft;λ) = 2f 2

t . For the Gaussian case (λ → ∞) we recover a slightly
reparameterized version of the standard GARCH model, ft+1 = ω + αy2

t + (β − α)ft.

Figure 1 provides a typical illustration of the difference between the GARCH dynamics
and the score-driven dynamics in (2.4). Large spikes in y2

t , particularly incidental ones such
as those at the end of 1987 and 1989, result in a spike in the GARCH volatility, followed
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Figure 1: Typical differences between GARCH and Student’s t based score-driven volatility
dynamics

by a slow exponential decline. By contrast, the filtered volatility estimate obtained from
the Student’s t based score-driven dynamics recognizes that the large negative return in
1989 is incidental and is probably due to the fat-tailedness of the data. Similarly for the
turmoil at the end of 1987, both volatilities increase, but again the score-driven filtered
estimate is considerably more robust and does not exhibit the subsequent non-intuitive
strong exponential decline.

The intuition for the behavior of the score filter is simple. Consider a large observation yt,
relative to the current level of volatility ft. If we assume that tail observations are unlikely
because yt is conditionally Gaussian, a large value of yt must be attributed to a (steep)
volatility increase. If, however, we assume that data are conditionally fat-tailed, part of the
magnitude of yt can be attributed to the fat-tails. As a result, the volatility needs to be
increased much less dramatically. This is precisely what the score-driven approach attains in
this case. The GARCH dynamics do not account for this: whatever the degree of conditional
fat-tailedness, the next volatility level always responds quadratically to any observation yt.
The score-driven dynamics, by contrast, incorporates the trade-off by down-weighting the
impact of a large y2

t automatically; see Creal et al. (2011, 2013) for more discussions and
examples.

2.2 The General Setting

We next provide a more formal account of the score-driven model in order to derive our
asymptotic results. A score-driven model is characterized by three specific building blocks.
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These include the distributional assumption, the choice of parameterization, and the type of
measurement equation. We use the following general framework throughout the remainder
of this paper. Consider a dy-dimensional stochastic sequence {yt}t∈N given by

yt = g
(
ft(θ, f̄1) , ut

)
, ut ∼ pu

(
ut;λ

)
, (2.5)

where g : F × U → Y is a link function that is strictly increasing in its second argument,
ft(θ, f̄1) is the time-varying parameter function with outcomes in the convex set F , {ut}t∈N
is an exogenous i.i.d. sequence of random variables for every parameter vector λ ∈ Λ ⊆ Rdλ ,
and pu is a density function. The time-varying parameter updating scheme is given by

ft+1(θ, f̄1) = ω + α s
(
ft(θ, f̄1), yt ; λ

)
+ β ft(θ, f̄1), (2.6)

for t > 1, and initialized at f1(θ, f̄1) = f̄1 for a nonrandom f̄1 ∈ F ⊆ R. The vector
θ> = (ω, α, β, λ>) ∈ Θ ⊆ R3+dλ is the static parameter vector, and s : F ×Y×Λ→ F is the
scaled score of the conditional density of yt given ft. For ease of exposition, we assume that
λ is a scalar, that is dλ = 1. Whenever possible, we suppress the dependence of ft(θ, f̄1) on
its arguments and write ft instead.

Main example (continued):. For the time-varying volatilty model of Section 2.1, the link

function g in (2.5) simplifies to g(ft, ut) = f
1/2
t ·ut, which is strictly increasing in ut if ft > 0.

For a location model, the link function is additive rather than multiplicative. Depending on
the application the link function may also be much more complex, such as for the Beta
distribution with time-varying parameters; see Creal et al. (2014).

We define py(yt|ft;λ) as the conditional density of yt given ft,

py
(
yt
∣∣ ft ; λ

)
= pu

(
ḡ(ft, yt) ; λ

)
· ḡ′(ft, yt), (2.7)

where
ḡt := ḡ(ft, yt) := g−1(ft, yt),

is the inverse of g(ft, ut) with respect to its second argument, ut, and where ḡ′t := ḡ′(ft, yt) :=
∂ḡ(ft, y)/∂y|y=yt is the Jacobian of the transformation.

Main example (continued):. For the volatility model from Section 2.1, we have g(ft, ut) =

f
1/2
t · ut, and thus ḡt = g−1(ft, yt) = yt/f

1/2
t and ḡ′t = f

−1/2
t .

The defining aspect of the score-driven model is its use of the scaled score function as
the driving mechanism in transition equation (2.6). The scaled score function is defined as

s
(
ft, yt ; λ

)
= S(ft;λ) · ∇t(ft, yt;λ) where ∇t(ft, yt;λ) =

[
∂p̄t
∂f

+
∂ḡ′t
∂f

]∣∣∣∣
f=ft

, (2.8)

with p̄t := p̄(ft, yt;λ) = log pu(ḡ(ft, yt);λ) and where S : F × Λ → F is a positive scaling
function; see Creal et al. (2013).

Section 4 establishes the asymptotic properties of the maximum likelihood estimator
(MLE) for the static parameter vector θ. We define the MLE θ̂T (f̄1) for fixed initial condition
f̄1 as

θ̂T (f̄1) ∈ arg max
θ∈Θ

`T (θ, f̄1),
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with the average log-likelihood function `T given in closed form as

`T (θ, f̄1) =
1

T

T∑
t=1

(
log pu(ḡt;λ) + log ḡ′t

)
=

1

T

T∑
t=1

(
p̄t + log ḡ′t

)
. (2.9)

The availability of a closed-form expression for the likelihood function is one of the com-
putational advantages of observation-driven time-varying parameter models. It has led to
the widespread application of GARCH models in applied empirical work. As is clear from
equation (2.9), score-driven models benefit from the same computational advantages.

Before the asymptotic properties of MLE can be properly developed, we need to establish
stationarity, ergodicity, invertibility and moment existence from primitive conditions which
we do in Section 3.

3 Stochastic Properties of Score-Driven Filters

The likelihood function (2.9) is formulated in terms of the data and in terms of the filtered
time-varying parameter ft as defined by the recursion (2.6). In order for the likelihood func-
tion to be well-behaved and for an appropriate law of large numbers (LLN) and central limit
theorem (CLT) to apply, the filtered sequence {ft} as well as the sequences of its first and
second order derivatives need to be sufficiently well-behaved for a given data sequence {yt}.
Naturally, the filtered {ft} sequence for given data {yt} needs to be carefully distinguished
from its model-implied counterpart, which takes the innovations {ut} rather than the data
{yt} as given. In this section we investigate the properties of both the filtered and model-
implied sequences. The results developed in this section are used in Section 4 to establish
the asymptotic properties of the MLE for θ.

We first introduce some additional notation. For a scalar random variable x, define
‖x‖n := (E|x|n)1/n for n > 0. If the random variable x(θ) depends on a parameter θ ∈ Θ,
define ‖x(·)‖Θ

n := (E supθ∈Θ |x(θ)|n)1/n. We say that the sequence xt converges exponentially

fast almost surely (e.a.s.) to the sequence x′t if ct ‖xt−x′t‖
a.s.→ 0 for some c > 1; see Straumann

and Mikosch (2006) for more details. Finally, we use xt ⊥ x′t to denote independence between
xt and x′t.

Propositions 3.1 and 3.3 below are written specifically for the score-driven recursion (2.6).
The propositions can, however, be extended to more general forms which can be found in
Technical Appendix E. First, we consider the score-driven model defined in terms of the
error terms ut rather than in terms of the observations yt. This enables us to establish
explicit results for the score-driven model as a potential data generating process and to
derive properties for the MLE under the assumption of a correctly specified model. Define
su(f

u
t , ut;λ) := s(fut , g(fut , ut);λ) and let {fut }t∈N be generated by

fut+1 = ω + α su
(
fut , ut;λ

)
+ β fut , (3.1)

for t > 1 and initial condition fu1 = f̄1, where we use fut as a shorthand for fut = fut (θ, f̄1) if
no confusion is caused.

Main example (continued):. The recursion in (2.4) is defined in terms of yt and ft. If
we define the recursion in terms of ut and fut instead as required by equation (3.1), we obtain

fut+1 = ω +

(
β + α

(
(1 + λ−1)u2

t

1 + λ−1u2
t

− 1

))
· fut , (3.2)
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such that su(f
u
t , ut;λ) = ((1 +λ−1)u2

t/(1 +λ−1u2
t )− 1) · ft. So whereas the recursion in (2.4)

is highly nonlinear in ft given yt, the recursion in (3.2) is linear in fut for given ut.

We next formulate a result for the stationarity and existence of moments of fut as given
by (3.1); compare the specific example in (3.2). We assume that the scaled score in ut
satisfies su ∈ C(1,0,0)(F∗ × U × Λ) for some convex F ⊆ F∗ ⊆ R, i.e., su is continuously
differentiable in fut and continuous in ut and λ. Define ṡu,t(f

∗;λ) := ∂su(f, ut;λ)/∂f |f=f∗

and the supremum
ρkt (θ) := sup

f∗∈F
|β + α ṡu,t(f

∗;λ)|k. (3.3)

We then have the following proposition.

Proposition 3.1. For every θ ∈ Θ ⊆ R3+dλ let {ut}t∈Z be an i.i.d. sequence and assume
∃f̄1 ∈ F such that

(i) E log+ |su(f̄1, u1;λ)| <∞;

(ii) E log ρ1
1(θ) < 0.

Then {fut (θ, f̄1)}t∈N converges exponentially fast almost surely (e.a.s.) to the unique station-
ary and ergodic (SE) sequence {fut (θ)}t∈Z for every θ ∈ Θ as t→∞.

If furthermore for every θ ∈ Θ ∃ n?f > 0 such that

(iii) ‖su(f̄1, u1;λ)‖n?f <∞;

(iv) Eρ
n?f
t (θ) < 1;

(v) fut (θ, f̄1) ⊥ ρ
n?f
t (θ) ∀ (t, f̄1) ∈ N×F ;

then supt E|fut (θ, f̄1)|n?f <∞ and E|fut (θ)|nf <∞ ∀ θ ∈ Θ and nf ∈ [0, n?f ).

Proposition 3.1 not only establishes stationarity and ergodicity (SE) of fut , it also estab-
lishes existence of unconditional moments. Furthermore, conditions (i) and (ii) in Proposi-
tion 3.1 also provide an almost sure representation of fut (θ) in terms of {ut}t−1

t=−∞. We refer
to the Technical Appendix for further details.

Remark 3.2. Independence of ut and fut (θ, f̄1) is sufficient to imply condition (v), i.e., if ut ⊥
fut (θ, f̄1) ∀ (t,θ, f̄1), then condition (v) in Proposition 3.1 holds. In addition, Proposition
3.1 also holds if the supremum in (3.3) is defined over a larger convex set F∗ ⊇ F . The same
holds for Proposition 3.3 later on. This can for instance be used if the original space F is
non-convex.

Main example (continued):. In our main example, the recursion (3.1) is always linear
in fut ; see equation (3.2). Conditions (i) and (iii) are satisfied for 0 < λ < ∞ because
(1 + λ−1)u2

t/(1 + λ−1u2
t ) is uniformly bounded in ut by the constant λ + 1 < ∞. We also

have that ρ
n?f
1 (θ) and fut are independent, as the former only depends on ut and the latter on

ut−1, ut−2, . . .. Hence condition (v) is satisfied. Conditions (ii) and (iv) are satisfied if the
factor in front of (3.2) has a log-moment or an nf moment, respectively. For example, for
n?f = 1 condition (iv) collapses to 0 < β < 1.

9



Proposition 3.1 will prove convenient in case the model is correctly specified as it describes
the properties of the score-driven model as a data generating process as well as the properties
of the score filter at the true parameter θ0 ∈ Θ.

Irrespective of whether we have correct or incorrect specification of the model, to derive
the MLE properties we must always analyze the stochastic behavior of the filtered time-
varying parameter over different θ ∈ Θ. Proposition 3.3 stated below is key in establishing
the invertibility, moment bounds and e.a.s. convergence uniformly over the parameter space
Θ of the score-driven filtered sequence {ft(θ, f̄1)}, formulated in terms of the data {yt}
rather than in terms of the innovations {ut} as in equation (3.1). To state our subsequent
proposition concisely, we define ṡy,t(f

∗;λ) := ∂s(f, yt;λ)/∂f |f=f∗ and the supremum

ρ̄kt (θ) = sup
f∗∈F
|β + α ṡy,t(f

∗;λ)|k. (3.4)

Proposition 3.3. Let Θ ⊂ R3+dλ be compact, s ∈ C(1,0,0)(F ×Y ×Λ), and let {yt}t∈Z be an
SE sequence. Assume ∃ f̄1 ∈ F such that

(i) E log+ supλ∈Λ |s(f̄1, yt;λ)| <∞;

(ii) E log supθ∈Θ ρ̄
1
1(θ) < 0.

Then uniformly on Θ the sequence {ft(θ, f̄1)}t∈N converges e.a.s. to a unique SE sequence
{ft(θ)}t∈Z, as t→∞.

If furthermore ∃ n?f > 0 such that

(iii) ‖s(f̄1, yt; ·)‖Λ
n?f
<∞;

(iv) E supθ∈Θ ρ̄
n?f
1 (θ) < 1;

(v) supθ∈Θ ft(θ, f̄1) ⊥ supθ∈Θ ρ̄
n?f
t (θ) ∀ (t, f̄1);

then supt ‖ft(·, f̄1)‖Θ
n?f
<∞ and ‖ft(·)‖Θ

nf
<∞ for nf ∈ [0, n?f ).

The conditions of Proposition 3.3 are easily satisfied by many specific models. Let us
illustrate this point by turning to our main example.

Main example (continued):. Consider the volatility model in equation (2.4) with 0 < λ ≤
λ ≤ λ̄ < ∞. From the uniform boundedness of the score in yt for given f̄1, we obtain that
conditions (i) and (iii) are trivially satisfied. Furthermore, since

ṡy,t(f
∗;λ) =

(1 + λ−1)y4
t /(λf

∗2)

(1 + λ−1y2
t /f

∗)
2 , (3.5)

we have that,1

sup
f∗

∣∣∣∣∣β − α + α
(1 + λ−1)y4

t /(λf
∗2)(

1 + y2
t /(λf

∗)
)2

∣∣∣∣∣ ≤ max
(
|β − α| , |β + αλ|

)
. (3.6)

1The supremum over f∗ for fixed λ and yt is reached at either f∗ → ∞ (yielding the value β − α) or
f∗ → 0 (yielding the value β + λα). Note, however, that the latter is in general unattainable as ft >
min(f̄1, ω/(1 + α− β)) > 0.
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Hence, using Remark 3.2 and taking the upper bound of the supremum, we can set ρ̄kt (θ) =
max(β − α , β + λα)k, given the parameter restriction β > α > 0. As ρ̄kt (θ) is independent
of the data yt, condition (v) is trivially satisfied. Moreover, conditions (ii) and (iv) simplify
to

sup
θ∈Θ

max
(
β − α , β + λα

)
< 1. (3.7)

In practice, it may be difficult to verify the contraction condition (iv) of Proposition 3.3
when ρ̄t(θ) depends on the unknown measure of the data. Furthermore, in such cases, the
independence condition (v) is difficult to satisfy since the data sequence is not independent
over time. This independence however only needs to hold for some random variable that
bounds ρ̄

nf
1 (θ) and satisfies the contraction condition. More generally, Remark 3.4 states

an alternative uniform condition that is typically available for fat tailed score-driven models
and renders both conditions (iv) and (v) redundant.

Remark 3.4. If the uniform bound sup(f∗,y,θ)∈F×Y×Θ |β + α ∂s(f ∗, y;λ)/∂f | < 1 holds, as
in our main example, then we can drop conditions (iv) and (v) in Proposition 3.3.

Conditions (iii) and (iv) in Proposition 3.3 imply its conditions (i) and (ii), respectively.
We emphasize that under conditions (i) and (ii) our score filter is invertible since we are
able to write ft(θ) as a measurable function of all past observations. Most importantly,
the invertibility property ensures that the effect of the initialization f̄1 vanishes as t → ∞,
and that the filter converges to a unique limit process independently of f̄1; see, for example,
Granger and Andersen (1978), Straumann and Mikosch (2006), Wintenberger (2013) and
Blasques et al. (2016). Establishing invertibility is usually one of the main challenges for
nonlinear time series models with time-varying parameters.

In Section 4 we show that the stochastic recurrence approach followed in Propositions
3.1 and 3.3 allows us to obtain consistency and asymptotic normality under weaker differ-
entiability conditions than those typically imposed; see also Section 2.3 of Straumann and
Mikosch (2006). In particular, instead of relying on the usual pointwise convergence plus
the stochastic equicontinuity of Andrews (1992) and Pötscher and Prucha (1994), we ob-
tain uniform convergence through the application of the ergodic theorem of Rao (1962) for
sequences in separable Banach spaces. This constitutes a crucial simplification as working
with the third order derivatives of the likelihood of a general score-driven model is typically
quite cumbersome.

In the remainder of this section we extend the results of Proposition 3.3 to the derivative
processes ∂ft(θ, f̄1)/∂θ and ∂2ft(θ, f̄1)/∂θ∂θ>. We use stationarity, ergodicity, invertibility
and bounded moments of the derivative processes for proving the asymptotic normality of the
MLE. To simplify notation, we let f

(i)
t (θ, f̄

0:i
1 ) ∈ F (i) denote a vector containing all the ith

order derivatives of ft with respect to θ, where f̄
0:i
1 ∈ F (0:i) contains the fixed initial condition

for ft and its derivatives up to order i. Similarly, f
(0:i)
t (θ, f̄

0:i
1 ) ∈ F (0:i) = F×. . .×F (i) denotes

a vector containing ft as well as its derivatives with respect to θ up to order i. Furthermore,
in order to work with primitive conditions we use the notion of moment preserving maps,
which we define as follows.

