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Spatial Heterogeneity in Hedonic House Price Models:  
The Case of Austria 

Marco Helbich, Wolfgang Brunauer, Eric Vaz, Peter Nijkamp 

 
 
Abstract 
 
Modeling spatial heterogeneity (SH) is a controversial subject in real estate economics. Single-family-
home prices in Austria are explored to investigate the capability of global and locally weighted 
hedonic models. Even if regional indicators are not fully capable to model SH and technical 
amendments are required to account for unmodeled SH, the results emphasize their importance to 
achieve a well-specified model. Due to SH beyond the level of regional indicators, locally weighted 
regressions are proposed. Mixed geographically weighted regression (MGWR) prevents the 
limitations of fixed effects by exploring spatially stationary and non-stationary price effects. Besides 
reducing prediction errors, it is concluded that global model misspecifications arise from improper 
selected fixed effects. Reported findings provide evidence that SH of implicit prices is more complex 
than can be modeled by regional indicators or purely local models. The existence of both stationary 
and non-stationary effects imply that the Austrian housing market is economically connected.  
 

1 Introduction 
 
In real estate research, it is well established that hedonic prices may vary across space such as 
stratifications of metropolitan areas, regions, and counties (e.g., Bourassa et al., 1999; Goodman and 
Thibodeau, 2003; Bischoff and Maennig, 2011; Helbich et al., 2013a). However, this parametric 
modeling approach has some restrictions: Spatial units have to be defined exogenously, SH is 
modeled in a discrete fashion where continuous changes across space can be expected, and usually 
the same definition of spatial units is used for all spatially varying effects (e.g., Redfearn, 2009; 
McMillen and Redfearn, 2010).  
 
By preventing these limitations, non-parametric locally weighted regression procedures (LWR; 
Cleveland and Devlin, 1988) offer significant advantages (McMillen and Redfearn, 2010; McMillen, 
2010). In this context, the slowly growing body of literature on LWR primarily use the geographically 
weighted regression (GWR; Fotheringham et al., 2002), which inherently assumes SH in the hedonic 
price function and all involved predictors (e.g., Bitter et al., 2007; Yu et al., 2007; Hanink et al., 2010). 
However, in situations where only some of the variables vary spatially, GWR results in inefficient 
estimations and possibly incorrect conclusions (Wei and Qi; 2012). This is particularly true for 
relatively small countries like Austria where real estate markets are economically connected through 
common federal policies such as governmental subsidies etc. Economic ties might also be relevant 
for structural housing features where Austrian-wide equilibrium conditions between supply and 
demand are a rational outcome. On the other side, spatially varying implicit prices are expected 
where local legislation and regulation (e.g., through spatial planning policies) are effective and/or 
where local supply consequence scarcity (e.g., plot area). Consequently, some price determining 
effects are expected to vary across space, while others are spatially homogenous. Both aspects are 
modeled simultaneously in the so-called MGWR (Fotheringham et al., 2002). Although the MGWR 
model seems to be rational, it has not yet been considered in real estate studies. 
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Therefore, the overall objective of this research is to explore SH in cross-sectional housing price 
functions. Using Austrian housing data, following contributions to the literature are established: First, 
the efficiency of fixed effects is evaluated in the context of global models, considering additionally 
iteratively technical corrections for spatial autocorrelation (SAC) and SH. Second, switching to fully 
local non-parametric modeling, it is demonstrated that SH is only inadequately captured by imposing 
spatially fixed effects and that systematic parameter variation is evident which deviates substantially 
from globally estimated marginal prices. Finally, due to an absence of empirical consensus which 
predictor enters the model globally or locally, the data-driven MGWR procedure is proposed. As 
such, following research questions are addressed:  

• Are standard hedonic regressions equipped with spatial indictors suitable to model SH? Are 
technical corrections required to archive a well-specified model? 

• Is SH beyond the regional fixed effects present? If this is the case, does a semi-local model 
outperform its global and fully local counterparts?  

 
The rest of the paper is structured as follows. Section 2 reviews the theoretical foundations of 
hedonic pricing theory and discusses methodologies to account for SH. Following this, Section 3 
introduces the empirical models. Section 4 presents the study area and the dataset. The results are 
summarized in section 5, before Section 6 highlights major conclusions and implications. 
 

2 Background 
 

2.1 Hedonic pricing theory 
 
The theoretical basis of hedonic price modeling (Rosen 1974) is derived from Lancaster's (1966) 
consumer behavior theory, which argues that not the good itself creates utility, but its individual 
characteristics. As housing characteristics are non-separable and traded in bundles, real estate is 
usually treated as a heterogeneous good. Houses are valued for their utility-bearing characteristics 
with implicit prices, which can be considered as the component's specific prices (McDonald, 1997). 
Thus, a household implicitly chooses a set of different goods and services by selecting a specific 
object (Sheppard, 1997; Malpezzi, 2003). In the course of their purchase decisions, households aim 
to maximize their utility depending on their own social and economic characteristics. Households' 
utilities are also increasingly influenced by the absolute location of the house. Urban economic 
theory, in particular the monocentric Alonso-Muth-Mills model, provide a uniform framework to 
explain the spatial organization of housing (Anas et al. 1998). Briefly stated, the model claims that 
distance to the core city is the exclusively determinant causing spatial variation in housing prices and 
that prices, among other things, smoothly tend to decline with distance. Due to this reductionist use 
of commuting costs, the model has attracted some criticism. However, in a recent empirical study of 
real estate commodities, Ahlfeldt (2011) concludes that the model still performs satisfactorily.  
 
Methodologically, a hedonic price function 𝑓 describes the functional relationship between the real 
estate price 𝑃  and associated physical characteristics 𝑥1

𝑝, … , 𝑥𝑛
𝑝  as well as neighborhood 

characteristics 𝑥1𝑛, … , 𝑥𝑚𝑛 . The former depicts the fabric of the dwelling (e.g., floor area); the latter 
defines the dwelling's surroundings, often based on census data (e.g., educational level; see Can, 
1998). Usually the equation is estimated by means of multiple regression analysis. In practice, most 
empirical research uses a semi-log or log-log specification, having the advantage that prices vary with 
the quantity of housing characteristics and further corrects for heteroskedastic tendencies (Malpezzi 
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2003). Can and Megbolugbe (1997) assess that a wrong functional form results in unreliable and 
biased estimates.  
 

