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Abstract

There are many situations in which different groups make collective decisions by
committee voting, where each group is represented by a single person. Theoretical
concepts suggest how the voting systems in such committees should be designed,
but these abstract rules can usually not be implemented perfectly. To find voting
systems that approximate these rules the so called inverse power problem needs
to be solved. I introduce a new method to address this problem in two-tier voting
settings using the coefficient of variation. This method can easily be applied to a
wide variety of settings and rules. After deriving the new method, I illustrate why
it is to be preferred over more traditional methods.

Keywords: inverse power problem; indirect voting power; two-tier voting; Penrose’s
Square Root Rule
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1 Introduction

Two-tier voting refers to situations where different groups have to make a collective

decision and do so by voting in an assembly of representatives with one representative

per group. Many decisions are taken daily through such voting by all kinds of insti-

tutions. The best studied case of such two-tier voting is the Council of the European

Union,1 but it is by far not the only institution making use of some sort of two-tier vot-

ing – other institutions are for example the UN General Assembly, WTO, OPEC, African

Union, German Bundesrat, ECB, and thousands of boards of directors and professional

and non-professional associations. While the fiercest debates so far have arisen during

the reform of voting rules in the EU Council, the importance of two-tier voting is likely

to increase further in the future.2

The question of how such two-tier voting systems should be designed is unsolved and

can in full generality certainly not be solved. Nevertheless, there are theoretical con-

cepts that provide guidelines, such as for example Penrose’s Square Root Rule (Penrose,

1946). Many of these concepts are based on equalizing some concept of (indirect) vot-

ing power. These abstract rules can usually not be perfectly implemented. The problem

of finding voting systems that approximate these theoretical rules, is called the inverse

power problem (‘inverse’ refers to mapping from a distribution of power to a voting

system in contrast to mapping from a voting system to a distribution of power). In

this paper, I introduce a method that can be widely applied in many different two-tier

voting settings.3

I introduce a new method that measures the extent of inequality in indirect voting

power of voting systems based on the statistical coefficient of variation. This new

method yields indirect voting power that is as equal as possible directly, contrary to

more traditional methods that take a detour by first deriving a desired distribution of

voting power in the assembly of representatives. It yields better results and it is also

more intuitive for beginning researchers and more salient when talking to policy mak-

ers than other rules. I derive the new method and alongside a ‘classic method’ in a
1The literature on two-tier voting within the EU includes, among many others, Baldwin and Wid-

grén (2004), Beisbart et al. (2005), Felsenthal and Machover (2004), Laruelle and Valenciano (2002),
Le Breton et al. (2012), Napel and Widgrén (2006), and Sutter (2000).

2Globalizaion and the emergence of democracy in many parts of the world make collaboration in
supra-national organizations more necessary and easier. Furthermore, modern communication tech-
nologies facilitate the organization in interest-groups, clubs, and associations, even when the members
are not geographically close.

3Solving the inverse power problem is far from trivial, see for example Alon and Edelman (2010), De
et al. (2012), Fatima et al. (2008), Kurz (2012), Kurz and Napel (2012), Leech (2003), and De Nijs and
Wilmer (2012). It is not the aim of this paper to develop a computationally efficient algorithm to solve
the inverse power problem for weighted voting in one particular setting.
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setting where equal indirect Banzhaf power is desired, but the new method can also

be applied in many different settings – in Appendix A, I show how it can be applied in

a setting where equal indirect Shapley-Shubik power is desired; the new method can

also be applied to some rules that are based on utility and not on voting power, such as

for example an egalitarian rule as in Laruelle and Valenciano, 2010.

This paper is organized as follows. In Section 2, I describe a setting where equal indirect

Banzhaf power is desired (Penrose’s Square Root Rule). In Section 3, the inverse power

problem is described and the new method as well as a classic method to address this

problem are derived. Furthermore, I discuss the main advantages of the new method

and illustrate the differences with two examples. Section 4 concludes (and Appendix A

shows an application of the method in a setting where equal indirect Shapley-Shubik

power is desired).

2 Equalizing Indirect Voting Power

In this section, I first introduce some notation. Then, I introduce Penrose’s Square

Root Rule, which is concerned with equal indirect Banhaf power, and briefly derive its

motivation.

2.1 Preliminaries

There are N different groups, each group i consists of ni individuals. Each group elects

one representative. The representatives then come together in an assembly to vote. The

representatives are elected through majority voting and they act in the best interest

of their group. The voting system that should govern the voting in this assembly of

representatives is the focus of most of the two-tier voting literature.

