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Abstract

The daily average price of electricity represents the price of electricity to be delivered over the
full next day and serves as a key reference price in the electricity market. It is an aggregate
that equals the average of hourly prices for delivery during each of the 24 individual hours. This
paper demonstrates that the disaggregated hourly prices contain useful predictive information
for the daily average price. Multivariate models for the full panel of hourly prices signi�cantly
outperform univariate models of the daily average price, with reductions in Root Mean Squared
Error of up to 16%. Substantial care is required in order to achieve these forecast improvements.
Rich multivariate models are needed to exploit the relations between di�erent hourly prices, but
the risk of over�tting must be mitigated by using dimension reduction techniques, shrinkage
and forecast combinations.
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1 Introduction

Over the last decades, electricity markets in many developed countries have experienced an ongoing

liberalization, such that nowadays prices generally are determined by the forces of supply and

demand. Electricity shows unique price behavior, largely due to distinct characteristics compared

to other traded commodities. In particular, electricity is a �ow commodity in the sense that is

virtually non-storable. Shocks to demand or supply therefore cannot be smoothed using pre-stored

inventory unlike for other, stock commodities. As a result, electricity prices exhibit high volatility,

much higher than other energy products, which leads to signi�cant price risk for market participants.

Other unique characteristics include multiple levels of seasonality, price spikes, mean reversion, and

the possibility of negative prices (Knittel and Roberts, 2005; Longsta� and Wang, 2004). At the

same time, contracts traded on electricity such as forwards and futures di�er from those for other

commodities. For example, electricity forward contracts concern delivery over an extended period

rather than at a single point in time.

The unique features of electricity prices (and related �nancial contracts) have spurred the de-

mand for econometric models that can adequately describe their dynamics, see Benth and Koeke-

bakker (2008) and Möst and Keles (2010) for surveys. From a practical point of view, models of

electricity prices are crucially important for forecasting, derivatives pricing and risk management.

Several papers examine dynamic models of electricity prices for forecasting purposes, see Zareipour

(2012) for a recent review. Weron and Misiorek (2008) forecast daily electricity prices using a variety

of linear and non-linear time-series models, including basic autoregressive models, jump-di�usion

models and regime-switching models, see also Weron (2006). Karakatsani and Bunn (2008) add

fundamental variables such as fuel prices and level of demand, although their focus is mostly on

accurately modeling the volatility of electricity prices. In a similar vein, Huurman et al. (2012) ex-

amine the added value of information from temperature levels for predicting daily electricity prices.

Christensen et al. (2012) focus on predicting the occasional extreme spikes in electricity prices using

an autoregressive conditional hazard model.

The majority of electricity price models and related studies on forecasting focus on the daily

average price. This is not surprising as the daily average price plays a central role in the electricity

market. It acts as a proxy for the spot price of electricity and as a reference price for forward

and futures contracts as well as many other derivatives contracts. In various electricity markets,

including the Nord Pool Spot system that we consider in this paper, the daily average price is

established in the so-called day-ahead market. This concerns an auction market where participants
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trade electricity for delivery during the individual hours of the next day. Quotes for all hours

are submitted simultaneously and market prices are determined by the intersection point of the

aggregate demand and supply curves. The daily average price is equal to the average of the 24

individual hourly prices.

This paper addresses the question whether the electricity prices for individual hours contain

useful predictive information for the daily average price. This question is important for several

reasons. Forecasts for the daily average price are highly relevant for market participants, given

its crucial importance for trading and derivatives pricing. Improved forecasts can help market

participants to develop more e�cient trading and bidding strategies to increase pro�ts and control

risk. The hourly prices provide a rich source of information that can potentially help to improve

forecasts. The question has also important implications for our understanding of electricity price

dynamics and the way these are best modeled. The standard approach, where the time series of the

daily average price is modeled directly, ignores potentially relevant information in intraday hourly

prices.

Hourly prices have received quite limited attention in the literature, in particular when it comes

to forecasting. Cuaresma et al. (2004) and Kristiansen (2012) use di�erent autoregressive time-

series models for forecasting individual hourly prices. Boogert and Dupont (2008) employ a more

structural approach based on a supply-demand framework, and also consider probability forecasts

for price spikes.

An important consideration that is often overlooked in modeling (and forecasting) intraday prices

is that typically in practice, the prices of all the hours of the next day are determined simultaneously.

Hence, it is not appropriate to model the hourly prices as a single time series. The price for the

hour between 20:00-21:00h, for example, cannot be exploited to predict the price for the subsequent

hour 21:00-22:00h, as these two prices are determined simultaneously. Instead, hourly prices should

be modeled as a panel of 24 daily time-series of hourly prices, as argued by Huisman et al. (2007)

and Härdle and Trück (2010), among others.

We conduct an empirical forecasting exercise to address the question whether hourly electricity

prices contain predictive information for the daily average price. We use price data from the Nord

Pool Spot exchange, for a sample period covering almost two decades from 1992 to 2010. We

compare forecasts of the daily average price based on univariate time-series models with forecasts

derived from multivariate time-series models for the full panel of prices for the 24 individual hours.

E�ectively exploiting information in hourly prices is challenging as modeling all individual hours

separately quickly increases model complexity and the number of parameters. For example, model-
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ing the panel of all 24 hours by a standard �rst-order Vector Autoregressive (VAR(1)) model with

intercepts will produce point forecasts depending on 600 unknown parameters that have to be esti-

mated. Such a large number of parameters e�ectively dissipates our degrees of freedom, resulting

in large estimation uncertainty, potential over�tting of in-sample data and increased variability of

out-of-sample forecast errors.

We address this `curse-of-dimensionality' problem in three di�erent ways. First, we limit model

complexity by applying dimension reduction techniques such as Reduced Rank Regression and

Factor Models, leading to a substantial decline in the number of parameters. Second, regularization,

or shrinkage, is used to obtain parameter estimates that are less prone to over�tting. In particular,

we consider a Bayesian VAR model with a prior distribution on the parameters that shrinks the

model towards a random walk process for each individual hour. Third, forecasts of di�erent models

with di�erent levels of complexity are combined. It is well-established that combining forecasts of

di�erent models may well perform better than the best individual forecast (Timmermann, 2006).

Over�tting will have a di�erent e�ect on the individual models and hence combining their forecasts

might potentially average out these e�ects.

Our empirical results show that hourly prices contain substantial predictive information for

the daily average price. Multivariate models achieve forecast improvements up to 15% in out-

of-sample Root Mean Squared Error (RMSE) over a �exible univariate benchmark model. An

e�ective use of this predictive information however requires rich models that account for the complex

relations between prices of di�erent hours. Moreover, dimension reduction, shrinkage and forecast

combinations lead to further improvement in forecasting performance.

