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Commuters’ preferences for Fast and Reliable travel: A

Semi-parametric Estimation ApproachI
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Abstract

We employ a semi-parametric estimation approach to analyse observed and unobserved
heterogeneity in the value of savings in travel time and schedule delay. Our econometric
approach allows for the estimation of unobserved and observed heterogeneity in preferences
in a flexible way, meaning that we do not put any structure on how individual character-
istics (such as income and age) relate to the value of savings in travel time and schedule
delay. Using data from a stated choice experiment, we illustrate the estimation approach
and find that there is substantial heterogeneity in the value of savings in travel time and
schedule delay. For our data, we find that unobserved heterogeneity is more important than
heterogeneity related to individual characteristics.
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1. Introduction

Preference heterogeneity is of key importance when evaluating the effect of transport eco-
nomic policies. For example, the success of off-peak rewarding policies is strongly related
to the potential of travelling outside the peak for a group of travellers. Some studies have
shown that the distributional effects of congestion pricing policies strongly depend on the
heterogeneity in individuals preferences (Arnott et al., 1992, 1994; Van den Berg and Ver-
hoef, 2011a,b; Börjesson and Kristoffersson, 2014). Furthermore, heterogeneity is important
when evaluating the benefits of private provision of highways, because operators’ profits
depend on the marginal willingness to pay (WTP) for reductions in travel time and travel
time variability of travellers (Mills, 1981; Winston and Yan, 2011; Tan and Yang, 2012).
Heterogeneity is also important when studying the effects of congestion pricing in the pres-
ence of alternative privately or publicly operated transport modes (Huang, 2000; Van den
Berg and Verhoef, 2013). In all cases, using average WTP values may lead to biased welfare
estimates and imprecise policy recommendations.

In this paper, we use a semi-parametric econometric framework to analyse heterogeneity
related to observed individual characteristics, as well as unobserved heterogeneity, using
panel data from a stated choice experiment. We estimate a semi-parametric panel latent
class model that allows for a flexible specification of both unobserved and observed hetero-
geneity. Our method is applied to the estimation of value of travel time savings (VOT)
and the values of savings in schedule delay early (VSDE) and late (VSDL). We obtain dis-
tributions of preferences, by employing local-likelihood estimation methods introduced by
Tibshirani and Hastie (1987) and Fan et al. (1995, 1998), and by assuming that individuals
who are similar in terms of characteristics (e.g. income, age) will have more similar values
of savings in travel time and schedule delay.

Our semi-parametric panel latent class model has several features. First, our method
does not make any assumptions on the shape of the distribution of preferences that is esti-
mated. Second, our econometric procedure allows for the estimation of both unobserved and
observed heterogeneity. It extends the local logit model used by Fosgerau (2007), Börjesson
et al. (2012), Hjorth and Fosgerau (2012) and the local multinomial and local cross-sectional
latent class model of Dekker et al. (2014) to allow for unobserved heterogeneity and panel
data. Third, kernel smoothing techniques reduce the well-known curse of dimensionality,
meaning that the inclusion of a large number of covariates will not necessarily lead to im-
precise estimates (but it may increase the bias compared to a fully saturated model). The
use of kernel smoothing allows for the incorporation of all interactions between individ-
ual characteristics and preferences without the need to specify these interactions explicitly.
Hence, our approach is particularly useful for datasets with a large number of individual
characteristics. Fourth, our estimation method takes into account the repeated nature of
the choices and therefore correctly deals with the panel dimension of the data. It results in a
unique semi-parametric distribution of preferences for each unique combination of individual
characteristics in our dataset.

The data to estimate commuters’ VOT and value of arriving at the preferred arrival time
at work are obtained from a stated choice survey held among participants of a real-world
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rewarding experiment to combat congestion. We estimate the VOT, VSDE and VSDL using
the classical linear specification of schedule delay (Vickrey, 1969).

We find that the average values are somewhat higher than in the previous literature,
most likely because respondents participate in a reward experiment and people are arguably
more sensitive to costs than to rewards. We also show that there is substantial heterogeneity
in the estimated VOT, VSDE and VSDL. The VOT, for example, ranges from about AC20 to
AC80. The results suggest that unobserved heterogeneity seems to be more important than
heterogeneity related to observable individual characteristics. Nevertheless, we find statisti-
cally significant impacts of income, education and household composition on the VOT, the
VSDE and the VSDL.

The paper continues as follows. Section II discusses the design and set-up of the stated
choice experiment and specification of the utility function, which is followed by the economet-
ric framework in Section III. Section IV presents the main results and Section V concludes
and discusses the limitations and directions for further research.