2.2 Spatial effects in hedonic models 
 
SAC and SH are two challenges in hedonic modeling. Since Dubin (1992; 1998) and a wealth of 
subsequent research (e.g., Can and Megbolugbe, 1997; Pace et al., 1998; LeSage and Pace, 2009; 
McMillen, 2010), it is now accepted that such spatial effects should be taken into account when 
estimating hedonic price functions. SAC describes the coincidence of locational and attribute 
similarity (Anselin 1988) caused by analogous neighborhood characteristics, similar socio-economic 
characteristics of their residents, and the quality of services (Dubin, 1992). As a consequence, the 
traditional ordinary least squares (OLS) estimator is inefficient and statistical inference is invalid 
(Dubin, 1998). 
 
Although the price function assumes spatial equilibrium between supply and demand for dwelling 
characteristics, as real estate is fixed in space, and because of its durability and consistent properties, 
supply becomes largely inelastic (Malpezzi, 2003). Furthermore, different socio-economic and 
demographic conditions of households cause spatial variation in dwelling demand (Sheppard, 1997). 
Functional disequilibria, which manifest themselves in the emergence of heterogeneous market 
structures, might result as a consequence (McMillen and Redfearn, 2010). Therefore, SH should be 
considered in hedonic models. As LeSage and Pace (2009) pointed out, non-modeled heterogeneity 
can lead to biased results and falsely induced SAC.  
 

2.3 Modeling spatial heterogeneity 
 
SH can either be considered in a discrete way or in a continuous manner. Both approaches are 
discussed in this Section.  
 
2.3.1 Discrete approaches 
 
Discrete attempts model SH based on predefined spatial units (e.g., federal states) which are usually 
considered within the regression as fixed or random effects. 
 
Fixed effects model 
Within the regression framework, fixed effects or spatial indicators for regions can be integrated, 
which let the intercepts vary over space. Slope heterogeneity can be controlled through spatial 
interaction effects of the spatial indicators with explanatory covariates (e.g., Kestens et al., 2004). 
However, they implicitly assume prior knowledge about the actual spatial process. Modeling 
heterogeneity using a large number of fixed effects can result in insufficient observations within 
regions for parameter estimations which, due to the loss of degrees of freedom, decrease the 
prediction accuracy. Therefore, it is common practice to interact in an ad-hoc fashion where only 
"one-variable-at-a-time" is considered (McMillen and Redfearn, 2010, p. 713). Thus, a trade-off 
between both data fidelity and reduction of prediction accuracy is required which is partially solved 
by the random effects model (Orford, 2000; Goldstein, 2011).  
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Random effects model 
The simplest case of a random effects model is the one-way intercept model, whereby intercepts 
vary spatially. Random effects can be approximated as a weighted average of the mean of the 
observations in the spatial units (corresponding to a dummy specification) and the overall mean of 
the whole country (Gelman and Hill, 2007). The weights are determined by the amount of 
information in a given region. For small subsample sizes with little information, estimates tend to 
equal the global mean, while for large subsamples estimates tend towards the "unpooled" dummy 
estimate. One advantage of this modeling strategy is that the closer the estimates are to the 
"pooled" model, the less effective degrees of freedom are used. However, if random effects are 
correlated with the predictors, the regression yields biased and inconsistent results. Similar to fixed 
effects, random effects models can be generalized by two-way structures (e.g., random time effects) 
and by letting predictors interact with the random effects, allowing different intercepts and/or slopes 
within each region (Goldstein, 2011).  
 
Multilevel regression 
As stated in Orford (2000), considering real estate as nested within several levels of spatial units, 
turns the hedonic pricing model into a multilevel regression problem (e.g., Goldstein, 2011). 
Multilevel models generalize random effects models to more than one hierarchical level, in which 
coefficients are determined by a probability model (Gelman and Hill, 2007). This second-level model 
has parameters of its own (hyperparameters), which are also estimated from the data of the first-
level model. However, in fixed and random effects, as well as in multilevel models, spatial units do 
not necessarily coincide with the true spatial (possibly non-stationary) data generating process 
(Dubin, 1998). Thus, one faces the modifiable areal unit problem (MAUP; see Fischer and Wang, 
2011). In order to incorporate more homogeneous region delineations, statistical methods, such as 
cluster analysis (e.g., Bourassa et al., 1999) or regionalization (e.g., Helbich et al., 2013a), have been 
utilized. While Orford (2000) emphasizes the usefulness of multilevel modeling, Fotheringham et al. 
(2002) sharply criticize the discrete nature in which space is implemented, which further implies that 
the price function is discrete and homogeneous within an spatial unit. Moreover, abrupt and artificial 
discontinuities along the spatial units are present, consequently this suggests continuous modeling of 
SH. 
 
2.3.2 Continuous approaches 
 
These techniques do not rely on exogenous assumptions concerning spatial units, and therefore 
provide a data-driven modeling of parameter instability. 
 