The following notation and definition will be used in the remainder. Coalitions are sets

of voters voting in favor of adopting a proposal (yes-voters) or against it (no-voters)

and denoted by capital letters (except for N, which represents the number of voters here

or in general the number of groups – it is thus best to think of the voting systems as

voting systems in an assembly of representatives and of the voters as the representatives

now). Thus a coalition is always a subset of {1, ...,N}. Note that a voting system is fully

characterized by the set of winning coalitions. Voting systems, i.e. sets of winning

coalitions, are denoted by calligraphic letters. A voting system W is admissible if it

satisfies the following conditions (W is thus a set of (winning) coalitions, which are
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subsets of 2N): (i) {1, ...,N} ∈ W, (ii) /0 /∈W, (iii) if S ∈W then SC /∈W, (iv) if S ∈W
and S ⊆ T then T ∈W.4 The set of admissible voting system contains any ‘reasonable’

voting system. This set is larger than the set of all weighted voting systems – double

majority systems, for example, as used in the EU Council of Ministers can in general

not be represented by weighted voting.

2.2 One Rule and its Motivation: Penrose’s Square Root Rule

The probably most prominent normative concept of how two-tier voting systems should

be designed is the following.5

Penrose’s Square Root Rule. The voting power of (the representative of) a group as
measured by the Banzhaf index should be proportional to the square root of its population
size.

The main idea of this rule is to make it equally likely for every individual to influence

the overall outcome of the two-tier voting procedure, independently of the group she

belongs to. The standard motivation of this rule derives from a particular setting, which

is described briefly below.6

First I give a few very brief definitions in accordance with the literature. If a winning

coalition turns into a losing coalition without voter j we say that voter j has a swing.7

The absolute Banzhaf index of a voter j is defined as the number of possible winning

coalitions that turn into losing coalitions without voter j, divided by the total number

of possible coalitions. The normalized or relative Banzhaf index is the absolute Banzhaf

index normalized so that the sum of the indices of all voters equals one.

The particular set-up that is usually used to motivate Penrose’s Square Root Rule is

the following. Voting is binary, i.e. a proposal can be either accepted or rejected –

we are thus in a take-it-or-leave-it setting (see Laruelle and Valenciano, 2008). Every

individual, no matter which group she belongs to, favors the adoption of a proposal

4In words this means that the grand coalition (everyone voting for something) is always winning, the
empty coalition (nobody voting for something) is always losing, if a coalition is winning the complement
is not winning (those not in a winning coalition cannot also form a winning coalition) and if a winning
coalition gains additional support it is still winning.

5Note that this is just one rule that is used to describe the new method. For a critical discussion of the
rule, see Laruelle and Valenciano (2008); see also Laruelle and Valenciano (2005).

6The derivation of this rule in the same setting and style in a bit more detail can be found in Turnovec
(2009); see also Turnovec et al. (2008).

7It does not matter whether one considers only winning coalitions that turn losing if the respective
player is removed or also all losing coalitions that turn winning if the respective player is added.
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with probability one half, independently of all other individuals.8 Majority voting takes

place within each group and the outcome determines the vote of the representative.

The representatives of all groups come together and it is determined according to their

votes and the voting system in the assembly of representatives whether a proposal is

adopted or rejected.

Denote by ΨB
i the absolute Banzhaf power index of an individual in group i arising from

majority voting in this group and by ΦB
i the absolute Banzhaf power index of group i

in the assembly of representatives, depending on the voting system in place. Then

the probability that an individual in group i has a swing with respect to the overall

outcome of the voting procedure (i.e. that she influences with her vote within the group

the overall outcome in the assembly of representatives) is ΨB
i times ΦB

i . Thus the

probability of influencing the overall outcome is equal for all individuals if ΨB
i ΦB

i is

equal for all individuals or equivalently if

Ψ
B
i Φ

B
i = α (1)

for some constant α. Numbering groups from 1 to N and individuals in group i from 1
to ni, it can easily be shown that equation (1) holds for all i if the normalized Banzhaf

index of each group i is equal to
1

ΨB
i

∑
N
j=1

1
ΨB

j

.

The normative rule how to design voting systems described here states that the indirect

voting power ΨB
i ΦB

i should be equal for all individuals independently of which group

they are in, i.e. that equation (1) should hold. The reason why this is often referred to

as square root rule is the following. ΨB
i in equation (1) can be approximated by

√
2

πni
,

thus equation (1) holds if the Banzhaf indices of the groups are proportional to the

square root of population size.9

8If every voter favors the adoption of a proposal with probability one half independently of everyone
else, the absolute Banzhaf index of a voter is the probability that this voter has a swing.