2. Stated choice experiment and utility specification

2.1. Stated choice experiment

We use data from a stated choice experiment among Dutch morning-commuters participating
in a peak-avoidance reward experiment. In order to reduce congestion, these commuters
received a reward if they did not travel between cameras A and B during the morning peak
(6:30-9:30). These cameras were placed on a congested highway. An example of a choice
scenario is given in Figure 1. Respondents were asked to choose between two departure
times. To account for travel time variability, each departure time has two possible travel
times with a corresponding probability, arrival time at work and reward. Hence, commuters
made a trade-off between earlier or later arrivals, shorter or longer travel times, and receiving
a monetary reward. The preferred arrival time of the traveller was given as a reminder. It
was based on previous questions in the questionnaire and was defined as the time that a
traveller would like to arrive at work if there is no possibility to receive a reward, and there is
no travel time delay. The lay-out was pre-tested in a focus-group, and internet pre-tests were
carried out to ensure that respondents understand the questions well. Several considerations
regarding the screen lay-out were made. First, we made explicit what is important for
travellers: departure time, probabilities, travel times, arrival times and rewards. Second,
travel times of the separate parts of the trip were given. This is to show the respondents
why they (do not) receive the reward and how the travel time is built up from the different
components. Fourth, we used bold values for the variables that would have been (potentially)
important in the trade-offs of the respondents.

The attribute values for travel times were pivoted around the average travel time of the
respondent to enhance realism (Hensher, 2001). Arrivals at Camera A were spread over the
whole peak hour to have sufficient variation in arrival times. Several other constraints were
put in the design attributes to enhance realism. These are described in detail in Knockaert
et al. (2012). The experimental design was pre-tested using extensive simulation, so that we
are sure that the design is able to recover a broad range of parameters.
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Figure 1: Example of a choice scenario

We exclude respondents who chose randomly or for whom no individual characteristics
are available (29% of the data). For the remaining respondents we have information on gross
monthly household income, level of education, gender, age, household composition (single,
children, etc.) and their residential and working location. The summary statistics of the
individual characteristics that are used in the estimation are presented in Table 1. Compared
to the Dutch average, we have a large share of high incomes and highly educated travellers.
In our sample, about 84 percent has a bachelor degree or higher. We also have a relatively
high share of males in our sample (76 percent), whereas single persons are under-represented
(17 percent).

2.2. Utility specification

Our empirical framework includes two latent variables: utility and class membership. We
assume that individual n, conditional on class membership c, chooses alternative i from a
set of J alternatives in choice scenario t, with corresponding deterministic utility (Vncti).
Vncti is a function of the preferences βnc and the independent variables. These independent
variables are given by the expected reward E[R]nti, the expected travel time E[T ]nti, expected
schedule delay early E[SDE]nti and expected schedule delay late E[SDL]nti. The expected
values of the variables are given by the probability weighted averages of M mass points, so
E[X]nti = 1

M

∑M
m=1 pntimXntim, for attribute X ∈ {R, T, SDE, SDL}. As Figure 1 shows,

the choice experiment has two possible travel times and therefore M = 2. Schedule delay is
defined as the deviation of an arrival time from the individuals’ preferred arrival time PATn,
where arrivals different from PATn result in a dis-utility. Following Noland and Small (1995),
we assume a linear-additive specification of the systematic utility. The random utility Uncti
of alternative i is then given by:

Uncti = βERn E[R]nti + βETnc E[T ]nti + βESDEnc E[SDE]nti + βESDLnc E[SDL]nti + εncti, (1)
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Table 1: Descriptives of the sample

Mean
Income <AC2500 0.066
Income AC2500-AC3500 0.340
Income AC3500-AC5000 0.401
Income >AC5000 0.193
Education Primary or Secondary 0.043
Education Vocational 0.117
Education Bachelor Degree or higher 0.840
Female 0.237
Single 0.165
No Children 0.430
Children <5 years 0.212
Children 5-12 years 0.263
Children at Secondary School (>12 years) 0.095
Age<25 0.014
Age 25-50 0.761
Age>50 0.224
Number of Individuals 487

where the scale of utility is normalised to one.1 Furthermore, we restrict βERn to be equal
over all classes to enhance empirical identification. We are interested in the VOT, the VSDE
and the VSDL of individual n belonging (with probability) to class c. These are given by
the following ratios:

V OTnc = −β
ET
nc

βERn
, (2)

V SDEnc = −β
ESDE
nc

βERn
, (3)

V SDLnc = −β
ESDL
nc

βERn
, (4)

The next section describes the econometric approach we use to estimate these values.