Definition 3.1. (Moment Preserving Maps)
A function h : Rq × Θ → R is said to be n/n-moment preserving, denoted as h(·;θ) ∈
MΘ1,Θ2(n, n), if and only if E supθ∈Θ1

|xi,t(θ)|ni < ∞ for n = (n1, . . . , nq) and i = 1, . . . , q
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implies E supθ∈Θ2
|h(xt(θ);θ)|n <∞. If Θ1 or Θ2 consists of a singleton, we replace Θ1 or

Θ2 in the notation by its single element, e.g., Mθ1,Θ2 if Θ1 = {θ1}.

Moment preservation is a natural requirement in the proofs of the asymptotic prop-
erties of the MLE because the likelihood and its derivatives are nonlinear functions of
the original data yt, the time varying parameter ft(θ, f̄1), and derivatives of the score,
such as ∂s(ft, y;λ)/∂λ and ∂2s(ft, y;λ)/∂ft∂λ. For instance, each polynomial function
h(x;θ) =

∑J
j=0 θjx

j ∀ (x,θ) ∈ X × Θ, θ = (θ0, . . . , θJ) ∈ Θ ⊆ RJ trivially satisfies
h ∈ Mθ,θ(n,m) with m = n/J ∀ θ ∈ Θ. If Θ is compact, then also h ∈ MΘ,Θ(n,m)
with m = n/J . Similarly, every k-times continuously differentiable function h(·;θ) ∈ Ck(X )
∀ θ ∈ Θ, with bounded k-th derivative supx∈X |h(k)(x;θ)| ≤ h̄k(θ) < ∞ ∀ θ ∈ Θ, satisfies

h ∈ Mθ,θ(n,m) with m = n/k ∀ θ ∈ Θ. If furthermore supθ∈Θ h̄k(θ) ≤ ¯̄h < ∞, then
h ∈MΘ,Θ(n,m) with m = n/k. The Technical Appendix provides further details and exam-
ples of moment preserving maps. We note that MΘ′,Θ′(n, n) ⊆ MΘ,Θ(n, n∗) for all n∗ ≤ n,
and all Θ ⊆ Θ′.

Using this notation, we let s ∈MΘ,Θ(n, ns) where n = (nf , ny), and hence ns denotes the
number of bounded moments of the scaled score supθ∈Θ s(ft, y;λ), when ft and yt have nf
and ny moments, respectively, uniformly in θ. Furthermore, as a convention, we let nλs and
nfλs denote the number of bounded moments for the partial derivatives ∂s(ft, y;λ)/∂λ and
∂2s(ft, y;λ)/∂ft∂λ, respectively, when its arguments have nf and ny moments. For the mo-
ments of all functions, the argument ft is always understood to be the stationarity limit filter
which has nf > 0 moments under appropriate conditions stated in Proposition 3.3. We shall
make extensive use of analogous definitions for other functions and their partial derivatives.
Finally, we use n̄ to denote moments of functions after the taking supremum over ft. For ex-
ample, n̄fλs denotes the number of moments of the random variable supf |∂2s(f, y;λ)/∂f∂λ|,
uniformly in θ ∈ Θ, or in moment preserving notation

sup
f

∣∣∣∂2s(f, y; ·)
∂f∂λ

∣∣∣ ∈MΘ,Θ(n, n̄fλs ),

with n = (nf , ny). We apply the same notational principle to other functions and derivatives.

Proposition 3.5. Let the conditions of Proposition 3.3 hold with some n?f > nf > 0 and

suppose that s ∈ C(2,0,2)(F × Y × Λ). Let s̄ ∈ C(2,0,2)(F × Y × Λ) denote the scaled score
evaluated at f̄1, i.e., s(f̄1, yt;λ).

Let min{ns, nλs , n̄fs , n̄λfs , n̄ffs } > 0. Then {f (1)
t (θ, f̄

0:1
1 )}t∈N converges e.a.s. to a unique SE

sequence {f (1)
t (θ)}t∈Z, uniformly in Θ, and furthermore, we have supt ‖f

(1)
t (·, f̄ 0:1

1 )‖Θ
n?fθ

<∞

and ‖f (1)
t (·)‖Θ

nfθ
<∞ for any nfθ ∈ [0, n?fθ), where

n?fθ := min
{
nf , ns , n

λ
s

}
.

If additionally min{nλλs , n̄λλfs , n̄λffs , n̄fffs } > 0, then it follows that the second derivative

process {f (2)
t (θ, f̄

0:2
1 )}t∈N converges e.a.s. to a unique SE sequence {f (2)

t (θ)}t∈Z, uniformly in

Θ. Furthermore, supt ‖f
(2)
t (·, f̄ 0:2

1 )‖Θ
n?fθθ

<∞ and ‖f (2)
t (·)‖Θ

nfθθ
<∞ for any nfθθ ∈ [0, n?fθθ),

where

n?fθθ := min
{
nfθ , n

λλ
s ,

nfsnfθ
nfs + nfθ

,
nffs nfθ

2nffs + nfθ
,

nfλs nfθ
nfλs + nfθ

}
.
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The expressions for n?fθ and n?fθθ may appear complex at first sight. However, they arise

naturally from expressions for the derivative of ft(θ, f̄1) with respect to θ. Let us turn to our
main example and analyze the moment conditions of Proposition 3.5 in a practical setting.

Main example (continued):. From Proposition 3.3, the limit filtered process ft(θ) is guar-
anteed to have nf moments, uniformly in θ, as long as the contraction condition is satisfied.
Since nf < n?f , where n?f is determined via condition (iii) of Proposition 3.3, we can set

n?f arbitrarily high and hence, since st is uniformly bounded in yt for fixed f̄1, we can set
nf > 0. The remaining derivatives are straightforward to check and can be found in the
Technical Appendix. From these expressions, we obtain ns, n

λ
s ≤ nf , and n̄fs , n̄

λf
s , n̄

ff
s →∞,

such that min{ns, nλs , n̄fs , n̄λfs , n̄ffs } > 0 and nfθ < n?fθ = nf . We also obtain nλλs ≤ nf
and nfs , n

ff
s , n

fλ
s , n̄

λλf
s , n̄λffs , n̄fffs → ∞, such that min{nλλs , n̄λλfs , n̄λffs , n̄fffs } > 0 and nfθθ <

n?fθθ = min{nfθ , nf , nfθ/2} = nf/2. Since nf can be set arbitrarily high, we can establish
moments up to a large order for both derivative processes of the score-driven volatility model.

We emphasize that the moment conditions stated in Proposition 3.5 are primitive in
the sense that they relate directly to the basic building blocks of the score filter: the score
function and its derivatives. For the practitioner who wishes to verify moment conditions
for any given score model, Technical Appendix F provides a detailed compendium of the
moment preserving properties of different classes of functions. With this compendium, the
verification of primitive moment conditions in Proposition 3.5 is considerably simplified for
many relevant settings of practical interest.

4 Global Identification, Consistency, and A. Normality

We now formulate the conditions under which the MLE is strongly consistent and asymptot-
ically normal. The low-level conditions that we formulate relate directly to the propositions
from Section 3. We obtain asymptotic results for the MLE that hold for possibly mis-
specified models. These results take the properties of observed data as given. In addition,
we also obtain asymptotic properties for the MLE that hold for correctly specified models.
The latter results require additional conditions designed to ensure that the score model also
behaves well as a data generating process. For correctly specified models, we are also able
to prove a new global identification result building on low-level conditions rather than on
typical high-level assumptions.

We start with two rather standard assumptions.

Assumption 4.1. (Θ,B(Θ)) is a measurable space and Θ is compact.

Assumption 4.2. ḡ ∈ C(2,0)(F × Y), ḡ′ ∈ C(2,0)(F × Y), p̄ ∈ C(2,2)(Ũ × Λ), and S ∈
C(2,2)(F × Λ), where Ũ := ḡ(Y ,F).

The conditions in Assumption 4.2 are sufficient for the scaled score to be twice continu-
ously differentiable, i.e., s ∈ C(2,0,2)(F ×Y ×Λ). Let Ξ be the event space of the underlying
complete probability space. The next theorem establishes the existence of the MLE.

Theorem 4.3. (Existence) Let Assumptions 4.1 and 4.2 hold. Then there exists a.s. a
measurable map θ̂T (f̄1) : Ξ→ Θ satisfying θ̂T (f̄1) ∈ arg maxθ∈Θ `T (θ, f̄1), for all T ∈ N and
every initialization f̄1 ∈ F .
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Using our notation for moment-preserving maps, let log ḡ′ ∈ MΘ,Θ(n, nlog ḡ′) and p̄ ∈
MΘ,Θ(n, np̄) as defined below (2.7) and (2.8), respectively, where n := (nf , ny). Simi-
larly, we have denoted ∇t as the unscaled score ∂ log py(yt|ft;λ)/∂ft and we let supf |∇t| ∈
MΘ,Θ(n, n̄∇) where n̄∇ denotes the moments of supf |∇t|.

To establish consistency, we use the following two assumptions.

Assumption 4.4. ∃ Θ∗ ⊆ R3+dλ, nf > 0 and δ > 0 such that, for every f̄1 ∈ F ,

(i) ‖s(f̄1, yt; ·)‖Θ∗

nf+δ <∞;

(ii) sup(f∗,y,θ)∈F×Y×Θ∗ |β + α ∂s(f ∗, y;λ)/∂f | < 1.

Assumption 4.5. n` = min{nlog ḡ′ , np̄} ≥ 1 and n̄∇ > 0.

Assumption 4.4 ensures the convergence of the sequence {ft(θ, f̄1)} to an SE limit {ft(θ)}
with nf moments. Alternative primitive conditions leading to the same result can be found in
Proposition 3.3 and the subsequent remarks. Assumption 4.5 ensures one bounded moment
for the log-likelihood function and a uniform logarithmic moment for its derivative with
respect to f . Both assumptions are stated in terms of the core structure of the score-driven
model: the density of the innovations p̄, the link function log ḡ′, the unscaled score ∇t, and
the scaled score st. The number of bounded moments of p̄, log ḡ′, ∇t and st can be easily
determined as we have set out in Technical Appendix F. We illustrate the verification of
these assumptions using our main example.

Main example (continued):. From the derivations around equation (3.7), we have learned
that the conditions of Assumption 4.4 can be easily satisfied for an appropriate compact
parameter space Θ∗. For Assumption 4.5, we notice that ḡ′(ft, yt) = 0.5f−1

t , and hence
nlog ḡ′ → ∞ given that ft ≥ ω > 0 under the parameter constraint β > α > 0 and the
initialization f̄1 ≥ ω. Using the expression

p̄t = log
Γ(λ+1

2
)

Γ(λ
2
)
√
λπ
− 1

2
(λ+ 1) log

(
1 +

y2
t

λ ft

)
,

it follows immediately that np̄ can be set arbitrarily large as long as ny > 0. The condition
n` ≥ 1 in Assumption 4.5 thus only requires the existence of some arbitrarily small moment
ny > 0 of the data yt. Finally, since the unscaled score is given by

∇(ft, yt;λ) =
(1 + λ−1)y2

t

2f 2
t (1 + y2

t /(λft))
− 1

2ft
,

it is uniformly bounded in both ft ≥ ω and yt ∈ R, and hence, n̄∇ > 0 is trivially satisfied.

Theorem 4.6 establishes the strong consistency of the MLE θ̂T (f̄1).

Theorem 4.6. (Consistency under possible model mis-specification) Let {yt}t∈Z be an SE
sequence. Furthermore, let E|yt|ny < ∞ for some ny ≥ 0 for which also Assumptions 4.1,
4.2, 4.4, and 4.5 hold. Finally, let θ0 ∈ Θ be the unique maximizer of the limit log-likelihood
`∞(·) on the parameter space Θ ⊆ Θ∗ with Θ∗ as introduced in Assumption 4.4. Then the
MLE satisfies θ̂T (f̄1)

a.s.→ θ0 as T →∞ for every f̄1 ∈ F .
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We emphasize that the proofs and results of Theorem 4.6 establish global rather than
local consistency. In particular, the assumptions ensure the appropriate limiting behavior
of the average log-likelihood over the entire parameter space Θ, rather than in a (possibly
arbitrarily small) parameter space around the true parameter value only. This stands in
sharp contrast with most of the existing literature on score models, which only delivers local
asymptotic results in a neighborhood of θ0.

Theorem 4.6 also differs from results in the existing score literature in that it establishes
the strong consistency of the MLE in a possibly mis-specified model setting. In particular,
consistency of the MLE is obtained with respect to a pseudo-true parameter θ0 ∈ Θ that
is assumed to be the unique maximizer of the limit log-likelihood `∞(θ). This pseudo-true
parameter minimizes the Kullback-Leibler divergence between the probability measure of
{yt}t∈Z and the measure implied by the model. The result naturally requires regularity
conditions on the observed data {yt}Tt=1 ⊂ {yt}t∈Z that is generated by an unknown data
generating process. Such conditions in this general setting can only be imposed by means
of direct assumption. However, under an axiom of correct specification, we can restrict
the parameter space in such a way that we can show that the desired assumptions hold.
More specifically, we can show that yt is stationary and has ny moments, and θ0 is the
unique maximizer of the limit log-likelihood function. In this case, the properties of the
observed data {yt}Tt=1 no longer have to be assumed. Instead, they can be derived from
the properties of the score-driven model under appropriate restrictions on the parameter
space. By establishing ‘global identification’ we ensure that the limit likelihood has a unique
maximum over the entire parameter space rather than only in a small neighborhood of the
true parameter. The latter is typically used in most of the existing literature and achieved
by studying the local properties of the information matrix at the true parameter.

To formulate our global identification result, we introduce a slightly more precise notation
concerning the domains and images of the key mappings defining the score-driven model.
Define the set Yg ⊆ R as the image of Fg and U under g, i.e., Yg := {g(f, u), (f, u) ∈
Fg × U}, where Fg denotes the domain (for ft) of g. Let U denote the common support
of pu( · ;λ) ∀ λ ∈ Λ, and let Fs and Ys denote subsets of R over which the map s is
defined. Below, Λ∗ denotes the orthogonal projection of a set Θ∗ ⊆ R3+dλ onto the subspace
Rdλ holding the static parameters in λ. Furthermore, statements for almost every (f.a.e.)
element in a set hold with respect to Lebesgue measure. Finally, we let g ∈ MΘ,Θ(n, ng)
with n = (nf , nu), so that ng denotes the number of bounded moments of g(ft, ut) when
ut has nu moments and ft has nf bounded moments. In practice, the resulting ng bounded
moments can be derived from the moment preservation properties laid out in the Technical
Appendix.

The following two assumptions allow us to derive the appropriate properties for {yt}t∈Z
and to ensure global identification of the true parameter.

Assumption 4.7. ∃ Θ∗ ⊆ R3+dλ and nu ≥ 0 such that

(i) U contains an open set for every λ ∈ Λ∗;

(ii) supλ∈Λ∗ E|ut|nu <∞ and ng ≥ ny > 0;

(iii) g(f, ·) ∈ C1(U) is invertible and ḡ(f, ·) = g−1(f, ·) ∈ C1(Yg) a.e. f ∈ Fg;

(iv) py(y|f ;λ) = py(y|f ′;λ′) holds f.a.e. y ∈ Yg iff f = f ′ and λ = λ′.
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Conditions (i) and (iii) of Assumption 4.7 ensure that the innovations ut have non-
degenerate support and g(f, ·) is continuously differentiable and invertible with continuously
differentiable derivative. Hence the conditional distribution py of yt given ft is non-degenerate
and uniquely defined by the distribution of ut. Bounded moments for yt(θ0) up to order ny
follow from moments of ut and ft via condition (ii); see the main example below for an
illustration of how to operate this condition. Finally, condition (iv) states that the static
model defined by the observation equation yt = g(f, ut) and the density pu( · ;λ) is identified.
It requires the conditional density of yt given ft = f to be unique for every pair (f, λ). This
requirement is very intuitive: one would not extend a static model to a dynamic one if the
former is not already identified.

Main example (continued):. For the Student’s t volatility model, the domain of ut is
always R, which satisfies part (i) of Assumption 4.7. As g(f, u) = f 1/2u, we can use a
standard Hölder inequality to obtain ng = nf · nu/(2nu + nf ), such that parts (ii), (iii), and
(iv) are satisfied for nf > 0, 0 < nu < infΛ∗ λ, and ω > 0, f̄1 > 0, and β > α > 0. Note that
nf follows from Proposition 3.1, part (iii), and can be set arbitrarily high.

Assumption 4.8. ∃ Θ∗ ⊆ R3+dλ, nf > 0 and δ > 0, such that for every θ ∈ Θ∗ and every
f̄1 ∈ Fs

(i) ‖su(f̄1, u1;λ)‖nf+δ <∞;

(ii) Eρnf+δ
t (θ) < 1;

Furthermore, α 6= 0 ∀ θ ∈ Θ. Finally, for every (f,θ) ∈ Fs ×Θ,

∂s(f, y, λ)/∂y 6= 0, (4.1)

for almost every y ∈ Yg.