9See for example Felsenthal and Machover (1998) or Laruelle and Widgrén (1998). The exact value
is ΨB

i = ni!
2ni ((ni/2)!)2 . Usually, researchers use the approximation, which is not a problem for applications

where the groups are countries that are easily large enough to make the approximation very good. As
the theory can also be applied to small groups, e.g. in companies, boards, clubs, etc., it can sometimes
be better to use the exact values. I will not use the approximation in this paper, but still talk about the
Banzhaf index being proportional to the square root of group size (working with the exact value or the
approximation makes no conceptual difference).
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3 Solving the Inverse Power Problem

In this section, I derive a ‘classic’ and a new method to solve the inverse power problem.

I do this in a setting where indirect Banzhaf voting power is of interest, but the method

is by no means restricted to such settings, it can similarly be derived and applied in

many other settings. I show the motivation and application of the new method in

settings where equal indirect Shapley-Shubik power is desired in the appendix.

3.1 A Classic Method

The system of equations (1) usually does not hold exactly for any one voting system. It

is thus necessary to find an approximation, i.e. to find a voting system that corresponds

as closely as possible to an equal distribution of indirect voting power across all indi-

viduals. One way to do this is to take a voting system that minimizes the deviation of

the normalized Banzhaf index from the vector that would yield equal voting weights.

Taking the euclidean distance as error term, this yields minimizing a term of the form

N

∑
i=1

 ΦB
i

∑
N
j=1 ΦB

j
−

1
ΨB

i

∑
N
j=1

1
ΨB

j

2

.

Remembering that the groups have different sizes and that the idea is to equalize voting

power at the individual level, it seems natural to also weigh the error terms by group

size. This means that the weight placed on the error term is equal for each individual

rather than for each group. This leads to choosing a voting system that minimizes

N

∑
i=1

ni

 ΦB
i

∑
N
j=1 ΦB

j
−

1
ΨB

i

∑
N
j=1

1
ΨB

j

2

.

In order for this error term not to increase with group size or number of groups, one can

divide by the total number of individuals. Furthermore, as the deviation is in squared

terms, one can take the square root, such that the error term is measured in the ‘unit’

of indirect voting power rather than in its square. This does not change the outcome
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and leads to the minimization of10

err(ΨB,ΦB) :=

√√√√√ 1

∑
N
i=1 ni

N

∑
i=1

ni

 ΦB
i

∑
N
j=1 ΦB

j
−

1
ΨB

i

∑
N
j=1

1
ΨB

j

2

. (2)

I will refer to minimizing expression (2) over different voting systems (or more gen-

erally to using err(Ψ,Φ) as measure of inequality of a voting system) as the classic

method.

3.2 Using the Coefficient of Variation to Solve the Inverse Power

Problem

At first sight the classic method seems like a natural choice. Thinking back to the

actual goal of this exercise – finding a voting system such that individuals have voting

powers as equal as possible – one might prefer a different solution, however. If there is a

method that aims at low variation of indirect voting power directly, this method is more

natural (using the ‘desired’ distribution of normalized Banzhaf indices of the voting

system in the assembly that results from equal indirect power is then an unnecessary

detour). Indeed, such a method exists. The coefficient of variation is a well established

statistical concept that measures variation. After introducing this concept briefly, I show

how it can be derived in a meaningful way in this voting power setting.

The coefficient of variation in statistics is defined as the ratio of the population standard

deviation σ to the population mean µ,

cv =
σ

µ
.

It is thus the inverse of the signal-to-noise ratio. The advantage of using the coefficient

of variation over the standard deviation is that the standard deviation always has to be

understood in the context of the mean (e.g. multiplying all data points by two leads to

a higher standard deviation but to the same coefficient of variation). The coefficient of

variation is independent of the unit of measurement.

If the system of equations (1) holds, all individuals have equal (indirect) voting power.

10The outcome of the minimization procedure does not change, because the number of individuals
is fixed in such a comparison. Aside from the advantages of keeping the order of magnitude similar
across different numbers of groups and group sizes and keeping the ‘unit’ of calculation the same, it is
also easier to see some similarities and differences to the new procedure I introduce below. Therefore, I
choose to mainly use this slightly more complicated expression.
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Thus, keeping in mind that the error at the individual level is what one should be

interested in, it seems to be straightforward to minimize

N

∑
i=1

ni

∑
j=1

(
Ψ

B
i Φ

B
i −α

)2
=

N

∑
i=1

ni
(
Ψ

B
i Φ

B
i −α

)2
. (3)

Remember that equal indirect voting power corresponds to equation (1) holding for

any α. Thus, it is natural to give each voting system its ‘best shot’, i.e. to let α depend

on the voting system (remember that the ΦB
i also depend on the voting system):

α = argmin
γ

N

∑
i=1

ni
(
Ψ

B
i Φ

B
i − γ

)2
.