3. Econometric setup

3.1. Local estimation

This section introduces the ’local’ estimation approach. In standard latent class models one
estimates the semi-parametric distribution of preferences by estimating class membership

1We allow for scale heterogeneity for observed characteristics because the marginal utilities depend on
n-specific covariates.
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probabilities jointly with the marginal (dis)utilities as specified in Equation (1), where one
takes into account that a respondent makes repeated choices. Observed heterogeneity can
then be included by explaining the class probabilities by covariates, or by including covari-
ates in the utility function Equation (1).2 With a low number of covariates these interactions
can easily be included in a standard latent class model. However, when the number of co-
variates increases, the number of potential parameters to be estimated rapidly increases
as also higher order interaction effects are included. The contribution of our econometric
approach is that we allow for maximum flexibility by employing local kernel estimation in
order to avoid a priori assumptions on which interactions are important.

Tibshirani and Hastie (1987) and Fan et al. (1995, 1998) introduce local likelihood esti-
mation. The term ’local’ implies that each local point (in our case each individual) is treated
as a reference point. Conditional on the local point, a vector of kernel weights is determined,
reflecting the multidimensional distance between the local point and the other points in the
dataset. We let the kernel weights depend on the N ×Q matrix of individual characteristics
z, where N is the number of individuals and Q is the number of characteristics that are
included in the model. The kernel weights account for the fact that more similar people in
observable characteristics have more similar preferences. Likewise, individuals with exactly
the same characteristics have the same weights in the likelihood function and therefore the
estimated semi-parametric distribution of preferences is the same for these individuals.

We have a balanced panel with N individuals making T choices each, assuming that
there are C latent classes. Let βnc ≡ βc(zn) be the vector of marginal utilities of class c,
which are a function of the 1×Q vector of personal characteristic of individual n: zn. Let
yntj be the choice of individual n for choice occasion t. The probability that individual n
chooses alternative i from the set of J alternatives conditional on membership of class c is
then defined as the logit function:

P̆nti|c =
exp(Xntiβc(zn))∑J
j=1 exp(Xntjβc(zn))

. (5)

Because individuals make repeated choices we will consider the probability of a choice se-
quence rather than analyse the choices in isolation. Let ynti be the choice of individual n for
choice occasion t, where ynti = 1, when individual n chooses alternative i , and ynti = 0 oth-
erwise. The joint probability of a sequence of choices, conditional on the class assignment,
is given by:

Pn|c =
J∏
i=1

T∏
t=1

P̆ ynti

nti|c (6)

Because P̆ ynti

nti|c = 1 for ynti = 0, and P̆ ynti

nti|c = Pnti|c for ynti = 1, Pn|c is the multiplication

of the probabilities of the chosen alternatives (conditional on the class assignment). The

2This may be clarified by an example. Consider a covariate gender that we include in the utility function
Equation (1). This means that the estimated parameters of Equation (1) will be different for males and
females. If we also interact gender with the latent variable class membership we obtain gender-specific
distributions of the VOT, VSDE and VSDL.
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probability that individual n belongs to a latent class c is given by pnc ≡ pc(zn), meaning
that class membership probabilities may depend on the individuals personal characteristics.
We ensure

∑C
c=1 pnc = 1, so that the model is identified. The likelihood that individual n

makes the observed sequence of choices is given by the weighted average of the probabilities
of Equation (6), with weights given by the class membership probabilities:

LLn =
C∑
c=1

pncPn|c. (7)

The class probabilities pnc and the preference parameters βnc will be estimated using local
likelihood estimation. This means that the parameter estimates for a reference individual n̄
are obtained by maximising the following (weighted) likelihood function:

WLLn̄ = max
βn̄,pn̄

N∑
n=1

wn̄[z;λ]log(LLn), (8)

where pn̄ is the C × 1 vector with the class probabilities and βn̄ the C × 1 vector with
preference parameters. The local log-likelihood is the log of Equation (7), multiplied by an
N × 1 vector of kernel weights, wn̄[z;λ]. These kernel weights depend on the socio-economic
distance of an individual n̄ to all other individuals in the dataset, where this distance is
governed by the vector of bandwidths λ. More details on the functional form of the kernel
weights will be given in the next subsection. The estimation procedure results in the C × 1
vectors pn̄ and βn̄, and is repeated for every unique individual in the dataset. The individual
local estimates are substituted in Equation (7) to obtain the estimated likelihood L̂Ln̄ for
each individual. Summing over all individuals gives the estimated global log-likelihood of
the model:

ˆGLL(C) =
N∑
n̄=1

log(L̂Ln̄). (9)

3.2. Kernel functions

The kernel weights in Equation (8) reflect the multidimensional ’distance’ between individ-
uals based on their characteristics. This distance is calculated using a multidimensional
kernel function. When differences in the characteristics between individual n̄ and another
individual n become smaller, individual n has a higher kernel weight in the local likelihood
estimation of n̄ (and vice versa). The vector of bandwidths λ = λ1, ..., λQ determines the
degree of smoothing.