The rest of the paper is organized as follows. We describe the data set in Section 2. In Section

3 we introduces the forecasting models, with a detailed exposition of the various techniques that

we employ to model the full panel of hourly prices while avoiding over�tting and related issues. In

Section 4 we present the empirical results, discuss their signi�cance and assess their robustness. We

conclude in Section 5.

2 Data Analysis

We use data stemming from the Nordic power exchange, Nord Pool Spot, owned by the Nordic and

Baltic transmission system operators and operating the leading power markets in Europe. About 370

companies from 20 countries trade on the Nord Pool Spot's markets, with participants including

both producers and large consumers. We consider electricity prices as determined in the Elspot
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market. This is the largest of Nord Pool Spot's markets, with a trading volume of approximately

330 terawatt hours in 2012, representing 77% of Nordic power consumption. Speci�cally, it comprises

Norway, Sweden, Finland, Denmark and (since 2010) Estonia and (since 2012) Lithuania.

Elspot is an auction market for delivery the following day. The daily auction procedure works

as follows. Participants submit bids and o�ers for each individual hour of the next day, through the

Nord Pool Spot web-based trading system. Orders can be placed until 12:00h Central European

Time (CET). Buy and sell orders are then aggregated into demand and supply curves for each

delivery hour. The system price for each hour is determined by the intersection of these curves, also

taking into account the transmission capacity of the power system. Prices are quoted for megawatt

hour (MWh). Our data set consists of the twenty-four hourly prices for each day for the period

from May 4, 1992 up to March 4, 2010, covering 6519 observation days. All prices are converted to

Norwegian krone (NOK).
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Figure 1: Daily Average Price

Figure 1 shows the time series of the daily average price, which is the main object of interest in

our empirical forecasting exercise. The daily average price shows substantial �uctuations, between

minimum values close to zero up to occasional spikes at around 800 NOK/MWh.
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Hour Mean St.Dev. Skewness Kurtosis ρ̂(1) ρ̂(2) ρ̂(7)

1 194.23 111.40 1.07 4.89 0.99 0.99 0.96

2 188.73 109.34 1.07 4.87 0.99 0.99 0.95

3 185.03 108.48 1.10 5.02 0.98 0.98 0.93

4 182.29 107.09 1.08 4.95 0.98 0.98 0.94

5 183.12 108.54 1.12 5.09 0.98 0.98 0.94

6 189.36 111.52 1.11 5.07 0.98 0.98 0.94

7 199.10 114.84 1.08 4.91 0.97 0.97 0.95

8 211.83 123.76 1.47 8.71 0.93 0.93 0.90

9 221.98 140.12 3.09 33.68 0.82 0.82 0.77

10 221.74 132.29 2.31 22.44 0.88 0.88 0.84

11 221.33 126.88 1.53 9.75 0.94 0.94 0.89

12 219.47 123.52 1.26 6.43 0.96 0.96 0.93

13 215.94 120.78 1.14 5.39 0.98 0.98 0.95

14 213.46 119.08 1.11 5.11 0.98 0.98 0.95

15 211.57 118.16 1.11 5.08 0.98 0.98 0.95

16 210.71 118.42 1.12 5.01 0.97 0.97 0.95

17 212.37 122.95 1.32 6.42 0.95 0.95 0.92

18 217.25 131.10 1.72 10.18 0.92 0.92 0.87

19 216.52 126.81 1.40 7.21 0.96 0.96 0.91

20 212.72 120.84 1.15 5.32 0.98 0.98 0.95

21 209.26 117.25 1.08 4.84 0.99 0.99 0.96

22 207.96 115.85 1.07 4.85 0.99 0.99 0.96

23 204.89 114.01 1.04 4.66 0.99 0.99 0.96

24 197.20 110.49 1.05 4.72 0.99 0.99 0.96

Daily Average 206.16 116.63 1.13 5.21 0.98 0.96 0.94

Table 1: The table presents summary statistics for Elspot's day-ahead prices for individual hours
of the day and the daily average price for the period from May 4, 1992 up to March 4, 2010 (6519
days). Hour 1 runs from 00:00-00:59h Central European Time (CET), etc. Prices are quoted in
Norwegian krone (NOK). During the sample period, one euro was approximately 8.5 NOK. ρ̂(k) is
the k-th order sample autocorrelation.
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Table 1 presents descriptive statistics of the hourly and daily average price series. Electricity

prices are on average higher during the day than during the night, peaking in the morning (08:00

- 12:00h CET) and early evening (17:00-19:00h CET). These peak hours also have relatively high

skewness and kurtosis and are less persistent, re�ecting that these hours experience more extreme

prices and price spikes. This also explains the relatively high volatility during peak hours. Note

that electricity prices have substantial volatility throughout the day: for all hours the standard

deviation is about half the mean price.

Figures 2 and 3 visually depicts some of the salient features of the electricity prices for individual

hours. The top and bottom panels of Figure 2 display the weekly and annual seasonality in hourly

prices. From the top panel we observe that weekdays have higher prices on average than Saturdays

and Sundays, but also that the two weekend days have a slightly di�erent intraday price pattern. It

is also interesting to note that on Friday afternoon prices already start to decline towards the level of

Saturday and Sunday, re�ecting the early close of o�ces and factories on that day. For the annual

seasonality we observe that, as expected, winter months experience higher prices than summer

months. Average prices in August are higher already than those in June and July, presumably due

to the use of energy-intensive airconditioning systems.

The cross-correlation structure shown in Figure 3 reveals that prices during the afternoon and

nightly hours vary closely together while prices in the early morning and early evening hours show

less strong comovement. For example, prices for hour number 9 (between 08:00h and 09:00h CET)

have relatively weak correlation with the rest of the day. Overall, however, the correlation is high,

between 0.85 and 0.99.

The very substantial cross-correlations between the individual hourly prices indicate that the

�uctuations in these prices might be e�ectively summarized by a limited number of common factors.

We examine this by performing a Principal Component Analysis (PCA) on the full panel of 24

hourly prices based on its correlation matrix. Figure 4 presents the time series of the �rst two

principal components along with their corresponding loadings for the individual hourly prices. Not

surprisingly, the �rst principal component can be interpreted as a level factor that captures the

�uctuations in the overall level of electricity prices common to all hours. Based on its loadings,

the second principal component can be interpreted as a spread factor between prices of peak hours

(08:00-12:00h CET and 17:00-19:00h CET) and o�-peak hours. The �rst principal component

captures about 96.2% of the total variance of the panel, whereas the second principal component

adds another 2.2%. The remaining 22 components thus account for the remaining 1.6% of the

variance in the panel. These results demonstrate that indeed the bulk of the �uctuations and
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Figure 2: Top: Average of hourly prices for di�erent days of the week. Bottom: Average of
hourly prices for di�erent months, with the di�erent colors representing di�erent seasons.
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Figure 3: Hourly Prices Cross-Correlation Structure

comovement in the panel of hourly prices can e�ectively be represented by means of a small number

of factors. This encourages the use of dimension reduction techniques for forecasting, such as, e.g.,

Principal Component Regression (PCR).