Conditions (i) and (ii) in Assumption 4.8 ensure that the true sequence {ft(θ0)} is SE
and has nf moments by the application of Proposition 3.1 and Remark 3.2. Together with
condition (iii) in Assumption 4.7 we then obtain that the data {yt(θ0)}t∈Z itself is SE and
has ny moments. The inequality stated in (4.1) in Assumption 4.8 and the assumption that
α 6= 0 together ensure that the data {yt(θ0)} entering the update equation (2.6) render the
filtered sequence {ft} stochastic and non-degenerate.

Next we show that our leading example satisfies the conditions for our global identification
result.

Main example (continued):. The score su is the product of ft and a term that is uniformly
bounded in ut. Hence, (i) in Assumption 4.8 is satisfied for arbitrary nf . Furthermore, by
the linearity of su in ft, condition (ii) of Assumption 4.8 collapses to

E
∣∣∣∣β − α + α

(1 + λ−1)u2
t

1 + u2
t/λ

∣∣∣∣nf < 1.

In particular, for nf = 1, we obtain the requirement |β| < 1, which together with the para-
meter restrictions to ensure positivity of ft result in 1 > β > α > 0. Larger regions can be
obtained for smaller values of nf .
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Theorem 4.9 (Global Identification for correctly specified models). Let Assumptions 4.1,
4.2, 4.4, 4.5, 4.7, and 4.8 hold and let the observed data be a subset of the realized path
of a stochastic process {yt(θ0)}t∈Z generated by a score-driven model under θ0 ∈ Θ. Then
Q∞(θ0) ≡ Eθ0`t(θ0) > Eθ0`t(θ) ≡ Q∞(θ) ∀ θ ∈ Θ : θ 6= θ0.

The axiom of correct specification thus leads to the global identification result in Theorem
4.9. We can use this to establish consistency of the MLE to the true (rather than pseudo-
true) parameter value if the model is correctly specified. This is summarized in the following
corollary.

Corollary 4.10. (Consistency for correctly specified models) Let Assumptions 4.1, 4.2, 4.4,
4.5, 4.7, and 4.8 hold and {yt}t∈Z = {yt(θ0)}t∈Z with θ0 ∈ Θ, where Θ ⊆ Θ∗∩Θ∗ with Θ∗ and
Θ∗ defined in Assumptions 4.4, 4.7 and 4.8. Then the MLE θ̂T (f̄1) satisfies θ̂T (f̄1)

a.s.→ θ0 as
T →∞ for every f̄1 ∈ F .

The consistency region Θ∗ ∩Θ∗ under correct specification is a subset of the consistency
region Θ∗ for the mis-specified setting. This simply reflects the fact that the axiom of correct
specification alone (without parameter space restrictions) is not enough to obtain the desired
moment bounds. The parameter space also has to be (further) restricted to ensure that the
score-driven data generating process is identified and generates SE data with the appropriate
number of moments.

To establish asymptotic normality of the MLE, we impose an assumption that delivers
2 + δ moments for the first derivative of the log-likelihood function, and 1 moment for the
second derivative. We make use once again of our notation for moment preserving maps.
In particular, we let quantities like nλp̄ and nfλp̄ denote the number of bounded moments
of the derivative of p̄ with respect to λ and the cross derivative with respect to f and λ,
respectively. We also let nfθ and nfθθ be defined as in Proposition 3.5. Finally, for notational
simplicity we define the following quantities,

n? = min
{
n∇ , n̄

f
∇ , n̄

λ
∇ , n̄

ff
∇ , n̄λf∇ , n̄λλ∇

}
, (4.2)

n`′ = min

{
nλp̄ ,

n∇nfθ
n∇ + nfθ

}
, (4.3)

n`′′ = min

{
nλλp̄ ,

n∇nfθθ
n∇ + nfθθ

,
nλ∇nfθ
nλ∇ + nfθ

,
nf∇nfθ

2nf∇ + nfθ

}
. (4.4)

Assumption 4.11. ∃ Θ∗∗ ⊆ R3+dλ such that n? > 0, n`′′ ≥ 1 and n`′ > 2+δ for some δ > 0.

Similar to the moment conditions in Proposition 3.3, the moment conditions in Assump-
tion 4.11 relate directly to low-level (primitive) elements of the model. The expressions in
(4.2), (4.3) and (4.5) follow directly from the formulas for the derivatives of the log-likelihood
with respect to θ. Having n`′ > 2 + δ facilitates the application of a central limit theorem to
the score. Similarly, n`′′ ≥ 1 allows us to use a uniform law of large numbers for the Hessian.
Finally, the condition n? > 0 is designed to ensure that the e.a.s. convergence of the filter
ft(θ, f̄1) to its stationary limit is appropriately reflected in the convergence of both the score
and the Hessian.
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In any case, if one favors simplicity at the cost of some generality, then the expressions
for n`′ and n`′′ can be easily simplified to a single moment condition as stated in the following
remark.

Remark 4.12. Let n denote the lowest of the primitive derivative moment numbers nλp̄ , n∇,
etc. Then n ≥ 4 + δ′ implies n`′ > 2 + δ and n`′′ ≥ 1, for some positive δ′ and δ.

It is often just as easy, however, to check the moment conditions formulated in Assump-
tion 4.11 directly rather than the simplified conditions in Remark 4.12. We illustrate this
using our main example.

Main example (continued):. For the Student’s t volatility model, an number of derivative
functions need to be computed. These can be found in the Technical Appendix. Many of these
are uniformly bounded functions. In particular, we have nλλp̄ , n̄∇, n̄

f
∇, n̄

λ
∇, n̄

λλ
∇ , n̄

λf
∇ , n̄

ff
∇ →∞.

Furthermore, nλp̄ ≤ ny/δ for some (small) δ > 0. Therefore, if some finite moment of yt
exists, we can set nλp̄ arbitrarily large. As a result, n? > 0, n`′ ≤ min{ny/δ′, nfθ} for arbitary
δ′ > 0, and n`′′ ≤ min{nfθθ , nfθ , 1

2
nfθ}. We have derived earlier that nfθθ < nfθ/2, such that

n`′ > 2 + δ and n`′′ ≥ 1 both imply nfθ > 2 + δ. If the contraction condition is met over the
entire parameter space, then as also shown earlier we can set nfθ arbitrarily high and thus
statisfy Assumption 4.11.

In well-specified models, the asymptotic normality of the MLE is obtained by applying a
central limit theorem (CLT) for SE martingale difference sequences to the ML score, that is
the derivative of the log-likelihood function `T (θ, f̄1) with respect to θ and evaluated at the
MLE. As noted in White (1994), in the presence of dynamic mis-specification, the ML score
generally fails to be a martingale difference sequence even at the pseudo-true parameter. As
a result, stricter conditions are required to obtain a central limit theorem that allows for
some temporal dependence in the ML score.

Below we use the property of near epoch dependence (NED) to obtain a CLT for the
ML score. In particular, we use the uniform filter contraction in Assumption 4.4 to ensure
that the filter is NED whenever the data is NED. Furthermore, in Assumption 4.13 below,
we impose sufficient conditions for the ML score to be Lipschitz continuous on the data
as well as on the filter and its derivative. This assumption is designed to guarantee that
the ML score inherits the NED property from the data and the filter. The conditions of
Assumption 4.13 can be weakened in many ways; see, for example, Davidson (1994) and
Pötscher and Prucha (1997) for a discussion of alternative conditions. Here the Lipschitz
continuity condition allows us to keep the asymptotic normality results clear and simple.

Assumption 4.13. ∂p̄t/∂f and ∂ log ḡ′t/∂f are uniformly bounded random variables and
∂p̄t/∂λ is a.s. Lipschitz continuous in (yt, ft).

Main example (continued):. Using the Student’s t volatility model, we have already seen
that ft ≥ ω > 0 for all t. The relevant derivative of p̄t equals f−1

t times a uniformly
bounded function of y2

t /ft, which obviously results in a uniformly bounded function. Also
∂ log ḡ′t/∂f = 0.5f−1

t is trivially uniformly bounded. Furthermore, p̄t is clearly Lipschitz
continuous in (yt, ft). Hence Assumption 4.13 holds for the leading example and asymptotic
normality applies.

The following theorem states the main result for asymptotic normality of the MLE under
mis-specification, with int(Θ) denoting the interior of Θ.
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Theorem 4.14. (Asymptotic normality under possible model mis-specification) Let {yt}t∈Z
be SE and NED of size −1 on a strongly mixing process of size −δ/(1− δ) for some δ > 2.
Furthermore, let E|yt|ny <∞ for some ny ≥ 0 for which also Assumptions 4.1, 4.2, 4.4, 4.5,
4.11 and 4.13 are satisfied. Finally, let θ0 ∈ int(Θ) be the unique maximizer of `∞(θ) on
Θ, where Θ ⊆ Θ∗ ∩ Θ∗∗ with Θ∗ and Θ∗∗ as defined in Assumptions 4.4 and 4.11. Then, for
every f̄ ∈ F , the MLE θ̂T (f̄1) satisfies

√
T (θ̂T (f̄1)− θ0)

d→ N
(
0, I−1(θ0)J (θ0)I−1(θ0)

)
as T →∞,

where I(θ0) := −E˜̀′′
t (θ0) is the Fisher information matrix, ˜̀

t(θ0) denotes the log-likelihood
contribution of the t-th observation evaluated at θ0, and

J (θ0) := lim
T→∞

T−1E
( T∑
t=1

˜̀′
t(θ0)

)( T∑
t=1

˜̀′
t(θ0)>

)
.

When the model is correctly specified, the ML score can be shown to be a martingale
difference sequence at the true parameter value. Hence we no longer need the assumption
that the data is NED. Similarly, we can also drop Assumption 4.13, which was used to
ensure that the ML score was NED. Finally, we no longer need to restrict ourselves to the
uniform contraction condition in Assumption 4.4 which guaranteed the NED property for
the score filter. In general we are presented with a trade-off between the assumption of
correct specification combined with weaker additional assumptions, versus the stricter NED
conditions without the assumption of correct specification. Apart from this trade-off, the
proof of asymptotic normality is the same in both cases. The following theorem states the
asymptotic normality result for the MLE in the context of a correctly specified model.

Theorem 4.15. (Asymptotic normality under correct specification) Let Assumptions 4.1,
4.2, 4.4, 4.5, 4.7, 4.8, and 4.11 hold and assume {yt(θ0)}t∈Z is a random sequence generated
by a score-driven model under some θ0 ∈ int(Θ) where Θ ⊆ Θ∗ ∩ Θ∗ ∩ Θ∗∗ with Θ∗, Θ∗ and
Θ∗∗ defined in Assumptions 4.4, 4.7, 4.8, and 4.11. Then, for every f̄1 ∈ F , the MLE θ̂T (f̄1)
satisfies √

T (θ̂T (f̄1)− θ0)
d→ N

(
0, I−1(θ0)

)
as T →∞,

where I(θ0) is the Fisher information matrix as defined in Theorem 4.14.

Theorem 4.15 does not have a separate ny-moment condition like Theorems 4.6 and 4.14.
This stems from the fact that under correct specification the moment conditions for yt are
implied by the moment conditions on the data generating process, such as the moment
conditions on ut and g(ft, yt) in Assumptions 4.7 and 4.8.

Main example (continued):. To verify the conditions of Theorem 4.15 for the main ex-
ample, we have already shown that 4.11 requires nf > 2 + δ. Using the derivations below
Proposition 3.3, we subsequently showed that this condition is met if the contraction condi-
tion (3.7) is satisfied, and if some arbitrarily small moment ny > 0 of yt exists. Given the

specification g(ft, ut) = f
1/2
t ut, the latter is ensured if infΛ λ = λ > 0 such that an arbitrarily

small moment exists for ut, and (using Proposition 3.1) if

sup
Θ

E
∣∣∣∣β − α + α

(1 + λ−1)u2
t

1 + λ−1u2
t

∣∣∣∣nf < 1, (4.5)
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for some small nf , where ut has a Student’s t distribution with λ degrees of freedom. The
condition can easily be checked numerically and ensures that a small moment nf exists for
ft(θ0), for any θ0 in the compact parameter space Θ. Together, this ensures ny > 0 un-
der correct specification via a standard Hölder inequality. The moment conditions for the
innovations ut are thus considerably weaker than in the GARCH case. In particular, the
innovations ut can even have no integer moments, while the asymptotic normality of θ for
the score-driven volatility model still applies.

The theorems and corollaries derived in this section establish the existence, strong con-
sistency, global identification, and asymptotic normality of the MLE for a general class of
score-driven models under correct and incorrect model specification. The scope of the the-
ory developed above can be appreciated even better by considering an additional range of
empirically relevant examples that include conditional location models with fat tails, condi-
tional location models with skewness, conditional log-volatility models, conditional duration
models with fat-tailed densities, and models for non-linear transformations of location. In
all these cases, the current theory can be readily applied.

5 Conclusions

We have developed an asymptotic distribution theory for the class of score-driven time-
varying parameter models. Despite a wide range of newly developed models using the score-
driven approach, a theoretical basis has been missing. We have aimed in this study to make a
substantial step forward. In particular, we have developed a global asymptotic theory for the
maximum likelihood estimator for score-driven models as introduced by Creal et al. (2011,
2013) and Harvey (2013). Our theorems are global in nature and are based on primitive,
low-level conditions stated in terms of functions that make up the core of the score-driven
model. We also state conditions under which the score-driven model is invertible. In contrast
to the existing literature on score-driven models, we do not need to rely on the empirically
untenable assumption that the starting value f̄1 is both random and observed. For the case
of correctly specified models, we have been able to establish a global identification result
that holds under weak conditions. We believe that the presented results establish a proper
foundation for the use of the score function in observation-driven models and for maximum
likelihood estimation and hypothesis testing.
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A Proofs of Main Results

Proof of Proposition 3.1. This is a special case of Proposition TA.5 in Appendix E. To see
this, set

φ(xt(θ, x̄), vt,θ) = ω + αsu(ft(θ, f̄1), ut;λ) + β ft(θ, f̄1),

vt = ut, and xt(θ, x̄) = ft(θ, f̄1). Note that su is assumed to be su ∈ C(1,0,0)(F × U × Λ) for
convex F , such that φ ∈ C(1,0,0)(X × V ×Θ) with a convex X . Conditions (i) and (iii)–(v)
in Proposition TA.5 in Appendix E now directly follow from conditions (i) and (iii)–(v) in
Proposition 3.1. Condition (ii) in Proposition TA.5 directly follows from condition (ii) in
Proposition 3.1 by observing that from the mean value theorem we have

E sup
(x,x′)∈X×X :x 6=x′

|φ(x, vt,θ)− φ(x′, vt,θ)|k

|x− x′|k
≤

E sup
x∗∈X

∣∣∣∂φ(x∗, vt,θ)

∂x

∣∣∣k = E sup
f∗∈F

∣∣∣β + α +
∂su(f

∗, vt,θ)

∂f

∣∣∣k ∀ k ≥ 1.

Proof of Proposition 3.3. The results for the sequence {ft} are obtained by application of
Proposition TA.8 in Appendix E with vt = yt and xt(θ, x̄) = ft(θ, f̄1) and φ(xt, vt,θ) =
ω + αs(ft, yt;λ) + βft.

Step 1, SE for ft: Condition (i) of Proposition TA.8 holds, because

E log+ sup
θ∈Θ
|φ(x̄, vt,θ)− x̄| = E log+ sup

θ∈Θ
|ω + αs(f̄1, yt;λ) + βf̄1 − f̄1|

≤ E log+ sup
θ∈Θ

[
|ω|+ |α| · |s(f̄1, yt;λ)|+ |β − 1| · |f̄1|

]
≤ log+ sup

ω∈Ω
|ω|+ log+ sup

α∈A
|α|+ E log+ sup

λ∈Λ
|s(f̄1, yt;λ)|

+ sup
β∈B

log+ |(β − 1)|+ log+ |f̄1| <∞

with log+ supω∈Ω | <∞, log+ supα∈A |α| <∞ and supβ∈B log+ |(β−1)| <∞ by compactness
of Θ, and log+ |f̄1| < ∞ for any f̄1 ∈ F ⊆ R, and E log+ supλ∈Λ |s(f̄1, yt;λ)| < ∞ by
condition (i) in Proposition 3.3.
Condition (ii) in Proposition TA.8 holds, because

E log sup
θ∈Θ

r1
1(θ) =

E log sup
θ∈Θ

sup
(f,f ′)∈F×F :f 6=f ′

|ω − ω + α(s(f, yt;λ)− s(f ′, yt;λ)) + β(f − f ′)|
|f − f ′|

≤ E log sup
θ∈Θ

sup
(f,f ′)∈F×F :f 6=f ′

|α(s(f, yt;λ)− s(f ′, yt;λ)) + β(f − f ′)|
|f − f ′|

= E log sup
θ∈Θ

sup
(f,f ′)∈F×F :f 6=f ′

|αṡy,t(f ∗;λ)(f − f ′) + β(f − f ′)|
|f − f ′|

= E log sup
θ∈Θ

sup
f∗∈F

∣∣∣αṡy,t(f ∗;λ) + β
∣∣∣ = E log sup

θ∈Θ
ρ1

1(θ) < 0,
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where the last inequality follows directly from condition (ii) in Proposition 3.3.

Step 2, moment bounds for ft: By a similar argument as in Step 1, we can show that
condition (iv.a) in Proposition TA.8 follows from condition (iv) in Proposition 3.3. Condition
(iii.b) in Proposition TA.8 for n = n?f follows since by the Cr-inequality in (Loève, 1977,
p.157), there exists a 0 < c <∞ such that

‖φ(x̄, vt, ·)‖Θ
n?f

= E sup
θ∈Θ
|ω + αs(f̄ , yt;λ) + βf̄ |n?f

≤ c · sup
θ∈Θ
|ω + βf̄ |n?f + c · |α|n?f E sup

θ∈Θ
|s(f̄ , yt;λ)|n?f <∞,

where the last inequality follows from condition (iii) in Proposition 3.3, and where c < 1 for
0 < n?f < 1. Finally, condition (v.b) in Proposition TA.8 directly follows from condition (v)
in Proposition 3.3.