Polynomial regression and spatial expansion model 
Dubin (1992) discusses the use of polynomial regression to investigate continuous large-scale 
variation. The expansion model developed by Cassetti (1972) relates to polynomial regression. 
Parameters vary as a function of the coordinates and are allowed to drift spatially. Comparing non-
stationarity modeling approaches, Bitter et al. (2007) conclude that the expansion model is suitable 
to analyze previous known broad trends but fails to investigate complex unknown local spatial 
relationships. Similar, Farber and Yeates (2006) state that complex patterns are poorly depicted by 
polynomial functions. Specifically, following Dubin (1992), this approach does not seem useful for 
hedonic modeling; because (a) polynomials tend to get distorted at the edges of the study area, (b) 
higher order polynomial terms are highly multicollinear, (c) results are uncoupled from the spatial 
distribution of the entities, and (d) are too smooth for modeling local variation in prices.  
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Local weighted regression 
Compared to the mentioned models, non-parametric LWR (Cleveland and Devlin, 1988) offer 
substantial advantages, highly adaptable for spatial housing data (McMillen and Redferan, 2010). 
Embedded in the LWR framework, the conditional parametric model, also termed GWR 
(Fotheringham et al., 2002), is an explicitly local model and circumvents problems discussed in the 
context of discrete modeling of heterogeneity and polynomial regression. GWR implicitly assumes 
continuously changing price functions and models SAC and SH (McMillen and Redferan, 2010). 
Currently, the suitability of GWR is extensively discussed: Wheeler and Tiefelsdorf (2005) note 
coefficient sign reversals. Jetz (2005 cited in Páez et al., 2011) hypothesizes that it might be induced 
by artificially localizing the model, causing a local omitting variable bias. Moreover, Wheeler and 
Tiefelsdorf (2005) have found correlations among estimated GWR parameters which may affect 
interpretations. Wheeler (2007) argues that local collinearity in the covariates are the reason, which 
inflates variances and in turn yield reverse parameter signs. Based on Monte-Carlo simulations, 
Farber and Páez (2007) examine the GWR bandwidth calibration. They conclude that globally fixed 
bandwidths do not appropriately reflect spatial processes, resulting in volatile regression coefficients. 
Extending Farber and Yeates (2006), who detected extreme coefficients which might emerge from 
local distributional irregularities, Cho et al. (2009) provide evidence that fixed bandwidths and less 
spatially dense data are potentially more vulnerable to extreme coefficients. Also McMillen and 
Redfearn (2010) favor a varying bandwidth. Recently, Páez et al. (2011) mitigate the doubt not to use 
GWR for inference. Criticizing previous studies (e.g., Wheeler and Tiefelsdorf, 2005) due to their 
limited sample sizes of less than 400 observations and their restricted research designs, they provide 
simulation-based evidence that spurious correlations are noticeably reduced by samples of more 
than 1,000 observations. A strong advantage of GWR is its flexibility (Farber and Yeates, 2006; 
McMillen 2010) and that the price function needs no prior assumption concerning the price 
determination process and its spatial variation (e.g., Yu et al., 2007). This corresponds to the 
suggestion of Ugarte et al. (2004), promoting more data-driven techniques. However, for some of the 
covariates the impact on the price can be global, while for others it may vary locally. Such constrains 
on the parameters can be imposed by politics or economic theory (Wei and Qi, 2012). This fact is 
usually neglected in GWR specifications (e.g., Bitter et al., 2007; Yu et al., 2007; Hanink et al., 2010), 
resulting in inefficient estimates (Wei and Qi, 2012). Therefore, based on Robinson (1988), 
Fotheringham et al. (2002) propose an extension of the basic GWR, resulting in the statistically more 
parsimonious MGWR, which is the focus of this research. 
 

3 Methods 
 
This section introduces (a) global econometric models and (b) local as well as semi-local models, 
relevant for the subsequent empirical analysis. 
 

3.1 Global models 
 
3.1.1 Non-spatial reference model 
 
Formally, the OLS model is defined as:  
 

𝒚 = 𝑿𝜷 + 𝜺   (1) 
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where 𝒚 is an 𝑛 × 1 vector of transaction prices, 𝑿 is an 𝑛 × 𝑘 matrix of predictors, 𝜷 a 𝑘-vector of 
estimated parameters, and 𝜺 an 𝑛 × 1 error term with 𝜺 ∼ 𝑁(𝟎,𝜎2𝑰). SH is modeled by using fixed 
effects, which reduces the extent of the prediction error, removes most of the systematic error, and 
leads to more reliable estimates (Can and Megbolugbe, 1997; Pace et al., 1998). However, as 
McMillen (2003) points out, unexplained similarities between neighboring houses can result in SAC, 
which is captured using spatial autoregressive models. 
 
3.1.2 Spatial autoregressive model 
 
The family of spatial autoregressive models, popularized by Anselin (1988), comprises two special 
cases, namely the lag and error model. The former extends the standard regression model by 
including a spatially lagged dependent variable (further on called SAR model), while the latter 
addresses SAC by defining a spatial autoregressive error process (Anselin, 1988). If only residual SAC 
is present, OLS estimates are inefficient, although unbiased and consistent. However, if a spatial lag 
process exists, OLS produces biased and inconsistent estimates. The Lagrange multiplier statistic (LM) 
on the estimated OLS residuals is applied to decide between these two alternatives.  
 
The SAR, which is employed in this study, is written as: 
 

𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 + 𝜺   (2) 
 
where 𝒚  is an 𝑛 × 1  vector of prices, 𝑿  an 𝑛 × 𝑘  predictor matrix, 𝜷  a 𝑘 -vector of estimated 
coefficients, 𝑾 an 𝑛 × 𝑛 weight matrix, 𝜌 a spatial lag of the dependent variable 𝒚, and 𝜺 the 𝑖𝑖𝑑 
error term. Equation (2) shows that this model adjusts for SAC in the dependent variable, 
interpretable as spillover effects. Bivand et al. (2008) discuss several options for the specification of 
𝑾 , including 𝑘 -nearest neighbors, neighborhood contiguity by distance, and graph-based 
approaches. However, caution is necessary, as an incorrect specification can itself result in residual 
SAC (Florax and Rey, 1995). A comprehensive treatment is provided by LeSage and Pace (2009). 
 
3.1.3 Spatial two stage least squares with spatial heteroskedasticity and autocorrelation 
consistent standard errors 
 
Homoskedasticity, as stipulated in both the OLS and the SAR model, is a strong and restrictive 
assumption (Kelejian and Prucha, 2007). Recently, however, Piras (2010) provided functions for 
robust inference in the presence of spatial heteroskedasticity and autocorrelation (SHAC) across 
spatial units estimated by a spatial two stage least square procedure (S2SLS): 
 

𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 + 𝜺;          𝜺 = 𝑹𝜻  (3) 
 
where 𝜻 is a vector of disturbances and 𝑹 is an 𝑛 × 𝑛 non-stochastic matrix with unknown elements. 
The other symbols correspond to equation (2). For details it is referred to Piras (2010).  
 
Clearly, global models have the drawback that they assume homogeneous behavior of the 
parameters over space, which may be a misspecification of reality and consequently may be locally 
biased. Therefore, locally weighted regressions provide significant advantages (McMillen, 2010). 
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3.2 Local and semi-local models 
 
3.2.1 Geographically weighted regression 
 
GWR performs a series of weighted least squares regressions on subsets of the data, where the 
influence of an observation i decreases with the Euclidean distance to a regression point j. These 
distance-dependent weights are determined by a kernel function, including the bi-square, Gaussian, 
or tricube function. More important than the kernel type for model estimation is the range of the 
input data (bandwidth) to which data points are considered for each LWR (Fotheringham, et al. 
2002). Besides assuming a predefined and fixed bandwidth, an adaptive bandwidth has been proven 
to be highly suitable in practice (McMillen and Redfearn, 2010), reflecting a relation between the 
density of the regression points and the bandwidth (i.e., denser points yield smaller bandwidths and 
vice versa). Often adaptive bandwidth selection is determined by cross-validation (CV; Farber and 
Páez, 2007). This reduces large estimation variances in sparsely sampled areas. To achieve parameter 
surfaces of the coefficients on non-observed locations, geostatistical algorithms (Pebesma, 2004) can 
be employed (e.g., Yu et al., 2007). 
 