3 Forecast Methods

In this section we present the forecast methods we consider for predicting the daily average electricity

price. We compare univariate forecasting models for the daily average price itself with several

multivariate models for the full panel of hourly prices. From the multivariate models, we obtain

forecasts for all hourly prices, which are averaged to deliver a forecast of the daily average price.

To �x notation, let yht denote the price for hour h on day t. The daily average price is given by

ȳt = 1
H

H∑
h=1

yht, with H = 24. (1)

We start with the description of univariate models for the daily average price ȳt and then continue

with multivariate models for the panel of hourly prices yht. We end this section with outlining the

methods we use to combine forecasts from di�erent models.
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3.1 Univariate Models

To address the question whether the prices for individual hours contain useful predictive information

for the daily average price, we compare forecasts from multivariate models for the panel of individual

hours against forecasts of univariate models for the daily average price. Obviously, a multivariate

framework is potentially much more �exible and comprehensive than a univariate forecasting ap-

proach. For this reason it is important to compare the multivariate forecasts against reasonable

univariate benchmarks, that is, forecasting models that should be able to capture the key features

of electricity prices outlined in the previous section, namely mean reversion, multiple seasonality

patterns and strong autocorrelation. At the same time, we intend to focus on forecast methods that

are feasible and sensible choices for practitioners. We consider two models that potentially satisfy

both criteria, namely a dynamic AR model and the Heterogeneous Autoregressive model (HAR).

3.1.1 Dynamic AR model

An AR model of order p for the daily average price is de�ned as:

ȳt =

p∑
j=1

φj ȳt−j +
K∑
k=1

ψkdkt + εt, (2)

where p is the number of lags included in the model, and dkt are dummies for Saturdays, Sundays

and for each month of the year. We consider the AR model with a maximum of p = 14 lags. It is

dynamic in the sense that p is chosen at every point in time according to the Akaike Information

Criterion (AIC). That is, at each point in time we choose the number of lags that minimizes

AIC(r) = log σ̂2(r)+2r/N , where r is the number of regressors in the model, σ̂2(r) is the estimated

residual variance value, and N is the length of the estimation window.1

3.1.2 Heterogeneous Autoregressive model (HAR)

The Heterogeneous Autoregressive model (HAR) is an AR-type model recently proposed by Corsi

(2009) to forecast realized volatility measures. The model is explicitly designed to capture long

memory behavior, that is, large and slowly declining autocorrelations, which is one of the key

features also of electricity prices, see Table 1. The HAR model essentially is a high order AR(p)

model as given in (2) but with restrictions on the autoregressive coe�cients φj , j = 1, . . . , p. Hence,

it provides a more parsimonious framework, which can be a strong advantage from a forecasting

1We also consider the more conservative Bayesian Information Criterion (BIC). Results based on the AIC proved
more accurate so we make those our benchmark for comparison.
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perspective. The model speci�cation is given by

ȳt = φ1ȳt−1 + φ2ȳt−1,w + φ3ȳt−1,m +

K∑
k=1

ψkdkt + εt, (3)

where ȳt−1,x = (ȳt−1 + · · · + ȳt−x)/x is the average price during the past x days, x = {w,m}.

Following Corsi (2009), we use w = 7 and m = 30, corresponding with the average price over the

past week and month, respectively.

3.2 Multivariate Models

Multivariate models for the full panel of individual hourly electricity prices obviously o�er a great

deal of �exibility. Potentially they allow us to exploit the rich source of information in the intraday

price behavior to obtain superior forecasts of the daily average price. At the same time, an uncon-

strained multivariate model might be ill-behaved when it comes to forecasting. The extra �exibility

may create in-sample over�tting at the expense of forecast accuracy. In particular, unconstrained

multivariate models typically require the estimation of a large number of parameters. The asso-

ciated estimation uncertainty will likely adversely a�ect the accuracy of out-of-sample forecasts.

These problems are especially acute in our context as the daily average price is an aggregation

of no less than 24 hourly series. For this reason, in our choice of multivariate forecasting models

we explicitly focus on methods that limit the model complexity and keep the number of unknown

parameters within reasonable limits. This is achieved by applying either shrinkage methods or

dimension reduction techniques (or both), as discussed in the following sections.

3.2.1 VAR Models

Our starting point for the multivariate forecasting models is a vector autoregressive (VAR) model

for the panel of hourly prices. This is a natural choice for electricity price forecasting, given their

strong persistence. De�ne the (H × 1) vector of hourly prices as Yt = (y1t, . . . , yHt) with H = 24,

Dt = (d1t, . . . , dKt) a (K× 1) vector with dkt representing dummy variables for Saturdays, Sundays

and months of the year, and �nally Xt = (Yt−1, . . . , Yt−p, Dt). We can now write the V AR model

of order p as

Yt = Φ′Xt + et, (4)

where the ((Hp+K)×H) matrix Φ contains the autoregressive coe�cients as well as the coe�cients

for the dummy variables, and the errors et are assumed to be serially uncorrelated and normally
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distributed with mean zero and covariance matrix Σ. It is convenient to rewrite the model in a

more compact form:

Y = XΦ +E (5)

where Y = (Y ′1 , . . . , Y
′
R) is an (R×H) matrix2, X = (X1, . . . , XR)′ is the (R× (Hp+K)) matrix

of explanatory variables, and E = (e′1, . . . , e
′
R) is the (R×H) error matrix.

With H = 24 hours per day andK = 14 dummy variables, the number of coe�cients in the VAR

model in (4) rapidly increases to unreasonable numbers when the autoregressive order p increases.

A �rst restriction that we impose throughout is to include only the �rst, second and the seventh

lag of the hourly prices. This choice is motivated by the strong persistence observed in electricity

prices (Knittel and Roberts, 2005), as well as the weekly seasonality pattern (see the top panel of

Figure 2). The same lag structure was also considered in Weron and Misiorek (2008). With a slight

abuse of notation, in the remainder p is used to denote the number of included lags, that is, p = 3,

instead of the maximum lag in the VAR model.

We consider three speci�c VAR models. First, we consider an unrestricted VAR (UVAR), which

imposes no restrictions on the coe�cients in (4) at all. The UVAR model has a large number of

parameters: with p = 3 lags and K = 14 exogenous dummy variables, we have H(Hp+K) = 2064

coe�cients to be estimated. Consequently, the model is prone to over�tting and will necessarily

involve a large amount of estimation uncertainty. The second model strongly limits the number of

unknown parameters by restricting all coe�cients of cross lags3 to zero. The resulting model, labeled

Diagonal VAR (DVAR), containsH(p+K) = 408 unknown parameters. Note that the DVAR model

essentially boils down to a collection of 24 univariate autoregressive models for the individual hourly

prices. We will see that despite the �exibility of this model where every hour is modeled separately,

it does not signi�cantly outperform the dynamic univariate AR benchmark model. The third model

is a Bayesian VAR (BVAR), which uses shrinkage to limit the estimation uncertainty in the UVAR.