We include Q variables in the kernel function. Individual characteristic q = 1...Q has a
corresponding kernel function Kq(.), and bandwidth or smoothing parameter λq. A specifi-
cation of the kernel weights is then given by:

wn̄[z;λ] =

Q∏
q=1

Kq(zn̄q − zq;λq), (10)
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where we use zq to denote the N × 1 vector with values for characteristic q for each in-
dividual, and zn̄q − zq as the difference in characteristics between individual n̄ and all the
other individuals. As is common practice, we use the restriction λq = λ̄, implying that the
bandwidth is the same for all variables included in the kernel function. For a fixed num-
ber of individuals N and number of choices T , and given bandwidth λ̄, adding individual
characteristics to the kernel (increasing Q) leads to lower kernel weights in Equation (10).
When individuals share the same characteristic q, zn̄q − zq = 0, resulting in a kernel weight
Kq(.) that is equal to 1.

For our analysis we only use categorical individual characteristics. Racine and Li (2004)
show that for these variables one needs a kernel function that has the possibility to be an
indicator function as well as a constant. Following Racine and Li (2004) and Hall et al.
(2007), the kernel function is assumed to be of the form:

Kq(zn̄q − zq; λ̄) =

{
1, if zn̄q = zq

λ̄|zn̄q−zq | if zn̄q 6= zq.
(11)

The kernel weights are equal to one when λ̄ = 1. Since we will only include categorical
variables we have 0 ≤ λ̄ ≤ 1. For strong smoothing, the kernel weights are uniform (λ̄ = 1),
and the model collapses to the standard panel latent class model. For weak smoothing
(λ̄ = 0), the model is a saturated model resulting in a separate estimation of a panel latent
class model for each unique combination of individual characteristics.

The appealing feature of the estimation set-up is that the standard logit model (C =
1, λ̄ = 1), the local logit model (C = 1, 0 ≤ λ̄ < 1), and the panel latent class model
(C > 1, λ̄ = 1) are special cases of our model. The standard logit model results in identical
preference parameters for all individuals, whereas the local logit model estimates unique
preferences for each unique combination of individual characteristics. Both these models may
lead to biased estimates because unobserved heterogeneity is ignored. The local panel latent
class model estimates unique preference distributions for each combination of individual
characteristics and therefore allows for a flexible modelling of both observed and unobserved
heterogeneity. The next section discusses the bandwidth selection and the selection of the
number of classes.

3.3. Selection of bandwidths and the number of latent classes

There are two remaining issues that deserve attention: the selection of the number of classes
and the selection of the bandwidth parameter. The first issue is to determine the number
of classes. Here we use the normalised entropy criterion (NEC), which was introduced
by Celeux and Soromenho (1996) and further developed by Biernacki et al. (1999). The
advantage of this criterion is that it only relies on the ex-post processing of the estimated
parameters and does not need the calculation of the number of parameters as for example the
Bayesian Information Criterion does.3 The NEC criterion is derived by observing that the

3Dekker et al. (2014) show how to derive the number of parameters for the local multinomial logit model,
but determining the number of parameters in a local mixture model is challenging and is left as a topic for
future research.
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global log-likelihood (Equation (9)) can be separated in a classification log-likelihood term
ĈL(C), and a (Shannon) entropy term Ê(C) that measures the overlap of the individual
posterior latent class probabilities v̂nc (which are introduced below, see Greene and Hensher
(2003)). Hathaway (1986) shows that the log-likelihood can be written as:

ˆGLL(C) = ĈL(C) + Ê(C). (12)

The classification log-likelihood and the entropy term are given by:

ĈL(C) =
C∑
c=1

N∑
n=1

v̂nc log
(
p̂ncP̂n|c

)
, (13)

where P̂n|c is Equation 6 evaluated at the estimated parameters, and

Ê(C) = −
C∑
c=1

N∑
n=1

v̂nclogv̂nc. (14)

The individual posterior class membership probabilities are given by:

v̂nc =
p̂ncP̂n|c∑C
d=1 p̂ndP̂n|d

. (15)

The hats indicate that the functions are evaluated at the locally estimated parameters. A
proof that (12) is indeed given by the sum of (13) and (14) is given in Appendix A. Celeux
and Soromenho (1996) and Biernacki et al. (1999) then propose the NEC-criterion for the
selection of the number of classes. This criterion is given by:

NEC(C) =
Ê(C)

ˆGLL(C)− ˆGLL(1)
. (16)

where L̂L(1) is the estimated log-likelihood for the local logit model which has one class.
The NEC-criterion needs to be minimized in order to determine the optimal number of
classes. When C increases, the overlap between the posterior class membership probabili-
ties v̂nc will increase and will (all else equal) increase the (Shannon) entropy term resulting
in an increase in the NEC. The denominator of (16) is always positive because models with
a higher number of classes will always have a better fit. Increasing the number of classes
will therefore increase the denominator of (16) resulting in a decrease in the NEC, implying
that the NEC criterion balances model fit with the overlap of the class probabilities. An
additional check is needed to test the latent class model against the logit model (C = 1).
Biernacki et al. (1999) show that when NEC(C∗) < 1 the latent class model is preferred,
whereas otherwise the logit model is preferred.

For the selection of the bandwidth parameter we have experimented with several strate-
gies, such as the use of a leave-one-individual-out cross-validation criterion, or a rule-of-
thumb bandwidth using Silverman’s rule. These strategies either resulted in severe over
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or undersmoothing. Therefore we decided to use eye-balling to determine the bandwidth,
since statistical strategies did not result in plausible outcomes. This means that when too
extreme outliers were present (values > AC100), the bandwidth was considered to be too low.
The development of a statistical bandwidth selection criterion for local mixture models is
beyond the scope of this paper and is left for future research.

4. Estimation results

4.1. Baseline results

This section discusses the estimation results. We first report the average VOT, the average
VSDE and the average VSDL for the sample. Then, we investigate the distributions of the
estimated parameters and examine the correlation of the estimated parameters with indi-
vidual characteristics. Table 2 reports the results for the average estimates. We estimate
the standard errors using a bootstrap procedure. We re-sample individuals rather than ob-
servations, because observations are not independent, while the assumption that individuals
are randomly drawn from the population seems reasonable. We calculate for each of the 500
bootstrap runs randomly-drawn bootstrap weights for each individual.4 We then estimate
the standard error by taking the standard deviation of the sampled distribution for the
parameter of interest (see Guan, 2003).

Table 2: The estimated average values of time and schedule delays

(1) (2) (3) (4)
Binary Logit Latent Class Local Logit Local Latent Class

VOT 35.050 30.978 38.186 34.668
(4.158) (7.561) (10.622) (13.26)

VSDE 23.218 22.837 24.516 23.768
(2.211) (13.506) (5.217) (14.228)

VSDL 17.162 15.922 17.974 16.549
(1.621) (6.36) (3.976) (6.998)

Latent classes 1 2 1 2
Bandwidth λ̄ 1 1 0.6 0.6
LL(C,λ̄) -2,719 -2,590 -2,689 -2,524
Note: The bootstrapped standard errors (500 replications) are between parentheses.

4Horowitz (2001) argues that only when the asymptotic bias is essentially zero, bootstrapped standard
errors are correct, which is the case when the bandwidth approaches zero. He therefore suggests to use a
lower smoothing parameter to estimate the standard errors than when estimating the parameters of interest,
as to minimise differences between true and coverage probabilities of bootstrapped confidence intervals.
Furthermore, for low values of the bandwidth, confidence intervals would approach infinity due to outliers.
We therefore interpret our confidence bands as indicative, but are aware of the fact that they might be too
small.
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Column (1) of Table 2 reports the result for the standard binary logit specification with-
out heterogeneity. The VOT is estimated at AC35 per hour and the VSDE and VSDL are
estimated at AC23 and AC17 per hour respectively. These values are higher than found in the
literature (see for example: Brownstone and Small (2005), Abrantes and Wardman (2011)
and Li et al. (2010)). There may be at least two reasons for this. First, on average we have a
high share of high-income travellers in our sample and since these have a lower marginal util-
ity of income they are less sensitive to rewards than the average Dutch commuter. Second,
it is very likely that due to loss aversion travellers are less sensitive to rewarding incentives
than to the payment of a congestion toll. These higher values do not necessarily imply that
the estimates are subject to hypothetical bias. Recent estimates by Peer et al. (2014) using
data from the same experiment show that the estimated values are close to estimates based
on revealed preference data.

The pattern VSDE>VSDL is the same for all models and is remarkable, since usually
VSDL>VSDE is found in the literature (Lam and Small, 2001; Brownstone and Small, 2005;
Li et al., 2010). This may be caused by the fact that we have a relative high share of in-
dividuals with an early preferred arrival time in our dataset, because we only analyse the
preferences of individuals participating in the rewarding experiment. Another finding is that
the estimated average VOT is higher than the estimated average VSDL. An explanation may
be that this is due to a selection effect of participants who have lower values of schedule
delays. Our estimated average VSDE is about 65-75 percent of the estimated VOT, which
is slightly higher than in the literature (Li et al., 2010).