For the proof of Remark 3.4, see Technical Appendix B.

Proof of Proposition 3.5. Step 1, SE for derivatives of ft: The desired result follows by
noting that the vector derivative processes {f (i)

t (θ, f̄
0:i
1 )}t∈N for i = 1, 2 and initialized

at f̄
0:i
1 satisfy the conditions of Theorem 2.10 in Straumann and Mikosch (2006) for per-

turbed stochastic recurrence equations. In particular, they consider a recurrence of the from
xt+1 = φt(xt) where {φt} converges to an SE sequence {φ̃t} that satisfies the conditions of
Bougerol’s theorem E log+ |φ̃t(0)| <∞, E log supx |φ̃′t(x)| <∞. In particular, one must have
a logarithmic moment E log+ |x̃t| for the solution {x̃t} of the unperturbed SE system, and
the perturbed recurrence must satisfy2

|φt(x̄)− φ̃t(x̄)| e.a.s.→ 0 , for some x̄ ∈ R and sup
x
|φ′t(x)− φ̃′t(x)| e.a.s.→ 0 as t→∞.

In the present context, the perturbed sequence {f (i)
t (θ, f̄

0:i
1 )}t∈N depends on the non-stationary

sequence {f (0:i−1)
t (θ, f̄

0:i−1
1 )}t∈N, which is only stationary in the limit. The unperturbed

recurrence is equal in all respects, except that it instead depends on the limit SE filter
{f (0:i−1)

t (θ)}t∈Z.
In Appendix D.2 we show that the dynamic equations generating each element of the

partial derivative processes take the form

f
(i)
t (θ, f̄

0:i
1 ) = A

(i)
i,t (θ, f̄1) + Bt(θ, f̄1) f

(i)
t−1(θ, f̄

0:i
1 ), (A.1)

with Bt(θ, f̄1) = β +α ∂s(ft(θ, f̄1), yt;λ)/∂f not depending on the order of the derivative i.

The expressions forA
(1)
i,t (θ, f̄1) are presented in Appendix D.2 and only depend on derivatives

up to order f
(i−1)
t (θ, f̄

0:i−1
1 ). Note that both A

(1)
i,t and Bt are written explicitly as a function

of f̄1 since they depend on the non-stationary filtered sequence ft(θ, f̄1) initialized at f̄1.

In contrast, we let A
(1)
i,t (θ) and Bt(θ) denote the stationary counterparts of A

(1)
i,t (θ, f̄1) and

Bt(θ, f̄1), respectively, that depend on the limit stationary filter ft(θ). The recurrence
convergence |φt(x̄) − φ̃t(x̄)| e.a.s.→ 0 in Straumann and Mikosch (2006) corresponds here to

2We state the convergence of φt at some point x̄ rather than at the origin φt(0) as in Straumann and
Mikosch (2006) since, depending on the application, our recursion may not be well defined at x̄ = 0.
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having |A(1)
i,t (θ, f̄1) − A(1)

i,t (θ)| e.a.s.→ 0 and |Bt(θ, f̄1) − Bt(θ)| e.a.s.→ 0. Both conditions are

easily verified. Indeed, the expressions in Appendix D.2 show that A
(1)
i,t (θ, f̄1) satisfies

|A(1)
i,t (θ, f̄1)−A(1)

i,t (θ)| ≤ sup
f
|∂A(1)

i,t (θ)/∂f | · |ft(θ, f̄1)− ft(θ)|

and hence we obtain |A(1)
i,t (θ, f̄1)−A(1)

i,t (θ)| e.a.s.→ 0 by Lemma 2.1 in Straumann and Mikosch

(2006) since |ft(θ, f̄1) − ft(θ)| e.a.s.→ 0 by Proposition 3.3 and supf |∂A
(1)
i,t (θ)/∂f | is SE with

a logarithmic moment since min{ns, nλs , n̄fs , n̄λfs } > 0. Similarly, we obtain

|Bt(θ, f̄1)−Bt(θ)| ≤ sup
f
|∂Bt(θ)/∂f | · |ft(θ, f̄1)− ft(θ)| e.a.s.→ 0 as t→∞,

since n̄ffs > 0 implies that supf |∂Bt(θ)/∂f | is SE with with a logarithmic moment, and
|ft(θ, f̄1)− ft(θ)| vanishes e.a.s. The convergence of the Lipschitz coefficients supx |φ′t(x)−
φ̃′t(x)| = |Bt(θ, f̄1)−Bt(θ)| e.a.s.→ 0 follows trivially by the same argument.

For the second derivative process, the same argument using Lemma 2.1 in Straumann
and Mikosch (2006) applies sequentially. As the argument is slightly more subtle, we prove
it in Lemma TA.19 of the Technical Appendix.

Finally, we note that the unperturbed recursions satisfy the conditions of Proposition
TA.8. In the notation of Straumann and Mikosch (2006), this means not only that the
limit recursion φ̃t is SE, but also, that its solution {x̃t}t∈Z has a logarithmic moment. The
logarithmic moment is obtained below.

Step 2, moment bounds for derivatives of ft: To establish the existence of moments for
the derivative processes, we need to verify that conditions (iii.b)–(v.b) of Proposition TA.8
hold. For the limit derivative processes, we can apply Proposition TA.8 directly to the
unperturbed system. For the derivative processes initialized at t = 1, we notice that the
moment bounds of Proposition TA.8 can be obtained with non-stationary innovations (see
Remark TA.10) as long conditions (iii.b)–(v.b) hold uniformly in t. Below, we focus on the
process generated by the unperturbed system.

Inspection of the formula for A
(1)
i,t (θ) reveals that A

(1)
i,t (θ) has min{nf , ns , nλs} bounded

moments and A
(2)
i,t (θ) has n?fθθ moments as defined in Proposition 3.5. Inspection of the

expression for Bt(θ) reveals that Bt(θ) has nfs moments.
Proposition 3.5 implies that condition (iii.b) in Proposition TA.8 holds with n?fθ moments

for the first derivative process and n?fθθ moments for the second derivative process, since, for
any n > 0, from the Cr-inequality in (Loève, 1977, p.157), there exists a 0 < c < ∞ such
that,

E sup
θ∈Θ
|φ(x̄, vt,θ)|n = E sup

θ∈Θ
|A(i)

i,t (θ) +Bt(θ)f̄
(i)|n ≤

c · E sup
θ∈Θ
|A(i)

i,t (θ)|n + c · |f̄ (i)|nE sup
θ∈Θ
|Bt(θ)|n <∞.
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Condition (iv.b) in Proposition TA.8 holds with both n = n?fθ and n = n?fθθ , since

E sup
θ∈Θ
|Bt(θ)|n ≤ E sup

θ∈Θ
rn1 (θ) ≤

≤ E sup
θ∈Θ

sup
(f,f ′)∈F×F :f 6=f ′

|α(s(f, yt;λ)− s(f ′, yt;λ)) + β(f − f ′)|n

|f − f ′|n

= E sup
θ∈Θ

sup
(f,f ′)∈F×F :f 6=f ′

|αṡy,t(f ∗;λ)(f − f ′) + β(f − f ′)|n

|f − f ′|n

= E sup
θ∈Θ

sup
f∗∈F

∣∣αṡy,t(f ∗;λ) + β
∣∣n < E sup

θ∈Θ
ρ
n?f

1 (θ) < 1,

because n?f > nf ≥ n?fθ ≥ n?fθθ Finally, condition (v.b) directly implies condition (v.b) in
Proposition TA.8. We thus obtain, by Proposition TA.8, n?fθ (n?fθθ) moments for the first
(second) derivative process, initialized at t = 1, and generated by the unperturbed system,
as well as, nfθ (nfθθ) moments for the limit process, for any nfθ < n?fθ (nfθθ < n?fθθ).

Proof of Theorem 4.3. The result follows immediately from the differentiability of p̄, ḡ, ḡ′,
the compactness of Θ, and the Weierstrass theorem. For a detailed proof, see Technical
Appendix B.

Proof of Theorem 4.6. Following the classical consistency argument found in for instance
White (1994, Theorem 3.4) or Gallant and White (1988, Theorem 3.3), we obtain θ̂T (f̄1)

a.s.→
θ0 from the uniform convergence of the criterion function and the identifiable uniqueness of
the maximizer θ0 ∈ Θ,

sup
θ:‖θ−θ0‖>ε

`∞(θ) < `∞(θ0) ∀ ε > 0.

Step 1, uniform convergence: Let `T (θ) denote the likelihood `T (θ, f̄1) with ft(θ, f̄1)
replaced by ft(θ). Also define `∞(θ) = E˜̀

t(θ) ∀ θ ∈ Θ, with ˜̀
t denoting the contribution of

the t-th observation to the likelihood function `T We have

supθ∈Θ |`T (θ, f̄1)− `∞(θ)| ≤
supθ∈Θ |`T (θ, f̄1)− `T (θ)|+ supθ∈Θ |`T (θ)− `∞(θ)|. (A.2)

The first term vanishes by application of Lemma 2.1 in Straumann and Mikosch (2006)
since ft(θ, f̄1) converges e.a.s. to ft(θ) and supθ∈Θ supf |∇`T (θ)| has a logarithmic moment
because n̄∇ > 0. The second term vanishes by Rao (1962); see Lemmas TA.1 and TA.2 form
Technical Appendix B, respectively.

Step 2, uniqueness: Identifiable uniqueness of θ0 ∈ Θ follows from, for example, White
(1994), by the assumed uniqueness, the compactness of Θ, and the continuity of the limit
E˜̀

t(θ) in θ ∈ Θ, which is implied by the continuity of `T in θ ∈ Θ ∀ T ∈ N and the uniform
convergence of the objective function proved earlier.
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Proof of Theorem 4.9. We index the true {ft} and the observed random sequence {yt} by
the parameter θ0, e.g. {yt(θ0)}, since under correct specification the observed data is a
subset of the realized path of a stochastic process {yt}t∈Z generated by a score-driven model
under θ0 ∈ Θ. As conditions (i) and (ii) of Proposition 3.1 hold immediately by Assumption
4.8 and condition (v) follows immediately from the i.i.d. exogenous nature of the sequence
{ut}, it follows by Proposition 3.1 that the true sequence {ft(θ0)} is SE and has at least nf
moments for any θ ∈ Θ. The SE nature and nf moments of {ft(θ0)} together with part (iii)
of Assumption 4.7 imply, in turn, that {yt(θ0)} is SE with ny = ng moments.

Step 1 (formulation and existence of the limit criterion Q∞(θ)): As shown in the proof
of Theorem 4.6, the limit criterion function Q∞(θ) is well-defined for every θ ∈ Θ by

Q∞(θ) = E˜̀
t(θ) = E log pyt|yt−1,yt−2,...

(
yt(θ0)

∣∣∣yt−1(θ0), yt−2(θ0), . . . ;θ
)
.

As a normalization, we subtract the constant Q∞(θ0) from Q∞(θ) and focus on showing
that

Q∞(θ)−Q∞(θ0) < 0 ∀ (θ0,θ) ∈ Θ×Θ : θ 6= θ0.

To do this, we use Lemma TA.3 from Technical Appendix B and rewrite

Q∞(θ)−Q∞(θ0) =∫ ∫ [∫
py(y|f, λ0) log

py(y|f̃ ;λ)

py(y|f ;λ0)
dy

]
pft,f̃t(f, f̃ ;θ0,θ) df df̃ , (A.3)

for all (θ0,θ) ∈ Θ × Θ : θ 6= θ0, where pft,f̃t(f, f̃ ;θ0,θ) is the bivariate pdf for the pair

(ft(θ0), f̃t(θ)). We note that the pdf pft,f̃t(f, f̃ ;θ0,θ) depends on both θ0 and θ, as for

instance the recursion defining f̃t(θ) depends on both θ and on yt(θ0), which in turn depends
on θ0. Next, we use Gibb’s inequality to show that this quantity is negative for θ 6= θ0.

Step 2 (use of Gibb’s inequality): Gibb’s inequality ensures that, for any given (f, f̃ , λ0, λ) ∈
F × F̃ × Λ× Λ, the inner integral in (A.3) satisfies∫

py(y|f, λ0) log
py(y|f̃ ;λ)

py(y|f ;λ0)
dy ≤ 0,

with strict equality holding if and only if py(y|f̃ ;λ) = py(y|f ;λ0) almost everywhere in Y
w.r.t. py(y|f, λ0). By Lemma TA.4 from Technical Appendix B there exists a set YFF̃ ⊆
Y × F × F̃ with positive probability mass and with orthogonal projections YF̃ ⊆ Y × F ,
FF̃ ⊆ F × F̃ , etc., for which (i)–(ii) hold if λ 6= λ0, and for which (i)–(iii) hold if λ = λ0,
where

(i) py(y|f, λ0) > 0 ∀ (y, f) ∈ YF ;

(ii) if (f̃ , λ) 6= (f, λ0), then py(y|f̃ ;λ) 6= py(y|f ;λ0) ∀ (y, f, f̃) ∈ YFF̃ ;

(iii) if λ = λ0 and (ω, α, β) 6= (ω0, α0, β0), then f 6= f̃ for every (f, f̃) ∈ FF̃ .

Hence, if λ 6= λ0, the strict Gibb’s inequality follows directly from (i) and (ii) and the inner
integral and the fact that YFF̃ has positive probability mass. If λ = λ0, property (iii) ensures
f 6= f̃ on a subset FF̃ with positive probability mass, and hence the strict inequality again
follows via (ii) and (i).
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Proof of Corollary 4.10. The desired result is obtained by showing (i) that under the main-
tained assumptions, {yt}t∈Z ≡ {yt(θ0)}t∈Z is an SE sequence satisfying E|yt(θ0)|ny <∞; (ii)
that θ0 ∈ Θ is the unique maximizer of `∞(θ, f̄1) on Θ; and then (iii) appealing to Theorem
4.6. The fact that {yt(θ0)}t∈Z is an SE sequence is obtained by applying Proposition 3.1
under Assumptions 4.7 and 4.8 to ensure that {ft(θ0, f̄1)}t∈N converges e.a.s. to an SE limit
{ft(θ0}t∈Z satisfying E|ft(θ0)|nf < ∞. This implies by continuity of g on F × U (implied
by ḡ ∈ C(2,0)(F̄ × Y) in Assumption 4.2) that {yt(θ0)}t∈Z is SE. Furthermore, Assumption
4.7 implies that E|yt(θ0)|ny < ∞ for ny = ng. Finally, the uniqueness of θ0 is obtained by
applying Theorem 4.9 under Assumptions 4.7 and 4.8.

Proof of Theorem 4.14. Following the classical proof of asymptotic normality found e.g. in
White (1994, Theorem 6.2), we obtain the desired result from:
(i) the strong consistency of θ̂T

a.s.→ θ0 ∈ int(Θ);
(ii) the a.s. twice continuous differentiability of `T (θ, f̄1) in θ ∈ Θ;
(iii) the asymptotic normality of the score

√
T`′T

(
θ0, f̄

0:1
1 )

d→ N(0,J (θ0)
)
, J (θ0) = E

(
˜̀′
t

(
θ0)˜̀′

t

(
θ0)>

)
; (A.4)

(iv) the uniform convergence of the likelihood’s second derivative,

sup
θ∈Θ

∥∥`′′T (θ, f̄
0:2
1 )− `′′∞(θ)

∥∥ a.s.→ 0; (A.5)

(v) the non-singularity of the limit `′′∞(θ) = E˜̀′′
t (θ) = I(θ).

Step 1 (consistency and differentiability): Consistency to an internal point of Θ follows
immediately by Theorem 4.6 and the additional assumption that θ0 ∈ int(Θ). The differ-
entiability of the likelihood function follows directly by Assumption 4.2 and the expressions
for the likelihood in Technical Appendix D.

Step 2, CLT: The asymptotic normality of the score `′T
(
θ0, f̄

0:1
1 ) in (A.4) follows by

applying a CLT to `′T
(
θ0),

√
T`′T

(
θ0)

d→ N(0,J (θ0)
)
, J (θ0) = lim

T→∞
T−1E

( T∑
t=1

˜̀′
t(θ0)

)( T∑
t=1

˜̀′
t(θ0)>

)
<∞, (A.6)

and by showing that the effect of initial conditions vanishes, i.e.,

√
T‖`′T

(
θ0, f̄

0:1
1 )− `′T

(
θ0)‖ a.s.→ 0 as T →∞. (A.7)

and by appealing to Theorem 18.10[iv] in van der Vaart (2000). We note that the CLT for SE
martingale difference sequences (mds) in Billingsley (1961) cannot be used to obtain (A.6)
as we allow for model mis-specification, and hence the mds property need not hold. Instead,
we obtain (A.6) by applying the CLT for SE NED sequences in Davidson (1992, 1993) (see
also Davidson, 1994; Pötscher and Prucha, 1997). Lemma TA.14 in Technical Appendix E
ensures that the score `′T

(
θ0) is a sample average of a sequence that is SE and NED of size

−1 on a strongly mixing sequence. In addition, the existence of J (θ0) follows from Lemma
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TA.12 and the assumption that n`′ ≥ 2 in Assumption 4.11. Finally, the a.s. convergence in
(A.7) follows directly by Lemma TA.15 in Technical Appendix E.