The speci�c details of this approach are discussed in the following subsection.

3.2.2 Bayesian VAR

We use the BVAR as a practical shrinkage (regularization) device to help mitigate over�tting,

not as a tool for conducting formal Bayesian inference, though such inference is possible. De�ne

α = vec(Φ), and y = vec(Y ), where vec(·) is the usual vec operator. We can now rewrite the model

2Here and throughout we assume that pre-sample values Y0, Y−1, . . . , Y1−p are available such that the sample
covers R observations.

3That is, coe�cients of yi,t−j for i = 1, 2, . . . , 24, i 6= h, j = 1, 2 and 7, in the equation for yht.
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as:

y = (IH ⊗X)α+ ε, (6)

where ε ∼ N(0,Σ ⊗ IR), and I(�) is an identity matrix.

The BVAR approach limits the problems of over�tting and estimation uncertainty in the uncon-

strained model (6) by constraining the coe�cients. Unlike the DVAR model, however, the coe�cient

restrictions are not `strict', but more subtle in the form of shrinkage or regularization. Speci�cally,

we shrink the coe�cient estimates by combining their unconstrained least squares estimates with

a certain prior distribution. We follow the conventional approach and choose a Minnesota prior

distribution with mean and variance such that the estimates are shrunk towards a random walk

speci�cation for the individual hourly prices. In general, the Minnesota prior assumes that α is

normally distributed with prior mean αprior and covariance matrix V prior. For the elements of

αprior, we use a value of one for the coe�cients of the �rst order `own' lag yh,t−1 in the equation

for yht. Coe�cients for own lags of orders beyond one and all cross lags are shrunk towards zero.

In terms of the original coe�cient matrix Φ, this boils down to

Φprior
ij =


1 if i = j

0 otherwise

, (7)

where Φij denotes the (i, j)-th element of Φ. The random walk prior is the traditional and most

common choice for the prior means, see Koop and Korobilis (2010), among many others.4

The prior covariance matrix V prior determines the amount of tightness around the prior mean.

The larger the prior variance, the closer the �nal estimate is to its unrestricted VAR estimate. Here

we do not impose shrinkage on the coe�cients of the exogenous variables by assigning large values

to their prior variances, such that their posterior values essentially are equal to the unrestricted OLS

estimates. Furthermore, we follow the convention to assume smaller variances for higher order lags,

re�ecting that these should have smaller overall impact in prediction. The Minnesota prior assumes

the prior covariance matrix to be diagonal. Let Vh be the block associated with the coe�cients in

equation h, and let Vh,ii be its diagonal elements, i = 1, . . . ,Hp+K. We specify the prior variance

4We can also rely on the fact that energy prices are mean reverting, and use a value smaller than one for the �rst
order `own' lag coe�cients. We do not follow this path to avoid a somewhat arbitrary choice.
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of the coe�cients in the equation variable h as:

Vh,ii =



λ1
l2

for coe�cients on own lags for lag l = 1, . . . , p

λ2
l2

σi
σh

for coe�cients on cross lags of yit for lag l = 1, . . . , p

λ3σh for coe�cients on exogenous dummy variables

(8)

We estimate σh recursively at every time point using the standard error of the residuals from a

univariate autoregressive model for each of the 24 series. The ratio σi
σh

accounts for the di�erent

variability of the hourly price series. A more volatile hour will be assigned a smaller prior variance,

e�ectively keeping coe�cients of cross lags shrinkage constant across the di�erent hours. The λ's in

(8) are hyperparameters, controlling for the amount of shrinkage applied. The exact choice for these

values depends on the application at hand. In this paper we simply follow the standard choices as

in Koop and Korobilis (2010) and set λ1 = λ2 = 0.5 and λ3 = 100. This means we do not shrink

the coe�cients of exogenous variables, so their estimated coe�cients are equal to the least squares

estimates from the UVAR model.

Given these choices for the prior mean and prior covariance matrix, the posterior for α is given

by:

α | y ∼ N(αpost,V post), (9)

with

V post = {(V prior)−1 + Σ̂−1 ⊗ (X ′X)}−1, (10)

αpost = V post{(V prior)−1αprior + (Σ̂−1 ⊗X)′y}. (11)

It is easy to see why the Minnesota prior is a popular choice. First, the posterior and predictive

results are available analytically, which greatly facilitates their computation especially in a recur-

sive forecasting exercise as we consider here. Second, there are many adjustments we can apply,

including the choice of prior mean vector, the choice of hyperparameters and even the choice of

the shrinkage structure. We use the exponentially declining weights as in the original proposal of

Doan et al. (1984), but alternatively we can treat the exponent as an additional hyper-parameter

and optimize it using the in-sample period. For example, Kadiyala and Karlsson (1997) use linearly

declining weights, while Carriero et al. (2011) perform a grid search over di�erent combinations of

hyperparameters. We examined other methods for setting the λ's such as optimization and grid
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search, but found no evidence for improvement.

3.2.3 Factor models

Another common way to account for the curse of dimensionality is through dimension reduction

techniques such as factor models (FM) advocated, among others, by Stock and Watson (2002) in

the context of macroeconomic forecasting. The general idea of factor models is to summarise the

variability in the data using a limited number of G, say, linear combinations of the original variables.

Stock and Watson (2002) establish the theoretical basis for a two-step forecasting procedure, where

in the �rst step we extract the time series of the G factors {F̂t} from Yt using principal component

analysis (PCA) using singular value decomposition on the correlation matrix, and then forecast the

original dependent variables in the second step. Forecasting can be done in two ways. First, we can

project each yh,t+1 onto the space spanned by {F̂t} using least squares, i.e. ŷh,t+1 =
∑G

g=1 β̂ghf̂gt,

where β̂gh is the OLS estimate of the marginal e�ect of the g-th factor fgt on yh,t+1. Second, we

can model the G factors by means of a VAR model, obtain forecasts {F̂t+1} and use these in the

regression ŷh,t+1 =
∑G

g=1 β̂ghf̂g,t+1. This approach is also referred to as a VAR-PCA model. We

performed both procedures but since results are similar, we only report the latter to conserve space.

For compatibility, the factor VAR model has the same lag structure as in the other models, namely

including only the �rst, second, and one week lag. The factors are extracted using the deseasonalized

price series, and the forecasts are adjusted accordingly. More formally, we estimate the VAR model

for the factors, given by

F̂t = ζ1F̂t−1 + ζ2F̂t−2 + ζ3F̂t−7 + ηt, (12)

using observations for t = 1, . . . , R. From this model a forecast F̂R+1|R is obtained, which is used

to construct a forecast for the hourly prices as

ŶR+1|R = ΘF̂R+1|R + ΓDR+1, (13)

where the coe�cients Γ and Θ are estimated using information up to time R by regressing the raw

hourly price series YR on the seasonal dummies DR and the extracted factors at time R.