Column (2) of Table 2 shows the result for the latent class model with two latent classes.
When we allow for unobserved heterogeneity, the estimated average VOT is about AC31,
which is slightly lower compared to the previous specification. The average VSDE and
VSDL are very similar to the binary logit model. Although the average estimates are very
similar, the standard error of the estimates is much higher, which suggests that there is
substantial heterogeneity in the estimated parameters. The model seems also be able to
better explain choices, as the log- likelihood increases substantially compared to the binary
logit model.

In column (3) of Table 2, we only allow for heterogeneity related to observable individual
characteristics. Based on eye-balling, we set the bandwidth λ̄ = 0.6 (for lower values, the
standard errors become unrealistically large due to outliers). The average values are similar
to the previous specifications. There is a likelihood improvement of about 30 points com-
pared to the binary logit model, but the model has a lower fit than the latent class model, as
the likelihood is higher for the latter specification. In other words, unobserved heterogeneity
seems to be more important than observed heterogeneity. Another interesting observation
is that, compared to the latent class model, only the standard error related to the VOT is
higher, which might suggest that observed heterogeneity may explain heterogeneity in the
VOT, but not so much in the VSDE and VSDL.

A preferred specification allows for the estimation of observed and unobserved hetero-
geneity. Column (4) of Table 2 then reports the estimation results of the local latent class
model. The optimal number of latent classes is 2 and NEC(2) < 1 implying that the local
latent class model is preferred over the local logit model. Table 2 shows that the estimated
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average values of the local latent class model are very similar to the binary logit model in
column (1). The standard errors are higher, possibly due to the fact that the model allows
for different sources of heterogeneity, or because this more general model has much more
degrees of freedom.

4.2. Investigating heterogeneity

Although the average estimates are interesting, we are particularly interested in preference
heterogeneity. In what follows, we focus on the results of the preferred specification, which
is the Local Latent Class model. Figure 2 reports the estimated semi-parametric cumulative
distributions for the values of time, schedule delay early and late (solid line). Probability
density functions using histograms are provided in Appendix C. We construct the confidence
bands (dashed lines) by simulating the data for each bootstrap replication based on the class
probabilities and order for each bootstrap replication the values from small to large and then
calculate the standard deviation for each percentile.5 We note that our confidence bands
may be too small because of asymptotic bias (Horowitz, 2001), so they are best interpreted
as local confidence bands (see Duranton and Overman, 2005). This implies that we can
make local statements, i.e. at a certain point in the distribution. However, local confidence
bands cannot be used to make statements about the global distribution, because global con-
fidence bands tend to be wider. The upper panel of Figure 2 shows that about 80 percent
of the observations have a VOT that is below AC40 per hour, which seems reasonable. We
do not observe individuals that do not attach any value to time savings. Looking at the
upper 20 percent of the distribution reveals that there are quite some individuals that have
a relatively high VOT.

The middle panel of Figure 2 shows that the VSDE follows a somewhat irregular distri-
bution. About 10-15 percent of the observations have a VSDE which is close to zero. This
is not too surprising as a relatively large share of the participants is highly-educated, which
often imply that their jobs are more flexible than blue-collar jobs. Hence, for them it is
no problem to be early at work. About 75 percent of the observations has a VSDE that is
above AC20. The cumulative VSDE distribution also reveals that there are no travellers in
our sample that have values between AC12.5 and AC20 per hour. The estimated probability
density function is bi-modal, which is confirmed by the histograms in Appendix C.

The lower panel of Figure 2 shows the distribution of the VSDL. In contrast to the dis-
tribution of VSDE, nearly all observations are positive and significantly different from zero.
About 75 percent of the observations is in between AC15 and AC25, which seems plausible.
The VSDL histogram in Appendix C shows that the estimated VSDL distribution also has
a bi-modal shape.

In all cases, there is a strong positive correlation between mean values (at the individual

5More specifically, to estimate the cumulative distribution for the VOT, VSDE and VSDL we generate
for each individual 100 values and assign the different values according to the class probabilities. We order
the values from small to large to obtain the cumulative distribution. We then estimate the cumulative
distributions for each replications and calculate the standard deviation for each centile to obtain the 95
percent confidence interval
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Figure 2: Cumulative sample distributions of estimated VOT,VSDE and VSDL
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level) for the local latent class model and the outcomes from the local logit model. The
correlation for the VOT, VSDE and VSDL is respectively 0.920, 0.948 and 0.956.