3.2.2 Mixed geographically weighted regression 
 
MGWR (Fotheringham et al., 2002) is a statistically more parsimonious version of the GWR, where 
some coefficients (usually those with non-significant variation over space) are kept constant, saving 
degrees of freedom and improving efficiency of estimators of coefficients (Wei and Qi, 2012). Such a 
model is written in the form as follows: 
 

𝑦𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗𝑘
𝑗=1 + ∑ 𝛽𝑙(𝑢𝑖,𝑣𝑖)𝑥𝑖𝑙𝑚

𝑙=𝑘+1 + 𝜀𝑖          (4) 

 
where 𝑦𝑖  is the logarithmically transformed sales price of observation 𝑖, 𝑖 ∈ 1, … ,𝑛, 𝛽𝑗 are the global 
coefficients of covariates 𝑥𝑖𝑗 , 𝑗 ∈ 1, … ,𝑘 , and are the 𝛽𝑙(𝑢𝑖,𝑣𝑖) , 𝑙 ∈ 𝑘 + 1, … ,𝑚 , the local 
coefficients of covariates 𝑥𝑖𝑙  at the coordinates (𝑢𝑖 , 𝑣𝑖) of observation 𝑖. Leung et al. (2000a) propose 
a statistic to distinguish spatial stationary and non-stationary covariates.  
 
The MGWR calibration procedure can be achieved by a multi-step algorithm (Fotheringham et al., 
2002), a two-step procedure (Mei et al., 2006), and a constrained type (Wei and Qi, 2012). Due to 
easier implementation, the multi-step algorithm is applied: 
 

1. Each global covariate 𝒙𝟏, … ,𝒙𝒌  and the response variable 𝒚 are regressed on the local 
covariates 𝒙𝒌+𝟏, … ,𝒙𝒎 using the basic GWR algorithm and the resulting residuals 𝒙�𝟏, … ,𝒙�𝒌 
and 𝒚� are determined.  

2. The residuals of the response are regressed on the residuals of the global covariates using 

OLS: 𝑦�𝑖 = ∑ 𝑥𝑖𝑗𝑘
𝑗=1 𝛽𝑗 + 𝜀𝑖

𝑔𝑙𝑜𝑏𝑎𝑙, which yields the estimated global coefficients 𝛽̂1, … , 𝛽̂𝑘.  

3. The estimated global effects are then subtracted from the original response variable, 
resulting in a partial residual of the response: 𝑦��𝑖 = 𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑘

𝑗=1 𝛽̂𝑗.  

4. Finally, these adapted prices are regressed on the spatially varying covariates by using the 
basic GWR method, resulting in the varying GWR coefficients: 𝑦��𝑖 = ∑ 𝛽𝑙𝑚

𝑙=𝑘+1 (𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑙 +
𝜀𝑖𝑙𝑜𝑐𝑎𝑙. 
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4 Study area and data 
 

4.1 Housing data 
 
Housing data for Austria are provided by the UniCredit Bank Austria AG. The dataset consists of 3,887 
geocoded single-family-homes. Figure 1 shows their spatial distribution. Clearly, observations are 
non-uniformly distributed and show a concentration in the eastern federal states. Individual (logged) 
transaction prices of house purchases recorded in Euro have been collected from 1998-2009 
together with physical properties of the houses in order to estimate the value of the collateral for 
mortgages.  
 

 
Fig. 1: Spatial distribution of houses depicted as points and as normalized kernel density estimation. 
The larger black point symbols represent the nine Austrian federal state capitals within each federal 

state (black boundary lines). 
 
Official census data published by Statistics Austria and Michael Bauer Research GmbH for 2001 and 
2009, respectively, describe the socio-economic characteristics of each municipality and 
enumeration district (thereafter called neighborhood covariates). Table 1 provides an overview of 
the data.  

 
4.2 Covariates and their expected effects 
 
4.2.1 Physical covariates 
 
Nine physical covariates, measuring the size of the house and describing the quality of the house, are 
included. A positive effect of the floor area and the size of the plot the house is built upon is 
expected. In line with Malpezzi (2003), both covariates are logarithmically transformed to account 
for the multiplicative structure. Furthermore, the market value of a house is dependent on its 
structural condition and architecture; that is, the efficiency of heating, the presence of a garage and 
basement as a positive asset, as opposed to a traditional top-floor attic which might reduce the price 
ceteris paribus due to the limitation of the amount of usable area. 
 
4.2.2 Temporal covariates 
 
The age of the building at a given time of sale reflects property depreciation over time and should 
decrease house prices, notwithstanding a vintage effect, having an opposite effect (Can, 1998). 
Stevenson (2004) proposes an additional quadratic age term to capture non-linearities (see also 
Helbich et al., 2013b). The year of the house purchase can be considered as the remaining 
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unexplained temporal heterogeneity and is a measure for the quality adjusted development of prices 
over time. 
 