3.2.4 Reduced rank regression

While Principal Component Analysis forms the set of orthogonal latent variables from a subspace

spanned by the explanatory matrix X, an alternative is to reduce the dimension looking at the

subspace spanned by the orthogonal projection of Y on X. Reduced rank regression (RRR) does
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just that. This technique has a long history in time series analysis (Velu and Reinsel, 1998).

Carriero et al. (2011) prove consistency and provide the rate of convergence for the estimates when

the number of explanatory variables in the system tends to in�nity. The basic idea of this approach

is to impose a rank restriction on Φ, the matrix of coe�cients in (4), and by that focus on a

smaller number of underlying components. The reduced rank e�ectively is imposed by employing

the Eckart-Young theorem. Say Ŷ is the matrix of �tted values given by the standard OLS solution

that minimizes the error matrix in (4), and let UΛV ′ be its singular value decomposition, where

Λ is a diagonal matrix with the singular values arranged in decreasing order λ1 ≥ · · · ≥ λH on its

diagonal. We can now cast Ŷ onto a subspace Ŷ s = UΛ(s<H)V
′,where Λ(s<H) equals Λ with the

last H − s elements on the diagonal set to zero. We can see that in contrast to PCA, RRR pays

more attention to the output matrix Y than to the input matrix X. De�ne Υs =
∑s

i=1 νiν
′
i, where

νi is the i-th right singular vector from the singular value decomposition of Ŷ . The constrained

coe�cient matrix and the new �tted values are then given by

Φ̂(s) = Φ̂Υs, (14)

Ŷ
(s)
t = Φ̂(s)Xt. (15)

For more details on this procedure, see Izenman (2008).

3.2.5 Reduced Rank Bayesian VAR (RRP)

So far we have outlined models that try to avoid the over�tting problem either via shrinkage of the

parameters (BVAR) or via dimension reduction (FM and RRR). A method that combines these

two approaches is the Reduced Rank Baysian VAR, suggested by Carriero et al. (2011). A Reduced

rank Bayesian VAR, or Reduced rank posterior (RRP), essentially applies a rank reduction on

the posterior estimates obtained from the BVAR. The implementation is similar to the RRR, but

instead of the right singular vector νi from the singular value decomposition of Ŷ that was obtained

via the UVAR model, we now use Ŷ obtained using the BVAR model. Consequently, our RRP

estimator is

Φ̂RRPs = Φ̂BV ARΥs (16)

where here Υs =
∑s

i=1 νiν
′
i as before, but νi now is the i-th right singular vector from the singular

value decomposition of Ŷ BV AR, and Φ̂BV AR is the posterior mean estimate of the BVAR model
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coe�cients.5

3.3 Forecast combination

The forecasting performance of di�erent approaches may vary both over time and across di�erent

time series, a point nicely illustrated in the context of electricity price forecasting in Weron and

Misiorek (2008). There is no apparent reason to restrict ourselves to one method or another. It

is now well established that averaging forecasts of di�erent models may very well perform `better

than the best', see Timmermann (2006) for an extensive review.

In the context of forecasting the daily average electricity price, there are two possibilities to form

a combined forecast. First, we can directly combine the daily average price forecasts resulting from

the di�erent models. For the second possibility, recall that the daily average price is de�ned as the

simple average across the 24 hours. Thus, we may �rst apply forecast combination weights on the

individual hourly price forecasts to form a combined forecast for each hour, and then average those

to obtain the daily average price forecast. In the speci�c case of equal weights for each model for

all hours of the day, the two options are equivalent. This is, however, not the case for alternative

weighting schemes. The second option obviously is more �exible as the weights assigned to each

model are allowed to vary across the individual hours of the day. This need not necessarily result

in more accurate forecasts. In general, the forecast combination weights are unknown and need to

be estimated. The �rst option, that is, averaging of daily average price forecasts, involves only a

single set of weights; in contrast to the second possibility containing 24 such sets. The increased

parameter uncertainty may actually result in worse forecasts for the second option compared to the

�rst. For completeness, we report results from using both combination possibilities.

We examine the performance of two popular ways for forecast combination. We describe the

combination schemes in detail for the �rst option mentioned above, that is, combining daily average

price forecasts resulting from di�erent forecast methods. The �rst combination scheme is the simple

average (AV E), i.e.,

̂̄yt+1|t,AV E =
1

W

W∑
w=1

̂̄yt+1|t,w, (17)

where W is the number of forecast methods used, and ŷt+1|t,w is the forecast of the daily average

price obtained from method w.

5Another closely related model is the Bayesian Reduced Rank Regression introduced by Geweke (1996). A
drawback of this model is that it is computationally challenging. Estimation requires simulation involving high
dimensional matrix inversion, and can be even more cumbersome in our case as we perform a recursive forecasting
exercise. Moreover, Carriero et al. (2011) report similar forecasting performance of the two approaches.
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Another way to combine forecasts is by estimating weights aw using a simple linear regression

(Bates and Granger, 1969), i.e.,

ŷt+1|t,LS =

W∑
w=1

awŷt+1|t,w. (18)

This approach has some drawbacks, however. First, we lose the interpretation of the coe�cients

aw as weights, as they can take any value. Negative values or positive values exceeding one are

not uncommon and are di�cult to interpret in this context. Second, given that di�erent individual

forecasts are likely to be highly correlated, there is a possible multicollinearity issue. Hence, the

coe�cient estimates may vary drastically taking extreme positive or negative values and with very

large standard errors, a phenomenon sometimes termed as �bouncing beta's�. We therefore pursue

a more stable forecast combination approach, by adopting constrained least squares (CLS).

Speci�cally, at every time point t we numerically solve:

min
aw

1

Q

Q∑
j=1

(yt+1−j − ŷt+1−j|t−j,CLS)2, (19)

s.t.

ŷt+1−j|t−j,CLS =

W∑
w=1

awŷt+1−j|t−j,w, (20)

W∑
w=1

aw = 1, (21)

aw ≥ 0, w = 1, . . . ,W. (22)

In words, we �nd the forecast combination that minimizes the mean squared forecast error over the

most recent Q periods, but restricted such that the weights for the individual forecasts are restricted

to be positive and sum to one. We set Q = 365, that is, we use a rolling window of one year to

estimate the combination weights. We label this approach CLS(A).6 As mentioned before, another

possibility is to �rst create combined forecasts for each individual hour and then average those to

obtain the daily average price forecast. For this purpose, we apply the same CLS procedure to each

of the 24 hourly price forecasts to obtain forecast combination weights, which now may vary across

the di�erent hours of the day. We label this approach as CLS.