4.3. Explaining heterogeneity

Similar to Bajari and Kahn (2005), we investigate how individual demographic characteris-
tics relate to the estimated VOT, VSDE and VSDL. We regress the estimated parameters
on individual characteristics.6 To allow for as much flexibility as possible, we use a non-
parametric regression of the form:

V OTnc = f(zn) + ξnc, (17)

where f(·) is a non-parametric function of individual characteristics zn, and ξnc is an error
term, which is assumed to be uncorrelated to zn. Because we do not observe V OTnc directly,
we use the estimated values ˆV OT nc (see Bajari and Kahn, 2005). One may interpret ξnc as
an individual-class-specific taste shock. We do not make any functional form assumptions
on ξnc, in contrast to for example Berry et al. (1995) and Petrin (2002). We estimate f(·)
by local linear regression (LLR) techniques and calculate the kernel weights using the ker-
nel function in Equation (10). The kernel weights are then multiplied with the estimated
class probabilities. We again assume a bandwidth of 0.6. The standard errors are obtained
by bootstrapping the whole estimation procedure: for each of the 500 bootstrap runs, we
resample individuals, then estimate the VOT, VSDE and VSDL for each individual/latent-
class combination using Equation (9) and then regress the estimated values on individual
characteristics using the non-parametric regression of (17). For presentation purposes we
only present the mean effect and the related bootstrapped standard error of the estimates
(McMillen and Redfearn, 2010).7 The results are reported in Table 3. We first report simple
weighted least squares (WLS) estimates, where it is assumed that f(·) = ζzn and the weights
are given by the corresponding class probabilities. Then, we present the results using local
linear regression techniques.

In the WLS specifications (columns (1)-(3)), we find substantial income effects: switch-
ing from an income lower than AC2, 500, to the highest income class increases the VOT with
more than AC10. The value schedule delay early and delay are also positively related to
income. Conditional on the income effect, we also find an effect of education. For highly
educated people, the VOT is more than AC4 higher compared to low educated people. The
effect of education on the VSDE is much less pronounced and statistically insignificant. We
find that having younger children leads to a higher VOT, but surprisingly not to higher
scheduling costs. Travellers that are single seem to have fewer scheduling constraints. The
negative coefficients for the VSDE and VSDL for people that have children at primary school

6Because observed heterogeneity is related to many individual characteristics, it is not insightful to
generate two-dimensional plots. For example, the unconditional effect of age on VOT, VSDE and VSDL
may also be caused by a generally higher income of older people

7We also estimated similar models where we take the logarithm of the values, but the results are quali-
tatively similar
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Table 3: VOT, VSDE and VSDL and individual characteristics

WLS LLR
(1) (2) (3) (4) (5) (6)

VOT VSDE VSDL VOT VSDE VSDL
Income 2500-3500 2,925* 2,217*** 1,572*** 2,551 3,626* 1,689

(1,562) (0,724) (0,556) (2,329) (1,958) (1,382)
Income 3500-5000 8,02** 3,68*** 2,634** 6,72* 5,554** 2,914

(3,49) (1,321) (1,054) (3,609) (2,445) (2,198)
Income >5000 10,2*** 4,412** 3,299** 5,117 5,287 2,319

(3,846) (1,865) (1,309) (3,876) (3,385) (2,631)
Education - high 4,388** 1,287 1,206* 5,116** 1,736 1,598

(1,849) (0,866) (0,667) (2,408) (1,896) (1,019)
Female 2,203 1,855* 1,121 1,864 1,906 1,509

(1,894) (1,004) (0,726) (2,142) (1,711) (1,329)
Single -2,265 -2,608** -1,799* -0,725 -3,69 -0,982

(2,429) (1,248) (0,994) (3,435) (2,265) (1,8)
No children -1,201 0,343 0,451 -2,146 -2,403 -1,176

(2,263) (1,177) (0,907) (3,276) (2,583) (1,574)
Children <5 years 5,422** 1,704 0,517 2,474 -1,027 -1,37

(2,687) (1,405) (0,943) (3,545) (2,843) (1,766)
Children 5-12 years -3,407 -2,02* -1,697** -8,473** -4,882* -2,302

(2,363) (1,188) (0,844) (3,46) (2,674) (1,687)
Age <25 -2,713 -2,073** -1,079* 0,116 -1,621 -0,318

(1,699) (0,848) (0,622) (2,284) (1,726) (1,257)
Age >50 -3,537 -0,078 0,876 -2,295 0,074 1,217