Step 3, uniform convergence of `′′: The proof of the uniform convergence in (iv) is similar
to that of Theorem 4.3. We have

sup
θ∈Θ
‖`′′T (θ, f̄

0:2
1 )− `′′∞(θ)‖ ≤ sup

θ∈Θ
‖`′′T (θ, f̄

0:2
1 )− `′′T (θ)‖+ sup

θ∈Θ
‖`′′T (θ)− `′′∞(θ)‖. (A.8)

The first term on the right-hand side of (A.8) vanishes a.s. by application of Lemma 2.1 in

Straumann and Mikosch (2006) since supθ∈Θ

∥∥(yt,f
(0:2)
t (θ, f̄

0:2
1 ))− (yt,f

(0:2)
t (θ))

∥∥ e.a.s.→ 0 and
supθ∈Θ supf ‖`′′T (θ)| has a logarithmic moment; see Lemma TA.16 in Technical Appendix E.

The second term in (A.8) converges under a bound E supθ∈Θ ‖˜̀′′t (θ)‖ <∞ by the SE na-

ture of {`′′T}t∈Z. The latter is implied by continuity of `′′ on the SE sequence {(yt,f (0:2)
t (·))}t∈Z

and Proposition 4.3 in Krengel (1985), where SE of {(yt,f (0:2)
t (·))}t∈Z follows from Propo-

sition 3.3 under the maintained assumptions. The moment bound E supθ∈Θ ‖˜̀′′t (θ)‖ < ∞
follows from n`′′ ≥ 1 in Assumption 4.11 and Lemma TA.13 in Technical Appendix E.

Finally, the non-singularity of the limit `′′∞(θ) = E˜̀′′
t (θ) = I(θ) in (v) is implied by the

uniqueness of θ0 as a maximum of `′′∞(θ) in Θ and the usual second derivative test calculus
theorem.

Proof of Theorem 4.15. The desired result is obtained by applying Corollary 4.10 to guaran-
tee that under the maintained assumptions {yt}t∈Z ≡ {yt(θ0)}t∈Z is an SE sequence satisfying
E|yt(θ0)|ny < ∞ for ny ≥ 0, and that θ0 ∈ Θ is the unique maximizer of `∞(θ, f̄1) on Θ.
Then the statement follows along the same lines as the proof of Theorem 4.14.
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ONLINE APPENDICES

B Proofs of Remaining Results in the Main Paper

Proof of Theorem 4.3. In this theorem, ft denotes the initialized ft(θ, f̄1). Assumption 4.2 implies
that `T (θ, f̄1) is a.s. continuous (a.s.c.) in θ ∈ Θ through continuity of each ˜̀

t(θ, f̄1) = `(ft, y,θ),
ensured in turn by the differentiability of p̄, ḡ, ḡ′, the implied a.s.c. of s(ft, y;λ) = ∂p̄t/∂f in (ft;λ)
and the resulting continuity of ft in θ as a composition of t continuous maps. The compactness of
Θ implies by Weierstrass’ theorem that the arg max set is non-empty a.s. and hence that θ̂T exists
a.s. ∀ T ∈ N. Similarly, Assumption 4.2 implies that `T (θ, f̄1) = `

(
{yt}Tt=1, {ft}Tt=1,θ

)
is continuous

in yt ∀ θ ∈ Θ and hence measurable w.r.t. a Borel σ-algebra. The measurability of θ̂T follows from
White (1994, Theorem 2.11) or Gallant and White (1988, Lemma 2.1, Theorem 2.2).

The following two lemmas support the proof of Theorem 4.6.

Lemma TA.1. Under the conditions of Theorem 4.6, supθ∈Θ |`T (θ, f̄1)− `T (θ)| a.s.→ 0.

Proof. The expression for the likelihood in (2.9) and the differentiability conditions in Assump-
tion 4.2 ensure that ˜̀

t(·, f̄1) = `(ft(·, f̄1), yt, ·) is continuous in (ft(·, f̄1), yt). All the assumptions of
Proposition 3.3 relevant for the process {ft} hold as well. To see this, note that

• the compactness of Θ is imposed in Assumption 4.1;

• the moment bound E|yt|ny <∞ is ensured in the statement of Theorem 4.6;

• the differentiability s ∈ C(2,0,2)(F ×Y×Λ) is implied by ḡ ∈ C(2,0)(F ×Y), p̄ ∈ C(2,2)(Ũ ×Λ),
and S ∈ C(2,2)(F × Λ));

• and finally, conditions (i)-(v) in Proposition 3.3 are ensured by Assumption 4.4. Note that
under the alternative set of conditions proposed in Assumption 4.4, we can use Remark 3.4
and drop conditions (iv) (v) in Proposition 3.3.

As a result, there exists a unique SE sequence {ft(·)}t∈Z such that supθ∈Θ |ft(θ, f̄1) − ft(θ)| a.s.→ 0
∀f̄1 ∈ F , and supt E supθ∈Θ |ft(θ, f̄1)|nf < ∞ and E supθ∈Θ |ft(θ)|nf < ∞ with nf and ny such
that n` ≥ 1 from Assumption 4.5. Hence, the result follows immediately by an application of the
continuous mapping theorem for ` : C(Θ,F)× Y ×Θ→ R.

Lemma TA.2. Under the conditions of Theorem 4.6, supθ∈Θ |`T (θ)− `∞(θ)| a.s.→ 0.

Proof. We apply the ergodic theorem for separable Banach spaces of Rao (1962) (see also Strau-
mann and Mikosch (2006, Theorem 2.7)) to the sequence {`T (·)} with elements taking values
in C(Θ), so that supθ∈Θ |`T (θ) − `∞(θ)| a.s.→ 0, where `∞(θ) = E˜̀

t(θ) ∀ θ ∈ Θ. The ULLN

supθ∈Θ |`T (θ)− E˜̀
t(θ)| a.s.→ 0 as T →∞ follows, under a moment bound E supθ∈Θ |˜̀t(θ)| <∞, by

the SE nature of {`T }t∈Z, which is implied by continuity of ` on the SE sequence {(ft(·), yt)}t∈Z
and Proposition 4.3 in Krengel (1985). Moment bound E supθ∈Θ |˜̀t(θ)| < ∞ is ensured by
supθ∈Θ E|ft(θ)|nf <∞ ∀ θ ∈ Θ, E|yt|ny <∞, and the fact that Assumption 4.5 implies n` ≥ 1. We
stress that Assumption 4.5 can be checked via low-level conditions on ny and nf via the moment
preserving maps as laid out in Technical Appendix F.
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The following lemmas support the proof of Theorem 4.9.

Lemma TA.3. Under the conditions of Theorem 4.9,

Q∞(θ)−Q∞(θ0) =

∫ ∫ [∫
py(y|f, λ0) log

py(y|f̃ ;λ)

py(y|f ;λ0)
dy

]
dPft,f̃t(f, f̃ ;θ0,θ),

for all (θ0,θ) ∈ Θ×Θ : θ 6= θ0.

Proof. Using the observation-driven dynamic structure of the score-driven model, we can substitute
the conditioning on {ys(θ0)}s≤t−1 by the conditioning on ft(θ), where ft(θ) is generated through
the generalized autoregressive score recursion. Under the present conditions, the (non-initialized)
limit process

{
ft(θ)

}
t∈Z is a measurable function of {ys(θ0)}s≤t−1, and hence SE by Krengel’s

theorem for any θ ∈ Θ; see also SM06.By substituting the conditioning, we obtain

Q∞(θ)−Q∞(θ0) = E log py

(
yt(θ0)

∣∣∣ft(θ);λ
)

− E log py

(
yt(θ0)

∣∣∣ft(θ0);λ0

)
=

∫ ∫ ∫
log

py(y|f̃ ;λ)

py(y|f ;λ0)
dPyt,ft,f̃t(y, f, f̃ ;θ0,θ),

(B.1)

∀ (θ0,θ) ∈ Θ × Θ : θ 6= θ0, with Pyt,ft,f̃t(y, f, f̃ ;θ0,θ) denoting the cdf of (yt(θ0), ft(θ0), f̃t(θ)).

Define the bivariate cdf Pft,f̃t(f, f̃ ;θ0,θ) for the pair (ft(θ0), f̃t(θ)). Note that this bivariate cdf

depends on θ through the recursion defining f̃t(θ), and on θ0 through yt−1(θ0) and ft(θ0). Also
note that for any (θ0,θ) ∈ Θ×Θ this cdf does not depend on the initialization f̄1 because, under
the present conditions, the limit criterion is a function of the unique limit SE process

{
ft(θ)

}
t∈Z,

and not of the initialized process
{
ft(θ, f̄1)

}
t∈N; see the proof of Theorem 4.6.

We re-write the normalized limit criterion function Q∞(θ) − Q∞(θ0) by factorizing the joint
distribution Pyt,ft,f̃t(y, f, f̃ ;θ0,θ) as

Pyt,ft,f̃t(y, f, f̃ ;θ0,θ) = Pyt|ft,f̃t(y|f, f̃ ;θ0,θ) · Pft,f̃t(f, f̃ ;θ0,θ)

= Pyt|ft(y|f, λ0) · Pft,f̃t(f, f̃ ;θ0,θ),

where the second equality holds because under the axiom of correct specification, and conditional
on ft(θ0), observed data yt(θ0) does not depend on f̃t(θ) ∀ (θ0,θ) ∈ Θ×Θ : θ 6= θ0. We also note
that the conditional distribution Pyt|ft(y|f, λ0) has a density py(y|f, λ0) defined in equation (2.7).
The existence of this density follows because g(f, ·) is a diffeomorphism g(f, ·) ∈ D(U) for every
f ∈ F , i.e., it is continuously differentiable and uniformly invertible with differentiable inverse.

We can now re-write Q∞(θ)−Q∞(θ0) as

Q∞(θ)−Q∞(θ0) =∫ ∫ ∫
log

py(y|f̃ ;λ)

py(y|f ;λ0)
dPyt|ft(y|f, λ0) · dPft,f̃t(f, f̃ ;θ0,θ) =∫ ∫ [∫

log
py(y|f̃ ;λ)

py(y|f ;λ0)
dPyt|ft(y|f, λ0)

]
dPft,f̃t(f, f̃ ;θ0,θ) =

∫ ∫ [∫
py(y|f, λ0) log

py(y|f̃ ;λ)

py(y|f ;λ0)
dy

]
dPft,f̃t(f, f̃ ;θ0,θ),

for all (θ0,θ) ∈ Θ×Θ : θ 6= θ0.
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Lemma TA.4. Under the conditions of Theorem 4.9, for every θ 6= θ0 there exists a set YFF̃ ⊆
Y×F×F̃ with positive probability mass and with orthogonal projections YF̃ ⊆ Y×F , FF̃ ⊆ F×F̃ ,
etc., for which (i)–(ii) hold if λ 6= λ0, and for which (i)–(iii) hold if λ = λ0, where

(i) py(y|f, λ0) > 0 ∀ (y, f) ∈ YF ;

(ii) if (f̃ , λ) 6= (f, λ0), then py(y|f̃ ;λ) 6= py(y|f ;λ0) ∀ (y, f, f̃) ∈ YFF̃ ;

(iii) if λ = λ0 and (ω, α, β) 6= (ω0, α0, β0), then f 6= f̃ for every (f, f̃) ∈ FF̃ .

Proof.
Part (i): The first result follows by noting that under the correct specification axiom, the conditional
density py(y|f, λ0) is implicitly defined by yt(θ0) = g(f, ut), ut ∼ pu(ut;λ0). Note that g(f, ·) is a
diffeomorphism g(f, ·) ∈ D(U) for every f ∈ Fg and hence an open map, i.e., g−1(f, Y ) ∈ T (Ug)
for every Y ∈ T (Yg) where T (A) denotes a topology on the set A. Therefore, since pu(u;λ) >
0 ∀ (u, λ) ∈ U × Λ for some open set U ⊂ U , which exists by the assumption that ut has a density
with respect to Lebesgue measure. As a result, we obtain that there exists an open set Y ∈ T (Yg)
such that py(y|f, λ0) > 0 ∀ (y, f) ∈ Y ×Fg, namely the image of any open set U ⊆ U under g(f, ·).
Next, YFF̃ can be constructed by taking the union of Y over FF̃ for any FF̃ of positive measure for
λ 6= λ0, and for a set FF̃ satisfying (iii) below if λ = λ0.

Part (ii): The second result is implied directly by the assumption that py(y|f, λ) = py(y|f ′, λ′)
almost everywhere in Y for some open set Y ⊂ Y if and only if f = f ′ and λ = λ′. The existence
of an open set Y was already argued under (i) above.

Part (iii): The assumptions that α 6= 0 ∀θ ∈ Θ (including α0 6= 0); and that ∂s(f, y;λ)/∂y 6= 0
almost everywhere in Ys for every (f, λ) ∈ F × Λ; together with the fact that ut has a density,
together ensure that both F and F̃ can be chosen as open subsets, i.e., to have multiple different
values.

The result is now obtained by a proof by contradiction: if λ = λ0 ∧ (ω, α, β) 6= (ω0, α0, β0), but
there is no set YFF̃ with positive probability mass satisfying f 6= f̃ ∀ (f, f̃) ∈ FF̃ , then it must be
that (ω, α, β) = (ω0, α0, β0), which is a contradiction.

The proof goes as follows. Let (θ0,θ) ∈ Θ × Θ be a pair satisfying λ = λ0 ∧ (ω, α, β) 6=
(ω0, α0, β0). If there is no YFF̃ of positive probability mass with f 6= f̃ for all (f, f̃) ∈ FF̃ , then
it must be that f = f except for a set of zero probability. This implies that f̃t(θ)

a.s.
= ft(θ0) for

arbitrary t. Putting this into the recurrence equation for both ft(θ0) and f̃t(θ) and subtracting
the two, we obtain

0 = φ(ft(θ), ye,θ)− φ(ft(θ), ye,θ0) (B.2)

= (ω − ω0) + (β − β0)ft(θ0) + (α− α0)s(ft(θ0), yt(θ0), λ0).

Note that s(ft(θ0), yt(θ0), λ0) is not constant in yt(θ0) ∈ Y where Y is an open set, because
α 6= 0 ∀ θ ∈ Θ and ∂s(f, y, λ)/∂y 6= 0 for every λ ∈ Λ and almost every (y, f) ∈ Ys × Fs. As a
result, we must have α = α0 for (B.2) to hold.

Given α = α0 ∧ λ = λ0, and given F can be chosen as an open set due to the fact that ut has a
density and α0 > 0, it follows that β = β0. Given the result for α and β, the result ω = ω0 follows
directly from (B.2), which establishes the contradiction and the result.

C Derivative Expressions for the Main Example

In this part, we provide some of the technical details of the main example of the paper, including
the detailed expressions for of the required derivatives.
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Let {ut}t∈N be i.i.d. Student’s t distributed noise with λ degrees of freedom. Consider the model

yt = f
1/2
t ut as in Creal et al. (2011, 2013). Following Creal et al. (2011, 2013), we scale the score

by (a time-invariant multiple of) the conditional Fisher information, which in this case amounts to
setting S(ft;λ) = 2f2

t .
The following set of derivatives is straightforward (though tedious) to compute, either by hand

or by a symbolic computation package such as Maple or Mathematica.

p̄t = log
Γ
(
λ+1

2

)
Γ
(
λ
2

)√
πλ
− 1

2(λ+ 1) log

(
1 +

y2
t

λft

)
,

log ḡ′t = −1
2 log ft

∇t =
(1 + λ−1)y2

t /(2f
2
t )

1 + y2
t /(λft)

− 1
2f
−1
t ,

st =
(1 + λ−1)y2

t

1 + y2
t /(λft)

− ft,

∂st/∂ft =
(1 + λ−1)y4

t /(λf
2
t )(

1 + y2
t /(λft)

)2 − 1,

su,t =

(
(1 + λ−1)u2

t

1 + λ−1u2
t

− 1

)
ft,

∂su,t/∂ft =
(1 + λ−1)u2

t

1 + λ−1u2
t

− 1.

∂st/∂λ =
y2
t(

λ+ y2
t /ft

) − (1 + λ)y2
t(

λ+ y2
t /ft

)2 =

(
(y2
t /ft)

2 − (y2
t /ft)

)(
λ+ y2

t /ft
)2 · ft,

∂2st/∂λ
2 =
−2
(
(y2
t /ft)

2 − (y2
t /ft)

)(
λ+ y2

t /ft
)3 · ft,

∂2st/∂λ∂ft =
(1 + λ)(y4

t /f
2
t )(

λ+ y2
t /ft

)2 =
(y4
t /f

2
t )(

λ+ y2
t /ft

)2 − 2(1 + λ)(y4
t /f

2
t )(

λ+ y2
t /ft

)3 ,

∂2st/∂f
2
t =
−2(1 + λ−1)(y4

t /f
2
t )(

1 + y2
t /(λft)

)3 · 1

λft
,

∂3st/∂λ
3 =

6
(
(y2
t /ft)

2 − (y2
t /ft)

)(
λ+ y2

t /ft
)4 · ft,

∂3st/∂λ
2∂ft =

2(y2
t /ft)

2
(
λ+ 3− 2(y2

t /ft)
)(

λ+ y2
t /ft

)4 ,

∂3st/∂λ∂f
2
t =

2(y2
t /ft)

2
(
λ2 + 2λ− (1 + 2λ)(y2

t /ft)
)(

λ+ y2
t /ft

)4 · 1

ft
,

∂3st/∂f
3
t =

6(1 + λ−1)y4
t /(λf

2
t )(

1 + y2
t /(λft)

)4 · 1

f2
t

.