It can easily be shown that then

α =
1

∑
N
i=1 ni

N

∑
i=1

niΨ
B
i Φ

B
i =: ΨBΦB. (4)

Note that ΨBΦB is the mean of ΨBΦB (taken at the individual level).

Minimizing expression (3) with α as in (4) still has some shortcomings.11 Also here,

one would like that the error term does not necessarily increase with group size or

number of groups, which can again be solved by dividing by the number of individuals.

Furthermore, it again seems desirable to measure the variation of indirect voting power

in the same unit as indirect voting power per se rather than in its square, so again, one

can take the square root. Finally, it is desirable that the scale used does not change

the relevant expressions, i.e. that merely multiplying the indices ΦB of all groups with

a constant or the unit of measurement do not change the outcome. This then also

means that it does not matter whether one uses the absolute Banzhaf index ΦB or

the normalized index. This can be achieved through dividing by ΨBΦB. One then

arrives at the coefficient of variation (at the individual level), which can thus be seen

as a naturally extended and normalized version of expression (3).12 The new method

minimizes the following expression over different voting systems (or more generally,

11The trivial ‘solution’ of all Φi equal to zero is not a problem, because all admissible voting systems
adopt a proposal with the support of the grand coalition.

12Expression (3) with α from (4) is a multiple of the population variance of ΨBΦB. After dividing by
the number of individuals and taking the square root one arrives at the population standard deviation.
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uses this expression as a measure of inequality of voting power):

cv(ΨB
Φ

B) :=

√
1

∑
N
i=1 ni

∑
N
i=1 ni

(
ΨB

i ΦB
i −ΨBΦB

)2

ΨBΦB
. (5)

In many cases, there is a trade-off between equality and efficiency, because the voting

systems that are the most equal are not necessarily the most efficient ones. If such a

trade-off exists, the coefficient of variation as in expression (5) can be readily used as

input for a policy maker in its decision function, where this measure of inequality is

combined with a measure of efficiency. Such a trade-off does not always exist or is not

always of importance where it exists. For example in bargaining committee settings (see

e.g. Laruelle and Valenciano, 2008), which are probably the most important settings

motivating equal indirect Shapley-Shubik power, efficiency concerns are absent. If one

wants to select a voting system from a set of voting systems exclusively from a point

of view of equalizing indirect voting power, the formulas for the two methods can be

written down as in the next paragraph.

It is of course possible to restrict the set of voting systems from which one selects.

Instead of minimizing expressions (2) or (5) over all admissible voting systems, one can

also minimize over a subset of these. Such subsets could for example be all weighted

voting systems, all weighted voting systems satisfying some additional conditions, all

double majority voting systems, or all voting system with a certain number of winning

coalitions.13 Denoting by V the set of all admissible voting systems and by W ⊆ V a

subset from which we want to choose, we arrive at the following formulas that select

a voting system approximating equal indirect Banzhaf voting power (now explicitly

writing down the dependence of ΦB on the voting systemW). Using the classic method

of minimizing the squared deviation from the desired vector of normalized Banzhaf

indices per group (weighted by group size), the recommended voting system is

Vclassic = argmin
W∈W

err(ΨB,ΦB(W))

= argmin
W∈W

√√√√√ 1

∑
N
i=1 ni

N

∑
i=1

ni

 ΦB
i (W)

∑
N
j=1 ΦB

j (W)
−

1
ΨB

i

∑
N
j=1

1
ΨB

j

2

.

(6)

Using the new method of minimizing the coefficient of variation of indirect voting

13Minimizing expression (2) over all weighted voting systems where the voting weights are propor-
tional to the square root of the population size (‘choosing the quota’) is referred to as Jagiellonian
compromise, see Słomczyński and Życzkowski (2006) and Słomczyński and Życzkowski (2010).
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power (as measured by the Banzhaf index), the recommended voting system is

Vnew = argmin
W∈W

cv(ΨB,ΦB(W))

= argmin
W∈W

√
1

∑
N
i=1 ni

∑
N
i=1 ni

(
ΨB

i ΦB
i (W)−ΨBΦB(W)

)2

ΨBΦB(W)
.