(2,327) (1,116) (0,92) (2,559) (1,695) (1,231)
Constant 25,766*** 19,671*** 13,302*** 23,836*** 28,234*** 16,836***

(3,261) (1,812) (1,223) (4,904) (3,86) (2,4)
Note: The number of observations is 974 (2x487); Weights are given by the class probabilities. Mean estimates
for each individual characteristic with bootstrapped standard errors (500 reps) in parentheses. *** p<0.01,
** p<0.05, * p<0.1
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is surprising, as we would expect positive coefficients, given the fact that scheduling con-
straints are likely more stringent because of the fixed starting times of schools (Schwanen
and Ettema, 2009). On the other hand, people may start working full-time again when their
children go to secondary school (which is the reference category), implying more restrictive
scheduling constraints. We also find that younger people seem to have less severe scheduling
constraints, which seems to make sense.

The WLS specifications put substantial structure on the data and do not allow for inter-
actions between individual characteristics. In columns (4)-(6) we therefore report the mean
effects of the individual characteristics when we use local linear regression techniques that
allow for these interactions. Because we put less structure on the data, the standard errors
are substantially larger compared to the WLS specifications. We still find a positive income
effect: people with an income higher than AC3, 500 have a VOT that is about AC5.50 higher
compared to someone who earns less than AC2, 500. However, this effect is only marginally
statistically significant. The effect of income on the VSDE is statistically significant, except
for the highest income class for which we have fewer observations. There is a pronounced
effect of education, conditional on the income effect. Highly educated people have a VOT
that is about AC5 higher. To summarise, although the effects of the LLR specifications are
somewhat imprecise, the mean effects seem to be broadly in line with the WLS specifications.

5. Conclusion and discussion

We introduced a semi-parametric latent class model that allows for both unobserved het-
erogeneity in preferences and heterogeneity related to observable individual characteristics.
Furthermore, we applied a new entropy criterion for the selection of classes that also may
be useful for standard latent class models.

We used data from a stated choice experiment to estimate the VOT, the VSDE and the
VSDL. For our dataset, it is shown that, although the estimated average values are hardly
affected when ignoring unobserved heterogeneity, there is substantial heterogeneity in the
estimated parameters when using more flexible methods. We find that unobserved hetero-
geneity seems to be most important. Nevertheless, we also find some effects for income,
education and household composition on values of time and schedule delays.

The current paper must be viewed as a first step towards the use of flexible local mixture
discrete choice modelling and suggests several avenues for further research. First, bandwidth
optimisation in local mixture models could be better developed in order to use statistical
criteria instead of eye-balling to decide on the degree of smoothing. Closely related to this
is the issue of model selection. In order to test the method against other modelling ap-
proaches further research may aim at the development of a statistical criterion. Extending
the bandwidth selection approach of Dekker et al. (2014) to local mixture models seems to
be a promising direction in this respect.
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Appendix A. Derivation of the entropy criterion

We start with Equation (12) and then substitute Equations (13) and (14):

ˆGLL(C) =
C∑
c=1

N∑
n=1

v̂nc log
(
p̂ncP̂n|c

)
−

C∑
c=1

N∑
n=1

v̂nc log v̂nc (A.1)

This can be rewritten using the following steps:

ˆGLL(C) =
C∑
c=1

N∑
n=1

(
v̂nc log

(
p̂ncP̂n|c

)
− v̂nc log v̂nc

)
=

C∑
c=1

N∑
n=1

v̂nc log

(
p̂ncP̂n|c
v̂nc

) (A.2)

Using (15) in the denominator gives:

ˆGLL(C) =
C∑
c=1

N∑
n=1

v̂nc log

(
C∑
c=1

p̂ncP̂n|c

)

=
N∑
n=1

C∑
c=1

v̂nc log

(
C∑
c=1

p̂ncP̂n|c

)

=
N∑
n=1

log

(
C∑
c=1

p̂ncP̂n|c

)
,

(A.3)

where the last step uses
∑C

c=1 v̂nc = 1. This concludes the proof that the model log-likelihood
(Equation 9) can be separated into Equations (13) and (14).
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Appendix B. Bandwidth sensitivity analysis

The graphs below show the estimated cumulative distribution functions of the WTP values
for bandwidth values λ̄ = 0.4, λ̄ = 0.6 and λ̄ = 0.8. For lower values of λ̄ the distribution
becomes more dispersed and has a longer tail. For higher values of λ̄ the distribution
approaches a distribution with two mass points because there are two latent classes included
in the analysis. Note that the results for the other bandwidth generally fall in the local
confidence intervals presented in 2.
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Appendix C. Estimated probability densities
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