We obtain directly that

• |st| ≤ supyt |st| < c1 · |ft| for some constant c1, and thus ns ≤ nf .

• supyt |∂st/∂λ| ≤ c1 · |ft| and thus nλs ≤ nf .

• supyt |∂st/∂ft| ≤ c1 and thus n̄fs →∞.
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• supyt |∂
2st/∂ft∂λ| ≤ c1 and thus n̄fλs →∞.

• supyt |∂
2st/∂f

2
t | ≤ c1f

−1
t ≤ c1/ω and thus n̄ffs →∞.

• supyt |∂
2st/∂λ

2| ≤ c1ft and thus nλλs ≤ nf .

• supyt |∂
3st/∂f

3
t | ≤ c1f

−2
t ≤ c1/ω

2 and thus n̄fffs →∞.

• supyt |∂
3st/∂λ

2∂ft| ≤ c1 and thus n̄λλfs →∞.

• supyt |∂
3st/∂λ∂f

2
t | ≤ c1f

−1
t ≤ c1/ω and thus n̄λffs →∞.

• | log ḡ′t| ≤ c1 + c2|ft|δ for arbitrarily small positive δ given ft > ω, and thus nlog ḡ′ ≤ nf/δ.

• |p̄t| < c1+c2 log |1+y2
t /(λω)| ≤ c3+c4|yt|δ for arbitrarily small positive δ, and thus np̄ ≤ ny/δ.

• |∇t| < supyt |∇t| ≤ c1f
−1
t + 1

2f
−1
t ≤ c2/ω, and thus n̄∇ →∞.

For asymptotic normality, a further set of derivatives and moments needs to be established. We
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have

p̄λt =
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From this, we obtain the following.

• |p̄λt | ≤ c1 + c2 log(1 + yt/(λω)), such that nλp̄ ≤ ny/δ for arbitrarily small positive δ.

• |p̄λλt | ≤ c1, such that nλλp̄ →∞.

• |p̄λft | ≤ c1f
−1
t ≤ c1/ω, such that nλfp̄ →∞.

• |p̄λλft | ≤ c1f
−1
t ≤ c1/ω, such that n̄λλfp̄ →∞.

• |p̄λfft | ≤ c1f
−2
t ≤ c1/ω

−2, such that n̄λffp̄ →∞.

• |∂∇/∂f | ≤ c1f
−2
t ≤ c1/ω

2, such that n̄f∇ →∞.

• |∂∇/∂λ| ≤ c1f
−1
t ≤ c1/ω, such that n̄λ∇ →∞.
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• |∂2∇/∂f2| ≤ c1f
−3
t ≤ c1/ω

3, such that n̄ff∇ →∞.

• |∂2∇/∂f∂λ| ≤ c1f
−2
t ≤ c1/ω

2, such that n̄λf∇ →∞.

• |∂2∇/∂λ2| ≤ c1f
−1
t ≤ c1/ω, such that n̄λλ∇ →∞.

D Derivatives of the Time-Varying Parameter

D.1 Explicit expressions for the likelihood and its derivatives

We assume that λ ∈ R. Similar derivations hold for vector valued λ ∈ Rdλ . The likelihood function
of the score-driven model is given by

`T (θ, f̄1) =
1

T

T∑
t=1

˜̀
t(θ, f̄1) =

1

T

T∑
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log pu(ḡt;λ) + log
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=
1

T

T∑
t=1

p̄t + log ḡ′t.

Note that we have defined the score ∇t as ∂(p̄t+log ḡ′t)/ft. The derivative of the likelihood is given
by
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and f
(0:i)
t denoting ft and its first i derivatives with respect to θ. The second derivative of the

log-likelihood function is given by
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D.2 Expressions for the derivative processes of ft

We have θ = (ω, α, β, λ) ∈ Θ and write ∂s(ft, vt;λ)/∂θi as the derivative of the scaled score w.r.t. λ
only, not accounting for the dependence of ft on θ. Differentiating the transition equation of the
score-driven model, we obtain

∂ft+1

∂θi
=

∂ω

∂θi
+
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, (D.4)

= A
(1)
i,t +

∂ft
∂θi

Bt,

with
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For the second derivative process, we obtain a recursion
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E Further Technical Lemmas and Proofs

This appendix contains a number of more technical results, some of which are more generic than
the results in the main paper. These technical results are used to prove the propositions from the
main paper.

We start with two more generic propositions to prove Propositions 3.1 and 3.3 from the main
text. The propositions below encompass the score-driven model and are written for the case of
general random sequences {xt(θ, x̄)}t∈N taking values in X ⊆ R, where xt(θ, x̄) is generated by a
stochastic recurrence equation of the form

xt+1(θ, x̄) = φ
(
xt(θ, x̄), vt,θ

)
, (E.1)

where x̄ ∈ X is a fixed initialization value at t = 1, φ : X × V ×Θ→ X is a continuous map, X is
a convex set X ⊆ X ∗ ⊆ R, and θ ∈ Θ is a static parameter vector. For the results that follow we
define the supremum

rkt (θ) := sup
(x,x′)∈X ∗×X ∗:x 6=x′

|φ(x, vt,θ)− φ(x′, vt,θ)|k

|x− x′|k
, k ≥ 0.

Moreover, for random sequences {x1,t}t∈Z and {x2,t}t∈Z, we say that x1,t converges exponentially

fast almost surely (e.a.s.) to x2,t if there exists a constant c > 1 such that ct ‖x1,t − x2,t‖
a.s.→ 0; see

also Straumann and Mikosch (2006) (hereafter referred to as SM06).

Proposition TA.5. For every θ ∈ Θ, let {vt}t∈Z be a strictly stationary and ergodic (SE) sequence
and assume ∃ x̄ ∈ X such that

(i) E log+ |φ(x̄, v1(θ),θ)− x̄| <∞;

(ii) E log r1
1(θ) < 0.

Then {xt(θ, x̄)}t∈N converges e.a.s. to a unique SE solution {xt(θ)}t∈Z for every θ ∈ Θ as t→∞.
If furthermore, for every θ ∈ Θ ∃ n > 0 such that

(iii.a) ‖φ(x̄, v1(θ),θ)‖n <∞;
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(iv.a) Ern1 (θ) < 1;

(v.a) xt(θ, x̄) ⊥ rnt (θ) ∀ (t, x̄) ∈ N×X ;

then supt E|xt(θ, x̄)|n <∞ and E|xt(θ)|n−δ <∞ ∀ θ ∈ Θ and arbitrarily small δ > 0.
Alternatively, if instead of (iii.a)-(v.a) we have for every θ ∈ Θ

(iii.b) |φ̄(x̄,θ)| := supv∈V |φ(x̄, v,θ)| <∞;

(iv.b) sup(x,x′)∈X×X :x 6=x′ |φ̄(x,θ)− φ̄(x′,θ)|/|x− x′| < 1;

then supt E|xt(θ, x̄)|n < ∞ and E|xt(θ)|n−δ < ∞ ∀ θ ∈ Θ and every n > 0 and arbitrarily small
δ > 0.

Proof of Proposition TA.5. Step 1, SE: The assumption that {vt}t∈Z is SE ∀ θ ∈ Θ together with
the continuity of φ on X × V ×Θ (and resulting measurability w.r.t. the Borel σ-algebra) implies
that {φt := φ(·, vt,θ)}t∈Z is SE for every θ ∈ Θ by Krengel (1985, Proposition 4.3). Condition
C1 in Bougerol (1993, Theorem 3.1) is immediately implied by assumption (i) for every θ ∈ Θ.
Condition C2 in Bougerol (1993, Theorem 3.1) is implied, for every θ ∈ Θ, by condition (ii) since
for every θ ∈ Θ,

E log sup
(x,x′)∈X×X :x 6=x′

|φ(x, vt,θ)− φ(x′, vt,θ)|
|x− x′|

= E log r1
t (θ) < 0.

Also due to the stationarity of {vt} we have E log r1
t (θ) = E log r1

1(θ). As a result, for every θ ∈ Θ,
{xt(θ, x̄)}t∈N converges to an SE solution {xt(vt−1

θ ,θ)}t∈Z. Uniqueness and e.a.s. convergence are
obtained by Straumann and Mikosch (2006, Theorem 2.8).

Step 2, moment bounds: For n ≥ 1 the moment bounds are obtained by first noting that for
every θ ∈ Θ we have supt E|xt(θ, x̄)|n <∞ if and only if ‖xt(θ, x̄)‖n <∞. Let x̄θ = φ(x̄, v̄,θ) for
some v̄ ∈ V, then for every θ ∈ Θ we have

sup
t
‖xt(θ, x̄)− x̄θ‖n (E.2)

= sup
t
‖φ(xt−1(θ, x̄), vt−1(θ),θ)− φ(x̄, v̄,θ)‖n

≤ sup
t
‖φ(xt−1(θ, x̄), vt−1(θ),θ)− φ(x̄, vt−1(θ),θ)‖n

+ sup
t
‖φ(x̄, vt−1(θ),θ)‖n + |φ(x̄, v̄,θ)|

≤ sup
t

(
E|xt−1(θ, x̄)− x̄|n

×|φ(xt−1(θ, x̄), vt−1(θ),θ)− φ(x̄, vt−1(θ),θ)|n

|xt−1(θ, x̄)− x̄|n
)1/n

+ sup
t
‖φ(x̄, vt−1(θ),θ)‖n + |x̄θ|

≤ sup
t

(
E|xt−1(θ, x̄)− x̄θ + x̄θ − x̄|n × rnt (θ)

)1/n

+ sup
t
‖φ(x̄, vt−1(θ),θ)‖n + |x̄θ|

≤ sup
t
‖xt−1(θ, x̄)− x̄θ‖n ·

(
Ernt (θ)

)1/n
(E.3)

+ sup
t
‖φ(x̄, vt−1(θ),θ)‖n + |x̄θ − x̄|

(
Ernt (θ)

)1/n
+ |x̄θ|

≤ c̄n · sup
t
‖xt−1(θ, x̄)− x̄θ‖n + ‖φ(x̄, v1(θ),θ)‖n + (1 + c̄n)|x̄θ|+ c̄n |x̄|, (E.4)
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where c̄n := (Ernt (θ))1/n = (Ern1 (θ))1/n < 1 by assumption (iv.a) and the stationarity of {vt}. The
step to (E.3) can be made due to the independence assumed in condition (v.a), and the step to
(E.4) again uses the stationarity of {vt}. We can now unfold the recursion (E.2)–(E.4) as

sup
t
‖xt(θ, x̄)− x̄θ‖n ≤

(c̄n)t−1 |x̄− x̄θ|+
t−2∑
j=0

(c̄n)j
(
‖φ(x̄, v1(θ),θ)‖n + (1 + c̄n)|x̄θ|+ c̄n |x̄|

)
≤

|x̄− x̄θ|+
t−2∑
j=0

(c̄n)j
(
‖φ(x̄, v1(θ),θ)‖n + (1 + c̄n)|x̄θ|+ c̄n |x̄|

)
≤

|x̄− x̄θ|+
‖φ(x̄, v1(θ),θ)‖n + 2|x̄θ|+ |x̄|

1− c̄n
<∞ ∀ θ ∈ Θ.

The same result can be obtained using conditions (iii.b) and (iv.b) by noting that

sup
t
‖xt(θ, x̄)‖n ≤ sup

t
‖φ̄(xt−1(θ, x̄),θ)‖n

≤ sup
t
‖φ̄(xt−1(θ, x̄),θ)− φ̄(x̄,θ)‖n + ‖φ̄(x̄,θ)‖n

< sup
t
‖xt−1(θ, x̄)− x̄‖n + |φ̄(x̄,θ)|

< sup
t
‖xt−1(θ, x̄)‖n + |x̄|+ |φ̄(x̄,θ)|.

As a result, unfolding the recursion renders supt ‖xt(θ, x̄)‖n <∞ by the same argument as above.
For 0 < n < 1 the function ‖ · ‖n is only a pseudo-norm as it is not sub-additive. However, the
proof still follows by working instead with the metric ‖ · ‖∗n := (‖ · ‖n)n which is sub-additive; see
the Cn inequality in Loève (1977).

The moments of the limit process xt(θ) can finally be obtained by noting that the limit of a
sequence satisfying ‖xt(θ, x̄)‖m <∞ ∀ t, that converges almost surely |xt(θ, x̄)− xt(θ)| a.s.→ 0, and
is uniformly integrable limM→∞ supt E[‖xt(θ, x̄)‖m · 1(|xt(θ,x̄)|>M)] = 0 satisfies, by Theorem 2.17
in Jiang (2010), E‖xt(θ)‖m < ∞. We already proved finite moments for the initialized sequence
xt(θ, x̄), and the almost sure convergence is implied by the exponentially fast almost sure conver-
gence. The uniform integrability condition for m = n − δ for arbitrarily small δ > 0 follows by
adapting Theorem 12.10 in Davidson (1994), since

∞ >
(

sup
t
‖xt(θ, x̄)‖n

)n
= sup

t
E [xt(θ, x̄)]n

≥ sup
t

E
[
xt(θ, x̄)n1(|xt(θ,x̄)|>M)

]
≥ sup

t
E
[
xt(θ, x̄)m1(|xt(θ,x̄)|>M)xt(θ, x̄)δ1(|xt(θ,x̄)|>M)

]
≥M δ sup

t
E
[
xt(θ, x̄)m1(|xt(θ,x̄)|>M)

]
.

Hence, given the boundedness of the left-hand side and lettingM →∞, we obtain for the right-hand
side that limM→∞ supt E[xt(θ, x̄)m1(|xt(θ,x̄)|>M)] = 0, which establishes the result.

Proposition TA.5 not only establishes the convergence to a unique SE solution, but also estab-
lishes the existence of unconditional moments. The latter property is key to proving the consistency
and asymptotic normality of the MLE in Section 4 of the paper. To establish convergence to an
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SE solution, condition (ii) requires the stochastic recurrence equation to be contracting on aver-
age. For the subsequent existence of moments, the contraction condition (iv.a), together with the
moment bound in (iii.a), and the independence assumption (v.a), are sufficient. Alternatively, if
by condition (iii.b) φ is uniformly bounded in v, then a deterministic contraction condition (iv.b)
only needs to hold on the uniform bound. In that case, we also obtain the stronger result that
the moment bound holds for any n > 0. Note that conditions (i)–(ii) are implied by (iii.a)–(v.a).
Remark TA.6 shows that condition (v.a) is automatically satisfied if vt is an innovation sequence.

Remark TA.6. If vt ⊥ xt(θ, x̄) then (v.a) in Proposition TA.5 holds.

The condition that vt is an innovation sequence is typically more intuitive. We keep the in-
dependence assumption (v.a) in Proposition TA.5, however, because in some of our models the
supremum Lipschitz constant is independent of the random vt. In such cases, the independence is
easily satisfied, even in cases where vt is not an innovation sequence.

Following SM06, we also note that conditions (i) and (ii) in Proposition TA.5 provide us with
an almost sure representation of xt(θ, x̄) as a measurable function of {vs(θ)}s≤t−1. Let ◦ denote
the composition of maps, e.g.,

φ
(
·, vt−1(θ),θ

)
◦ φ
(
·, vt−2(θ),θ

)
= φ

(
φ
(
·, vt−2(θ),θ

)
, vt−1(θ) , θ

)
.

We have the following Lemma.

Remark TA.7. Let conditions (i) and (ii) of Proposition TA.5 hold. Then xt(θ) admits the
following a.s. representation for every θ ∈ Θ

xt(θ) = lim
r→∞

φ
(
·, vt−1(θ),θ

)
◦ φ
(
·, vt−2(θ),θ

)
◦ ... ◦ φ

(
·, vt−r(θ),θ

)
,

and xt(θ) is measurable with respect to the σ-algebra generated by {vs(θ)}s≤t−1.

Proposition TA.8 deals with sequences {xt(θ, x̄)}t∈N that, for a given initialization x̄ ∈ X , are
generated by

xt+1(θ, x̄) = φ
(
xt(θ, x̄), vt,θ

)
∀ (θ, t) ∈ Θ× N,

where φ : X × V ×Θ→ X is continuous. We have the following proposition.

Proposition TA.8. Let Θ be compact, {vt}t∈Z be stationary and ergodic (SE) and assume there
exists an x̄ ∈ X , such that

(i) E log+ supθ∈Θ |φ(x̄, vt,θ)− x̄| <∞;

(ii) E log supθ∈Θ r
1
1(θ) < 0.

Then {xt(θ, x̄)}t∈N converges e.a.s. to a unique SE solution {xt(θ)}t∈Z uniformly on Θ as t→∞.
If furthermore ∃ n > 0 such that either

(iii.a) ‖φ(x̄, vt, ·)‖Θn <∞;

(iv.a) supθ∈Θ |φ(x, v,θ)− φ(x′, v,θ)| < |x− x′| ∀ (x, x′, v) ∈ X × X × V;

or

(iii.b) ‖φ(x̄, vt, ·)‖Θn <∞;

(iv.b) E supθ∈Θ r
n
1 (θ) < 1;
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(v.b)
(

supθ∈Θ xt(θ, x̄)
)
⊥
(

supθ∈Θ r
n
t (θ)

)
∀ (t, x̄) ∈ N×X ;

then supt E supθ∈Θ |xt(θ, x̄)|n <∞ and E supθ∈Θ |xt(θ)|n−δ <∞ and arbitrarily small δ > 0..
If instead of (iii.a)-(iv.a) or (iii.b)-(v.b) we have

(iii.c) supθ∈Θ supv∈V |φ(x̄, v,θ)| = |φ̄(x̄,θ)| <∞;

(iv.c) supθ∈Θ sup(x,x′)∈X ∗×X ∗:x 6=x′ |φ̄(x,θ)− φ̄(x′,θ)| < |x− x′|;

then supt E supθ∈Θ |xt(θ, x̄)|n < ∞ and E supθ∈Θ |xt(θ)|n−δ < ∞ for every n > 0 and arbitrarily
small δ > 0.