(7)

3.3 Differences between the Methods and Advantages of the New

Method

The two methods can lead to different outcomes and the differences can be non-

negligible. A first application of the new method to address the inverse power problem

is in Weber (2014). There, the two methods do not give the same outcome in a consid-

erable number of cases.14

The new method is to be preferred over the classic one. It appropriately measures

variation of voting power at the individual level directly. Taking the detour via the

‘power equalizing distribution’ as in the classic method can lead to inaccuracies. This is

best illustrated by examples, in particular by the example in Section 3.3.1.

On top of measuring power at the individual level, the coefficient of variation is a

relative measure. This means for example that the coefficient of variation judges the

indirect voting powers of two equally sized groups of individuals of 0.01 and 0.02 to

exhibit more variation than 0.08 and 0.09. This relative difference is the quantity that is

of interest. The absolute numbers of voting power are often not very telling and usually

arguments involving indirect voting power involve relative numbers. For example in

the discussions about reforms of the voting system in the EU, arguments were made

that a voting system is unfair, because country X ’ citizens’ indirect voting power is four

times as large as the one of country Y ’ citizens. Arguments were usually not about

one country’s citizens having indirect voting power that is 0.000002 higher than that of

other countries’ citizens. If this is how one argues the quantities involved when solving

the inverse power problem should be chosen accordingly. The example in Section 3.3.2

illustrates this difference in a bit more detail.

This is the major advantage of the new method: It measures the correct quantity. Fur-

thermore, there are two other advantages. First, this new method is more intuitive. If

one wants a system where voting power at the individual level is as equal as possible,

14The environment in which the inverse power problem is addressed in Weber (2014) is quite specific
as the number of groups and the sets of voting systems from which always one is selected are very small.
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the most intuitive solution for beginning researchers or practitioners that want to be-

come familiar with the theory is to take the voting system where this indirect voting

power has low variation across individuals (rather than making the detour of mini-

mizing errors with respect to an ‘equalizing’ distribution). Second, the new method

is more salient. When someone who uses the classic method talks to a policy maker,

the outcome of the minimization procedure could be understood to represent more

than equal indirect voting power (e.g. it could be mistaken to also include efficiency

considerations or other trade-offs, because many people might talk about an ‘optimal

distribution’ rather than about an ‘indirect Banzhaf power equality approximating dis-

tribution’).

In the remainder of this section I will illustrate how the new method is more suitable

than the classic method with two (hypothetical) examples. The first example shows

differences between the methods when the means of indirect Banzhaf voting power are

equal between the voting systems, but standard deviations are different. In the second

example standard deviations are equal, but means are different. A further example,

where indirect Shapley-Shubik power is of interest, can be found in Appendix A.2.

3.3.1 First Example

There are six groups, numbered from 1 to 6. Groups 1 and 2 have 10 members each,

the other groups have 5 members. This means that in the first stage (the election of the

representatives) individuals have voting power ΨB
1,2 = 0.2460938 and ΨB

3,4,5,6 = 0.375,

respectively. Indirect voting power would be equal across all individuals if the voting

systems were such that

ΦB
1,2

∑
6
i=1 ΦB

i
= 0.2162162 and

ΦB
3,4,5,6

∑
6
i=1 ΦB

i
= 0.1418919.

Now we compare two (hypothetical) voting systems W1 and W2. The voting systems

are such that the normalized Banzhaf indices are as follows:

ΦB
1 (W1)

∑
6
i=1 ΦB

i (W1)
= 0.2162162+0.05,

ΦB
2 (W1)

∑
6
i=1 ΦB

i (W1)
= 0.2162162−0.05,

ΦB
3,4,5,6(W1)

∑
6
i=1 ΦB

i (W1)
= 0.1418919, and

ΦB
1,2(W2)

∑
6
i=1 ΦB

i (W2)
= 0.2162162

ΦB
3,4(W2)

∑
6
i=1 ΦB

i (W2)
= 0.1418919+0.05,

ΦB
5,6(W2)

∑
6
i=1 ΦB

i (W2)
= 0.1418919−0.05.
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Assume for simplicity and to have a nice illustration that normalized and absolute

Banzhaf indices are equal. Now we can calculate the indirect voting power of each

individual, depending on the group she is in. This yields

Ψ
B
1 Φ

B
1 (W1) = 0.06551414, Ψ

B
2 Φ

B
2 (W1) = 0.04090477,

Ψ
B
3,4,5,6Φ

B
3,4,5,6(W1) = 0.05320946, and Ψ

B
1,2Φ

B
1,2(W2) = 0.05320946,

Ψ
B
3,4Φ

B
3,4(W2) = 0.07195946, Ψ

B
5,6Φ

B
5,6(W2) = 0.03445946.