Tab. 1: Description of the variables. 
Variable Description 

lnp Log purchase price 

lnarea_total Log of total floor area (m²; except basement) 

lnarea_plot Log of plot space (m²) 

cond_house Condition of the house (0=good; 1=poor) 

heat Quality of the heating system (0=high; 1=poor) 

Bath Quality of the bathroom/toilet (0=high; 1=poor) 

Attic Existence of an attic (0=no; 1=yes) 

Basement Existence of a basement (0=no; 1=yes) 

Garage Quality of the garage (0=high; 1=poor) 

Terr Existence of a terrace (0=no; 1=yes) 

Age Age of building at time of sale (year) 

Time Year of purchase 1998-2009 (date) 

muni_pp_ind Purchase power (index, federal state = 100, 2009) 

muni_acad Proportion of academics (%, 2001) 

muni_unempl Unemployment rate (%, 2009) 

muni_age_ind Age (index calc. from 5-years age cohorts, 2001) 

muni_comm_ind Commuter (index, 2001) 

ln_muni_popd Log population density (2001) 

muni_liv_ind Quality of living (index, 2001) 

enumd_pp_ind_dmuni Purchase power index (dev. from municip. mean, 2009) 

enumd_acad_dmuni Proportion of academics (dev. from municip. mean, 2001) 

enumd_unempl_dmuni Unemployment rate (dev. from municip. mean, 2009) 

enumd_age_ind_dmuni Age index (dev. from municip. mean, 2001) 

ln_enumd_popd_dmuni Log population density (dev. from municip. mean, 2001) 

fed_states 9 Federal states 

 
 
4.2.3 Neighborhood covariates 
 
Both the purchase power index and the proportion of academics reflect disposable income and the 
economic status. These covariates should therefore affect house prices positively. In contrast, the 
population age index reflects excess of age and serves as a proxy for structural weakness. This index 
should have a negative effect on house prices. Also, the unemployment rate reflects economically 
weakness and should have a negative impact. Furthermore, urban economic theory (e.g., McDonald, 
1997) states that shorter commuting distances to centers of economic activity should raise property 
prices, which is why a high commuter index should tend to affect prices positively. Although close 
proximity to these centers can provide certain amenities (e.g., functional services) there might occur 
disamenities, such as environmental pollution. Therefore, the effect of commuting distances is 
unclear. Logged population density measures urbanity. As land becomes more valuable in densely 
populated areas, a positive effect on house prices is expected. Finally, the quality of living within a 
municipality is quantified by a weighted average of the dwelling category according to the Austrian 
rental law. It is assumed that in areas with largely high-quality dwellings prices are higher. 
 



10 
 

4.2.4 Compositional effects 
 
Neighborhood effects can be used at the level of the enumeration district or the municipality. In the 
latter case, compositional effects (Goldstein, 2011) allow neighborhood variables to be integrated at 
both hierarchical levels in which they have been measured. The difference between a hierarchy level 
(e.g., enumeration district) from the average of the higher level (e.g., municipality level) is 
considered. The resulting effect is then interpretable as a level-specific differential effect of the 
higher level.  
 
4.2.5 Regional indicators 
 
Each house is nested within one of the nine Austrian federal state. However, due to a sparse sample 
in the western federal states of Vorarlberg and Tyrol both regions are considered as one spatial unit 
in the global models. Such ad-hoc stratifications are commonly used to model small-scale spatial 
heterogeneity (e.g., Bischoff and Maennig, 2011). This kind of unexplained spatial heterogeneity is 
accounted for by using a regional indicator specification. 
 

5 Results 
 

5.1 Descriptive and exploratory analysis 
 
The mean transaction price of a house is approximately 167,200 Euro, with a minimum of 30,000 
Euro (in Haugschlag next to Czech Republic border), and a maximum of 550,000 Euro in Mödling, in 
the south of Vienna. Initially, for exploratory spatial analysis the weight matrix, reflecting the houses' 
spatial configuration, is defined. Distance-based weights are rejected, as a distance of 21.6 km would 
have been necessary to avoid houses without any neighbors, which seems unrealistic. Instead, a 𝑘-
nearest neighbor definition with row standardization is used, accounting for heterogeneously 
distributed dwellings (Bivand et al., 2008). To be consistent with the global models below, a 
commonly used value of 5 is chosen (e.g., Wilhelmsson, 2002). The impression of spatially 
autocorrelated dwelling prices is supported by a significant Moran's 𝐼 statistic (𝐼 = 0.286, p < 0.001). 
Due to a sharing of similar socio-economic characteristics of the residents and quality of services, 
Dubin (1998) claims that such patterns are common in real estate analysis and may affect 
subsequent regression analysis. 
 

5.2 Global models 
 
This section reports the estimation results of the OLS, SAR, and S2SLS models. To realize a more 
parsimonious OLS model, a stepwise variable selection procedure minimizing the Akaike Information 
Criterion (AIC) is applied. With a highest value around two, the Generalized Variance Inflation Factors 
gives no indication of multicollinearity. With an adjusted R², the OLS model (Table 1) explains around 
47% of the variation in logged prices. Excluding the regional dummies lowers the adjusted R² and 
increases the AIC about 204. Further model inspection shows inconsistency with the Gauss-Markov 
assumptions. The Breusch-Pagan test indicates heteroskedasticity (BP = 166.519, p < 0.001). This is a 
recognized problem in econometrics and, hence, White's heteroskedasticity consistent coefficient 
covariance matrix is calculated (Kleiber and Zeileis, 2008). However, the adjusted standard errors 
show only marginal differences. Furthermore, these results are based on the incorrect assumption of 
spatially uncorrelated model residuals (𝐼 = 0.080, p < 0.001), leading to inefficient parameter 
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estimations, with the resulting confidence intervals being incorrect. This misspecification is a result of 
existing spatial effects and must be taken into account. 
 
Autoregressive models adjust for SAC. On the basis of the robust LM test (LM = 28.506, p < 0.001) it is 
concluded that a re-specification in terms of a SAR model is the proper alternative, which is in line 
with Yu et al. (2007). Thus, the OLS model results are not only inefficient, but also inconsistent, and 
an additional spatial lag based on a 𝑘 = 5 nearest neighbors is considered. Tests show that the 
parameter estimations are robust against changes in the weight matrix (e.g., different 𝑘-values, 
distance decay functions) and lead to marginal changes in the coefficients. Again, variables are 
selected based on the full model. Predictors not significant on a 0.05 level are omitted stepwise. If 
the main effect shows no significance the corresponding compositional effect is also dropped. 
Overall, the SAR model (Table 1) performs significantly better than the OLS model, confirmed by the 
AIC reduction. A comparison of the model predictive quality, applying the root mean square error 
(RMSE), also supports the SAR model. Dropping the federal state dummy increases both the RMSE 
and AIC. 𝜌 is highly significant. Thus, the model captures SAC effectively and points to relevant 
spillover effects. Consequently, the error term is not plagued by SAC. However, the BP test rejects 
the homoscedasticity assumption (BP = 171.308, p < 0.001). Hence, heteroskedasticity and 
autocorrelation consistent standard errors, applying the S2SLS model, are required. As above, non-
significant predictors are removed in a stepwise manner, starting with the full model.  
 