The contraction condition (iv.a) in Proposition TA.8 is stricter than condition (iv.b). Rather
than only requiring the contraction property to hold in expectation, condition (iv.a) holds for all
v ∈ V.

Again, we note that conditions (i) and (ii) in Proposition TA.8 provide us with an almost sure
representation of xt(θ) in terms of .

Remark TA.9. Let conditions (i) and (ii) of Proposition TA.8 hold. Then xt(θ) admits the
following a.s. representation for every θ ∈ Θ

xt(θ) = lim
r→∞

φ
(
·, vt−1,θ

)
◦ φ
(
·, vt−2,θ

)
◦ ... ◦ φ

(
·, vt−r,θ

)
and xt(θ) is measurable with respect to the σ-algebra generated by .

Inspection of the proof of Proposition TA.8 reveals that the moment bounds hold even if the
innovations are non-stationary.

Remark TA.10. Let {vt} be non-stationary and suppose that conditions (iii.b), (iv.b) and (v.b)
hold uniformly in t

(iii.b) supt ‖φ(x̄, vt, ·)‖Θn <∞;

(iv.b) supt E supθ∈Θ supt r
n
1 (θ) < 1;

(v.b)
(

supθ∈Θ xt(θ, x̄)
)
⊥
(

supθ∈Θ r
n
t (θ)

)
∀ (t, x̄) ∈ N×X ;

Then supt E supθ∈Θ |xt(θ, x̄)|n < ∞ and supt E supθ∈Θ |xt(θ)|n−δ < ∞ for every n > 0 and arbi-
trarily small δ > 0.

Proof of Proposition TA.8. Step 0, additional notation: Following Straumann and Mikosch (2006,
Proposition 3.12), the uniform convergence of the process supθ∈Θ |xt(θ, x̄)−xt(θ)| e.a.s.→ 0 is obtained
by appealing to Bougerol (1993, Theorem 3.1) using sequences of random functions {xt(·, x̄)}t∈N
rather than sequences of real numbers. This change is subtle in the notation, but important. We
refer to SM06 for details.

The elements xt(·, x̄) are random functions that take values in the separable Banach space
XΘ ⊆ (C(Θ,X ), ‖ · ‖Θ), where ‖xt(·)‖Θn ≡ (E supθ∈Θ |xt(θ)|n )1/n and ‖xt(·)‖Θ = ‖xt(·)‖Θ1 . The
functions xt(·, x̄) are generated by

xt(·, x̄) = φ∗(xt−1(·, x̄), vt, ·) ∀ t ∈ {2, 3, . . .},

with starting function x1(∅,θ, x̄) = x̄ ∀ θ ∈ Θ, and where {φ∗(·, vt, ·)}t∈Z is a sequence of stochastic
recurrence equations φ∗ : C(Θ)×Θ→ C(Θ) ∀ t as in Straumann and Mikosch (2006, Proposition
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3.12). Note the subtle but important difference between φ∗(·, vt, ·) : C(Θ) × Θ → C(Θ) and
φ(·, vt, ·) : X ×Θ→ X as alluded to earlier.

Step 1, SE: With the above notation in place, we now first prove the SE part of the proposition.
The assumption that {vt}t∈Z is SE together with the continuity of φ on X × V × Θ implies that
{φ∗(·, vt, ·)}t∈Z is SE. Condition C1 in Bougerol (1993, Theorem 3.1) is now implied directly by
condition (i), since there exists a function x̄Θ ∈ C(Θ) with x̄Θ(θ) = x̄ ∀ θ ∈ Θ that satisfies
E log+ ‖φ∗(x̄Θ(·), vt, ·)− x̄Θ(·)‖Θ = E log+ supθ∈Θ |φ(x̄, vt,θ)− x̄| <∞.

Condition C2 in Bougerol (1993, Theorem 3.1) is directly implied by condition (ii), since

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

‖φ∗(x̄Θ(·), vt, ·)− φ∗(x̄′Θ(·), vt, ·)‖Θ

‖x̄Θ(·)− x̄′Θ(·)‖Θ
=

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

supθ∈Θ |φ(x̄Θ(θ), vt,θ)− φ(x̄′Θ(θ), vt,θ)|
‖x̄Θ(·)− x̄′Θ(·)‖Θ

=

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ

|φ(x̄Θ(θ), vt,θ)− φ(x̄′Θ(θ), vt,θ)|
‖x̄Θ(·)− x̄′Θ(·)‖Θ

=

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ|x̄Θ(θ)6=x̄′Θ(θ)

|φ(x̄Θ(θ), vt,θ)− φ(x̄′Θ(θ), vt,θ)|
‖x̄Θ(·)− x̄′Θ(·)‖Θ

≤

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ|x̄Θ(θ)6=x̄′Θ(θ)

|φ(x̄Θ(θ), vt,θ)− φ(x̄′Θ(θ), vt,θ)|
|x̄Θ(θ)− x̄′Θ(θ)|

×

|x̄Θ(θ)− x̄′Θ(θ)|
‖x̄Θ(·)− x̄′Θ(·)‖Θ

≤

E log
(

sup
‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ|x̄Θ(θ) 6=x̄′Θ(θ)

|φ(x̄Θ(θ), vt,θ)− φ(x̄′Θ(θ), vt,θ)|
|x̄Θ(θ)− x̄′Θ(θ)|

)
×

(
sup

‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ

|x̄Θ(θ)− x̄′Θ(θ)|
‖x̄Θ(·)− x̄′Θ(·)‖Θ

)
≤

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ

sup
x 6=x′

|φ(x, vt,θ)− φ(x′, vt,θ)|
|x− x′|

=

E log sup
θ∈Θ

sup
x 6=x′

|φ(x, vt,θ)− φ(x′, vt,θ)|
|x− x′|

= E log sup
θ∈Θ

r1
t (θ) =

E log sup
θ∈Θ

r1
1(θ) < 0.

As a result, {xt(·, x̄)}t∈N converges to an SE solution {xt(·)}t∈Z in ‖ · ‖Θ-norm. Uniqueness and
e.a.s. convergence is obtained in Straumann and Mikosch (2006, Theorem 2.8), such that supθ∈Θ

|xt(θ, x̄)− xt(θ)| e.a.s.→ 0.

Step 2, moment bounds: We use a similar argument as in the proof of Proposition TA.5. First
consider n ≥ 1 and note that supt E supθ∈Θ |xt(θ, x̄)|n < ∞ if and only if supt ‖xt(θ, x̄)‖Θn < ∞.
Further, ‖xt(·, x̄)−x̄Θ‖Θn <∞ implies ‖xt(·, x̄)‖Θn <∞ for any x̄Θ ∈ XΘ ⊆ C(Θ), since continuity on
the compact Θ implies supθ∈Θ |x̄Θ(θ)| <∞. For a pair (x̄, v̄) ∈ X ×V, let x̄Θ(·) = φ(x̄, v̄, ·) ∈ C(Θ).
By compactness of Θ and continuity of x̄Θ we immediately have ¯̄xΘ := ‖x̄Θ(·)‖Θn < ∞. Also
¯̄φ := supt ‖φ(x̄, vt, ·)‖Θn < ∞ by condition (iii.a). Using condition (iv.a), define c̄ < 1 such that
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supθ∈Θ |φ(x, v,θ)− φ(x′, v,θ) ≤ c̄ |x− x′| for all (x, x′, v). We now have

sup
t
‖xt(·, x̄)− x̄Θ(·)‖Θn

≤ sup
t
‖φ∗(xt−1(·, x̄), vt, ·)− φ(x̄, vt, ·)‖Θn

+ sup
t
‖φ(x̄, vt, ·)‖Θn + sup

t
‖x̄Θ(·)‖Θn

≤ sup
t
‖φ∗(xt−1(·, x̄), vt, ·)− φ(x̄, vt, ·)‖Θn + ¯̄φ+ ¯̄xΘ

≤ c̄ · sup
t
‖xt−1(·, x̄)− x̄‖Θn + ¯̄φ+ ¯̄xΘ

≤ c̄ · sup
t
‖xt−1(·, x̄)− ¯̄xΘ‖Θn + ¯̄φ+ c̄ x̄+ (1 + c̄) ¯̄xΘ

≤
(

¯̄φ+ c̄ x̄+ (1 + c̄) ¯̄xΘ

) t−2∑
j=0

c̄j + c̄t−1 sup
t
‖x̄− x̄Θ(·)‖Θn

≤
( ¯̄φ+ c̄ x̄+ (1 + c̄) ¯̄xΘ

)
1− c̄

+ |x̄|+ ¯̄xΘ <∞,

using c̄ < 1.
To use conditions (iii.b)–(v.b) instead of conditions (iii.a)–(v.a), we first (re)define c̄ as c̄n =

(supθ∈Θ r
1
1(θ))1/n = (supθ∈Θ r

1
t (θ))1/n. Also using the independence assumed in condition (v.b),

we have

sup
t
‖xt(·, x̄)− x̄Θ(·)‖Θn =

≤ sup
t
‖φ∗(xt−1(·, x̄), vt, ·)− φ(x̄, vt, ·)‖Θn + ¯̄φ+ ¯̄xΘ

≤ ¯̄φ+ ¯̄xΘ + sup
t

(
E sup
θ∈Θ
|xt−1(θ, x̄)− x̄|n

× sup
θ∈Θ

|φ∗(xt−1(θ, x̄), vt, x̄), vt,θ)− φ(x̄, vt,θ)|n

|xt−1(θ, x̄)− x̄|n
)1/n

≤ ¯̄φ+ ¯̄xΘ + sup
t

(
E sup
θ∈Θ
|xt−1(θ, x̄)− x̄|n

× sup
θ∈Θ

sup
x 6=x′

|φ∗(x, x̄), vt,θ)− φ(x′, vt,θ)|n

|x− x′|n
)1/n

by (v.b)

≤ ¯̄φ+ ¯̄xΘ + c̄n sup
t
‖xt−1(·, x̄)− x̄‖Θn

≤ ¯̄φ+ (1 + c̄) ¯̄xΘ + c̄n x̄+ c̄n · sup
t
‖xt−1(·, x̄)− x̄Θ‖Θn .

Hence, unfolding the process backward in time yields supt ‖xt(·, x̄) − x̄Θ(·)‖Θn < ∞ by the same
argument as before.

Finally, using conditions (iii.c) and (iv.c) instead, we have

sup
t
‖xt(·, x̄)‖Θn ≤ sup

t
‖ sup
v∈V
|φ∗(xt−1(·, x̄), v, ·) | ‖Θn

≤ sup
t

∥∥∥φ̄(xt−1(·, x̄), ·
)
− φ̄

(
x̄, ·
)∥∥∥Θ
n + ‖φ̄

(
x̄, ·
)
‖Θn

≤ c̄ · sup
t
‖xt−1(·, x̄)‖Θn + c̄ x̄+ ‖φ̄

(
x̄, ·
)
‖Θn
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with ‖φ̄(x̄, ·)‖Θn < ∞ by (iii.c) and c̄ < 1 by condition (iv.c). As a result, unfolding the recursion
establishes supt ‖xt(·, x̄)‖Θn <∞ by the same argument as before. For 0 < n < 1 the function ‖ · ‖n
is only a pseudo-norm as it is not sub-additive. However, the proof still follows by working instead
with the metric ‖ · ‖∗n := (‖ · ‖n)n which is sub-additive; see the Cn inequality in Loève (1977).

The moments of the limit process xt(θ) are obtained as in the proof of Proposition TA.5. We
note in particular that the limit of a sequence satisfying ‖xt(·, x̄)‖Θm < ∞ ∀ t, that converges
almost surely supθ ‖xt(·, x̄) − xt(·)‖

a.s.→ 0, and is uniformly integrable limM→∞ supt E[‖xt(·, x̄)‖Θm ·
1(|xt(·,x̄)|>M)] = 0 satisfies, by Theorem 2.17 in Jiang (2010), E‖xt(·)‖Θm <∞. In our case, bounded-
ness of the moments of the initialized sequence has already been shown, and almost sure convergence
is implied by exponentially fast almost sure convergence. We therefore only need to show the uni-
form integrability condition holds, which we can do for m = n − δ for arbitrarily small δ > 0 by
adapting Theorem 12.10 in Davidson (1994), since

∞ > sup
t

(
‖xt(·, x̄)‖Θn

)n
= sup

t
E
[

sup
θ∈Θ

∣∣xt(θ, x̄)
∣∣n]

≥ sup
t

E
[

sup
θ∈Θ

∣∣xt(θ, x̄)
∣∣n1(|xt(θ,x̄)|>M)

]
≥ sup

t
E
[

sup
θ∈Θ

∣∣xt(θ, x̄)
∣∣m1(|xt(·,x̄)|>M) sup

θ∈Θ

∣∣xt(θ, x̄)
∣∣δ1(|xt(·,x̄)|>M)

]
≥M δ sup

t
E
[

sup
θ∈Θ

∣∣xt(θ, x̄)
∣∣m1(|xt(·,x̄)|>M)

]
Given the boundedness of the left-hand side of the equation and letting M → ∞, we obtain that

limM→∞ supt E
[

supθ∈Θ

∣∣xt(θ, x̄)
∣∣m1(|xt(·,x̄)|>M)

]
, which establishes the result.

The following set of lemmas derives the bounds on the moments of the likelihood function based
on moments of the inputs. The results follow from the properties of moment preserving maps as
laid out in Technical Appendix F, but can also be proved directly.

Lemma TA.11. E supθ∈Θ |`T (θ, f)|m <∞ where m ≤ n∇ and for m ≤ min
{
nḡ, np̄

}
.

Proof. The statement follows immediately from the fact that

E sup
θ∈Θ
|`T (θ, f)| ≤ 1

T

T∑
t=1

E sup
θ∈Θ
|∇t| ≤

1

T

T∑
t=1

(
E sup
θ∈Θ
|p̄t|+ E sup

θ∈Θ
| log ḡ′t|

)
.

Lemma TA.12. E supθ∈Θ |`′T (θ, f̄1)|m <∞ where

m = min

{
nλp̄ ,

n∇nfθ
n∇ + nfθ

}
. (E.5)

Proof. Using the explicit form of the first derivative of the likelihood in (D.2) in Technical Ap-
pendix D, the number of moments for the likelihood score is at least the minimum of the number
of moments for each of the terms making up the score, namely

∂p̄

∂θ
,

∂ft
∂θ
∇t.

The number of moments for the first term is nλp̄ . Using a generalized Hölder inequality, the second
term has moments n∇nfθ/(n∇ + nfθ). This yields the expression for m in equation (E.5).
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Lemma TA.13. E supθ∈Θ |`′′T (θ, f)|m <∞ where

m = min

{
nλλp̄ ,

n∇nfθθ
n∇ + nfθθ

,
nλ∇nfθ
nλ∇ + nfθ

,
nf∇nfθ

2nf∇ + nfθ

}
. (E.6)

Proof. The statement follows by Holder’s generalized inequality and from the explicit expression
for the second derivative of the likelihood in equation (D.3) in Technical Appendix D, we obtain
that the number of moments m is at least that of the minimum number of moments of the following
terms

∂2ft

∂θ∂θ>
∇t,

∂ft
∂θ

∂ft

∂θ>
∂∇t
∂ft

,
∂ft
∂θ

∂∇t
∂λ

,
∂2p̄t

∂θ∂θ>
.

Using generalized Hölder inequalities, the number of moments for each of these terms are, respec-
tively,

n∇nfθθ
n∇ + nfθθ

,
nf∇nfθ

2nf∇ + nfθ
,

nλ∇nfθ
nλ∇ + nfθ

, nλλp̄ .

This makes up the expression for m in equation (E.6).

The following lemmas support the proof of Theorem 4.14.

Lemma TA.14. Let the conditions of Theorem 4.14 hold. Then `′T
(
θ0) is a sample average of a

sequence that is SE and NED of size −1 on a strongly mixing sequence of size −δ/(1− δ) for some
δ > 2.

Proof. By assumption, {yt}t∈Z satisfies E|yt|ny < ∞ for some ny ≥ 0 and is SE and NED of size
−1 on a strongly mixing process of size −δ/(1− δ) for some δ > 2. The uniform filter contraction
in Assumption 4.4(a) and the moment conditions of Assumption 4.5 ensure that the limit process

{f (0:1)
t (θ0)}t∈Z is both SE (Proposition 3.5) and NED (Pötscher and Prucha (1997, Theorem 6.10))

of size −1 on the strongly mixing process. The SE nature of the terms ˜̀′
t

(
yt,f

(0:1)
t (θ);λ

)
that

compose the score

`′T (θ, f̄1) =
1

T

T∑
t=1

˜̀′
t

(
yt,f

(0:1)
t (θ);λ

)
=

1

T

T∑
t=1

∂ft
∂θ
·A∗t +

∂p̄t
∂θ

follows immediately by Krengel’s theorem (Krengel (1985)) and the continuity of the score on

the SE processes {yt}t∈Z and {f (0:1)
t (θ0)}t∈Z. Finally, the NED nature of the terms in `′T

(
θ0) is

ensured by noting that Assumption 4.13 ensures that A∗t is uniformly bounded, and hence that ˜̀′
t

is Lipschitz continuous on (yt,f
(0:1)
t (θ0)), which implies by Theorem 17.12 of Davidson (1994) or

Theorem 6.15 of Pötscher and Prucha (1997) that {˜̀′t
(
yt,f

(0:1)
t (θ);λ

)
} is NED of size −1 on the

mixing sequence.