One can easily see that using the classic method, both voting systems would be judged

to be equally equal (the error term equals 1
20 for both voting systems). If one looks

carefully at the indirect voting power, this does not seem justified, though. Under both

voting systems, there are 20 individuals with indirect voting power 0.05320946, which

is also the mean of indirect voting power under both voting systems. Under both voting

systems, there are 10 individuals with higher voting power and 10 with lower power.

The absolute difference between the higher value of voting power and the middle value

is always equal to the difference between the middle value and the lower value; just

that these differences are higher under the second voting system than under the first

one. It is cv(ΨBΦB(W1)) = 0.1635184 and cv(ΨBΦB(W2)) = 0.249171. The new method

thus selectsW1.

3.3.2 Second Example

In the last example, the mean of indirect voting power was equal under both voting

systems. Considering the standard deviation would in these examples thus lead to the

same outcome as considering the coefficient of variation. In the following example,

the standard deviation of indirect voting power under two systems is equal, while the

coefficient of variation is different.

There are four groups. The first group has 9 members while the other groups have 3
members each. The Banzhaf power indices in the first stage (when electing the rep-

resentative) are ΨB
1 = 0.2734375 and ΨB

2,3,4 = 0.5, respectively. Indirect voting power

would be equal for all individuals if the normalized Banzhaf indices in the assembly of

representatives were

ΦB
1

∑
4
i=1 ΦB

i
= 0.3786982 and

ΦB
2,3,4

∑
4
i=1 ΦB

i
= 0.2071006.

Now we compare again two voting systems, W1 and W2. Assume again for simplicity

that absolute and normalized Banzhaf indices are equal and assume that the two voting

12



systems are such that

ΦB
1 (W1)

∑
4
i=1 ΦB

i (W1)
= 0.3786982−0.09,

ΦB
2,3,4(W1)

∑
4
i=1 ΦB

i (W1)
= 0.2071006+0.03,

ΦB
1 (W2)

∑
4
i=1 ΦB

i (W2)
= 0.3786982+0.09, and

ΦB
2,3,4(W2)

∑
4
i=1 ΦB

i (W2)
= 0.2071006−0.03.

Which of these two voting systems do the two methods select? For the classic method,

the two systems approximate equal indirect voting power equally well. This can easily

be seen as follows. The terms in parentheses in expression (6) are for both voting

systems always either −0.09 or +0.09 for the parts referring to the large group and

either +0.03 or −0.03 for the parts referring to the other groups. As only the squares of

these values enter expression (6), these two voting systems are ‘equally equal’ for the

classic method. The new method, in contrast, does make a difference between these

two voting systems. The indirect voting power of each individual is under the first

voting system

Ψ
B
1 Φ

B
1 (W1) = 0.07894092 and Ψ

B
2,3,4Φ

B
2,3,4(W1) = 0.1185503,

and under the second voting system

Ψ
B
1 Φ

B
1 (W2) = 0.1281597 and Ψ

B
2,3,4Φ

B
2,3,4(W2) = 0.0885503.

Remember that exactly half of the individuals are in the large group. While under the

first voting system an individual in the half of the population with more power holds

1.50176 times as much indirect voting power as an individual in the other half of the

population, this ratio is only 1.447309 under the second voting system.15 The coefficient

of variation is 0.2005627 for W1 and 0.182776 for W2. Thus, the new method selects

W2.

4 Concluding Remarks

I have introduced a method to address the inverse power problem in two-tier voting

settings that is based on the statistical coefficient of variation. After deriving it in a

setting where equal indirect Banzhaf voting power is desired, I have shown why this

15The absolute values of the differences ΨB
1 ΦB

1 (W1) − ΨB
2,3,4ΦB

2,3,4(W1) and ΨB
1 ΦB

1 (W2) −
ΨB

2,3,4ΦB
2,3,4(W2) are equal.

13



method is to be preferred over a more classic method. This new method can be applied

in many different settings, including all settings where indirect voting power is to be

equalized. It can also be applied to rules involving utility instead of voting power like

egalitarianism as in Laruelle and Valenciano (2010). In Appendix A, I show how the

method can be applied in settings where indirect Shapley-Shubik power is the quantity

of interest and illustrate the advantages of the new method with an example in such a

setting.