Both the SAR and S2SLS coefficients of the neighborhood covariates are smaller compared with the 
OLS model, showing the bias induced by the neglection of SAC in the OLS model. A comparison 
between SAR and S2SLS with a triangular kernel and 𝑘 = 5 nearest neighbors indicates that the 
coefficients remain virtually unchanged. The S2SLS results in slightly smaller standard errors 
compared with the SAR model. The final S2SLS consists of 17 significant covariates. Both covariates 
quantifying the size of a house are positively related to the house price. A 1% increase of total floor 
area results in a 0.4% increase of the price, and the plot space shows a positive elasticity of 0.1%. A 
poor overall house condition leads to a loss in value of approximately 4%, whereas a poor heating 
system reduces house prices by more than 10% compared with a high quality heating system. 
Furthermore, a poor quality bath leads to a price reduction of 7% and a traditional attic reduces 
dwelling prices by up to 2%. A poor quality garage reduces prices by 8%. Other properties, such as 
the existence of a basement (+13%) and terrace (+7%), have the expected positive effects on housing 
prices. Both temporal effects are statistically significant. The house's age has a marginally negative 
impact on the price. Contradicting original expectations, the quadratic age term is insignificant. The 
year of purchase, modeled as linear effect, suggests that there has been a price increase over time.  
 
However, compositional effects are only used, if both levels are significant. In the S2SLS model, the 
main and the differential effects of the proportion of academics show significance. A one percentage 
point increase in the proportion of academics in a municipality results in a 0.8% increase in house 
prices. The corresponding differential effect shows that within a municipality, a one percent point 
increase of this proportion results in a further 0.5% increase in house price value. Also an increase in 
the purchase power index has a positive effect (+0.5%). Furthermore, an increase in the average 
population age of one year, reflecting structural weaknesses, reduces expected house prices by some 
2%. Densely populated areas show a marginally positive elasticity. Although the compositional effect 
for the rate of unemployment is significant, it is removed because its main corresponding effect is 
not significant. Finally, with the exception of Upper Austria, the federal state dummies are highly 
significant and indicate SH. For instance, properties located in the structurally weaker state of 
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Burgenland have a significantly lower price compared with houses situated in Lower Austria, serving 
as reference category.  

Tab. 2: Estimation results of the global models. 

 
OLS 

  
SAR 

  
S2SLS 

  

 
Coeff. 

HC Std. 
err. t-val. Coeff. 

Std. 
err. z-val. Coeff. 

SHAC Std. 
err. t-val. 

Intercept 9.391 0.195 48.278*** 6.872 0.328 20.969*** 6.542 0.548 
11.939**

* 

lnarea_total 0.410 0.017 23.988*** 0.409 0.018 22.825*** 0.411 0.017 
23.864**

* 

lnarea_plot 0.111 0.012 8.945*** 0.111 0.013 8.855*** 0.111 0.012 8.891*** 

cond_house_1 
-

0.052 0.014 -3.742*** 
-

0.045 0.014 -3.330** 
-

0.044 0.014 -3.229** 

heat_1 
-

0.102 0.020 -5.018*** 
-

0.107 0.023 -4.602*** 
-

0.105 0.021 -5.005*** 

bath_1 
-

0.076 0.019 -3.910*** 
-

0.074 0.022 -3.339*** 
-

0.075 0.019 -3.985*** 

attic_1 
-

0.024 0.012 -2.018* 
-

0.024 0.011 -2.077* 
-

0.024 0.012 -2.020* 

basement_1 0.132 0.013 9.936*** 0.126 0.013 9.597*** 0.124 0.014 9.069*** 

garage_1 
-

0.082 0.012 -6.899*** 
-

0.084 0.012 -7.162*** 
-

0.084 0.012 -7.064*** 

terr_1 0.070 0.012 5.893*** 0.066 0.012 5.673*** 0.066 0.012 5.574*** 

age 
-

0.006 0.000 
-

16.976*** 
-

0.006 0.000 
-

17.617*** 
-

0.006 0.000 -16.434 

time 0.009 0.003 3.550*** 0.010 0.002 4.100*** 0.010 0.003 3.925*** 

muni_pp_ind 0.005 0.001 5.800*** 0.005 0.001 5.890*** 0.005 0.001 5.709*** 

muni_acad 0.011 0.002 5.695*** 0.009 0.002 4.384*** 0.008 0.002 3.692*** 

muni_unempl 
-

1.454 0.649 -2.241* 
      

muni_age_ind 
-

0.020 0.004 -5.538*** 
-

0.017 0.004 -4.788*** 
-

0.016 0.004 -4.255*** 

ln_muni_popd 0.033 0.007 4.518*** 0.020 0.006 3.153** 0.020 0.006 3.245 

enumd_acad_dmuni 0.008 0.001 6.072*** 0.006 0.001 4.997*** 0.005 0.001 4.232** 
enumd_unempl_dmun
i 1.758 0.607 2.898** 

      enumd_age_ind_dmu
ni 0.004 0.003 1.568*** 

      
Burgenland 

-
0.129 0.023 -5.644*** 

-
0.096 0.025 -3.905*** 

-
0.087 0.024 -3.671*** 

Carinthia 
-

0.082 0.024 -3.397*** 
-

0.093 0.024 -3.912*** 
-

0.092 0.024 -3.801*** 

Upper Austria 0.018 0.021 0.870 0.016 0.019 0.832 0.012 0.019 0.648 

Vorarlberg & Tyrol 0.241 0.042 5.791*** 0.182 0.036 5.023*** 0.179 0.041 4.340*** 

Salzburg 0.231 0.030 7.748*** 0.190 0.028 6.796*** 0.185 0.031 6.054*** 

Styria 
-

0.055 0.020 -2.760** 
-

0.056 0.020 -2.805** 
-

0.055 0.020 -2.759** 

Vienna 0.266 0.034 7.759*** 0.220 0.031 7.011*** 0.215 0.034 6.401*** 

𝜌 
   

0.205 
 

p < 0.001 0.229 
 

p < 0.001 

Adj. R² 0.473 
  

0.486 
     AIC 2783 

  
2707 

     AIC without regions 2988 
  

2850 
     RMSE 0.344 

  
0.339 

  
0.339 

  RMSE without regions 0.353 
  

0.345 
  

0.345 
  Signif.: '***' 0.001, '**' 0.01, '*' 0.05, '.' 0.10 
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5.3 Local and semi-local model 
 
Next, GWR and MGWR are estimated. A data-driven approach to explore functional instability 
replaces the federal states dummies. For both models the analysis is restricted exclusively to the 
main effects. Otherwise, compositional effects would result in complex and difficult interpretational 
local effects. Because of a significant compositional effect of the unemployment rate and an 
insignificant corresponding main effect in the S2SLS model, the unemployment rate is additionally 
considered at the enumeration district level. To achieve a trade-off between computational burden 
and estimation accuracy, (a) a random sample of 50% of the overall data set is used and (b) only 
those variables are chosen that are significant in the global S2SLS model (Table 1).  
 