6We also performed a simple OLS averaging and the inverse of the mean squared forecast error (Stock and Watson,

1998) , i.e. aw = 1/MSFEw∑W
w=1 1/MSFEw

. Not reported but results from the simple linear regression averaging are poor, and

the results for inverse of the mean squared forecast error are similar to the simple average scheme.
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4 Empirical forecasting results

In this section we present and discuss the results of the empirical forecasting exercise for the daily

average electricity price. Our sample includes the last decade, in which electricity markets underwent

a process that may have transpired a change in price dynamics. As mentioned in Pesaran et al.

(2006), a popular way to deal with such changes is by using a rolling window scheme. We estimate all

models using a rolling window of �ve years. This is su�ciently long to provide accurate estimates,

yet short enough to allow for parameter instability. The window size is �xed across all models

so that we can compare the results using the Giacomini and White (2006) test for unconditional

predictive ability.

First we brie�y describe the evaluation criteria that we use to assess the accuracy of the forecasts.

This includes the test for unconditional predictive ability that we use to directly compare the

forecast accuracy for di�erent models. Next we describe the results, where the main �nding is that

the intraday hourly pro�le of electricity prices contains valuable information for forecasting the

daily average price. We conclude this section with an analysis of the stability of the forecasting

performance over time.

4.1 Forecasting performance evaluation

We focus mostly on the performance of the di�erent models described in the previous section for

one-step ahead point forecasts of the daily average price. For the multivariate models for the panel

of the 24 daily hours, these are obtained by averaging the point forecasts for the individual hours,

that is

ŷt+1|t =
1

H

H∑
h=1

ŷt+1|t,h,

where ŷt+1|t is the one-step ahead point forecast for the daily average price on day t + 1, and

ŷt+1|t,h, h = 1, . . . ,H = 24, are the individual hourly price forecasts. As a by-product, our multi-

variate models produce forecasts for the individual hourly prices as well. These forecasts are useful

to market participants in their own right as they can also trade electricity for speci�c hours. Im-

proved hourly forecasts can again be exploited in more e�cient trading and bidding strategies for

hourly contracts. Hence, in addition we consider the forecasting performance of each model with

regards to the individual hours. It is sensible to assume that the best forecasting model for the

individual hours will also perform best for the daily average price. That is, if model A performs

better than model B for each individual hourly price series, model A is likely to perform better than
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model B for forecasting the daily average price. Yet this is not necessarily the case, especially if we

do not account for the intraday variation in the variance of the individual hourly prices. A model

may perform very well for hours with relatively low volatility but fail for highly volatile hours such

that the average across all hours is a poor forecast for the daily average price.

We evaluate the forecast accuracy by means of the root mean squared error (RMSE), the mean

absolute error (MAE), and the mean absolute percent error (MAPE), computed as

RMSE =

√√√√ 1

N

T−1∑
t=R

(ŷt+1|t − yt+1)
2, (23)

MAE =
1

N

T−1∑
t=R

|ŷt+1|t − yt+1|, (24)

MAPE =
1

N

T−1∑
t=R

|ŷt+1|t − yt+1|
|yt+1|

. (25)

where T is the total number of observations, R is the length of the estimation window, andN = T−R

is the number of forecasts made. The MAPE evaluates the forecast error relative to the actual price

level, and is traditionally used to measure accuracy in electricity load forecasting (Taylor et al.,

2006).

When evaluating the accuracy of the hourly price forecasts, we also include a Weighted Root

Mean Squared Error (WRMSE), see for example Christo�ersen and Diebold (1998). Some hours

are more volatile than others, and therefore are harder to predict. When we evaluate the overall

accuracy of a model with respect to its individual hourly forecasts, it is reasonable to weight the

series according to their volatility, so that the more volatile hours will not dominate the evaluation.

TheWRMSE is calculated as RMSE′hϑ where RMSEh is a (24×1) vector of the RMSE measure

given above but for the individual hours, and ϑ is a (24×1) vector with (σ(yt+1,h)/
∑H

h=1 σ(yt+1,h))
−1

at its h-th entry, where σ(yt+1,h) denotes the standard deviation of the h-th hourly price.

We address the question of whether the di�erence in forecasting performance between the models

is signi�cant by means of the test for unconditional predictive ability of Giacomini and White (2006).

The computation of the test statistic is identical to the test for predictive accuracy in Diebold

and Mariano (1995). However, Giacomini and White (2006) generalize the test and develop the

theoretical basis for a comparison between forecast methods, as opposed to models. As a result we

can compare between nested and non-nested models, and allow for parameter estimation uncertainty

in the forecast evaluation. Assume that we aim to compare two point forecasts ŷ
A
t+1|t and ŷ

B
t+1|t,

obtained with forecast methods A and B. We may compare these directly based on their average
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accuracy measures (or `loss functions'), by testing formally whether their di�erence is statistically

signi�cantly di�erent from zero on average. De�ne the di�erence in accuracy

dt+1 = L(ŷ
A
t+1|t; yt+1)− L(ŷ

B
t+1|t; yt+1),

where the accuracy measure L can be the squared forecast error (ŷt+1|t − yt+1)
2, the absolute

forecast error |ŷt+1|t − yt+1)|, or the absolute percentage error |ŷt+1|t − yt+1|/|yt+1|, corresponding

with testing the signi�cance of di�erences in RMSE, MAE and MAPE, respectively. The null

hypothesis of equal predictive ability is given by

H0 : E(dt+1) = 0, for all t = R,R+ 1, . . . , T − 1.

Let dR,N denote the sample average of the di�erences in accuracy, that is, dR,N = N−1
∑T−1

t=R dt+1.

To test the null, we may use a Diebold and Mariano (1995) type statistic

tR,N =
dR,N√
σ̂2R,N/N

, (26)

where σ̂2R,N is a heteroskedasticity and autocorrelation-consistent (HAC) variance estimator of

σ2R,N = Var
(√

N dR,N

)
. Under suitable regularity conditions, the statistic tR,N is asymptotically

(as N →∞ with R �xed) standard normally distributed under the null hypothesis.

4.2 Results

The forecasting performance for the daily average price is shown in Table 2. The �rst row gives the

values of the RMSE, MAE and MAPE for the AR benchmark model. The performance of the other

models is presented in relative terms, in the sense that we show the ratio of the accuracy measure

for the speci�c model over the corresponding measure for the AR model. Hence, a value below one

indicates that the speci�c model provides more accurate forecasts than the AR benchmark.

We observe that, with only a few exceptions, all four types of multivariate models RRR, FM,

VAR and RRP perform better than the AR benchmark on all three evaluation criteria. The best

individual model is the BVAR model, with improvements of 11%, 17% and 16% in terms of RMSE,

MAE and MAPE, respectively. The superior performance of the BVAR relative to the RRR,

RRP and FM methods suggests that, from our forecasting perspective, shrinkage is a more useful

technique to limit the model complexity than explicit dimension reduction by imposing a reduced
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rank or factor structure on the forecasting model.