The main advantage of the new method is that it measures the correct quantity, which

is the variation of indirect voting power. Further advantages of the method are that

it is more intuitive for researchers and practitioners that start getting acquainted with

the theory and that it is more salient when talking to policy makers. The method

can be used to select voting systems from a predetermined set to approximate equal

indirect voting power as well as possible – this seems, among other cases, reasonable in

bargaining committee settings, where efficiency concerns are absent. The coefficient of

variation could also be used as input into a decision function or social welfare function

of a policy maker when some trade-offs exist, such as for example an equity-efficiency

trade-off.

Furthermore, in many cases, researchers need to address the inverse power problem

while it is not the focus of their research project. I hope that the new method I have

presented will be of help to them in their future research.
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A Appendix

A.1 Application to a Different Problem – Equal Indirect Shapley-

Shubik Power

As mentioned, the new method can be applied to different problems. Here, I show

how it can be used if equal indirect voting power as measured by the Shapley-Shubik
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index is desired. This rule can be motivated in a bargaining setting or in a probabilis-

tic setting.16 While the bargaining motivation has some advantages, the probabilistic

motivation is much closer to the motivation of Penrose’s Square Root Rule in Section 2.

Therefore, I only show the probabilistic motivation here. The new method of address-

ing the inverse power problem can be used independently of which of these motivations

is used. Much of the derivation of the probabilistic motivation and also of the derivation

of the methods can be done similarly to Section 2.2. It is thus kept very brief.

A prominent normative concept of how two-tier voting systems should be designed that

is different from the one described above is the following:17

Proportional Shapley-Shubik Power. The voting power of (the representative of) a
group as measured by the Shapley-Shubik index should be proportional to its population
size.

In contrast to the derivation of Penrose’s Square Root Rule, we now assume that all

voters differ in the strength of their feelings over the issue at stake. One can then

order all voters from strong preference to strong dislike. In general, voter j is in a

pivotal position if the coalition of voters that would like the adaption of a proposal

more strongly than voter j does not have the power to pass it, while the coalition of

voters that would like the adoption of the proposal less (dislike it more) does not have

the power to block it. A voter in a pivotal position is thought to have decisive influence

over the outcome of the voting process.

Let me state the relevant definitions, in accordance with the literature. Let (i1, ..., iM) be

a permutation of voters (voters are numbered from 1 to M, the voting system – i.e. the

set of winning coalitions – is denoted by W). If voter j’s position in the permutation

is ik, then voter j is pivotal if {i1, ..., ik−1} /∈W and {i1, ..., ik} ∈W. The Shapley-Shubik

power index of voter j is the number of permutations in which j is pivotal divided by

the total number of permutations n!. Note that the sum of the Shapely-Shubik indices

of all voters equals one and that this index represents the probability of being pivotal if

all permutations (that can be seen as preference orderings) are equally likely.

Denote by ΨS
i the Shapley-Shubik power index of an individual in group i and by ΦS

i

the Shapley-Shubik index of group i in the assembly of representatives, depending on

the voting system in the assembly. Assuming that all permutations are equally likely in

both stages of the voting procedure (and assuming again majority voting at the group

level), the probability that an individual in group i is pivotal in the first stage while the

16The Shapley-Shubik index originates from cooperative game theory (Shapley and Shubik, 1954,
Shapley, 1953).

17For a more detailed derivation of the concept in a very similar style, see Turnovec (2009).
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representative of group i is pivotal in the second stage is ΨS
i ΦS

i . Thus the probability of

influencing the overall outcome in this sense is equal for all individuals if

Ψ
S
i Φ

S
i = α (8)

for some constant α. As the Shapley-Shubik indices of all voters sum up to one, it is

ΨS
i = 1

ni
. Thus, equation (8) holds for all i if the Shapley-Shubik index of each group

i is equal to ni
∑

N
j=1 n j

, i.e. if the Shapley-Shubik indices of the groups are proportional to

their sizes.

This equality is in general not feasible. Proceeding as in Section 3, it is again possible to

calculate deviations of the prescribed weights or to look for a voting system with small

variation of indirect voting power (as now measured by ΨS
i ΦS

i ) directly. Then we arrive

at the same formulas as in Section 3, except for the superscripts. With the error term

of the classic method err(ΨS,ΦS) and the coefficient of variation cv(ΨS,ΦS) defined

exactly as in Section 3, the formulas to select voting systems from a predetermined set

of voting systems are as follows.18 Using the classic method of minimizing the squared

deviation from the desired vector of Shapley-Shubik indices per group (weighted by

group size), the recommended voting system is

Vclassic = argmin
W∈W

err(ΨS,ΦS(W))

= argmin
W∈W

√√√√√ 1

∑
N
i=1 ni

N

∑
i=1

ni

 ΦS
i (W)

∑
N
j=1 ΦS

j(W)
−

1
ΨS

i

∑
N
j=1

1
ΨS

j

2

.