First, it is necessary to distinguish between global and local effects using non-parametric GWR with a 
Gaussian kernel. CV determines an optimal adaptive bandwidth that includes 227 neighboring 
houses. The test statistic after Leung et al. (2000a) does not reject the H0 of stationary parameters 
for six out of 16 variables. In a MGWR specification, those six variables are thus held spatially 
constant, while the remaining 10 variables are allowed to vary. Again, applying a Gaussian kernel 
function, CV results in an optimal bandwidth of 177 neighboring houses for the MGWR. Compared to 
the GWR the AIC score is noticeably reduced from 1,396 (GWR) to 1,381 (MGWR), while the RMSE 
for both models is quasi similar (0.338). Statistically the MGWR is favored. Sensitivity analysis with 
alternative kernels (i.e. bi-square kernel) shows no significant differences.  
 
The spatial variation of the model fit ranges from 0.24 to 0.49. The lowest values are located in 
Vienna plus its surroundings and in the south of Austria. The best fit is achieved in the northern parts 
of Austria. The reason for the low fit in Vienna might be that flats dominate the market in the capital. 
Figure 2 visualizes the parameter surfaces of the local R² and the predicted dwelling prices in Euro, 
achieved through ordinary kriging (Pebesma, 2004). The F(3)-test (Leung et al., 2000a) confirms that 
now all spatially varying covariates are statistically significant. No significant residual dependence on 
a 0.01 level is detected by the Moran's 𝐼 (Leung et al., 2000b). 
 

 
Fig.2: Local model performance and the predicted house prices. 
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Table 3 lists the MGWR results and its global counterparts. Additionally, Figures 3 through 5 visualize 
the parameter surfaces. Based on pseudo-t-values, only significant coefficients on 𝛼 = 0.1 have gray 
tones.  
 

Tab. 3: Estimation results of the semi-local model. 

 
Global coeff. 

 
Local coeff. 

  

 
Estim. Std.err. t-val. 1. quantile Median 3. quantile F(3)-test 

lnarea_total 0.422 0.024 17.453*** 0.367 0.398 0.458 *** 

lnarea_plot 0.077 0.018 4.268*** 0.061 0.087 0.111 *** 

heat_1 -0.111 0.031 -3.544*** -0.163 -0.125 -0.072 * 

Age -0.005 0.000 -11.441*** -0.006 -0.005 -0.004 *** 

Time 0.006 0.003 1.990* 0.007 0.011 0.013 *** 

enumd_unempl -2.103 0.587 3.581*** -2.335 -1.520 -2.236 *** 

muni_pp_ind 0.004 0.001 4.442*** -0.001 0.006 0.007 *** 

muni_acad 0.012 0.003 4.567*** 0.007 0.015 0.022 *** 

muni_age_ind -0.038 0.005 -8.260*** -0.037 -0.028 -0.022 *** 

ln_muni_popd 0.067 0.008 8.623*** 0.036 0.065 0.079 *** 

cond_house_1 -0.038 0.020 -1.953. 
    

bath_1 -0.064 0.031 -2.029* 
    

attic_1 -0.028 0.016 -1.674. 
    

basement_1 0.144 0.019 7.665*** 
    

garage_1 -0.068 0.017 -4.060*** 
    

terr_1 0.076 0.017 4.587*** 
    

Signif.: '***' 0.001, '**' 0.01, '*' 0.05, '.' 0.10 

 
 

  
Fig. 3: Physical covariates and temporal effect. 
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Fig. 4: Temporal effect and neighborhood covariates. 

 
 

 
Fig. 5: Neighborhood covariates. 

 
The negative MGWR intercept is not, by itself, meaningful. The spatially fixed coefficients consist 
solely of physical covariates, meaning buyers value these housing characteristics equal across space. 
Furthermore, these stationary coefficients illustrate that real estate markets are economically 
connected. Compared to the S2SLS estimates, the MGWR coefficients do not considerably deviate, 
which is an indication of model suitability. 
 
The total floor area is statistically significant across the entire study site and shows strong spatial 
variation (Figure 3). Its positive effect on house prices is less pronounced closer to Vienna and 
reaches its largest positive effects in parts of the federal states of Salzburg and Tyrol. These areas 
include well-established winter sports sites (e.g., Kitzbühel) where tourism and vacation homes, 
secondary residences etc. increase house prices. Particularly, the scarcity of space leads to higher 
prices for additional floor area in these regions. In contrast, a different pattern can be found for 
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logged plot space. The marginal values are more distinct in the northeast of Vienna's suburbs (Figure 
3). A 10% increase in plot space results in a price increase of 1.5% and prices decrease the more 
removed from Vienna. Additional plot area has little effect on house prices in southern and central 
Austria, meaning that in these regions, the proportion of land value in the total value of the house is 
relatively low. This leads to the conclusion that plot space is sufficiently available and lowers 
demand. Inferior heating systems have a negative effect (Figure 3), yet this effect is not significant in 
central Austria and has its most negative impact in the surroundings of Vienna (up to -21%). Hence, 
in these suburban areas the appreciation of a high technical standard is relatively high. It turns out 
that in these regions there is a large share of new constructions, so the spatial variation of this effect 
is likely to be due to an unobserved interaction effect between the age of the house and the 
technical standard of the heating system. Both temporal effects possess a significant non-stationary 
pattern (Figure 3 and 4). Most notably, the age effect is rather weak in Vienna (-0.2%), while in Linz 
an its surroundings the marginal effect is close to -1%. Lowest age effects are observed in central 
Upper Austria. In the Vienna region, there seems to be a tendency towards renovation of older 
buildings. This can also be interpreted with respect to the effect of an inferior heating system, as this 
effect is very pronounced where the effect of the age is weak. The year of purchase is most 
significant in the western federal states, whereas the northern surroundings of Vienna show the 
highest house price values increase over time (2% per year). This is a consequence of the on-going 
suburbanization, provoking increasingly high demand. 
 