The results for the three VAR models also show an interesting pattern. First, the DVAR, that

is the collection of univariate AR models, performs worse than the AR model for the daily average

price. Hence, forecasting the individual hours in isolation does not help to improve forecasts of the

daily average price. Second, taking into account the intraday dependence of the hourly prices, as

in the UVAR, does lead to more accurate forecasts, despite the large number of parameters that

needs to be estimated. In fact, the performance of the UVAR is comparable with the RRR and

FM approaches, except that the FM with multiple factors performs substantially better in terms of

RMSE. Third, using shrinkage in the VAR model leads to further gains in forecast accuracy, with

the BVAR outperforming the UVAR by quite a margin.

Concerning the factor models, it is interesting to note the considerable improvement in forecast

accuracy when moving from one factor to two factors. Apparently, while the second factor only

explains a relatively small portion of the total variation in the individual hourly prices, as seen

in the PCA results in Section 2, it does contain valuable predictive information. This �nding

complements our previous analysis and also underscores the contribution of the intraday pro�le to

the out-of-sample performance.

Finally, the results in Table 2 demonstrate the attractiveness of forecast combination also in

our context of electricity prices. Taking a simple average of all individual forecasts delivers more

accurate forecasts than the best individual model (that is, the BVAR), although the di�erences

are rather small at 1%. More substantial improvements in forecast accuracy can be obtained by

allowing for di�erent weights for the individual forecasts using the CLS method. The resulting

forecasts provide an improvement of 16%, 20% and 18% in terms of RMSE, MAE and MAPE

relative to the AR benchmark. Both options, with weights determined by a CLS for each individual

hour or by CLS for the daily average price, are better than equal weighting of the di�erent models.

Allowing the weights to vary across individual hours produces slightly better results. We leave a

more detailed comparison between the two approaches for future research.

Given the superior performance of the CLS forecast combination method, it is interesting to

examine which models receive most weight in this approach, and whether and how the weights vary

over time For this purpose, Figure 5 shows the time series of estimated weights, averaged across

hours, obtained with the CLS procedure. The RRP and FM weights plotted are the sum for these

models with di�erent ranks and number of factors considered (that is, 1, 2, and 5). For convenience,

the daily average price process is plotted as well.

Several features stand out from the graph. First, the weights are not constant over time.
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RMSE MAE MAPE

Univariate models

AR∗ 23.41 11.93 0.054

HAR 1.33 1.44 1.432
∗ Actual terms, not relative.

VAR models

DVAR 1.00 1.03 1.02

UVAR 0.97 0.88 0.89

BVAR 0.89 0.83 0.84

Factor models

FM(1) 0.96 0.93 0.92

FM(2) 0.91 0.91 0.90

FM(5) 0.90 0.88 0.89

Reduced Rank models

RRR(1) 1.01 0.89 0.90

RRR(2) 0.98 0.88 0.89

RRR(5) 0.98 0.85 0.89

RRP(1) 0.92 0.91 0.96

RRP(2) 0.91 0.90 0.95

RRP(5) 0.91 0.90 0.95

Forecast Combination

AVE 0.88 0.82 0.83

CLS 0.84 0.80 0.82

CLS(A) 0.85 0.82 0.83

Table 2: Performance comparison between the di�erent models, for the daily average price. The
�rst row gives the values of the RMSE, MAE and MAPE for the AR benchmark. The performance
of the other models are presented in relative terms, in the sense that we show the ratio of the
accuracy measure for the speci�c model over the corresponding measure for the AR model. HAR:
Heterogeneous Autoregressive model, DVAR: Diagonal VAR, UVAR: Unrestricted VAR, BVAR:
Bayesian VAR, FM is factor model with the number of factors in parentheses, RRR: Reduced Rank
Regression with rank in parentheses, RRP: Reduced Rank Posterior with rank in parentheses. For
Forecast Combination, AVE stands for simple averaging, CLS stands for Constrained Least Squares
weights with weights that may vary across hours, CLS(A) stands for Constrained Least Squares
weights with weights which are determined using the daily average price forecast. The forecasting
exercise is performed using a rolling estimation window of �ve years. The forecast period runs from
May 4, 1998 to March 10, 2010 which corresponds with N = 4694 forecasts.
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For example, the FM models receive a large weight between 0.4-0.5 during the years 1999-2002

but a substantially lower weight between 0.2-0.3 in subsequent years. This suggests that there

is considerable variation in relative performance of the di�erent models over time. Second, the

weights are quite volatile, despite being determined by a rolling window of a full calendar year.

Hence, changes in the relative accuracy of individual forecasts may occur rapidly. Third, the

weights of the BVAR and the RRP increase during upwards spikes, but also during volatile periods

like the years 2003-2006. Fourth and �nally, the weights assigned to the DVAR are �uctuating

between 0.2-0.3 in the early years of our sample period, often being ranked second (after the FMs)

in terms of relative performance. In the years 2006-2010, the weight given to the DVAR forecasts

declines to around 0.1 and is, most of the time, dominated by the other models. Apparently, from

our forecasting perspective, incorporating cross-sectional dependence between the individual hourly

prices has become more important in recent years.

As discussed earlier in this section, we address the signi�cance of di�erences in the forecast

accuracy measures by means of the Giacomini-White test statistic for unconditional predictive

ability. Table 3 presents the test results based on the absolute error loss function, corresponding

with testing the null hypothesis of equal predictive ability in terms of MAE.7 For RRR, RRP and

FM, we only include the best individual speci�cation, that is, with rank �ve for RRR and RRP and

with �ve factors for FM. The statistic is computed such that a positive statistic means that the

MAE of the row model is larger than the MAE of the column model.

Table 3 shows that at conventional con�dence levels the BVAR signi�cantly outperforms all other

individual forecast methods. This includes its unrestricted version, the UVAR, which demonstrates

the e�ciency and appropriateness of the shrinkage procedure in this case. All individual forecasts

also signi�cantly outperform the benchmark AR model. The forecast combination method with

weights determined by constrained least squares (CLS) gives signi�cantly more accurate forecasts

than all individual models at the 1% signi�cance level, except the BVAR. Based on a one-sided test,

the value of the Giacomini-White statistic of −1.34 corresponds with a p-value of 0.09.

Table 4 presents the forecast accuracy measures for the one-step ahead point forecasts of the

individual hourly prices. Apart from the WRMSE, these measures are calculated for each hour

separately and then simply averaged across the hours. The WRMSE is a weighted average of the

RMSE as explained in the previous section.