(9)

Using the new method of minimizing the coefficient of variation of indirect voting

power (as measured by the Shapley-Shubik index), the recommended voting system

18For the particular case where indirect equal Shapley-Shubik power is desired, one could simplify the
formulas, using that ΨS

i = 1
ni

and, where possible, leaving out multiplication factors and square roots.

This makes the classic method equivalent to minimizing ∑
N
i=1 ni

(
ΦS

i (W)− ni
∑

N
j=1 n j

)2

and the new method

equivalent to minimizing

N

∑
i=1

ni

(
ΦS

i (W)

ni
− 1

∑
N
j=1 n j

)2

or
N

∑
i=1

1
ni

(
Φ

S
i (W)− ni

∑
N
j=1 n j

)2

or
N

∑
i=1

ni

(
Ψ

S
i Φ

S
i (W)− 1

∑
N
j=1 n j

)2

,

where the last expression is similar to the expression Maaser and Napel (2007) use in a closely related
setting. In this setting, using the coefficient of variation is also always equal to using the standard
deviation, because the indirect voting power of all individulas always sums up to one. As one of the aims
of this paper is to show that the new method can be applied generally in different settings, I do not use
these rearrangements.
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is

Vnew = argmin
W∈W

cv(ΨS,ΦS(W))

= argmin
W∈W

√
1

∑
N
i=1 ni

∑
N
i=1 ni

(
ΨS

i ΦS
i (W)−ΨSΦS(W)

)2

ΨSΦS(W)
.

(10)

The same arguments concerning the advantages of the new method as in Section 3.3

are valid, i.e. it is based on measuring the right quantity and it is more intuitive and

more salient. That it can make a difference which method is used in this setting and

that the new method is to be preferred is illustrated in the following example.

A.2 Example in a ‘Shapley-Shubik Setting’

Assume that we are in a setting where equal indirect Shapley-Shubik power is desired,

independently of whether this desire is motivated probabilistically or from a bargaining

point of view. There are five groups, the first group has 10 members, the other four

groups have 5 members each. The Shapley-Shubik power in the first stage is for each

individual ΨS
1 = 0.1 or ΨS

2,3,4,5 = 0.2, respectively. This means that indirect Shapley-

Shubik power is equal across all individuals for ΦS
1(W) = 1

3 and ΦS
2,3,4,5(W) = 1

6 . Now

we want to compare again two (hypothetical) voting systems. The first voting system

is such that

Φ
S
1(W1) =

1
3
− 1

6
=

1
6
, Φ

S
2,3(W1) =

1
6
, and Φ

S
4,5(W1) =

1
6
+

1
12

=
1
4
,

while the second voting system is such that

Φ
S
1(W2) =

1
3
, Φ

S
2,3(W2) =

1
6
− 1

12
=

1
12

, and Φ
S
4,5(W2) =

1
6
+

1
12

=
1
4
.

With these voting systems, indirect Shapley-Shubik powers are as follows:

Ψ
S
1Φ

S
1(W1) =

1
60

, Ψ
S
2,3Φ

S
2,3(W1) =

1
30

, and Ψ
S
4,5Φ

S
4,5(W1) =

1
20

,

Ψ
S
1Φ

S
1(W2) =

1
30

, Ψ
S
2,3Φ

S
2,3(W2) =

1
60

, and Ψ
S
4,5Φ

S
4,5(W2) =

1
20

.

Thus, under both voting systems, there are 10 individuals with indirect Shapley-Shubik

power 1
60 , 10 with 1

30 , and 10 with 1
20 . Thus, there is no difference in terms of how equal

they are and accordingly the new method judges them to approximate equal indirect
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power equally well. The classic method does distinguish between them, though, with a

higher error term for the first voting system.19

19The error terms are err(ΨS,ΦS(W1)) = 10( 1
6 −

1
3 )

2 + 5( 1
4 −

1
6 )

2 + 5( 1
4 −

1
6 )

2 = 25
72 for the first and

err(ΨS,ΦS(W2)) = 5( 1
12 −

1
6 )

2 +5( 1
12 −

1
6 )

2 +5( 1
4 −

1
6 )

2 +5( 1
4 −

1
6 )

2 = 10
72 for the second voting system.
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