The unemployment rate1 (Figure 4) is not significant for the northern regions of Austria but, as 
expected, are negatively related to house prices in the southern federal states. Unemployment yields 
the strongest negative effect close to the cities of Salzburg and Graz. The purchase power index 
(Figure 4) shows both negative and positive effects, but only the latter are statistically significant. 
Highest positive effects are achieved in the federal state of Salzburg (+1%). The proportion of 
academics, in Figure 4, shows a slight northwest to southeast trend, where maximum values can be 
found in the northern parts of Salzburg. In this area, an increase of the proportion of academics of a 
one percentage point results in a 3% increase of dwelling prices, holding all other effects constant. 
This compares to just 0.5% in the southwestern parts of Austria (e.g., Innsbruck). Beside this, Figure 5 
illustrates a limitation of MGWR. For example, the area around the city of Salzburg shows a high 
impact of the proportion of academics on price. Against our expectation that high purchase power 
effects house price positively in this area, the coefficient is partly negative, but not significant at all. 
Local sign reversals are also reported in Wheeler and Tiefelsdorf (2005) and Wheeler (2007). Possibly, 
this is caused by local correlations between these covariates. The age index in Figure 5 shows a slight 
east-west divide. In the western federal states of Salzburg, Tyrol, and Vorarlberg an increase in 
average population age of one year results in a price reduction of approximately 5%. Outside of the 
cities of Linz and Vienna this covariate shows no significance at all. Finally, the logged covariate 
population density (Figure 5) has the highest elasticity in central Burgenland, while in the federal 
state of Salzburg and most parts of Upper Austria this covariate has no explanatory power. 
 
Finally, by visualizing the predicted house prices in Figure 2, a distinct pattern of house prices 
becomes evident. Prices decline smoothly and relatively symmetrically with distance to the urban 
cores and peripheral areas yield unsurprisingly lower prices. These results confirm some agreement 
with monocentric urban models. Comparing the price gradients between federal state capitals, 
substantial slope differences of the price gradients are noticeable. Significantly higher prices are 
especially achieved in Vienna, Salzburg, and Innsbruck and their surroundings. Additionally, localized 

                                                           
1 Note, the unemployment rate is scaled between 0 and 1, which leads to relatively high effects. 
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peaks with high house prices primarily in scenic and tourist-oriented areas are noticeable. In 
contrast, significant lower prices are predicted within the structurally and economically weaker 
Burgenland as well as the northern parts of the Weinviertel next to the Czech Republic and Slovakia. 
 

6 Conclusions 
 
Hedonic modeling is frequently used to access the price of real estate. Although SH in the price 
function is obvious, it is a priori unclear how to model it and thus constitutes a major challenge. 
Analyzing data of single-family-homes throughout Austria from 1998-2009, the prime intention of 
this research is an empirically comparison and evaluation of global and locally weighted state-of-the-
art hedonic models in order to model SH.  
 
In the global specifications - comprising an OLS, SAR, and S2SLS model - SH is considered by means of 
federal states dummies, representing homogeneous regions. The empirical model comparison 
reveals that, independent of the model, ignoring SH always consequence a lower model fit and worse 
prediction accuracies. The OLS estimates confirm findings reported in Yu et al. (2007), that the non-
spatial model systematically tends to overestimate the importance of covariates. Besides correcting 
for SAC, the SAR and S2SLS model also fit substantially better than OLS. Moreover, the S2SLS 
coefficients show only minor changes compared with the SAR model, which is similar to Bivand 
(2010). The results clearly confirm that heterogeneity must be always taken into account, even if 
dummy variables are obviously less suitable to explain micro-geographic relationships. Exogenously 
defined regional indicators are only partially capable to account for SH, predominantly when SH 
beyond the selected dummies is present. Due to remaining and unmodeld SH, this requires a 
technical amendments in terms of a S2SLS considering SHAC to achieve a well-specified hedonic 
model.  
 
Having provided evidence that global specifications are not fully capable to model SH, functional 
instability is further explored by LWRs, namely GWR and MGWR, which prevent the observed 
weaknesses of fixed effects. Both GWR and MGWR, are data-driven approaches to model smoothly 
varying marginal prices without adhering to regional dummies to model SH and are consequently 
being less prone to the MAUP effects. Compared with previous studies by Bitter et al. (2007), Yu et 
al. (2007), Páez et al. (2008), and Hanink et al. (2010) which assume without data support that all 
covariates have non-stationary effects on house prices, this research proposes MGWR dealing with 
both stationary and non-stationary effects simultaneously. Compared to the global models, MGWR is 
evidently more flexible, while being more parsimonious than GWR, which improves model efficiency 
(Wei and Qi, 2012). In contrast to the global models, the prediction error is reduced by both LWRs. It 
is assumed that the spatial heteroskedasticity in the SAR model originate from an inappropriate 
selection of fixed effects, which is also resolved by LWRs. Moreover, it is shown by the MGWR that 
significant spatial variation in some of the estimated parameters is present, while the global effects 
provide evidence for policy-based linkages and an economically connected housing market across 
Austria, which would be neglected by the traditional GWR.  
 
There are, however, some limitations to this research. The variable selection is based on the global 
S2SLS model. Therefore, it is possible that different features in different parts of the study area may 
cancel each other out, incorrectly suggesting a lack of significance in the global model and, hence, 
omitted in the LWRs, which can cause, among others, omitted variable bias, although the non-
significant residual SAC refutes this argument. Furthermore, computational burdens limit MGWR for 
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large datasets. Hence, more computation-efficient methods are promising such as tensor product 
smoothing (Wood, 2006).  
 
Finally, this study results in some general implications for policy-makers, mortgage lenders, 
appraisers etc. LWRs produce meaningful and reliable estimates which are highly suitable to inform 
about local housing conditions. The spatial diversity of the coefficients are of utmost importance for 
locally acting decision-makers, requiring explicit knowledge of the local or regional housing market. 
This serves to refine policies and gain deeper understanding about local house price anomalies. Thus, 
it recommends that LWR should occupy a more central role in practitioners' toolboxes and 
methodologies.  
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