Several conclusions emerge from Table 4, which mostly corroborate the forecasting results for

7Results for testing the null hypothesis of equal predictive ability in terms of RMSE and MAPE are qualitatively
similar. Details are available upon request.
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Weights for Selected Models over time
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Figure 5: Averaged CLS weights across the 24 hours for di�erent types of multivariate models
over time. The weights are determined using a constrained least squares procedure over the most
recent 365 days in a rolling window scheme. BVAR: Bayesian VAR, DVAR: Diagonal VAR, RRP:
Reduced Rank Posterior, FM: Factor Model. The RRP and FM weights plotted are the sum for
these models with di�erent ranks and number of factors considered (that is, 1, 2, and 5). The
bottom panel presents the daily average price over time.
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BVAR UVAR DVAR RRP(5) FM(5) RRR(5) CLS

UVAR 5.52

DVAR 7.90 5.20

RRP(5) 10.47 1.73 -4.40

FM(5) 2.50 -0.72 -7.98 -2.33

RRR(5) 5.55 3.14 -5.20 -1.71 0.73

CLS -1.34 -5.50 -9.02 -9.92 -3.35 -5.53

AR 6.22 4.09 -1.93 3.18 5.58 4.08 6.96

Table 3: Giacomini-White test statistics based on the absolute forecast error loss function. The
statistic is computed such that a positive statistic means that the MAE of the row model is larger
than the MAE of the column model.

the daily average price discussed before. First, across all individual models the BVAR renders the

most accurate forecasts for the hourly electricity prices, with improvements relative to the DVAR

model between 7-13% depending on which accuracy measure is used. Hence, it comes as no surprise

that the BVAR turns out to be performing best for the daily average price in Table 2. Second, for

the factor models it again seems important to include multiple factors, in the sense that the FM(1)

forecasts are substantially less accurate (by 10% or more) compared to the FM(2) and FM(5)

forecasts. Interestingly, the same conclusion applies to the RRR and RRP forecasts, where the

models with higher rank (2 and 5) outperform the models with rank equal to one. Third, forecast

combination also gives superior forecasts for the individual hourly prices, with the CLS method

improving upon the BVAR approach by another 2-4%. Note, however, that in this case simply

averaging all individual forecasts is not su�cient to reap the gains of forecast combination. In fact,

the simple average forecast combination (AVE) performs substantially worse than the BVAR as

well as several other individual forecasts. Finally, in Table 2 the DVAR model is seen to give the

least accurate forecasts of the daily average price across all individual models. This no longer holds

for the forecasts of the individual hourly prices. As seen in Table 4, the DVAR outperforms the

RRR(1) and RRP(1) forecasts as well as the FM(1) forecasts. This can partly be explained by these

approaches rendering (relatively) more accurate forecasts for relatively volatile hours of the day, as

suggested by the relatively large values of the WRMSE compared to the (unweighted) RMSE.

4.3 Stability Analysis

The analysis so far suggests that there are signi�cant improvements in forecast accuracy for the daily

average price to be gained by opting for a multivariate framework using the full panel of hourly

electricity prices. We now examine how robust this conclusion is with respect to the forecast period.
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WRMSE RMSE MAE MAPE

VAR models

DVAR∗ 28.45 30.62 14.03 0.07

UVAR 0.96 0.97 0.89 0.91

BVAR 0.93 0.93 0.88 0.87
∗ Actual terms, not relative.

Factor models

FM(1) 1.08 1.05 1.09 1.10

FM(2) 0.97 0.96 0.97 0.97

FM(5) 0.94 0.94 0.92 0.93

Reduced Rank models

RRR(1) 1.16 1.13 1.15 1.19

RRR(2) 1.01 1.01 0.99 1.03

RRR(5) 0.96 0.97 0.91 0.93

RRP(1) 1.11 1.08 1.15 1.22

RRP(2) 1.00 0.99 1.05 1.07

RRP(5) 0.95 0.95 0.98 0.99

Forecast Combination

AVE 0.98 0.97 0.94 0.97

CLS 0.89 0.89 0.85 0.85

Table 4: Performance comparison between the di�erent models. The performance measures are
calculated for each individual hour and averaged across the 24 hours. The �rst row gives the
values of the WRMSE, RMSE, MAE and MAPE for the Diagonal VAR (DVAR). The performance
of the other models are presented in relative terms, in the sense that we show the ratio of the
accuracy measure for the speci�c model over the corresponding measure for the DVAR model.
UVAR stands for Unrestricted VAR, BVAR: Bayesian VAR, FM is factor model with the number
of factors in parentheses, RRR: Reduced Rank Regression with rank in parentheses, RRP: Reduced
Rank Posterior with rank in parentheses, AVE stands for simple averaging and CLS stands for
Constrained Least Squares weights, both for the Forecast Combination method. The forecasting
exercise is performed using a rolling window of �ve years. The forecast period runs from May 4,
1998 to March 10, 2010.
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Figure 6 presents a rolling MAPE ratio of selected models relative to the benchmark AR model,

computed using a moving window of three years. We observe that both the BVAR framework as

well as the CLS forecast combinations deliver consistent and substantial improvements in forecast

accuracy relative to the benchmark. Of course there is variation in the relative accuracy. For

example, the relative MAPE for the CLS approach varies between 0.88 for windows covering the

period 1999-2001 and 0.73 for the years 2003-2005. The forecast gains always exceed 10%, however.

The same conclusion applies to the FM(5) method, although the gains in MAPE are smaller, ranging

between 5-15%, depending on the window considered. For the other forecast methods, the forecast

accuracy shows more instability over time. For RRP(5), the positive full-sample results presented in

Table 2 appear to be mostly due to the �nal years of the forecast period, in the sense that the relative

MAPE hovers around one until 2007 and only then declines to substantially lower values. Similarly,

the unrestricted VAR forecasts do not improve upon the benchmark in the �rst years of the forecast

period. They do show substantial improvement as time goes by though, even outperforming the

FM(5) model from 2004 onwards. Finally, the Diagonal VAR, which is restricted from using the

information in the cross-sectional relations of the hourly prices, performs slightly worse than the

AR benchmark throughout the forecast period.

5 Conclusion

In liberalized electricity markets such as Nord Pool, the daily electricity price is an average of the

set of prices for delivery during individual hours of the day, which are determined simultaneously

in a day-ahead auction market. In this paper, we present convincing empirical evidence that,

for the purpose of forecasting the daily average electricity price, it is bene�cial to exploit the

information embedded in the panel of the hourly price series. This can be done by adopting a

multidimensional modeling framework for the individual hourly prices. A key requirement to realize

the improvements in forecast accuracy is incorporating the complex intraday relations between the

hourly prices. A collection of univariate autoregressive models for the individual hours does not

outperform a univariate AR benchmark for the daily average price. However, allowing for cross-

sectional e�ects substantially improves performance. Using dimension reduction techniques and, in

particular, shrinkage and forecast combination further improve out-of-sample performance, resulting

in a signi�cant improvement in forecast accuracy of about 15-20% compared with a univariate

forecast method for the daily average price itself.
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