Lemma TA.15. Under the conditions of Theorem 4.14,

√
T‖`′T

(
θ0,f

(0:1)
1 )− `′T

(
θ0)‖ a.s.→ 0 as T →∞. (E.7)

TE.p16



Proof. We establish the a.s. convergence in (E.7) by showing the e.a.s. convergence

‖`′T
(
θ0,f

(0:1)
1 )− `′T

(
θ0)‖ e.a.s.→ 0 as T →∞.

This e.a.s. convergence follows from |ft(θ0, f̄1)− ft(θ0)| e.a.s.→ 0 and

‖f (0:1)
t (θ0,f

(0:1)
1 )− f (0:1)

t (θ0)‖ e.a.s.→ 0,

as implied by Proposition 3.5 under the maintained assumptions. From the differentiability of

˜̀′
t(θ,f

(0:1)
1 ) = `′

(
θ,f

(0:1)
t (θ,f

(0:1)
1 )

)
in f

(0:1)
t (θ,f

(0:1)
1 ) and the convexity of F , we can use the mean-value theorem to obtain

‖`′T
(
θ0,f

(0:1)
1 )− `′T

(
θ0)‖ ≤

4+dλ∑
j=1

∣∣∣∂`′t(f̂ (0:1)

t )

∂fj

∣∣∣∣∣f (0:1)
j,t (θ0,f

(0:1)
1 )− f (0:1)

j,t (θ0)
∣∣

≤
4+dλ∑
j=1

sup
f (0:1)

∣∣∣∂`′t(f (0:1)
t )

∂fj

∣∣∣∣∣f (0:1)
j,t (θ0,f

(0:1)
1 )− f (0:1)

j,t (θ0)
∣∣, (E.8)

where f
(0:1)
j,t denotes the j-th element of f

(0:1)
t , and f̂

(0:1)
is on the segment connecting f

(0:1)
j,t (θ0,f

(0:1)
1 )

and f
(0:1)
j,t Note that f

(0:1)
t ∈ R4+dλ because it contains ft ∈ R as well as f

(1)
t ∈ R3+dλ . Note that

supf (0:1)

∣∣∂`′(f̂ (0:1)

t )/∂f
∣∣ has a logarithmic moment since n̄f∇ > 0. The strong convergence in (E.8)

is now ensured by Lemma 2.1 in SM06since

‖`′T
(
θ0,f

(0:1)
1 )− `′T

(
θ0)‖ =

4+dλ∑
i=1

sup
f (0:1)

∣∣∣∂`′t(f (0:1)
t )

∂fj

∣∣∣oe.a.s(1) = oe.a.s.(1). (E.9)

Lemma TA.16. Under the conditions of Theorem 4.14, supθ∈Θ ‖˜̀′′t (θ, f̄1)− ˜̀′′
t (θ)‖ a.s.→ 0 as t→∞.

Proof. The proof of the uniform convergence in (iv) is similar to that of Theorem 4.3. We note

sup
θ∈Θ
‖`′′T (θ, f̄1)− `′′∞(θ)‖ ≤ sup

θ∈Θ
‖`′′T (θ, f̄1)− `′′T (θ)‖+ sup

θ∈Θ
‖`′′T (θ)− `′′∞(θ)‖. (E.10)

The first term vanishes e.a.s. by application of Lemma 2.1 in SM06since supθ∈Θ

∥∥f (0:2)
t (θ,f0:2) −

f
(0:2)
t (θ)

∥∥ e.a.s.→ 0 and supθ∈Θ supf ‖`′′′T (θ)| has a logarithmic moment since n̄ff∇ > 0.

The second term in (E.10) converges under a bound E supθ∈Θ ‖˜̀′′t (θ)‖ < ∞ by the SE nature

of {`′′T }t∈Z. The latter is implied by continuity of `′′ on the SE sequence {(yt,f (0:2)
t (·))}t∈Z and

Proposition 4.3 in Krengel (1985), where SE of {(yt,f (0:2)
t (·))}t∈Z follows from Proposition 3.5 under

the maintained assumptions. The moment bound E supθ∈Θ ‖˜̀′′t (θ)‖ < ∞ follows from n`′′ ≥ 1 in
Assumption 4.11 and Lemma TA.5 in the Technical Appendix.

Finally, the non-singularity of the limit `′′∞(θ) = E˜̀′′
t (θ) = I(θ) in (v) is implied by the

uniqueness of θ0 as a maximum of `′′∞(θ) in Θ and the usual second derivative test calculus theorem.
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Lemma TA.17. Let {xt(θ, x̄)}t∈N be a sequence initialized at x̄ that converges e.a.s. to an SE
limit sequence {xt(θ)}t∈Z, i.e.,

|xt(θ, x̄)− xt(θ)| e.a.s.→ 0 as t→∞.

Let E log |xt(θ)| <∞. Then

|xt(θ, x̄)2 − xt(θ)2| e.a.s.→ 0 as t→∞.

Proof. By norm sub-additivity we have

|xt(θ, x̄)2 − xt(θ)2| = |xt(θ, x̄)− xt(θ)| · |xt(θ, x̄) + xt(θ)|
≤ |xt(θ, x̄)− xt(θ)| · |xt(θ, x̄)− xt(θ) + 2xt(θ)|
≤ |xt(θ, x̄)− xt(θ)|2 + 2|xt(θ, x̄)− xt(θ)| · |xt(θ)|.

The first term goes to zero e.a.s. due to the e.a.s. convergence of {xt(θ, x̄)}t∈N to {xt(θ)}t∈Z. The
second term goes to zero due to Lemma 2.1 in Straumann and Mikosch (2006), the e.a.s. convergence
of {xt(θ, x̄)}t∈N to {xt(θ)}t∈Z, and the SE nature and existence of a log moment of xt(θ).

Lemma TA.18. Let {x̃t(θ, ¯̃x)}t∈N and {xt(θ, x̄)}t∈N be sequences that converges e.a.s. to their SE
limits {x̃t(θ)}t∈Z and {xt(θ)}t∈Z, respectively, i.e.,

|x̃t(θ, ¯̃x)− x̃t(θ)| e.a.s.→ 0, |xt(θ, x̄)− xt(θ)| e.a.s.→ 0 as t→∞.

Let E log |x̃t(θ)| <∞ and E log |xt(θ)| <∞. Then

|x̃t(θ, ¯̃x)xt(θ, x̄)− x̃t(θ)xt(θ)| e.a.s.→ 0 as t→∞.

Proof. We have

|x̃t(θ, ¯̃x)xt(θ, x̄)− x̃t(θ)xt(θ)|
= |x̃t(θ, ¯̃x)xt(θ, x̄)− x̃t(θ, ¯̃x)xt(θ) + x̃t(θ, ¯̃x)xt(θ)− x̃t(θ)xt(θ)|
≤ |x̃t(θ, ¯̃x)| · |xt(θ, x̄)− xt(θ)|+ |x̃t(θ, ¯̃x)− x̃t(θ)| · |xt(θ)|
≤ |x̃t(θ, ¯̃x)− x̃t(θ) + x̃t(θ)| · |xt(θ, x̄)− xt(θ)|+
|x̃t(θ, ¯̃x)− x̃t(θ)| · |xt(θ)|

≤ |x̃t(θ, ¯̃x)− x̃t(θ)| · |xt(θ, x̄)− xt(θ)|+
|x̃t(θ)| · |xt(θ, x̄)− xt(θ)|+
|x̃t(θ, ¯̃x)− x̃t(θ)| · |xt(θ)|

The first term goes to zero e.a.s. due to the e.a.s. convergence of {x̃t(θ, ¯̃x)}t∈N and {xt(θ, x̄)}t∈N to
{x̃t(θ)}t∈Z and {xt(θ)}t∈Z, respectively. The second and third term go to zero due to Lemma 2.1
in Straumann and Mikosch (2006), the e.a.s. convergence of {x̃t(θ, ¯̃x)}t∈N and {xt(θ, x̄)}t∈N, and
the SE nature and existence of a log moment for both x̃t(θ) and xt(θ).
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Lemma TA.19. Let A
(2)
t (θ, f̄

0:1
1 ) be as defined in (D.6) and evaluated at the initialized series

for ft(θ, f̄1) and f
(1)
t (θ, f̄

0:1
1 ). Similarly, let A

(2)
t (θ) denote the same quantity evaluated at the SE

limits ft(θ) and f
(1)
t (θ). Then under the conditions of Proposition 3.5, we have

|A(2)
t (θ, f̄

0:1
1 )−A(2)

t (θ)| e.a.s.→ 0.

Proof. Under the conditions of Proposition 3.5 ft(θ, f̄1)
e.a.s.→ ft(θ) and f

(1)
t (θ, f̄

0:1
1 )

e.a.s.→ f
(1)
t (θ).

The expression for A
(2)
t in (D.6) has three different types of terms.

Type I : The terms
∂α

∂θ

∂st

∂θ>
, α

∂2st

∂θ∂θ>
,

∂β

∂θ

∂ft

∂θ>
.

There terms for |A(2)
t (θ, f̄

0:1
1 )−A(2)

t (θ)| converge e.a.s. to zero.
The first term follows by noting that ∂α/∂θ is constant, and∣∣∣∣∣∂st

(
ft(θ, f̄1)

)
∂θ

−
∂st
(
ft(θ)

)
∂θ

∣∣∣∣∣ ≤ ( sup
f∗

∣∣∣∂2st(f
∗)

∂f∂θ

∣∣∣) ∣∣ft(θ, f̄1)− ft(θ)
∣∣. (E.11)

The result now follows from Lemma 2.1 in Straumann and Mikosch (2006) due to the e.a.s. con-
vergence ft(θ, f̄1)

e.a.s.→ ft(θ), the SE nature of the term involving the sup, and the existence of a
small positive moment for the sup, which implies the existence of a log moment.
The e.a.s. convergence for the second term follows by a similar argument.

The third term follows directly from the e.a.s. convergence f
(1)
t (θ, f̄

0:1
1 )

e.a.s.→ f
(1)
t (θ).

Type II : The terms
∂α

∂θ

∂st
∂ft

∂ft

∂θ>
, α

∂2st
∂θ∂ft

∂ft

∂θ>
.

Both terms follow by a similar argument as the first set of terms, combined with Lemma TA.18.
For instance for the first term, we have ∂α/∂θ is constant, and

∂st
(
ft(θ, f̄1)

)
∂θ

e.a.s.→
∂st
(
ft(θ)

)
∂θ

(E.12)

given the arguments under terms of Type I. Given the e.a.s. convergence of both ∂st(ft(θ, f̄1))/∂θ
and ft(θ, f̄1), the results follow directly from Lemma TA.18.

Type III : The term

α
∂2st
∂f2

t

∂ft
∂θ

∂ft

∂θ>
.

The existence of a log moment for supf∗ |∂3st/∂f
3
t | is implied by n̄fffs > 0. This again implies

the e.a.s. convergence of ∂2st/∂f
2
t via Lemma 2.1 in Straumann and Mikosch (2006). The e.a.s.

convergence of each of the elements in (∂ft/θ)(∂ft/θ
>) follows from Lemmas TA.17 and TA.18

given a log moment for each of the elements of ∂ft/θ, which is implied by nfθ > 0. Note that the
latter also implies a log moment for (∂ft/θ)(∂ft/θ

>). We also have a log moment for ft(θ) given
nf > 0. Combining all these results, we have∣∣∣∂2st

(
ft(θ, f̄1)

)
∂f2

t

∂ft(θ, f̄
0:1
1 )

∂θi

∂ft(θ, f̄
0:1
1 )

∂θj
−
∂2st

(
ft(θ)

)
∂f2

t

∂ft(θ)

∂θi

∂ft(θ)

∂θj

∣∣∣
≤
∣∣∣ sup
f∗

∂3st(f
∗)

∂f3
t

∣∣∣× ∣∣ft(θ, f̄1)− ft(θ)
∣∣×

∣∣∣∂ft(θ, f̄0:1
1 )

∂θi

∂ft(θ, f̄
0:1
1 )

∂θj
− ∂ft(θ)

∂θi

∂ft(θ)

∂θj

∣∣∣.
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This expression contains three factors. We already concluded that the second and third factor
converge e.a.s. to zero and have a log moment, such that also their product converges e.a.s. to zero
using Lemma TA.18, and also has a log moment. The latter follows because under the current
assumptions each of the two elements of the product actually has a (tiny) positive moment, which
implies a log moment for the product. Multiplying the last two factors by the first factor, and
noting that the first factor is SE and has a log moment under the current set of assumptions, the
result follows directly from Lemma 2.1 in Straumann and Mikosch (2006).

F Further Results on Moment Preserving Functions

Checking the moment conditions needed for a number of the propositions and theorems based
on low-level conditions can be considerably simplified by working with the concept of moment
preserving maps.

The final technical lemma presented below provides simple moment preserving properties for
several common functions of random variables. For notational simplicity we let h(k) denote the kth
order derivative of a function h. The moment properties on h or h(k) can now easily be derived
from moment conditions on the inputs of h and the moment preserving properties through its
membership of the set MΘ,Θ(n,m).

Lemma TA.20. (Catalog of Mk
Θ,Θ(n,m) Moment Preserving Maps) For every θ ∈ Θ, let h(·;θ) :

X → R and w(·, ·,θ) : X × V → R be measurable functions.

(a) Let h(·;θ) be an affine function,

h(x;θ) = θ0 + θ1x ∀ (x,θ) ∈ X ×Θ, θ = (θ0, θ1) ∈ Θ ⊆ R2.

Then, h(·;θ) ∈ MΘ,θ(n,m) with n = m ∀ θ ∈ Θ, and h(k)(·;θ) ∈ MΘ,θ(n,m) for all
(θ, n,m, k) ∈ Θ×R+

0 ×R+
0 ×N. If Θ is compact, then h ∈Mk

Θ,Θ(n,m) with n = m for k = 0

and h(k)(·;θ) ∈MΘ,Θ(n,m) ∀ (n,m, k) ∈ R+
0 × R+

0 × N.

(b) Let h(·;θ) be a polynomial function,

h(x;θ) =

J∑
j=0

θjx
j ∀ (x,θ) ∈ X ×Θ, θ = (θ0, . . . , θJ) ∈ Θ ⊆ RJ , J ≥ 1.

Then h(k)(·;θ) ∈ MΘ,θ(n,m) with m = n/(J − k) ∀ (k,θ) ∈ N0 × Θ. If Θ is compact, then
h(k) ∈MΘ,Θ(n,m) with m = n/(J − k) ∀ k ∈ N0.

(c) Let

h(x;θ) =
J∑
j=0

θjx
rj ∀ (x,θ) ∈ X ×Θ,θ = (θ0, . . . , θJ) ∈ Θ ⊆ RJ ,

where rj ≥ 0. Then h(k)(·;θ) ∈ MΘ,θ(n,m) with m = n/(maxj rj − k) ∀ (θ, k) ∈ Θ ∈ N0 :
k ≤ minj rj. If Θ is compact, then h(k) ∈ MΘ,Θ(n,m) with m = n/(maxj rj − k) ∀ k ∈ N0 :
k ≤ minj rj.

(d) Let
sup
x∈X
|h(x;θ)| ≤ h̄(θ) <∞ ∀ θ ∈ Θ.

Then h(·;θ) ∈MΘ,θ(n,m) ∀ (n,m,θ) ∈ Θ×R+
0 ×R

+
0 . If additionally, supθ∈Θ h̄(θ) ≤ ¯̄h <∞,

then h ∈MΘ,Θ(n,m) ∀ (n,m) ∈ R+
0 × R+

0 .
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(e) Let
h(·;θ) ∈ Ck(X )

and
sup
x∈X
|h(k)(x;θ)| ≤ h̄k(θ) <∞ ∀ θ ∈ Θ.

Then h(k)(·;θ) ∈MΘ,θ(n,m) with m = n/k ∀ θ ∈ Θ. If furthermore, supθ∈Θ h̄k(θ) ≤ ¯̄h <∞
, then h(k) ∈MΘ,Θ(n,m) with m = n/k.

(f) Let
w(x, v;θ) = θ0 + θ1x+ θ2v, (θ0, θ1, θ2, x, v) ∈ R3 ×X × V.

Then w(kx,kv)(·, ·,θ) ∈ MΘ,θ(n,m) ∀ (kx, kv,θ) ∈ N0 × N0 × Θ with n = (nx, nv) and m =
min{nx, nv}. If furthermore Θ is compact, then

w(kx,kv) ∈MΘ,Θ(n,m) ∀ (kx, kv) ∈ N0 × N0,

with m = min{nx, nv};

(g) If
w(x, v,θ) = θ0 + θ1xv, (θ0, θ1) ∈ R2,

then w(kx,kv)(·, ·,θ) ∈ MΘ,θ(n,m) ∀ (kx, kv,θ) ∈ N0 × N0 × Θ with n = (nx, nv) where
m = nxnv/(nx + nv). If furthermore, Θ is compact, then

w(kx,kv) ∈MΘ,Θ(n,m) ∀ (kx, kv) ∈ N0 × N0,

with n = (nx, nv) where m = nxnv/(nx + nv).

Proof available upon request.
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